WorldWideScience

Sample records for technology natural gas

  1. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  2. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  3. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  4. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  5. Resourceful utilization technology for natural gas

    International Nuclear Information System (INIS)

    Matsumura, Y.

    1994-01-01

    This paper is a description of new applications that will contribute in increasing the demand for natural gas. First, technical issues to turn natural gas into a more resourceful fuel (efficient transportation and storage, integrated utilization of energies, uses as non-fuel), and also pitch-based high performance carbon materials and utilization techniques in the field of energy (isotropic carbon fiber, activated carbon fiber, spherical carbon micro-beads, high modulus carbon fiber). (TEC)

  6. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  7. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  8. Low Carbon Technology Options for the Natural Gas ...

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  9. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  10. Oil and natural gas technology review-lubrication and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Moos, J

    1966-01-01

    A summary is presented of the advances made during 1967 in the following areas: production and transmission of natural gas; geosciences; drilling and production technology; secondary recovery; transportation by tanker, pipelines, and tank cars; storage; planning of refineries; control and automation; cracking and gasification of crude oil; separation and hydrogenation processes; petrochemicals; combustion technology; fuels and additives; air and water pollution control; production of lubricants; lubrication with mist, gas, and vapors; hydraulic fluids; lubricant additives; oxidation and aging of oils; greases; solid lubricants; bearings; machining; friction and wear; and changes in materials of construction. (220 refs.)

  11. Technology assessment of long distance liquid natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    This document contains phases 7, 8, and 9 of a review on the technology assessment of long distance liquefied natural gas (LNG) pipelines. Phase 7 contains 6 papers describing novel applications for LNG pipelines. Phase 8 contains a summary of material relating to cold utilization and rural service. Phase 9 presents a listing of materials and equipment used to construct an LNG pipeline. Separate abstracts for each phase of the study have been prepared for inclusion in the Energy Data Base. (DMC)

  12. Remedial technology for contaminated natural gas dehydrator sites

    International Nuclear Information System (INIS)

    Prosen, B.J.; Korreck, W.M.; Armstrong, J.M.

    1991-01-01

    Ground water and soil contamination at many of Michigan's oil and gas well sites has been attributed to natural gas dehydration processes. Since water was once thought to be the only by-product from the dehydration process, condensate from the process was discharged directly to the ground for several years. This condensate was later found to contain benzene, toluene, ethyl-benzene, and xylenes (BTEX), and the process of discharging condensate to the ground was stopped. Many oil and gas well sites had become impacted from the process during this time. Although condensate is no longer discharged to the ground, soil and water contamination still remains at many of these sites. In the last few years, the Michigan Department of Natural Resources has targeted over 90 well sites for assessment of contamination associated with gas dehydration. The results of many of these assessments indicate that soil and ground water have been impacted, and the State of Michigan has mandated cleanup of these sites. Remedial technologies which have been used to contain and/or clean up the sites include excavation and product removal, soil venting, purge and treat, and enhanced biodegradation. This paper is a discussion of the technology, implementation, and results from each of these methods

  13. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  14. Creation of technological bases of struggle with generation of natural gas hydrates

    International Nuclear Information System (INIS)

    Asadov, M.M.; Alieva, S.A.

    2005-01-01

    Chemical technological access, permitting directed of intensify processes prevention of gas hydrates during motion of the gas-liquid current of natural gas in the borehole cavity of natural gas-borehole cavity have been engineered. Determined technological regimes of gas current conditioning, permitting create nonequilibrium state providing condition for reversible process

  15. Floating natural gas processing plants. Technical ideal or feasible technology

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1977-04-01

    Realizability of floating natural gas processing plants is decisively influenced by the economy of the system. Illustrated by the example of the natural gas product LPG (liquefied petroleum gas), a model cost calculation is carried out. It is demonstrated that the increase in the price level during the 1973/1974 energy crisis is an important factor for the realiability in terms of economy of such complicated technical systems. Another aspect which the model calculation revealed is that the economy of floating natural gas processing plants and storage systems can only be estimated in connection with other system components.

  16. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  17. Strategic implications of gas to liquids technology for the natural gas industry

    International Nuclear Information System (INIS)

    Russell, B. J.

    1998-01-01

    A new and economical gas to liquids (GTL) technology is described that promises to substantially increase industry's ability to exploit many trillions of cubic feet of largely unmarketable reserves of natural gas. The technology turns the gas into a form that overcomes prohibitive transportation costs, avoids long-term, high-risk, take-or-pay contracts, and helps satisfy the demand for cleaner liquid products. Widespread application of GTL technology is credited with having the power to ease the burden on every segment of the petroleum industry, from exploration through petrochemicals, and into allied industries such as electric power generation. It is claimed that in situations where GTL is the only economic option, it will create an entirely new set of opportunities. Among these are the monetization of known stranded gas and the early development of remote gas discoveries or of oil discoveries associated with gas. It will cause a re-evaluation of exploration strategies by upgrading gas prospects in remote locations and new investment options to countries with shut-in gas or heavy oil or tar sand reserves. The monetization of associated gas when reinjection is no longer needed or desired could occur. Extensive applications offshore and adjacent to coastal reserves and multiple options for refiners facing heavier, higher-sulfur crude slates are possible. The outlook for Syntroleum's version of the GTL process, and the 'grant-back' provisions of Syntroleum's license agreements with companies such as Texaco, ARCO, Marathon, Criterion Catalyst, Catalytica, and ABB, giving each licensee access to the improvements of the other licencees, and the joint development agreements with these companies, were also discussed. 6 refs

  18. Future markets and technologies for natural gas vehicles; Futurs marches et technologies pour les vehicules au gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. [Development Engineer, Lotus Engineering (United Kingdom); Carpenter, B. [Gas Applications, BG Technology (United Kingdom)

    2000-07-01

    Lotus Engineering and BG Technology recently collaborated on the conversion of the Lotus Elise for operation on natural gas. This paper considers the world-wide opportunities for natural gas as an automotive fuel by comparison with other fuels. It looks at how technology can be used to exploit this potential, by examining the special features of the gas fuelled Elise, and how other technologies such as hybrid vehicles and fuel cells can be expected to respond to this challenge in future. (authors)

  19. Impacts of imports, government policy and technology on future natural gas supply

    International Nuclear Information System (INIS)

    Allison, E.

    2009-01-01

    This presentation discussed the impacts of imports, government policy and technology on future natural gas supply. Specifically, it discussed projections of natural gas supply and demand; the potential impact of imports on United States natural gas supply; the potential impacts of government policy on natural gas supply and demand; and the impact of technological innovations on natural gas supply such as coalbed methane and methane hydrate. Specific government policies that were examined included the American Recovery and Reinvestment Act of 2009; the American Clean Energy and Security Act of 2009; and the Clean Energy Jobs and American Power Act of 2009. It was concluded that the United States demand for natural gas will expand and that the impact of pending clean energy legislation is unclear. In addition, each potential future resource will face constraints and new resources may come on line in the next 20 years. figs.

  20. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source "Virtual Gas Field" Simulator.

    Science.gov (United States)

    Kemp, Chandler E; Ravikumar, Arvind P; Brandt, Adam R

    2016-04-19

    We present a tool for modeling the performance of methane leak detection and repair programs that can be used to evaluate the effectiveness of detection technologies and proposed mitigation policies. The tool uses a two-state Markov model to simulate the evolution of methane leakage from an artificial natural gas field. Leaks are created stochastically, drawing from the current understanding of the frequency and size distributions at production facilities. Various leak detection and repair programs can be simulated to determine the rate at which each would identify and repair leaks. Integrating the methane leakage over time enables a meaningful comparison between technologies, using both economic and environmental metrics. We simulate four existing or proposed detection technologies: flame ionization detection, manual infrared camera, automated infrared drone, and distributed detectors. Comparing these four technologies, we found that over 80% of simulated leakage could be mitigated with a positive net present value, although the maximum benefit is realized by selectively targeting larger leaks. Our results show that low-cost leak detection programs can rely on high-cost technology, as long as it is applied in a way that allows for rapid detection of large leaks. Any strategy to reduce leakage should require a careful consideration of the differences between low-cost technologies and low-cost programs.

  1. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular......This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  2. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  3. Technological development for increasing the natural gas market; Desenvolvimento tecnologico para o incremento do mercado do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Arno; Romanos, Rafael Reami; Konishi, Ricardo; Lehmkuhl, Willian Anderson [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil)

    2008-07-01

    This paper presents the results achieved in technological development projects for the use of natural gas in furnaces for producing ceramic frits, in plastic film thermoforming and in hardwoods drying. In the case of the production of frits, the analysis of a typical furnace showed that its productivity is better, compared with the use of conventional fuel oil and around 60% of losses of energy were detected, resulting in a proposal of a new model to increase its efficiency, recovering the energy of exhaust gases from the chimney. For the thermoforming, it was shown that the isolation of its sides enable improvements in the order of 7% in its efficiency. Comparing the operating costs, the replacement of electric radiators by porous radiating burners generates savings of around 30% to 45%, with an expected return on investment in about 2.5 years. The drying of hardwoods with natural gas can be carried out in only 26 days, kept all the required technical characteristics, thanks to the good controllability of the conditions of the drying heater, providing a technologically feasible opportunity to reduce the drying time, which in conventional methods is in the order of 90 to 120 days. (author)

  4. Technological innovations to development remote gas reserves: gas-to-liquids; Inovacoes tecnologicas no desenvolvimento de reservas remotas de gas natural: gas-to-liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maculan, Berenice D. [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil); Falabella, Eduardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The GTL - gas to liquids technology was born in Germany, after the 20's with the goal to product liquid fuel from coal to supply the bellicose and domestic demand. The grow of the petroleum industry lead the world to the forgiveness of the GTL technology, except in South Africa. In the last two decades the number of news natural gas reserves and the perspectives of the increase demand from natural gas for the next 20 years change this scenario. Nearly 60% of this reserves are calling stranded or remote, meaning reserves which can't produce with conventional technologies (logistics and economics barriers). So, the oil and gas industry restart to analyze the economics and applicability of the GTL technology. The competitively and applicability of this technology were evaluated and compared to the traditional way of natural gas transport, as well as the solidification of the new environmental rules and the creation of niche to this kind of fuel - the cleans ones - seams the cause of this changes in the oil and gas industries. Which began to adjust to all this news rules and conditions, as show in the sum of investments in R and D area. So, is in this new scenario that the reappear of GTL technology is consider has a technological innovation. (author)

  5. Technological and economic factors in the future development and utilization of Arctic natural gas

    International Nuclear Information System (INIS)

    Jumppanen, P.; Sackinger, W.M.

    1993-01-01

    Development of Arctic gas reserves will be accelerated during the next two decades in response to higher oil prices, environmental and safety advantages of gas, and the potentially low costs of tapping giant reservoirs. Total Arctic gas reserves are estimated at over 63 trillion m 3 . Due to low population and industrial activity in the Arctic, only limited markets for Arctic gas exist in the Arctic itself. The main part of Arctic gas must therefore be transported over long distances. Giant Arctic gas fields will provide a basis for different production alternatives including both pipeline gas, liquefied gas, and converted gas products. Transportation systems are the most critical part of Arctic natural gas development and the sector requiring the greatest investment. Major investment decisions will depend on accurate estimates of gas transport technology and economics, as well as on perceived energy market share growth and geopolitical stability. 27 refs., 4 figs., 3 tabs

  6. State of the art of membrane technology for treatment of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Donno, S. De

    1997-11-01

    This topic has been selected in accordance with a general interest expressed by the Gas Industry. Membranes technology is achieving industrial success in many operations for selective fluids separation. In the specific area of natural gas treatment, membranes are viewed as a technological breakthrough in the coming years despite the fact that the real entity of their potential advantage on conventional technologies has still to be clarified. Aim of this report has been an overview of the overall potentiality and present limits of the use of membranes in natural gas treatment with emphasis on requirements and conditions which could enable established applications of membranes in short to medium terms. This Committee report is based on recent literature and on the opinions of gas companies active and/or interest in technology development of membranes for naturla gas. (au) 27 refs.

  7. Methane emissions from natural gas pipelines - current estimates, technologies and practices

    International Nuclear Information System (INIS)

    Lang, M.C.; Crook, L.

    1997-01-01

    Methane is the major component of natural gas. World-wide methane emissions from gas systems is estimated to be between 50 and 25 tera grams or about 5 percent of the world-wide total of anthropogenic methane emissions. Technologies and practices are described that are currently being used or are planned to be used in the US to both measure and/or reduce methane emissions from natural gas pipelines. One of the technologies that is described includes a high flow sampling instrument. One of the practices that is described is the current voluntary program conducted by the US Environmental Protection Agency called the Natural Gas Star program. This program supports research into best management practices, information sharing and technology transfer to promote methane emissions reductions profitably. (R.P.)

  8. Parametric economic analysis of natural gas reburn technologies. Topical report, June 1991-June 1992

    International Nuclear Information System (INIS)

    Bluestein, J.

    1992-06-01

    The report presents a parametric economic analysis of natural gas reburn technologies used for control of nitrogen oxides emissions in coal-fired utility boilers. It is a competitive assessment of the economics of gas reburn performed in the context of regulatory requirements and competing conventional technologies. The reburn technologies examined are basic gas reburn, reburn with sorbent injection and advanced gas reburn. The analysis determined the levelized costs of these technologies in $/ton of NOx removed with respect to a gas-coal price differential in $/MMBtu of energy input. For those niches in which reburn was less economical, a breakeven capital cost analysis was carried out to determine the R ampersand D goals which would make reburn more cost competitive

  9. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  10. Great gas plants : these five natural gas processing facilities demonstrate decades of top-flight technology

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-07-15

    The natural gas purification and pipeline sector is a major economic driver in Canada. Gas processing facilities are growing in number, and several large gas projects are being planned for future construction in the western provinces. This article outlined 5 gas plants in order to illustrate the sector's history and breadth in Canada. The Shell Jumping Pound gas complex was constructed in 1951 after a sulfur-rich gas discovery near Calgary in 1944. The Empress Straddle plant was built in 1971 in southeastern Alberta and is one of the largest single industrial consumers of electrical power in the province. The Fort Nelson gas processing plant is North America's largest sour gas processing facility. The Shell Caroline complex was built 1993. The Sable offshore energy project is located on the coast of Nova Scotia to handle gas produced from the Thebaud wells. A consortium is now considering the development of new gas fields in the Sable area. 5 figs.

  11. An overview of exhaust emissions regulatory requirements and control technology for stationary natural gas engines

    International Nuclear Information System (INIS)

    Ballard, H.N.; Hay, S.C.; Shade, W.N. Jr.

    1992-01-01

    In this paper a practical overview of stationary natural gas engine exhaust emissions control technology and trends in emissions regulatory requirements is presented. Selective and non-selective catalytic reduction and lean burn technologies are compared. Particular emphasis is focussed on implications of the Clean Air Act of 1990. Recent emissions reduction conversion kit developments and a practical approach to continuous monitoring are discussed

  12. Electricity to natural gas competition under customer-side technological change: a marginal cost pricing analysis

    International Nuclear Information System (INIS)

    Gulli', Francesco

    2004-01-01

    This paper aims at evaluating the impact of technological change (on the customer side of the meter) on the network energy industry (electricity and natural gas). The performances of the small gas fired power technologies and the electrical reversible heat pumps have improved remarkably over the last ten years, making possible (or more viable) two opposite technological trajectories: the fully gas-based system, based on the use of small CHP (combined heat and power generation) plants, which would involve a wide decentralisation of energy supply; the fully electric-based system, based on the use of reversible electric heat pumps, which would imply increasing centralisation of energy supply. The analysis described in this paper attempts to evaluate how these two kinds of technological solutions can impact on inter-service competition when input prices are ste equals to marginal costs of supply in each stage of the electricity and natural gas industries. For this purpose, unbundled prices over time and over space are simulated. In particular the paper shows that unbundling prices over space in not very important in affecting electricity to natural gas competition and that, when prices are set equal to long-run marginal costs, the fully electric-based solution (the reversible heat pump) is by far preferable to the fully gas-based solution (the CHP gas fired small power plant). In consequence, the first best outcome of the technological change would involve increasing large power generation and imported (from the utility grid) electricity consumption. Given this framework, we have to ask ourselves why operators, regulators and legislators are so optimistic about the development of the fully gas-based solutions. In this respect, the paper suggests that market distortions (such as market power, energy taxation and inefficient pricing regulation) might have give an ambiguous representation of the optimal technological trajectory, inducing to overestimate the social value

  13. Comparative analysis of monetizing technologies for the use of offshore natural gas; Analise comparativa das tecnologias embarcadas de aproveitamento de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Biruel Junior, Jose

    2008-09-15

    The growing world need for natural gas, the issue of offshore oil and associated gas exploration in regions constantly farther from the consumer market, and the law restrictions due to greenhouses gases emissions have stimulated the development of technologies intended to monetizing stranded gas reserves. In order to compare these technologies, a Multi Criteria Decision Analysis Methodology, based on fuzzy parameters, has been developed. The Methodology enables specialists to define analysis dimensions and criteria as well as to assign weight and ratings by means of linguistic variables, resulting in a general performance index for each technology. The Methodology has been applied in a case study to compare the floating technologies FCNG (Floating Compressed Natural Gas), FLNG (Floating Liquefied Natural Gas), FGTL (Floating Gas-to-Liquid) and FGTW (Floating Gas-to- Wire). The efficacy of the Methodology depends on the comprehensiveness and quality of the information provided. Therefore, this dissertation presents a study of these technologies, placing strong emphasis on the Technological Dimension. The Methodology allows for the identification of the drawbacks of each technology so as to especially conduct R and D efforts to improve their competitiveness. (author)

  14. Critic to the science and technology activities in the CTPETRO, Brazil, natural gas sector (National Plan of Science end Technology of the Petroleum and Natural Gas Sector); Critica as atividades de C and T na area de gas natural do CTPETRO (Plano Nacional de Ciencia e Tecnologia do Setor de Petroleo e Gas Natural)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edmilson Moutinho dos; Faga, Murilo Tadeu Wenerck [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia. Grupo de Energia]. E-mails: edsantos@iee.usp.br; Poulallion, Paul; Correa Neto, Vicente [SINDE - Sinergia e Desenvolvimento S/C Ltda., Rio de Janeiro, RJ (Brazil)

    2002-07-01

    This paper performs an evaluation of the science and technology activities for the natural gas area at the CTPETRO - National Plan of Science and Technology for the Petroleum and Natural Gas Sector. The paper discuss the insufficiency of the present technological efforts in Brazil, aiming the increasing of the natural gas participation in the brazilian energy matrix. The work shows the great distance among those efforts and the national policy for the natural gas. Last, the paper discusses the necessity of a review in the science and technology activities in the gas sector, and makes some considerations on the great potential in the gas industry for employment generation, for new business and the increasing in the national competitiveness.

  15. Prospects for natural gas in Europe. Market potential, political intervention and technological options

    International Nuclear Information System (INIS)

    Kabelitz, K.R.

    1997-01-01

    The potential market demand, the emerging fundamental political intervention in the European gas and electricity markets and the technological options available will give the gas industry in Europe a different appearance at the beginning of the 21. century. One of the key questions is: will the political intervention and technological options and innovations assist and promote the realisation of market potential? At the moment, it cannot be stated definitely whether the currently available technological options will allow the significant cost reductions hoped for in the entire gas chain to become reality in good time. Under these circumstances, a major mismatch would emerge between the market potential predicted for natural gas in Europe and the actual market development. (R.P.)

  16. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  18. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  19. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  20. Explaining experience curves for new energy technologies. A case study of liquefied natural gas

    International Nuclear Information System (INIS)

    Greaker, Mads; Lund Sagen, Eirik

    2008-01-01

    Many new energy technologies seem to experience a fall in unit price as they mature. In this paper we study the unit price of liquefying natural gas in order to make it transportable by ship to gas power installations all over the world. Our point of departure is the experience curve approach, however unlike many other studies of new energy technologies, we also seek to account for autonomous technological change, scale effects and the effects of upstream competition among technology suppliers. To our surprise we find that upstream competition is by far the most important factor contributing to the fall in unit price. With respect to the natural gas business, this may have implications for the future development in prices as the effect of increased upstream competition is temporary and likely to weaken a lot sooner than effects from learning and technological change. Another more general policy implication, is that while promoting new energy technologies, governments must not forget to pay attention to competition policy. (author)

  1. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  2. Fuel cells: new technology of natural gas for energetical building; Pilas de combustible: nueva tecnologia de gas natural para edificios energeticamente autoabastecidos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2000-07-01

    Fuel Cells have emerged in the last decade as one of the most promising new and sustainable natural gas technologies for meeting the energy needs of all the economy sectors into the 21st century. Fuel Cells are an environmentally clean, quiet, and highly efficient method for generating electricity and heat from natural gas. A fuel cell is an electrochemical device that converts the chemical energy of a fuel directly to usable energy (electricity and heat) without combustion. For this reason, the application and use of the fuel cell technology may be the most important technological advancement of the next century. At the beginning of the 2000 year Sociedad de Gas de Euskadi, s. a. started a demonstration project in favour of the high-temperature planar solid oxide fuel cell (SOFC) for domestic micro-CHP utilization. This type is certainly most exacting from the materials standpoint, and it offers the advantage of uncomplicated fuel pretreatment. (Author)

  3. New energy efficiency technologies associated with increased natural gas demand in delivery and consumption sectors of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Alghalandis, Saeid Mansouri

    2010-09-15

    Increasing population and economic growth in developing countries has changed their energy consumption patterns. So, the conventional systems of energy supply have become inadequate to deal with rising energy demand. Iran has great reservoirs of natural gas and its natural gas usage is far more than average international standard. Dominance of natural gas share in energy basket in Iran, make it necessary to consider energy efficient technologies and solutions for this domain. In this study new technologies for increasing energy efficiency (EE) in natural gas delivery and consumption sub sectors are discussed and evaluated according to available infrastructures in Iran.

  4. State of the art of technologies for remote detection of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    There is an increasing awareness of the need to detect and survey gaseous fugitive emissions from production and distribution systems, industrial and energy processes, transportation systems for dangerous goods, leaks from landfill bodies,and from natural sources. Leaks may influence the function of production and distribution systems, or may be hazardous to human life or environment. It is important to be able to detect the leak source of gases,survey and quantify gaseous and fugitive emissions, and to visualise and map the spatial distribution of the gas plume. Most gases are not detectable by human sensor systems, and traditional surveying techniques and methods have poor accuracy, are labour intensive, and are normally not cost-efficient. Modern remote sensing techniques like high resolution thermography and powerful laser systems have opened up new possibilities to develop accurate, stable and cost-efficient handhold, land- mobile and airborne gas detection systems for a wide variety of applications. During the last decade research activities of remote gas detection have been performed in different high tech industrial countries round the world in order to meet the requests for remote gas detection technologies expressed by different civilian and military end users. In April 1996 a first meeting of a group of international researchers and end users was hold in Orlando, USA, in order to discuss the interest and the possibilities using passive and active remote sensing technologies for remote gas detection. The consensus of this meeting was that there is a need for highly sensitive and flexible remote gas detection techniques for detection of leaks from different gas sources, with ability to detect leak plumes at a sensitivity from 1-5 ppm and upwards, at an operating range from a few meters up to 500 m (1500 feet) or more, and with a geometric resolution from 1 mm{sup 2} for small scale surveying, up to 10-100 mm{sup 2} for large scale surveying. Furthermore

  5. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  7. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  8. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    Science.gov (United States)

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  9. Gas utilization technologies

    International Nuclear Information System (INIS)

    Biljetina, R.

    1994-01-01

    One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ''Survey of Natural Research, Development, and Demonstration RD ampersand D Priorities'' indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ''Strategic Vision for Natural Gas Through the Year 2000,'' clearly identify the market sectors driving today's technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors

  10. Powers of detection : technology companies vie to capture leak survey business for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2005-09-01

    ITT Industries Inc., Physical Sciences Inc., and LaSen Inc. are 3 American companies leading the way to find more efficient methods for identifying leaks from natural gas pipelines. Edmonton-based Synodon Inc. has recently joined the leaders with its newly developed and more sensitive equipment that it hopes to have on the market by the summer of 2006. Leak detection technology was first developed in 1993 in response to concerns about the reliability of aging pipeline infrastructure. In addition to safety concerns, there are concerns over global warming. Methane is a potential greenhouse gas and the United states Environmental Protection Agency estimates that 300 billion cubic feet escape into the atmosphere every year from pipeline leaks. The 2002 Pipeline Safety Improvement Bill in the United States stipulates that leak inspections must be conducted up to 4 times per year in densely populated areas. Violators face fines as high as $1 million. In response to the pipeline safety bill, Synodon raised private equity financing to commercialize an airborne leak detection technology stemming from Canada's space program. In the United States, leak detection technologies that appear likely to take 5 to 20 years for commercialization have been been financed by the Department of Energy and the Office of Pipeline Safety. This paper summarized 5 leak detection prototypes, including ITT's Airborne Natural Gas Emission LiDAR (ANGEL) system which targets high-pressure, long-distance pipelines in North America, LaSen's Airborne LiDAR Pipeline Inspection System (ALPIS) based on DIAL Technology, and a hand-held remote methane leak detector developed jointly by Physical Sciences Inc. of Massachusetts and Houston-based Heath Consultants Inc. Synodon claims that hand-held detectors are too slow and that LiDAR systems still aren't reliable for detection of leaks much below 500 scf/h. Synodon's realSens technology may be more difficult to develop, but it detects

  11. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  12. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  13. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  14. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  15. Horizontal drilling in a natural gas storage horizon of 4 m thickness using reservoir navigation technology

    Energy Technology Data Exchange (ETDEWEB)

    Bastert, Thomas [E.ON Gas Storage GmbH, Essen (Germany); Liewert, Mathias; Rohde, Uwe [Baker Hughes INTEQ GmbH, Celle (Germany); Haberland, Joachim

    2010-09-15

    With a working gas capacity of 1,44 billion m{sup 3} (Vn) the natural gas storage facility at Bierwang is one of the largest storage facilities of E.ON Gas Storage (in Germany) and also one of the largest porous rock storages in Germany. The natural gas is stored in the tertiary storage horizons of the Chattian Hauptsand and Nebensand. To increase the storage capacity a second development well was planned for the Chattian Nebensand II (approx. 1680 m below ground). Following a comprehensive technical investigation the BW 502 well was planned as a horizontal well intended to provide a 300 m exposed section length through the reservoir. In a first step a pilot well was drilled to examine the Nebensand II which had been explored only to a limited extent before; the pilot well was also to provide accurate data on depth, thickness and dip. The results obtained indicated that the Nebensand II was only 4 m thick instead of 6 m as originally assumed. An azimuthal LWD resistivity tool was therefore used for reservoir navigation to allow horizontal drilling despite the lower thickness found. The technology allowed drilling of the horizontal well over its entire length of 315 m within a max. 1.5 m corridor relative to the reservoir top. Drilling confirmed that the actual formation found corresponded to the reservoir formation plan. Drilling operations were completed successfully. The well has been commissioned in the spring of 2010. (orig.)

  16. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  18. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  20. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  1. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  2. A System Dynamics Analysis of Investment, Technology and Policy that Affect Natural Gas Exploration and Exploitation in China

    Directory of Open Access Journals (Sweden)

    Jianzhong Xiao

    2017-01-01

    Full Text Available Natural gas has an increasing role in Chinese energy transformation. We present a system dynamics model of the natural gas industry in China. A new system dynamics model for natural gas companies based on reserve exploration and well construction as well as investment dynamics is proposed. The contribution of the paper is to analyze the influence of technology, investment and policy factors on the natural gas industry. We found that the dynamics of the main variables, including gas policy, cost of investment, accounting depreciation and exploitation technology, are sensitive to the sustainable development of resources. The simulations and results presented here will be helpful for government to reform policies, and for upstream companies to make decisions.

  3. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  4. Technology assessment of long distance liquid natural gas pipelines. Phase 8. Cold utilization and rural service

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    This phase of the investigation presents a summary of material relating to: (1) actual or potential applications for the very large refrigeration effects inherent in the vaporization of liquid natural gas; and (2) rural service gas supplies adjacent to the route of a trunk liquid natural gas line. A variety of concepts for cold utilization are discussed. The Canadian prospects for cold utilization include: electric power generation; oxygen production for integration with a coal gasification project; and the use of refrigeration stages in the petrochemical processing of natural gas, for example, ethane separation and processing to produce ethylene and ammonia.

  5. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  6. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  7. The legal basis of natural gas distribution technology. 2. rev. ed.

    International Nuclear Information System (INIS)

    Ambos, G.; Bramkamp, F.B.; Rienen, W. van

    1993-01-01

    The body of legal regulations reaches from general power economy laws to technical safety and environmental laws as well as to laws on construction regulations. The legal regulations laid down by the European Community in regard to the creation of a European single market are of increasing significance. The book wants to give basic information on the relevant legal areas and makes it easier to understand the structure and the systematics of the laws on power supply technology. It does so by differentiating three areas: - Survey of the legal regulatory framework: - Depiction of the basis of energy laws and the questions which arise from the practical work of the energy control board: - Survey of the technical safety and emission control laws in regard to natural-gas distribution by public utilities. (orig.) [de

  8. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  9. Industrial-energy markets: Implications for natural gas technology R and D

    International Nuclear Information System (INIS)

    Samsa, M.E.

    1989-04-01

    The paper reviews the role and competitive position of natural gas for major industrial functional uses and focuses on the key issues and factors affecting the future of natural gas use in industrial applications. Gas use is discussed within the context of all other major fuel groups used by the industrial sector. The manufacturing and nonmanufacturing segments are isolated and each of the major uses (boilers, cogeneration, process heating, feedstocks, lease and plant, and nonstationary applications) are discussed separately. A discussion is included on the implications of the analysis on GRI's R and D program and on the technical service options that are available to the gas industry

  10. Technological progress and the energy challenges. The role of natural gas

    International Nuclear Information System (INIS)

    Rasmusen, H.J.

    1999-01-01

    Since the beginning of the industrial evolution, progress in technology development for the energy industry has been guided by economy and choice of fuel. For the last decades 'Energy Crisis' and 'Greenhouse effect' issues have supplemented the driving forces. (Improved Efficiency' is not of the strongest marketing issues when dealing with appliances for energy conversion. The trends of the development of today are towards smaller decentralized units and mass production. This is in contradiction to conventional wisdom of minimizing costs by use of centralized large-scale units. The future of energy conversion of power and heat production will be dominated by small-scale units, which produce heat and power simultaneously. Lower energy prices will slow down the transition to more efficient conversion technologies, but in the open and de-regulated market this will be opposed by competition between companies. To gain market shares and maintain customers, energy companies will have to use 'efficient appliances' as a market parameter. Use of more efficient technology always improves the environmental efficiency but conversion to natural gas from another fossil fuel will by itself lead to radical environmental improvements. (author)

  11. Northern gas fields and NGH technology. A feasibility study to develop natural gas hydrate technology for the international gas markets; Nordlige gassfelt and NGH-teknologi. En studie av muligheter for utvikling av naturgasshydratteknologi for det internasjonale gassmarked

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Trond Ragnvald; Loy, Erik F.; Doesen, Sturle

    1997-12-31

    Two natural gas fields have been studied for three different technological solutions using two different economic theories. The aim was to examine whether a new technology for transporting natural gas, Natural Gas Hydrates (NGH), can compete with the existing technologies pipeline and Liquefied Natural Gas (LNG). Natural gas can rarely be used immediately after production and the supply systems can be divided into four interrelated parts: 1) Exploration. 2) Development and production. 3) Transportation. 4) Distribution. The emphasis in the study is on production costs and transportation. Exploration is assumed carried out and thus viewed sunk cost. Distribution from landing point to consumers is not part of the study. Production can take place either onshore or offshore, the natural gas can be transported to the market either by pipeline or ship and the costs are becoming more important as the distance from the fields to the markets increase. Natural gas projects have long lead times and large capital requirements. New supplies will materialise then if there is confidence that demand for the gas exists at a profitable price. Therefore natural gas is generally sold on long term contracts. The conclusions are that economies of scale exist and that pipeline is the superior technology for high volumes but cannot compete for smaller volumes where the LNG technology has been the best alternative. However, the report concludes that the NGH can compete fully. The distance to the market where the natural gas is to be transported is crucial for choice of transportation mode. The shipping modes are superior for long transportation distances. NGH is superior to LNG also with regards to distance. Despite that the two economic models used for the evaluation have provided very different absolute project values, they have provided the same conclusions about the ranking of the different technologies. It is clear then that if NGH technology is developed further into a reliable and

  12. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  13. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  14. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  15. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  16. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  17. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  18. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  19. Development of Key-Enabling Technologies for a Variable-blend Natural Gas Vehicle

    Science.gov (United States)

    2017-12-01

    A portable, economic and reliable sensor for the Natural Gas (NG) fuel quality has been developed. Both Wobbe Index (WI) and Methane Indexes (MI) as well as inert gas content (inert%) of the NG fuel can be measured in real time within 5% accuracy. Th...

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  1. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  2. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  3. Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology

    Science.gov (United States)

    Tsai, T.; Rella, C.; Crosson, E.

    2013-12-01

    Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes

  4. Development of technology and systems for air-conditioned and cogenerations using natural gas; Desenvolvimento de tecnologia e sistemas para climatizaco e cogeracao usando gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Carlos Antonio Cabral dos; Varani, Celina Maria Ribeiro [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This preset work deal with a technological project that has as main objective the development of national technology in absorption refrigeration for application in the human thermal comfort with natural gas as energy source in direct fired or through energy recuperation of the combustion gases in cogeneration systems. This project makes part of the REDEGASENERGY and also receive financial support from CT-PETRO founds through FINEP, and also has as partner the local gas distributed company. The focus to be reached is the obtaining of a system of double effect using the solution pair Water-Lithium Bromide as work fluid to the capacity range of five to fifty tons of refrigeration. This range means a important branch on the market for minis-shopping, medical clinics, conveniences shopping, small hotels, motels, etc. The system is compound basically of heat exchangers: vapor generator, absorber, condenser, evaporator and intermediary exchanger. The design of the system is based on the thermodynamic, heat and mass analyses for each component. The concepts of exergy and irreversibility are used for through second thermodynamic law to realize the exegetic analysis and to identify the points of the most thermal lost. The correction on the identified components allows the improvements on the performance of each components and all system. As proposed steps to reach the final objective is established first the development of a single effect system operating in similar conditions of capacity and work fluid that the intended double effect system. (author)

  5. Natural gas powered bus

    International Nuclear Information System (INIS)

    Ambuehl, D.; Fernandez, J.

    2003-01-01

    This report for the Swiss Federal Office of Energy presents the results of a project carried out by the Swiss Federal Institute of Technology in Zurich to evaluate the performance of a natural-gas-powered bus in comparison with two diesel buses. The report provides details on the vehicles, their routes and the results of interviews made with both passengers and drivers. Details of measurements made on fuel consumption and pollutant emissions are presented in tabular and graphical form, as are those made on noise emissions inside and outside the vehicles. The conclusions of the project are presented including economic aspects of using gas as a motor fuel. Also, the views of passengers, who were more concerned with comfort aspects, and drivers, who were more interested in technical aspects, are quoted

  6. Technological evaluation of fuel cells using natural gas for distributed power generation; Avaliacao tecnologica da utilizacao de gas natural em celulas a combustivel para geracao distribuida de energia

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Mauricio O. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Engenharia Mecanica; Giannini, Marcio P.; Arouca, Mauricio C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2004-07-01

    The search for sustainable and more rational means of power generation motivates the scientific crew to search for more efficient and cleaner systems. Oil dependence becomes from the kind of development that the humanity had and cannot be dismissed. The question is how to use this source in a more intelligent way. Fuel Cells are electrochemical devices that convert into electric energy the chemical energy from oxi-reduction reactions between a fuel and an oxidant. The current fuel used in a Fuel Cell is hydrogen and oxygen is the oxidant. The great advantage of this device is its efficiency, higher than the one achieved with internal combustion engines. Also Fuel Cells are not limited by Carnot's efficiency. This paper is about the implementation of a distributed generation system using Fuel Cells. Technical aspects are approached together with economical and environmental needs. The already existence of Gas pipelines and the grown production of Natural Gas presented by Brazil turns it into a good market for the implementation of this energy source. The evaluation of this paper shows that is technically possible to use NG in Fuel Cells, mostly in South and Southeast regions, applying the distributed generation of energy concept. The most interesting in a strategic manner is that Brazil already have an indication that it's capable of developing this technology, opening a new market tuning with world's new technological developments. Many research centers develop this technology, not only from the cell composition itself, but also manufacturing techniques. (author)

  7. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  8. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  9. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  10. The potential of natural gas as a bridging technology in low-emission road transportation in Germany

    Directory of Open Access Journals (Sweden)

    Wang-Helmreich Hanna

    2012-01-01

    Full Text Available Greenhouse gas emission reductions are at the centre of national and international efforts to mitigate climate change. In road transportation, many politically incentivised measures focus on increasing the energy efficiency of established technologies, or promoting electric or hybrid vehicles. The abatement potential of the former approach is limited, electric mobility technologies are not yet market-ready. In a case study for Germany, this paper focuses on natural gas powered vehicles as a bridging technology in road transportation. Scenario analyses with a low level of aggregation show that natural gas-based road transportation in Germany can accumulate up to 464 million tonnes of CO2-equivalent emission reductions until 2030 depending on the speed of the diffusion process. If similar policies were adopted EU-wide, the emission reduction potential could reach a maximum of about 2.5 billion tonnes of CO2-equivalent. Efforts to promote natural gas as a bridging technology may therefore contribute to significant emissions reductions.

  11. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Ann [The Ohio State Univ., Columbus, OH (United States); Majumdar, Urmi [The Ohio State Univ., Columbus, OH (United States)

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  12. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis

    International Nuclear Information System (INIS)

    Kathe, Mandar V.; Empfield, Abbey; Na, Jing; Blair, Elena; Fan, Liang-Shih

    2016-01-01

    Highlights: • Design of iron-based chemical looping process using moving bed for H_2 from CH_4. • Auto-thermal operation design using thermodynamic rationale for 90% carbon capture. • Cold gas efficiency: 5% points higher than Steam Methane Reforming baseline case. • Net thermal efficiency: 6% points higher than Steam Methane Reforming baseline case. • Sensitivity analysis: Energy recovery scheme, operating pressure, no carbon capture. - Abstract: Hydrogen (H_2) is a secondary fuel derived from natural gas. Currently, H_2 serves as an important component in refining operations, fertilizer production, and is experiencing increased utilization in the transportation industry as a clean combustion fuel. In recent years, industry and academia have focused on developing technology that reduces carbon emissions. As a result, there has been an increase in the technological developments for producing H_2 from natural gas. These technologies aim to minimize the cost increment associated with clean energy production. The natural gas processing chemical looping technology, developed at The Ohio State University (OSU), employs an iron-based oxygen carrier and a novel gas–solid counter-current moving bed reactor for H_2 production. Specifically, this study examines the theoretical thermodynamic limits for full conversion of natural gas through iron-based oxygen carrier reactions with methane (CH_4), by utilizing simulations generated with ASPEN modeling software. This study initially investigates the reducer and the oxidizer thermodynamic phase diagrams then derives an optimal auto-thermal operating condition for the complete loop simulation. This complete loop simulation is initially normalized for analysis on the basis of one mole of carbon input from natural gas. The H_2 production rate is then scaled to match that of the baseline study, using a full-scale ASPEN simulation for computing cooling loads, water requirements and net parasitic energy consumption. The

  13. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  14. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  15. Technical and economic analysis of implementation of small scale GTL (Gas-to-Liquids) technology to monetize associated stranded natural gas offshore in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Castelo Branco, David; Szklo, Alexandre; Schaeffer, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The volume of global stranded natural gas reserves is impressive totalling more than a third of the world's proven natural gas reserves. In Brazil, recent discoveries operated by PETROBRAS with the share of other companies indicate the tendency of incorporating stranded gas reserves (associated or not) to the country's total reserves. The objective of this study is to perform a technical and economic analysis of the implementation of small-scale GTL technology for the exploitation of stranded associated natural gas offshore in Brazil. Thus, the study initially held a survey of the processes of gasification and the manufacturers of technologies and projects based on these processes, specifically for offshore applications. Then, the offshore environment conditions were examined. After the confrontation of the available technologies and the operational conditions, one technology was chosen to be assessed by the economic analysis. The results show that GTL offshore option becomes feasible for the minimum oil price of approximately $50.00 per barrel. This price is greater than the value of robustness adopted by PETROBRAS, however there is still the possibility of cost reductions for the feasibility of new technologies. (author)

  16. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  17. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  18. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  1. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  2. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  3. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  6. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  7. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  9. Helium production technology based on natural gas combustion and beneficial use of thermal energy

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.

    2016-01-01

    Full Text Available Helium is widely used in all industries, including power plant engineering. In recent years, helium is used in plants operating by the Brayton cycle, for example, in the nuclear industry. Using helium-xenon mixture in nuclear reactors has a number of advantages, and this area is rapidly developing. The hydrodynamics and mass transfer processes in single tubes with various cross-sections as well as in inter-channel space of heating tube bundle were studied at the Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences. Currently, there is a strongest shortage in helium production. The main helium production method consists in the liquefaction of the natural gas and subsequent separation of helium from remaining gas with its further purification using membranes.

  10. Natural gas projects, strategies and economics

    International Nuclear Information System (INIS)

    Hamaide, G.

    2000-01-01

    This article summarizes the content of some of the posters presented during the WOC 9 working committee of the CMG 2000 worldwide gas congress: natural gas in the new worldwide energy balance; eastern Russia: the last gas projects; the new underwater technologies and the availability of natural gas. (J.S.)

  11. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  12. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  13. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  14. Natural Gas Market Hubs

    Data.gov (United States)

    Department of Homeland Security — A hub is a physical transfer point for natural gas where several pipelines are connected. A market center is a hub where the operator offers services that facilitate...

  15. Natural gas industry regulations

    International Nuclear Information System (INIS)

    Clo, A.

    1999-01-01

    In the reception of the EU Directive on the internal gas market, it is quite necessary to avoid the mistakes already made in the case of electricity. A possible cause is there suggested which may help rearrange the natural gas industry and market in Italy. It's four points are: general interests, national peculiarities, public policies, regulatory framework [it

  16. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  17. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  18. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  19. If Your Technology has an Application for the Natural Gas Industry, OTD is Interested in Learning About It

    Science.gov (United States)

    Droessler, M. S.

    2017-12-01

    It's as easy as clicking on the "Submit Your Idea" tab on our website and sending us a short description of your technology. Operations Technology Development (OTD) funds 30 to 40 new projects each year. We have a research budget of $10 million annually and it doesn't always get spent. So who are we and what are we interested in? OTD is a membership company made up of 24 members representing the largest natural gas distribution utilities in North America. We represent 60% of the households currently served by natural gas. With OTD, natural gas utilities work together to identify their needs, leverage their funds, and prioritize and solve common problems. Our research ranges from addressing environmental issues, pipeline and worker safety, risk reduction, pipeline inspection, and reducing the costs of daily operations. Some specific examples include locating buried nonmetallic pipe and improving ways to pinpoint and quantify the release of methane. Analyzing "big data" sets and dealing with cyber security have our IT departments up at night so these are some of the newer topics of interest. Please see if our needs match the research you are passionate about by glancing through our current Research Project Summaries at otd-co.org. So what's your great idea? We want to hear about it.

  20. OPEC and natural gas

    International Nuclear Information System (INIS)

    Samsam Bakhtiari, A.M.; Shahbudaghlou, F.

    1998-01-01

    This paper reviews the involvement of OPEC Member Countries in the natural gas industry in the past, present and future. It notes a tenfold increase in marketed production and a fourfold rise in re-injection since 1970. Collectively, Members now hold 41 per cent of the world's proven gas reserves and account for 20 per cent of exports. Individually, four of these countries hold position 2-5 in the world gas reserve rankings. Within OPEC, however, there remains an emphasis of oil over gas, not least because of oil's favourable position with regard to revenue-generation and profitability. As global demand continues on its upward growth curve in a more environmentally aware world, OPEC's gas horizons will widen. OPEC's strong reserve base will give its Members an undeniable role to play on the future global gas stage. However, these countries will give priority to domestic usage, particularly re-injection schemes

  1. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  2. The European Natural Gas Market

    NARCIS (Netherlands)

    Correlje, A.F.

    The European Union started the introduction of competition in the European market for natural gas. Today, mid-2016, the process of restructuring is still going on. In parallel, important changes in geopolitical, environmental and technological determinants can be observed in the European and global

  3. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  4. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  5. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  6. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  7. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  8. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  9. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  10. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the

  12. Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

  13. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  14. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  15. Technology assessment of long distance liquid natural gas pipelines. Phase 9. Available and/or required equipment

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    This phase of the technology assessment of liquid natural gas pipelines assembles a listing of the materials and equipment which might be used to mechanically build an LNG pipeline. It lists material and equipment which practically could be used in such a pipeline either at a present state of the art, or by adaptation in terms of materials or techniques, or after some development work. Other than that the material and equipment is proposed for use in an LNG pipeline, no new real concept of pipeline or refrigeration plant equipment is proposed. Rather the equipment has been selected so as to conform as closely as possible to established pipeline practice.

  16. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  17. Natural gas annual 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies

  18. Repowering with natural gas

    International Nuclear Information System (INIS)

    Wilkinson, P.L.

    1992-01-01

    This chapter examines the concept of combined-cycle repowering with natural gas as one possible solution to the impending dilemma facing electric utilities - tight capacity margins in the 1990s and the inordinate expense of traditional powerplants. Combined-cycle repowering refers to the production of electricity through the integration of new and used equipment at an existing site, with the final equipment configuration resembling a new gas-fired combined-cycle unit (i.e., gas turbine, waste heat recovery unit and steam turbine/generator). Through the utilization of improved waste heat recovery and gas-fired equipment, repowering provides both additional capacity and increased generating efficiency. Three modes of repowering are considered: (1) peak turbine repowering refers to the addition of a steam turbine and heat recovery unit to an existing gas turbine, with the efficiency improvement allowing the unit to convert from peaking to baseload operation; (2) heat recovery repowering is the replacement of an old coal boiler with a gas turbine and heat recovery unit, leaving the existing steam turbine in place; and (3) boiler repowering, in which the exhaust from a new gas turbine is fed into an existing coal boiler, replacing existing forced-draft fans and air heaters. These three options are compared with the option of adding new coal-fired boilers on the basis of economics, energy efficiency and environmental impacts

  19. Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

    International Nuclear Information System (INIS)

    Suurs, Roald A.A.; Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M.

    2010-01-01

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation.

  20. Effective utilization of technology to meet the information needs of the world-wide natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Markuszewski, R.; Capadocia, S.R.; Worster, C.L.; Kosman, J.E. [IGT (United States)

    1997-11-01

    Surveys on technical information relevant to the gas industry showed that no single information source was sufficient for all needs, while a number of sources include some pertinent information as part of their mission. The surveys concluded that access was difficult and wide usage of electronic resources had some real as well as some perceived problems. With the availability of the Internet and World Wide Web, many of these difficulties are being overcome. The natural gas industry is moving rapidly toward an era of electronic information with global access to a wide variety of technical, financial, and operational information. The most important sources of technical information are reviewed, and access to resources is briefly described. Cost comparison, relevancy, ease of use, and other factors are also discussed. The current status and future developments of gas industry information resources and technology are addressed in terms of emerging technologies and management issues which will bring critical information to the desktop of engineers, planners, and marketers. (au)

  1. Western Australian natural gas

    International Nuclear Information System (INIS)

    Harman, Frank

    1994-01-01

    Western Australia has 80% of Australia's natural gas resources. These are currently exploited to supply the Western Australian market and LNG to Japan. Growth in the market is dependent on limited prospects for power generation and mineral resource processing. Future exploitation of gas resources will require new export LNG markets and/or the installations of a transcontinental pipeline to eastern Australia. The transcontinental option should only be considered after other options for energy supply in eastern Australia are eliminated. Competition to meet market growth in North-east Asia will be considerable and Australia lacks the policies to underpin future LNG capacity. (author)

  2. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  3. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  4. Petroleum and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    060,

    1965-02-01

    Substantial increases in demand for Canadian petroleum and natural gas in both domestic and export markets resulted in another good year throughout the main sectors of the industry. In February, production averaged 850,000 bpd, or about 8% more than 1963 output of crude oil and natural gas liquids. Construction began on the first full scale plant for the extraction of oil from the Athabasca bituminous sands. In 1964, exploratory and development drilling in western Canada increased 10% from the previous year. A total of 15.5 million ft was drilled, the largest since the record drilling year of 1956. The main oil field development areas in Alberta were the House Mountain, Deer Mountain and Goose River Fields, and the Bantry-Taber heavy oil region in southeastern Alberta. Oil reserves were increased substantially by waterflood pressure maintenance projects in many of the older oil fields. The largest oil accumulation discovered in 1964 was the Syvia-Honda Field in the Devonian Gilwood sandstone in N.-central Alberta. Two graphs illustrate the crude petroleum in Canada in millions of barrels from 1940 to 1964, and natural gas in Canada in billions of cu ft from 1950 to 1964. The outlook for the industry in 1965 is good.

  5. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  6. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  7. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  8. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  9. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  10. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  12. Liquid Natural Gas

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    After a brief introduction on the origins of the Liquid Natural Gas (LNG) industry the production and transportation of LNG are discussed. Special attention is paid to the importance of the safety aspect during every activity or handling of LNG. Next the most important trade flows for LNG are dealt with. Two zones can be distinguished: the western part of the Pacific and the Atlantic basin. Subsequently the main aspects of a LNG-project are mentioned, as well as the success factors. Finally the prospects for the LNG-industry are reviewed. 11 figs

  13. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  14. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  15. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  16. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  17. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  18. Natural gas in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grabarczyk, Ewa; McCallum, Robert; Wergeland, Tor H

    1994-12-31

    The paper is based on Ewa Grabarczyk`s thesis ``The European Gas Market and the Former East Block Countries`` in the Master of International Business Programme at the Norwegian School of Economics and Business Administration. The material of Grabarczyk`s work has been split into two parts; SNF Working Papers Nos. 97/93 and 98/93. Working Paper 97/93 ``The European Gas Markets`` contains an equilibrium model of the European Gas Market employed to investigate some scenarios to the consequences of an integration of the former Soviet Union. Working Paper 98/93 ``Natural Gas in Eastern Europe`` contains descriptions of the energy sectors of former Eastern European countries and an evaluation of the potential future demand for natural gas in these nations. The paper has chapters on each country and sections on reserves, production, exports and markets, transport possibilities and technology, demand and development as well as evaluation of the present situation. 11 figs., 37 tabs., 33 refs

  19. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  20. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  1. Fiscal 2000 survey report. Survey of long-term energy technology strategy and the like (Survey of natural gas technology trend); 2000 nendo choki energy gijutsu senryaku nadoni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (tennen gas gijutsu doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In search of new technical tasks involving the supply, transportation, and utilization of natural gas, a survey is conducted of the trend of natural gas supply and demand, trend of development of related technologies, and their impact on the market. After natural gas matters are outlined and definition and classification are established, investigations are conducted into natural gas production and the trend of new natural gas consuming countries supposedly to affect the natural gas supply and demand situation. Taken up as relevant technologies are cogeneration, natural gas powered automobiles, fuel cells, GTL (gas to liquid) technology, and micro gas turbines. These technologies are examined from the viewpoints of environmentally-friendliness and energy conservation feature, and then tasks to discharge are proposed in the fields of technology development, operation, and fuel. For natural gas powered automobiles, vehicular performance improvement and the conformability and standardization of high-pressure parts and components are taken up in the field of technology development, and the introduction and augmentation of quick fillers for natural gas and increase in the number of natural gas supply stations are taken up in the field of operation. Concerning fuel cells, in the field of fuels to be fed to the same, technologies of hydrogen storage and of refining and reforming of oil based fuels are taken up. (NEDO)

  2. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  3. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  4. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  5. Fiscal 1998 research report on the development trends of natural gas conversion technologies into liquefied fuel in Russia; 1998 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihatsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Russia having natural gas resources largest in the world is actively promoting the basic research on liquefaction technology of natural gas such as Fischer-Tropsch (FT) synthetic catalyst, and its research potential is extremely high. This 3-year research project surveys the R and D trends of catalyst technology for liquefaction of natural gas, and fabricates the prototype FT synthetic catalyst based on the idea of Russian researchers to evaluate its feasibility experimentally. This report summarizes the following to clarify the research background: (1) The technology system for liquefaction of natural gas, and its future R and D trend, (2) The R and D trends of liquefaction technology of natural gas in the world, (3) The R and D trends of liquefaction technology of natural gas in Russia, (4) The research system of catalyses in Russia, (5) The activities of Russian catalysis research institutes, (6) The fuel liquefaction technologies of Russian major research institutes, and (7) The proposals from Russian research institutes. (NEDO)

  6. Technological strategy in the textile sector: the natural gas adoption as an initiative which guarantees competitive advantages; Estrategia tecnologica no setor textil: a adocao do gas natural como uma iniciativa que garante vantagens competitivas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Mariana Sarmanho de Oliveira; Rebelatto, Daisy Aparecida do Nascimento [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia]. E-mails: msarmanho@natal.digi.com.br; daisy@prod.eesc.usp.br

    2006-07-01

    Some problems faced by the textile industry are related with the obsolescence of the equipment and high costs with energy. The technological innovation by means about the acquisition of equipment of natural gas can be considered a solution for this problem. As a result of this innovation, companies can be more competitive and in better positions comparing with the others competitors. Therefore the gas improves the product quality, reduces the emissions of pollutants and allows the use of most rational energy, when compared with the others energetic used on the sector. Considering this context, the objectives of this article are: to identify through a bibliographical research, the importance of the innovation of process for the textile industry; to characterize the form as the energy comes being used in each stage of productive process and, finally, to identify stages of the productive process of the textile industry which would have to be contemplated investments in technological innovation. At last, it will be presented, in planning phase, a field research that will be carried through in the textiles companies of cities of the Administrative Region of Campinas (SP). The theory is supported on these subjects: technological strategies, the stages of the process of manufacture of wires and plain fabrics, the use of the energy in the textile industry and the implementation of the technological innovation process through the introduction of the natural gas. (author)

  7. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  8. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  9. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  10. Bearing up: natural gas, new technology, and rising efficiency keep the wolf from Canadian industry doors

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, M.

    1999-03-01

    Poor commodity prices forced many of the oil field service companies to cut budgets, cut staff and to undertake unusual measures to stay afloat and ride out the current low price regime. The new measures include increased efficiency, technology and international connections. Some examples of the latter are discussed in this article. For example, Calgary-based Merak Projects Ltd. teamed up with Microsoft Corp`s energy services arm to score strong performance with lightning-fast information technology for head offices in the production community. Alberta-based Tesco Corporation entered a joint operating agreement with the French multinational service and supply giant Schlumberger to field a high-technology drilling package including gear and and expertise for coiled tubing systems, and capabilities to handle `underbalanced` wells. Serval Integrated Energy Services raised nearly US $ 7 million for expansion by an equipment lease-back arrangement with an undisclosed financial institution in the United States. These and other similar moves attest to the ingenuity of Canadian entrepreneurs and while there will be several casualties, there is confidence that companies that are big enough and innovative enough, will survive the current price crisis.

  11. Bearing up: natural gas, new technology, and rising efficiency keep the wolf from Canadian industry doors

    International Nuclear Information System (INIS)

    Lamb, M.

    1999-01-01

    Poor commodity prices forced many of the oil field service companies to cut budgets, cut staff and to undertake unusual measures to stay afloat and ride out the current low price regime. The new measures include increased efficiency, technology and international connections. Some examples of the latter are discussed in this article. For example, Calgary-based Merak Projects Ltd. teamed up with Microsoft Corp's energy services arm to score strong performance with lightning-fast information technology for head offices in the production community. Alberta-based Tesco Corporation entered a joint operating agreement with the French multinational service and supply giant Schlumberger to field a high-technology drilling package including gear and and expertise for coiled tubing systems, and capabilities to handle 'underbalanced' wells. Serval Integrated Energy Services raised nearly US $ 7 million for expansion by an equipment lease-back arrangement with an undisclosed financial institution in the United States. These and other similar moves attest to the ingenuity of Canadian entrepreneurs and while there will be several casualties, there is confidence that companies that are big enough and innovative enough, will survive the current price crisis

  12. 3rd symposium on high-efficiency boiler technology: potential, performance, shortcomings of natural gas fuelled high-efficiency boilers

    International Nuclear Information System (INIS)

    1993-01-01

    The brochure contains abstracts of the papers presented at the symposium. The potential, performance and marketing problems of natural gas high-efficiency boiler systems are outlined, and new ideas are presented for gas utilities, producers of appliances, fitters, and chimneysweeps. 13 papers are available as separate regards in this database. (HW) [de

  13. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  14. Turkey and natural gas

    International Nuclear Information System (INIS)

    Yardim, G.

    1992-01-01

    Turkey is a developing country with a population of 56 millions and approximately $ 2604 per capita income. Geographically she is located among the energy rich countries whereas almost half of her energy requirement is met by imports. Turkey is relatively well endowed with hydro-power and lignite resources, some limited amount of oil, gas and coal resources exist and there is significant geothermal potential in the country. Environmental issues are increasingly important consideration in energy policy decisions in the world. Energy production, transportation and use are contributing to environmental degradation to a certain extent. Protection of the environment and public health from pollution arising from energy production and consumption activities is one of the principles of Turkish national energy policy. In conjunction with this policy the 'Environment Law' was promulgated in 1983 and 'The Regulation on Protection of the Air Quality' in order to control all kinds of emissions in the form of soot, smoke, fines and particulate and to prevent the adverse impacts of the air pollution, was issued in October 1986. Policy of diversification of energy sources and the environmental issues which were explained above brought the natural gas usage into the energy scene in Turkey. 6 figs., 4 tabs

  15. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  16. Outlook for Noth American natural gas supplies

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.

    1995-01-01

    The underlying resource base for North America natural gas is large, sufficient for nearly 100 years of current consumption. As such, the issues are not the size of the resource, but how to convert this resource into economically competitive supply. The key questions are: Will the cost (price) of natural gas remain competitive? What is the status of near-term deliverability? Will there be enough supply to meet growing demand? These economic and market issues frame the outlook for gas supplies in North America. Most importantly, they will determine how natural gas emerges from its competition for markets with other fuels and electricity. The paper addresses these questions by examining: (1) the underlying nature of the natural gas resource base; (2) the current status and trends in deliverability; and, (3) the potential of new technologies for producing gas more cost-effectively. (author)

  17. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  18. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  19. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  20. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  1. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  2. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  3. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  4. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  5. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  6. Natural gas leak mapper

    Science.gov (United States)

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  7. Natural gas - Market and environmental needs

    International Nuclear Information System (INIS)

    Beyer, R.

    1995-01-01

    The paper discusses the natural gas market and environmental needs with topics as follow: Importance of the North Sea region; sustainable development on the balance between economic use and environmental protection; role of natural gas in meeting energy demand: market needs, technologies, environmental aspects. According to the author, natural gas causes minimal pollutants because it contains virtually no pollutant-forming substances such as heavy metals, sulphur, chlorine or fluorine. No solid residues exist in the combustion space such as ash, slag, dust or soot, and the formation of thermal NO x through natural gas combustion has decreased to a very large extent as a result of technical advances. Natural gas can make a significant contribution towards reducing CO 2 emissions due to its very high hydrogen content. 12 figs

  8. Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia

    Science.gov (United States)

    Stefanović, Velimir P.; Bojić, Milorad Lj.

    2010-06-01

    The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.

  9. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  10. International Center for Gas Technology Information

    International Nuclear Information System (INIS)

    Gad, L.H.

    1993-01-01

    Based on an acknowledgement of the growing importance of natural gas, a number of European countries, USA, Japan and the Russian Federation have worked together in order to establish a common center of information on natural gas technology under the auspices of the International Energy Agency. Centers were to be established in Washington and in Denmark. The centers will concern themselves with establishing an international information center for gas technology, effecting natural gas technology transfer between global regions, carrying out analytical studies on the energy market and the development of technology within the field of natural gas. The structure of the decision-making processes that will be employed is explained in addition to the organization and economy. The centers should build up a global information network between the relevant countries, their gas companies, institutions etc. (AB)

  11. North American Natural Gas Vision

    Science.gov (United States)

    2005-01-01

    hand sales of natural gas and LPG. 17 Decreto Legal, Diario Oficial , Noviembre 25, 1993. 37 Review Section 38 Figure 2. Mexican Natural Gas...California 500 Mexicali Baja California 29 Naco - Hermosillo Sonora 130 Nacozari de Garcia Sonora 85 Agua Prieta Sonora 173

  12. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  13. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  14. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  15. Bring money and natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The budding natural gas markets in East Europe attract a great deal of interest from natural gas industries in the Western countries. Dutch companies, institutions and the government, too, are active in this market. So far the results have not been spectacular. An analysis is made of the present situation and the Dutch approach

  16. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  17. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  18. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  19. The RedeGasEnergia and associated technologies to distributed generation, cogeneration and thermoelectric in developing the natural gas in Brazil; A RedeGasEnergia e as tecnologias associadas a geracao distribuida, cogeracao e termeletrica, no desenvolvimento da industria de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    From the PETROBRAS Strategic Plan, where 2015 mission and vision are defined, one search to reach the corporative strategy: 'to lead the natural gas market (NG) and to act in a integrated way in the energy market'. Amongst the corporative politics to guide the business strategies, we will be focusing the new businesses development, having as guide line the annual average growth in the domestic demand of NG, 14.2%. The Investment Plan foresees for the energy and gas area investments around US$ 1.8 billion for the 2003/2007 period, being approximately US$ 500 million destined to the conclusion of the already initiated projects of thermoelectric plants. The Strategic Technological Committee of Energy and Gas (COMEG 2003) defined as technologies of interest for PETROBRAS: renewed energies; sustainable development; NG chemical transformation; NG transport, distribution and storage; distributed generation, co-generation and thermoelectric; production, distribution and use of hydrogen as energy vector; industrial, commercial and residential applications of NG; energy efficiency; automotive systems applications; high power electrical systems and environment. The technology explained in this work, for development of the Brazilian Natural Gas Industry, highly compliant with the NG mass use plan, is the distributed generation, co-generation and thermoelectric and its associated technologies (combustion, IGCC, thermoelectric cycles optimization, gas turbines, boiler/heat recovers, microturbines, fuel cells, combustion engines, renewed energies and cold generation among others). There are several business strategies related to this technology: to play in the electric energy business to assure the NG and derivatives market commercialized by PETROBRAS; to play in the development of alternative sources of energy and; to invest in conservation of energy and renewable energy to add value to the company business. The RedeGasEnergia portfolio has 22 projects in this

  20. Natural gas: an environmental-friendly solution?

    International Nuclear Information System (INIS)

    Vermeire, J.

    1994-01-01

    Since 1970, the portion of natural gas in energy consumption in Western-Europe has grown by 6 percent per year on the average. About 20 percent of the energy demand in Western-Europe is now covered by natural gas. It is forecasted that this growth will continue at a rate of 2 percent per year until 2010. The natural gas consumption will increase from 325 billion cubic metres in 1993 to 450 billion cubic metres per year in 2010. For the coming 10 to 15 years, the natural gas demand is covered by long-term contracts with gas producing countries. From 2010 on, additional contracts, covering 70 to 120 billion cubic metres per year are required. A shift in geographic distribution of countries from which natural gas will be imported by Western-European countries is expected, which implies high investments and additional costs for transport and distribution of natural gas. Due to its qualities with respect to environmental impact, yield, availability, and advanced technology, natural gas is the energy vector of the 21 first century. (A.S.)

  1. Art, Technology and Nature

    DEFF Research Database (Denmark)

    Camilla Skovbjerg Paldam and Jacob Wamberg trace the Kantian heritage of radically separating art and technology, and inserting both at a distance to nature, suggesting this was a transient chapter in history. Thus, they argue, the present renegotiation between art, technology and nature is reminiscent......Since 1900, the connections between art and technology with nature have become increasingly inextricable. Through a selection of innovative readings by international scholars, this book presents the first investigation of the intersections between art, technology and nature in post-medieval times....... Transdisciplinary in approach, this volume’s 14 essays explore art, technology and nature’s shifting constellations that are discernible at the micro level and as part of a larger chronological pattern. Included are subjects ranging from Renaissance wooden dolls, science in the Italian art academies, and artisanal...

  2. Field tests and commercialization of natural gas leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, D S; Jeon, J S; Kim, K D; Cho, Y A [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-09-01

    Objectives - (1) fields test of industrial gas leak detection monitoring system. (2) commericialization of residential gas leak detector. Contents - (1) five sets of gas leak detection monitoring system were installed at natural gas transmition facilities and tested long term stability and their performance. (2) improved residential gas leak detector was commercialised. Expected benefits and application fields - (1) contribution to the improvement of domestic gas sensor technology. (2) localization of fabrication technology for gas leak detectors. 23 refs., 126 figs., 37 tabs.

  3. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  4. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  5. Revolution in the natural gas industry?

    International Nuclear Information System (INIS)

    Thomas, V.

    1999-01-01

    The demand for cleaner automotive fuels has created an opening for converting natural gas to liquid transport fuels and blending agents using Fischer-Tropsch technology. While the technology is well established, it is not yet clear whether the conversion can compete with crude oil refining or with pipelines and liquefied natural gas. Although all the oil giants are interested in the technology, the only commercial-sized plant in the world was the Shell plant in Malaya which had capacity of 12,000 bpd, but the profitability of the plant came from the wax by-products. The plant has been closed since a fire and explosion in 1997. The process chain is described. The gas-to-liquid activities and achievements of Saol, Exxon and Texaco are reported. It was concluded that although there are still some problems to be ironed-out, there is a promising future for gas-to-liquid conversion. (UK)

  6. Liquid natural gas. Japan

    International Nuclear Information System (INIS)

    Van Kooij, E.

    1998-01-01

    An overview is given of the technical know-how and expertise in Japan with respect to the supply, transport, storage and use of LNG. First the overall energy supply in Japan is outlined. Next, the reasons for the use of LNG as an energy source in Japan are discussed. As an example of a typical LNG-installation in Japan the construction of the Himeji Terminal of Osaka Gas Company is described. Finally, attention is paid to the world's largest and modern below-surface LNG-tanks (capacity of 200,000 m 3 ), installed at the Negishi Terminal of Tokyo Gas Company

  7. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  8. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  9. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  10. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. Project to support formation of an energy and environment technology demonstration project in fiscal 1999. International joint demonstration and research project (Sichuan Province natural gas DME project); 1999 nendo Shisensho tennen gas DME project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    DME can be manufactured from such raw materials as natural gas, coal bed gas and coal. NKK who is developing a technology to synthesize efficiently the DME being a new energy has been commissioned from NEDO to investigate and study a project to manufacture DME using natural gas produced in Sinchuan Province, and utilize it as fuel for power generation, transportation and LPG substitution. In the present research, the DME manufacturing plant size was assumed to be 500 tons a day (165 x 10{sup 3} tons annually). This output nearly corresponds to the current LPG consumption. The required amount of natural gas as the raw material is 0.2 x 10{sup 9} Nm{sup 3}/year, wherein, since the total production quantity of natural gas in Sinchuan Province is 10 x 10{sup 9} Nm{sup 3}/year, there is no problem in the supply of natural gas as the raw material. The construction cost was estimated to be 11 billion yen taking into consideration the device fabrication cost and construction labor cost in China. Furthermore, as a result of discussing the economy considering the natural gas material cost, industrial water cost, and labor cost for plant operation, the internal profit rate for the total capital after tax was found a little over 10%, proving the project to have excellent economic performance. (NEDO)

  12. The European natural gas market

    International Nuclear Information System (INIS)

    Hagland, Jan

    2001-01-01

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  13. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  14. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  15. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  16. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  17. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  18. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  19. Natural gas for baking

    Energy Technology Data Exchange (ETDEWEB)

    Steub, G.

    1983-11-01

    German bakers account for about 11% of the total supply of energy required in the small-shop industry, consuming 13.3 billion kWH. The trade thus represents an attractive group of consumers for the energy supply industry. It is shown at what time of the day the peak requirement for energy occurs in bakeries and what baking ovens and firing systems have been developed for use in bakeries relying on gas as a source of heat.

  20. Natural gas in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Indian gas market is expected to be one of the fastest growing in the world over the next two decades. This paper analyses this market, highlighting the current challenges. It first looks at the industry structure, presents the main players from industry as well as government, and gives an overview of the regulatory framework. The issue of pricing remaining crucial for both upstream and downstream development, the paper looks at both supply -- domestic production and LNG imports -- and demand.

  1. Canadian natural gas price debate

    International Nuclear Information System (INIS)

    Wight, G.

    1998-01-01

    Sunoco Inc. is a subsidiary of Suncor Energy, one of Canada's largest integrated energy companies having total assets of $2.8 billion. As one of the major energy suppliers in the country, Sunoco Inc has a substantial stake in the emerging trends in the natural gas industry, including the Canadian natural gas price debate. Traditionally, natural gas prices have been determined by the number of pipeline expansions, weather, energy supply and demand, and storage levels. In addition to all these traditional factors which still apply today, the present day natural gas industry also has to deal with deregulation, open competition and the global energy situation, all of which also have an impact on prices. How to face up to these challenges is the subject of this discourse. tabs., figs

  2. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  3. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  4. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  5. The AFG Convention - The future for natural gas

    International Nuclear Information System (INIS)

    Ferrier, Jerome; Lafon, Madeleine; Bouchard, Georges; Figoli, Jean-Michel; Honorat, Augustin; Clodic, Denis; Fauvel, Philippe; Frantz, Ludovic; Rottenberg, Jacques; Stabat, Thibault; Constant, Herve; Ferraris, Patrick; Monserand, David; Padova, Yann; Leeder, Nick

    2017-01-01

    The Association Francaise du Gas (French Gas Association) has held its 'the future of gas' convention in October 2016. After an opening speech, which insisted on the fact that natural gas is now recognized as a low greenhouse gas emission energy source, and a presentation of the gas demand scenario for 2030, two round tables addressed the new utilizations of natural gas (LNG for ships and vehicles, power generation, biomethane, cryogenics, heating systems), and the contributions of new technologies (and more especially digital systems) in the natural gas market and gas utilities

  6. Natural gas industry in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, Hedayat

    2010-09-15

    Iran holds the second largest gas reserves in the word with over 27.5 trillion cubic meters (TCM) of natural gas. Due to lack of geological surveys in certain geographical regions in Iran, it is likely to explore further reserves in the future.

  7. Natural gas and energy security

    International Nuclear Information System (INIS)

    Saga, B.P.

    1996-01-01

    This paper relates to energy security by natural gas supply seen in an International Energy Agency perspective. Topics are: Security of supply, what is it; the role gas on the European energy scene; short term security of supply; long term security of supply; future structural and regulatory developments and possible implications for security of supply. 6 figs

  8. The Pricing of natural gas

    International Nuclear Information System (INIS)

    Nese, Gjermund

    2004-11-01

    The report focuses on the pricing of natural gas. The motivation has been the wish of the Norwegian authorities to increase the use of natural gas and that this should follow market conditions. The pricing of gas occurs at present in various ways in the different markets. The report identifies to main factors behind the pricing. 1) The type of market i.e. how far the liberalization of the gas markets has gone in the various countries. 2) The development within the regulation, climate and tax policies. The gas markets are undergoing as the energy markets in general, a liberalization process where the traditional monopoly based market structures are replaced by markets based on competition. There are great differences in the liberalization development of the various countries, which is reflected in the various pricing principles applied for the trade of gas in the countries. The analysis shows that the net-back-pricing is predominant in some countries i.e. that the price is in various ways indexed towards and follow the development of the price of alternative energy carriers so that the gas may be able to compete. The development towards trade places for gas where the pricing is based on offer and demand is already underway. As the liberalization of the European gas markets progresses it is expected that the gas price will be determined increasingly at spot markets instead of through bilateral agreements between monopolistic corporations. The development within the regulation, climate and tax policies and to what extent this may influence the gas prices in the future, are also studied. There seem to be effects that may pull in both directions but it is evident that these political variables will influence the gas pricing in the international market to a large extent and thereby also the future internal natural gas market

  9. The emergent natural gas markets

    International Nuclear Information System (INIS)

    Dewert, F.; Meeder, J.

    1998-01-01

    A 30% increase of natural gas consumption worldwide is expected to occur since the year 2010. This development will concern countries located outside the traditional markets, in particular in central and eastern Europe, Asia, Africa and south America. This paper summarizes the talks given by the different representatives of these regions who explain the expected evolutions of the natural gas market in these areas: reserves, production, consumption, demand, competition with other energy sources, financial aspects.. (J.S.)

  10. Natural radioactivity at Podravina gas fields

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    2006-01-01

    In Croatia, natural gas is an important source of energy, where its use exceeds other sources by one third. Composed primarily of the methane, natural gas from Croatian Podravina gas fields, beside other impurities, contains small amounts of radioactive elements. At Gas Treatment Plant (GTP) Molve, technological procedures for purification of natural gas and its distribution are performed. With yearly natural gas production of 3.5 109 m3 GTP Molve is major Croatian energy resource. Its safety and environment impact is matter of concern. Using different radioactivity measuring techniques the exposure of population to ionizing radiation were calculated at Central Natural Gas Station Molve and the underground wells. The measurement techniques included in-situ gamma spectrometric measurements, from which contribution to absorbed dose of the natural radionuclide in soil were calculated. Exposure dose measurements were performed using T.L.-dosimeters, and L.A.R.A. electronic dosimeters as well as field dose rate meter. Comparing used different radioactivity measuring methods, the correlations have been calculated. (authors)

  11. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  12. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  13. The prospects of natural gas vehicles in France and Europe

    International Nuclear Information System (INIS)

    Nicolle, J.M.

    2009-01-01

    Given the availability and environmental advantages of natural gas, several countries soon felt that natural gas vehicles (NGVs) were a logical way to respond to transportation needs while meeting up to the standards of sustainable development. Natural gas is now a genuine alternative to petroleum products, and NGVs are capable of using the current engine technology. (author)

  14. Technical and economical analysis for the implementation of small scale GTL (Gas-to-liquids) technology to monetizing the associated remote offshore stranded natural gas in Brazil; Analise tecnica e economica da aplicacao da tecnologia GTL de pequena escala para a monetizacao do gas natural associado remoto offshore no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Castelo Branco, David Alves

    2008-02-15

    The volume of stranded natural gas global reserves is substantial and represents more than a third of the world's proven natural gas reserves. In Brazil, recent discoveries operated by PETROBRAS, with participation of other companies, show trend of stranded gas reserves incorporation, associated gas or not. This dissertation's main objective is to make a technical and economic analysis of the implementation of small-scale GTL technology for the exploitation of stranded associated natural gas offshore in Brazil. Thus, the dissertation held, initially, a survey of the processes of gasification and the manufacturers with technologies and projects based on these processes, for specific offshore applications. In a second stage, the conditions of the offshore environment were examined. After the confrontation of the technologies available and the operation conditions, a technological alternative has been chosen to be used in an illustrative economic analysis. The results show that GTL offshore option becomes viable at a minimum price of about US $ 40.00 / barrel. Although this value is greater than the robustness price adopted by PETROBRAS, there are prospects for the reduction of GTL technology costs. (author)

  15. Natural gas potential in Canada

    International Nuclear Information System (INIS)

    1997-01-01

    An independent assessment of the undiscovered gas potential in Canada was conducted by a group of volunteer geoscientists. This report is the first of a series of assessments that are planned to be issued every three to four years. Separate assessments were made of conventional gas resources, unconventional gas resources and frontier gas resources. The assessment for conventional gas resources was organized into three categories: (1) gas producing areas where new discoveries can be integrated into existing producing and transportation infrastructure, (2) frontier basins where gas discoveries have been made, but no production is currently underway, and (3) frontier areas where gas-containing sedimentary rocks are known to exist, but where no gas discoveries have been made to date. The committee used year-end 1993 reserves data from discovered pools in each exploration play to predict the undiscovered potential. Information about discovered pools, geological setting, geographic limits and pool sizes of undiscovered pools in each exploration play was provided. Results of the investigation led to the conclusion that the natural gas potential in Canada is in fact larger than hitherto expected. It was estimated that in the Western Canada Sedimentary Basin 47 per cent of the total volume of conventional gas is yet to be discovered. 152 figs

  16. French natural gas industry statistics

    International Nuclear Information System (INIS)

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  17. Challenges and opportunities await natural gas industry

    International Nuclear Information System (INIS)

    Mohasseb, S.

    1998-01-01

    During the last two decades, the natural gas industry has gone through drastic changes. On one hand, deregulation and customer choice have been introduced to the industry. On the other hand, technological advances have resulted in substantial growth of available gas resources. In short, deregulation coupled with increased availability of supply has changed the way market participants interact with each other and which avenues they take to become leaders. Many new opportunities for entry into the market have also been created. As a result, the tide of competition has not only turned against the financially strong giants of the past, but it has also turned against new entrants who are fast, flexible and market driven. Natural gas utilities companies have responded by improving their operational efficiencies through process re-engineering, organizational re-alignment, restructuring and strategic alliances or mergers. Deregulation of the electricity industry is expected to increase competitive pressures on the natural gas industry, thus causing even more of a decrease in natural gas prices. In the future, natural gas utilities must be able to improve their effectiveness by accurately forecasting demand and optimizing their own supply and delivery systems in such a way that costs are minimized without compromising the reliability of supply. The new frontier of competitiveness will ensure that structural changes in the industry are characterized by an effective management of the supply-demand relationship and the optimization of risks inherently a part of gas delivery

  18. Ideas and suggestions for marketing natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.)

    1980-04-01

    The changes in the situation on the world energy market have also affected the gas supply business. This led to a re-examination of the marketing concept for natural gas. The impetus to this came from the procurement situation, the rational use of energy, the appearance of new technologies and the need to arrive at a pricing policy in line with the market. All this required a great deal of PR work and more extensive cooperation. Clarification of some points will require a market analysis to show how long-term plans will have to be established. Sales promotion activities for natural gas will have to show that the aim is to use natural gas as a substitute in high-efficiency applications rather than to increase the consumption of energy. The various activities must be closely coordinated.

  19. Natural gas and deregulation

    International Nuclear Information System (INIS)

    Maisonnier, G.

    2001-01-01

    The gas market is progressively moving towards new organizations under the effect of the deregulation initiated in the United States, the United Kingdom and transposed to other countries, particularly in Europe, at least for the member countries of the European union. Within the framework provided by this overall trend, Cedigaz proposes this study in order to describe the main developments affecting these markets on account of deregulation. This report is structured on the basis of three main topics (market organization, marketing modes, pricing) which appear to be the most cogent in terms of deregulation. This grouping by major topics accordingly offers a relatively synthetic view of the main trends which could be observed on the European market, for example. Our analysis is largely based on the example of the American market and, to a lesser extent, on the British situation. Whenever possible, concrete examples are provided for a closer understanding of this complex subject. On the whole, deregulation is not a frozen process, but has to adapt permanently to developments in a market stage-managed by politics, the regulator and the industrial players. This obviously means a dynamic and constantly evolving process, making it a highly complex process. This report aims to shed some light on the subject. (author)

  20. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  1. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  2. Fiscal 1999 research report. Survey on development trends of natural gas conversion technologies into liquefied fuel in Russia; 1999 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihtsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Russia having world-largest natural gas resources is promoting the forefront basic research on liquefaction technology of natural gas, in particular, Fischer-Tropsch (FT) synthetic process positively. For 3 years from fiscal 1998, this project surveys the trend of R and D on catalytic technology for liquefaction of natural gas in Russia, and fabricates the prototype FT catalyst effective for liquefaction of natural gas at a Russian research institute to evaluate its practical applicability experimentally. In fiscal 1999, based on the research result in fiscal 1998, the project carried out continuous survey on the research activity of research institutes in Russia, the research trend of liquefaction technology and the concrete results of contract researches on catalyst, and summarized the evaluation result of research results. In addition, continuous world-wide document survey on FT synthetic process was made to confirm R and D trends based on the trend of liquefaction research projects in the world, and to collect basic information on catalytic reactors for FT synthetic process by document survey. (NEDO)

  3. LNG (Liquefied Natural Gas): the natural gas becoming a world commodity and creating international price references; GNL (Gas Natural Liquefeito): o gas natural se tornando uma commodity mundial e criando referencias de preco internacionais

    Energy Technology Data Exchange (ETDEWEB)

    Demori, Marcio Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Comercializacao de Gas e GNL; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    The transportation of large quantities of natural gas through long distances has been done more frequently by Liquefied Natural Gas (LNG). The increase of natural gas demand and the distance of major reserves, allied to technological improvements and cost reduction through LNG supply chain, have triggered the expressive increase of LNG world market This paper tries to evaluate the influence that LNG should cause on natural gas world market dynamic, analyzing the tendency of gas to become a world commodity, creating international price references, like oil and its derivates. For this, are shown data as natural gas world reserves, the participation of LNG in natural gas world market and their increase. Furthermore, will be analyzed the interaction between major natural gas reserves and their access to major markets, still considering scheduled LNG projects, the following impacts from their implementation and price arbitrage that should be provoked on natural gas markets. (author)

  4. Tipping points for carbon dioxide and air pollution benefits: an energy systems analysis of natural gas verses electric technologies in the U.S. buildings sector

    Science.gov (United States)

    Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.

  5. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  6. Dauphin Island natural gas project

    International Nuclear Information System (INIS)

    Layfield, R.P.; Elser, K.L.; Ostler, R.H.

    1994-01-01

    Arco Oil and Gas Co. installed the Dauphin Island production facility in a fragile Alabama marine environment supporting important fisheries and tourist facilities. The authors used proactive communication with governmental agencies, area industry, and the public; innovative construction technologies; and unique platform design to minimize the environmental and aesthetic impacts and to develop an economically successful gas field. The innovative equipment used in the offshore pipeline installation is a model approach for solving certain turbidity problems. The project has received numerous environmental awards

  7. Dauphin Island natural gas project

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, R.P. (Arco International Oil and Gas Co., Plano, TX (United States)); Elser, K.L.; Ostler, R.H. (Arco Oil and Gas Co., Houston, TX (United States))

    1994-01-01

    Arco Oil and Gas Co. installed the Dauphin Island production facility in a fragile Alabama marine environment supporting important fisheries and tourist facilities. The authors used proactive communication with governmental agencies, area industry, and the public; innovative construction technologies; and unique platform design to minimize the environmental and aesthetic impacts and to develop an economically successful gas field. The innovative equipment used in the offshore pipeline installation is a model approach for solving certain turbidity problems. The project has received numerous environmental awards.

  8. Natural gas for utility generation

    International Nuclear Information System (INIS)

    Moore, T.

    1992-01-01

    Forecasters predict that natural gas will be the dominant fuel choice for utility capacity additions in the coming decade and that power generation will be by far the largest growth market for gas sales. While gas's low emissions, high efficiency potential, and present low cost argue persuasively for a surge in gas-fired generation, many utilities have been slow to commit to a gas future, citing reasoned concern about long-term price trends and the ability of gas suppliers to deliver the fuel where and when it will be needed. Meanwhile, the relatively low cost of gas-fired units is providing an opportunity for independent power producers to compete strongly with utilities for generation contracts. EPRI studies suggest that a sound, competitive strategy will be based not on how much gas a utility burns, but rather on how this capacity fits into its overall generating mix at various fuel price levels. Gas suppliers will need to pay special attention to the operating needs of power generators if they are to solidify this important market

  9. The economics of natural gas

    International Nuclear Information System (INIS)

    Julius, D.; Mashayekhi, A.

    1990-01-01

    Natural gas resembles oil in fulfilling a wide variety of uses as both a source of energy and a feedstock, but the proportion of world production that is traded internationally is very much lower, and insufficient for a world price of gas to be established. Written specifically for economists interested in energy, development and industrial economics; oil and gas industry personnel; officials of developing countries; and intergovernmental organizations concerned with development. This book addresses the issues of how the economic price of gas is determined within individual countries with different characteristics and which factors should be taken into account by governments in the formulation of pricing policies that are appropriate for gas. These are illustrated with estimates of the costs of exploration and production of gas, and of the benefits to be derived from its use in various economic sectors for a number of Third World countries. The book also presents a detailed case study of the development of gas pricing in Bangladesh, and an analytical framework for the development of a formal gas planning model that could be applied to the cases of actual countries contemplating the development of gas use in the future

  10. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  11. Natural gas participation on brazilian demand supply of liquefied petroleum gas

    International Nuclear Information System (INIS)

    Freitas Rachid, L.B. de

    1991-01-01

    Natural Gas Liquids Production, Liquefied Petroleum Gas (LPG) among them, has undergone a continuous growth and technological development until the first half of the eighties. This paper presents the natural gas processing activity development in Brazil, in the last 20 years, and the increasing share of LPG produced from natural gas in the supply of LPG domestic market. Possibilities of achieving greater shares are discussed, based on economics of natural gas processing projects. Worldwide gas processing installed capacity and LPG pricing tendencies, and their influence in the construction of new Natural Gas Processing Units in Brazil, are also discussed. (author)

  12. The continuing natural gas revolution

    International Nuclear Information System (INIS)

    Priddle, R.

    1997-01-01

    This was the keynote address of the Conference, delivered by the Chairman of the National Energy Board of Canada. Consistent with the Conference theme, the speaker reviewed the major issues and trends seen in the industry today, setting the stage for more detailed discussion of these challenges by other speakers. Among major issues identified were the possibility of further-developing downstream gas deregulation, gas/electricity convergence, changing marketing techniques, the industry's ability to respond to an expanding consumer market, adopt new procedures and technology and reduce supply costs, as well as as assure ongoing profitability at modest gas prices. 11 figs

  13. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2004-01-01

    WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, liquefied natural gas (LNG) and economic optimization. This presentation addressed issues facing their proposed construction of an LNG terminal and associated facilities on the west coast of Canada. It presented pie charts comparing world gas reserves with production. NPC gas price projects and WestPac gas cost estimates were also presented. It was noted that an unprecedented growth in LNG imports to North America is essential and that LNG will be the lowest price major source of natural gas supply. Maps illustrating LNG sources and receiving terminals were also presented along with solutions to the not-in-my-back-yard (NIMBY) syndrome. Solutions include selecting locations where communities are pro-development, where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG to Prince Rupert were discussed in terms of serving energy markets, direct provincial benefits, and LNG/power generation synergies. figs

  14. BASF and acetylene. 70 years of reppe chemistry - long-standing reliability and promising future - and now, the only natural gas based clean technology for acetylene production

    Energy Technology Data Exchange (ETDEWEB)

    Vicari, M. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    Acetylene is still an attractive intermediate synthesis component because carbon in methane from natural gas comes at a lower price than carbon in naphtha from crude oil or coal. Acetylene can be understood as a product of C-C coupling and functionalization. Beginning in the 1950s, BASF developed the partial oxidation (Pox) process, in addition to the electric arc process dating from the 1930s and the submerged flame process. The originally developed Pox process came along with severe emissions of hydrocarbons to the environment. Nowadays it is extremely important to have a clean, environmentally friendly technology. So in the 1990s a closed water-quench process was developed and built in the United States. The presentation focuses on the ways of making acetylene, the use of acetylene and BASF's closed water-quench process based on natural gas. This process will be presented including some important safety aspects. The process is available for licensing. (orig.)

  15. Natural gas market in Europe

    International Nuclear Information System (INIS)

    Mons, L.

    2001-07-01

    The natural gas market is opened to competition since August 2000. The economical impact of this new situation remains moderate in 2001 because the conditions of competition are not fulfilled everywhere. In France, for instance, the European directive on markets deregulation has not been transposed yet and the conditions of access of third parties to the national gas network have not been clearly defined. In this context of uncertainties, several questions remain unanswered. This study draws out a precise status of the situation of the 7 main European gas markets. It comprises also an analysis of the behaviour and strategy of the 18 main actors of this sector. (J.S.)

  16. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  17. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  18. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  19. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  20. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  1. Market screening of natural gas reformers

    International Nuclear Information System (INIS)

    Themsen, J.; Pagh Nielsen, M.; Knudsen Kaer, S.

    2005-01-01

    This report presents results from the project: Market screening of natural gas reformers. The project objective was to screen the natural gas reformers available on the international market. The technology is developing rapidly, and the results from this project will assist in determining the focus for the future Danish activities and in setting up ambitious and realistic targets. The reformer screening is partly based on AAU and Dantherm's experiences from previous studies, and the screening has been further extended with a number of activities, including seminars and contact with some of the most interesting suppliers. (BA)

  2. Natural gas: Fuel for urban fleets

    International Nuclear Information System (INIS)

    Mariani, F.

    1992-01-01

    The search for new ecological solutions for public transport has given an important role to natural gas for vehicles in the national context. Under current prices of fuel and costs of plants, the management of a bus fleet running on natural gas allows consistent savings, besides reducing the atmospheric pollution of urban centres. Within this context, solutions offered by current technology available on the market are examined. Low polluting emissions are taken into consideration and a complete analysis of costs and savings is reported. Reference is made to the Thermie European programme which calls for fuel diversification, energy conservation and air pollution abatement

  3. Comparative Assessment Of Natural Gas Accident Risks

    International Nuclear Information System (INIS)

    Burgherr, P.; Hirschberg, S.

    2005-01-01

    The study utilizes a hierarchical approach including (1) comparative analyses of different energy chains, (2) specific evaluations for the natural gas chain, and (3) a detailed overview of the German situation, based on an extensive data set provided by Deutsche Vereinigung des Gas- und Wasserfaches (DVGW). According to SVGW-expertise DVGW-data can be regarded as fully representative for Swiss conditions due to very similar technologies, management, regulations and safety culture, but has a substantially stronger statistical basis because the German gas grid is about 30 times larger compared to Switzerland. Specifically, the following tasks were carried out by PSI to accomplish the objectives of this project: (1) Consolidation of existing ENSAD data, (2) identification and evaluation of additional sources, (3) comparative assessment of accident risks, and (4) detailed evaluations of specific issues and technical aspects for severe and smaller accidents in the natural gas chain that are relevant under Swiss conditions. (author)

  4. Analysis of technologies for natural gas transportation in Brazil: results comparison of the application of payback and NPV (Net Present Value) methods; Analise de tecnologias de transporte de gas natural no Brasil: comparacao dos resultados da aplicacao dos metodos 'payback' e VPL (Valor Presente Liquido)

    Energy Technology Data Exchange (ETDEWEB)

    Baioco, Juliana Souza; Santarem, Clarissa Andrade [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia de Petroleo; Bone, Rosemarie Broeker; Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Industrial

    2008-07-01

    The increased demand for natural gas leads to global integration of markets, leading to decisions that cover the various technologies of transportation, noting the specific locations. The transport of natural gas considered more traditional (Liquefied Natural Gas and Pipeline) often unviable economically areas of operation due to cost. In this case, there are alternative technologies to reduce those costs. The article is to compare the technologies of transport, using the methodology of the Net Present Value (VPL) to identify one that has more positive VPL, which is the most profitable. Thus, in search of validate the results of SUBERO et al. (2004) for gas transport by Pipelines, Liquefied Natural Gas and Compressed Natural Gas. In addition, they are compared these results with the method of VPL and with the economic analysis presented in using the payback period of CHANG (2001) and SANTAREM et al. (2007). It was found that the results obtained in Brazil were identical to those obtained by CHANG (2001) and SUBERO et al. (2007), saving only some differences in magnitude due to the specific characteristics of the Brazilian economy. In other words, for the Brazilian case, the technology of Compressed Natural Gas (CNG) was the most economically viable with the method of VPL, followed by technology, Pipeline and Liquefied Natural Gas (LNG), regardless of the interest rates of 10% and 6.5% and periods of 20 and 30 years. The contribution of this work is to show that despite of the method, payback or VPL, the various alternatives for transporting natural gas to Brazil have the same ranking and economic viability. (author)

  5. Challenges for the future of natural gas

    International Nuclear Information System (INIS)

    Gadonneix, P.

    1997-01-01

    This paper reports on the closure talk from P. Gadonneix, president of Gaz de France (GdF) company, who draws out the perspectives of development of the French national company in the context of an increasing natural gas demand with new competition and with an evolution of the European regulations: perspectives of demand and production, the dependency of Europe, the competition with other energy sources, the European deregulation of natural gas market, the strategy of Gaz de France, the relation with consumers, the development of distribution systems, the promotion of new products, the environmental qualities of natural gas and the development of clean technologies, the construction of new pipelines within the national territory, the partnerships of GdF with other national companies, the socio-economical actions of GdF (employment etc..). (J.S.)

  6. Natural gas and electricity convergence

    International Nuclear Information System (INIS)

    Calger, C.

    1998-01-01

    Convergence between the gas and electricity industries was described as a means for creating an increasingly more efficient energy market where prices and fundamental relationships exist between gas and electricity. Convergence creates new opportunities for producers and consumers. Convergence will likely lead to the disaggregation of the electricity and gas industry into segments such as: (1) power generation and production, (2) transmission wires and pipelines, (3) wholesale merchants, (4) distribution wires and pipelines, and (5) retail marketing, services and administration. The de-integration of integrated utilities has already begun in the U.S. energy markets and retail open access is accelerating. This retail competition will create very demanding customers and the changing risk profile will create new issues for stakeholders. The pace of reform for the telecommunications, airlines, natural gas and electricity industries was graphically illustrated to serve as an example of what to expect. The different paths that the industry might take to deregulation (aggressively embrace reform, or defensively blocking it), and the likely consequences of each reaction were also described. A map indicating where U.S. electric and natural gas utility merger and acquisition activities have taken place between 1994-1997, was included. Another map showing the physical asset positions of the Enron grid, one of the largest independent oil and gas companies in the U.S., with increasing international operations, including an electric power transmission and distribution arm, was also provided as an illustration of a fully integrated energy market company of the future. 9 figs

  7. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  8. Policies for technical innovations to promote natural gas market development

    International Nuclear Information System (INIS)

    Leblanc, M.B.

    1997-01-01

    Short-term and long-term perspectives of the natural gas market worldwide are discussed, covering demand and supply trends. Technologies determining the future of the natural gas market, and R and D needs for implementing future technological challenges are considered. (R.P.)

  9. Natural gas news; Gaz actualites

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-12-01

    This brochure is a compilation of practical information concerning the Gaz de France group: organization chart, daughter companies, services, economical activity, natural gas market, trade, regulations etc. A list of partners, directions, centres, groups, associations and other various organisms in relation with Gaz de France company is given. (J.S.)

  10. Natural gas in developing countries

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    Everywhere in the world plans are being made to stimulate the natural gas industry in developing countries. High investment costs are the biggest problem almost everywhere. Even countries with a closed economy realize that they do not get far without foreign capital. Cases are presented for Africa, Pakistan, and Indonesia

  11. The natural gas for vehicles

    International Nuclear Information System (INIS)

    2006-11-01

    This document aims to present the trumps of the natural gas for vehicle (NGV). It discusses the particularities, the actions of the government in favor of the NGV by the creation of financial and legal incentives and the challenges. A detail description of the financial and fiscal assistances and the regulation references are given. (A.L.B.)

  12. Natural gas liquids: market outlook

    International Nuclear Information System (INIS)

    Heath, M.

    1996-01-01

    Future market outlook for natural gas liquids was discussed. It was shown that Canadian natural gas and natural gas liquid (NGL) production levels have experienced extraordinary growth over the past few years due to an increased U.S. demand for Canadian natural gas. Recent supply and demand studies have indicated that there will be growing surpluses of NGLs in Canada. By 1996, the majority of NGL surplus that is forecast to be available is ethane (64%), followed by propane (22%), butane (12%) and pentane plus (2%). Throughout the forecast period, the ratio of incremental ethane to the total NGL surplus, over and above forecast demand, was expected to continue to rise. The viability of producing and processing that ethane and transporting it to market, will be crucial. Development of a large ex-Alberta C2+ pipeline from Empress to Mont Belvieu under the reference case supply projection is a possibility, but only if total tariff and fractionation charge on the line is less than or equal to 10 US cents/USG (currently 16-22 US cents/USG). 11 figs

  13. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  14. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  15. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  16. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  17. Natural Gas Versus Nuclear New Build Versus Life Extension

    International Nuclear Information System (INIS)

    Barron, B.

    2013-01-01

    Proven natural gas reserves and production in the USA have continued to increase in recent years. This is due to the exploration of shale formations and the expanded use of hydraulic fracking technology. Looking forward, we can expect that high crude oil prices will sustain natural gas production at current levels (approximately 25% of natural gas production in the USA is a by-product of crude oil drilling), and the natural gas liquid cuts are priced with crude oil. Continued drilling in the near term for natural gas is required by lease obligations and by commitments to investors

  18. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  19. Gas technology, environment and added value

    International Nuclear Information System (INIS)

    2002-01-01

    This report is an official evaluation of the various aspects of new, environmentally friendly ways of using gas in Norway, including hydrogen and gas power with carbon dioxide deposition. The objective of the evaluation is to prepare for increased engagement by Norwegian technological and research institutions in the development of environmentally friendly gas technology, in cooperation with other countries, and to give Norway a strong international position in this field. This objective is based on the political goal that a greater part of Norway's natural gas resources should be used at home (rather than being exported), and in agreement with Norway's international environmental commitments

  20. Natural gas industry competitiveness study

    International Nuclear Information System (INIS)

    1999-09-01

    A national study on the competitiveness of the natural gas industry was undertaken by the BC Oil and Gas Commission in cooperation with, and with the encouragement of the Canadian Association of Petroleum Producers (CAPP). The objective of the study was to compare the cost competitiveness of natural gas exploration , production, gathering and processing in British Columbia to the costs of the same processes in Alberta. The study was carried out by building an 'expected case' for each gas producing area in British Columbia and Alberta by averaging past events in such specific areas as pool sizes, production profiles, loads, drilling success rates, gas compositions, land, drilling, exploration and production/gathering costs, third party production/gathering and processing fees and abandonment costs; by constructing a cash flow model for each case, calculating unit cost, and ranking cases. The report provides the details of the methodology, displays the results of the investigation in graphical form, comments on the results factoring in also labour costs and cost differences due to resource characteristics, identifies some trends such as an increase in the proportion of connections to smaller plants, and provides suggestions for improvements

  1. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  2. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  3. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  4. Marketing activities of a natural gas company

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.)

    1978-01-01

    The last 10 years have produced an extra ordinary upswing in the gas industry. Natural gas could, in part, satisfy the demands in fields previously reserved for heating oil. However, after these successes it seems necessary to analyze the new initial situation for future marketing activities and to find a new strategy. This investigation is concerned with those tasks. Crucial points are dealt with that represent interesting of activities for gas-supply initiatures, and the author tries to show by what means these efforts can be crowned with success. All important sectors of the market are discussed, new technological developments are dealt with briefly, and finally the special case of opening up new areas for natural gas-supply is examined. It is regarded as an absolute necessity that marketing information for new activities should be appreciably improved by market surveys. The whole article describes the activites that have arisen from the co-operation between Thyssen gas and the gas supply undertakings supplied by Thyssen gas.

  5. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  6. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  7. The French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    This little folder summarizes in few pages the main economical data of the French natural gas industry: supplies according to the country of origin, length of transport and distribution networks, LNG tanker ship fleet, underground storage capacity, population of LNG-fueled vehicles, cogeneration installations, consumption by sectors and by industrial activities, LPG consumption, supplies, distribution and sales, LPG-fuel for vehicles, CO 2 and NO x releases, equipment of households. (J.S.)

  8. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  9. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2005-01-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs

  10. Western Pacific liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [WestPac Terminals Inc., Calgary, AB (Canada)

    2005-07-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs.

  11. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  12. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  13. Electricity to natural gas competition under customer-side technological change: a marginal cost pricing analysis; Cambiamento tecnologico a valle del contatore e concorrenza fra elettricita' e gas naturale

    Energy Technology Data Exchange (ETDEWEB)

    Gulli' , Francesco [Bocconi Univ., Milan (Italy). Iefe

    2004-07-01

    This paper aims at evaluating the impact of technological change (on the customer side of the meter) on the network energy industry (electricity and natural gas). The performances of the small gas fired power technologies and the electrical reversible heat pumps have improved remarkably over the last ten years, making possible (or more viable) two opposite technological trajectories: the fully gas-based system, based on the use of small CHP (combined heat and power generation) plants, which would involve a wide decentralisation of energy supply; the fully electric-based system, based on the use of reversible electric heat pumps, which would imply increasing centralisation of energy supply. The analysis described in this paper attempts to evaluate how these two kinds of technological solutions can impact on inter-service competition when input prices are ste equals to marginal costs of supply in each stage of the electricity and natural gas industries. For this purpose, unbundled prices over time and over space are simulated. In particular the paper shows that unbundling prices over space in not very important in affecting electricity to natural gas competition and that, when prices are set equal to long-run marginal costs, the fully electric-based solution (the reversible heat pump) is by far preferable to the fully gas-based solution (the CHP gas fired small power plant). In consequence, the first best outcome of the technological change would involve increasing large power generation and imported (from the utility grid) electricity consumption. Given this framework, we have to ask ourselves why operators, regulators and legislators are so optimistic about the development of the fully gas-based solutions. In this respect, the paper suggests that market distortions (such as market power, energy taxation and inefficient pricing regulation) might have give an ambiguous representation of the optimal technological trajectory, inducing to overestimate the social value

  14. Natural gas as public service; Gas natural como servico publico

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Breno Vincius de; Franca, Vladimir da Rocha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The Natural Gas passes through an outbreak of enormous growth in Brazil. Important in several economies in the world and is one of the main components of the energy matrix of various countries, including neighbouring Southern Cone, such as Argentina and Bolivia, he begins to own as a major viable alternatives to replace oil, along with alcohol and biodiesel. When the distribution of the gas flowing, this should be governed by a system of public law, according to the principles governing the administration, is emphasizing the principle of continuity, efficiency, and generally modest, because this is public service, and how to see this be seen on a strong regulation of the Member States of the Federation, which has the power to provide them directly or by concession. (author)

  15. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  16. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  17. Development of natural gas rotary engines

    Science.gov (United States)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  18. New technological developments in gas processing

    International Nuclear Information System (INIS)

    Draper, R.C.

    1996-01-01

    The changes that the natural gas industry has undergone over the last few years was discussed. Low natural gas prices forced companies to react to their high reserves replacements costs. They were forced to downsize and undergo major restructuring because they were losing money due to high operating costs; the future for natural gas prices looked pessimistic. The changes have led to a new kind of business practice, namely 'partnering with third party processor', mid-stream companies known as aggregators, to build and operate facilities as part of a move towards cost effective improvements for gas producers. Besides reducing capital and operating costs, the producer under this arrangements can dedicate his capital to finding new gas which is the basis of growth. Recent technological changes in the gas processing industry were also touched upon. These included enhanced technologies such as increased liquid hydrocarbon recovery, segregation of C3+ and C5+, installation of gas separation membrane systems, small sulphur plants, acid gas injection and selective or mixed solvents. Details of some of these technologies were described. 2 refs., 2 figs

  19. Nordic cooperation within natural gas research

    International Nuclear Information System (INIS)

    Edna, O.-J.

    1993-01-01

    Nordic cooperation within natural gas research is discussed. A reorganization of this cooperation has recently taken place. It is explained that common Nordic resources are now to be concentrated within 7 areas, one of which is the area of energy/industrial policies, regional policies and agriculture and forestry, all under the common heading of ''Economy''. The plan of activities within this area includes international cooperation within the European Communities, the European Energy Charter, the International Energy Agency and will involve the energy policy situation in eastern Europe and the Baltic countries, the electric power and natural gas markets in the northern countries, energy related environmental questions and Nordic energy research cooperation. Nordic research activities constitute 2% of research resources within the OECD. The basis for Nordic research cooperation (for example a common cultural background) is described, and suggestions are made as to how it should be administrated. The Nordic energy research programme for 1991-1994 embodies bioenergy and the environment, fuel cells, energy and the society, solid fuels, district heating and petroleum technology. The status report for the nordic gas market, which represents the Nordic gas companies' evaluation of the Nordic gas market, is summarized, and Nordic research activities related to gas utilization are shortly commented upon. (AB)

  20. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  1. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  2. Technological requirements for the efficiency and security in the industry of natural gas in Colombia; Requerimientos tecnologicos para la eficiencia y seguridad en la industria del gas natural en Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta Andres, Amell; Gil B, Edison

    1996-11-01

    In Colombia cities will be gasified to more than 1000 m. of altitude. The theoretical analyses and experimental evidences show that to these conditions the systems work with decrease of power and excessive emissions of carbon Monoxide (CO) The supply of natural gas will come from a diversity of locations with different chemical compositions. The experience points out that teams that use gas of different composition behave in a different way, being able to locate its operation under undesirable conditions when another substitutes a gas. The studies of interchange of gases in an installed park of teams or to install they allow defining the margin of security in the use of gases of different compositions. The purpose of this report is to show the importance that for the efficient and sure use of the natural gas in Colombia have the studies of the incidence of the altitude and the hygrometry in the good operation from the atmospheric systems to gas and the interchange of the Colombian gases.

  3. Natural gas in the European Community

    International Nuclear Information System (INIS)

    Kalim, Z.

    1991-01-01

    A report is presented on 'Natural Gas in the European Community'. Aspects discussed include the challenges facing the gas industry in the EC, the development of the European gas industry, the structure and role of European gas companies, the sources of European supply, gas contracts and the influences that operate on sales into end markets, electricity generation from natural gas, evolving markets for natural gas in the EC, life in the private sector using British Gas as a role model and country profiles for eleven European countries. (UK)

  4. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  5. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  6. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  7. Environmental benefits of natural gas for buses

    International Nuclear Information System (INIS)

    Rabl, A.

    2002-01-01

    This paper presents a life cycle assessment comparing diesel buses with buses fueled by natural gas. The data for the emission of pollutants are based on the MEET Project of the European Commission (EC), supplemented by data measured for diesel and gas buses in Paris. The benefits of the gas fueled bus are then quantified using the damage cost estimates of the ExternE Project of the EC. A diesel bus with emissions equal to Standard EURO2 of the EC is compared with the same bus equipped with a natural gas engine, for use in Paris and in Toulouse. The damage cost of a diesel bus is significant, in the range of 0.4-1.3 euro/km. Natural gas allows an appreciable reduction of the emissions, lowering the damage cost by a factor of about 2.5 (Toulouse) to 5.5 (Paris). An approximate rule is provided for transferring the results to other cities. A sensitivity analysis is carried out to evaluate the effect of the evolution of the emissions standard towards EURO3, 4 and 5, as well as the effect of uncertainties. Finally a comparison is presented between a EURO2 diesel bus with particle filter, and a gas fueled bus with the MPI engine of IVECO, a more advanced and cleaner technology. With this engine the damage costs of the gas fueled bus are about 3-5 times lower than those of the diesel with particle filter, even though the latter has already very low emissions.(author)

  8. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  9. Gas-to-liquid technologies: India's perspective

    International Nuclear Information System (INIS)

    Reddy Keshav, Tirupati; Basu, S.

    2007-01-01

    Gas-to-liquid (GTL) technologies are capable of converting gas to clean, useful liquid hydrocarbons and thus suitable for addressing problems of remote gas utilization, increase in crude oil price, depletion of fossil fuel and environmental pollution. The Indian state of Tripura is considered to be the richest province with 26 billion cubic meters of gas reserves. Neighboring country Myanmar has huge gas reserves but these reserves remain unutilized mainly because of land-locked situation. GTL is a well developed and proven technology and it is an important option for moving natural gas to the market place. GTL options include not only the well-known production of Fischer-Tropsch synthesis liquids but also the production of oxygen containing fuels, fuel additives and chemicals, such as methanol and DME. An alternative, promising option to convert surplus gas is the direct route of methane conversion, which is more energy efficient than the indirect route since it bypasses the energy intensive endothermic steam reforming step of syngas formation. On-site conversion to liquid products of commercial importance using direct route would make transportation of these natural deposits much more economical and practical. In this paper an attempt has been made to review recent developments in syngas technologies, direct routes of methane conversion into useful liquids, and status of both existing and future developments in GTL industry around the world. Finally challenges in GTL technology are discussed. (author)

  10. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    Shaffer, Brenda

    2011-01-01

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  11. Hyper market of the Natural Gas

    International Nuclear Information System (INIS)

    2002-01-01

    The article tries about the Center of Commercialization of Gas-CCG located in Bogota where experts take charge minute to minute that and that fuel that ECOPETROL sells arrives every day to its final destination. They work 24 hours during 365 days, they receive and they respond in time their clients' record applications, they analyze rates; they sell, they negotiate, they give the prices, but the mainly, they control the key that guarantees that the Colombians receive the supply of natural gas on time. It has the most modern tip technology and a complete system of compute that allows knowing the requirements of the buyers in real time. From there they decide that natural gas will be made every day and they detect quickly where flaws are presented. The CCG sells every month an average of $35.000 millions. Although the thermal plants are the biggest buyers of natural gas in the country, some industrial clients and big companies have begun the conversion of their teams to make use of this fuel, recognized in the world to be more economic and cleaner for the environment

  12. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  13. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  14. New opportunities for natural gas

    International Nuclear Information System (INIS)

    Newcomb, J.

    1991-01-01

    This paper reports that the prospect of extremely low gas prices - approaching $1.00 per million Btu (MMBtu) on a seasonal basis - is frightening many producers. The presence of large gas inventories only serves to intensify these fears. Threats of declining market conditions stir the question: How should producers react to these prices? On the score, the experts advise: One of the first rules of playing the power game is that all bad news must be accepted calmly as if one already knew and didn't much care. Although stated jokingly, there is a kernel of truth to the suggestion. Having thought through the adversities involved in the worst case scenario - and for natural gas producers and other industry participants, those adversities are formidable - companies may be better prepared to adapt to the worst case, should it happen to materialize. Here, the bad news is that CERA foresees serious near-term perils that could route the industry toward that worst case. The good news is that long-term prospects provide a cause for optimism

  15. Prediction of natural gas consumption

    International Nuclear Information System (INIS)

    Zhang, R.L.; Walton, D.J.; Hoskins, W.D.

    1993-01-01

    Distributors of natural gas need to predict future consumption in order to purchase a sufficient supply on contract. Distributors that offer their customers equal payment plans need to predict the consumption of each customer 12 months in advance. Estimates of previous consumption are often used for months when meters are inaccessible, or bimonthly-read meters. Existing methods of predicting natural gas consumption, and a proposed new method for each local region are discussed. The proposed model distinguishes the consumption load factors from summer to other seasons by attempting to adjust them by introducing two parameters. The problem is then reduced to a quadratic programming problem. However, since it is not necessary to use both parameters simultaneously, the problem can be solved with a simple iterative procedure. Results show that the new model can improve the two-equation model to a certain scale. The adjustment to heat load factor can reduce the error of prediction markedly while that to base load factor influences the error marginally. 3 refs., 11 figs., 2 tabs

  16. Australian natural gas market outlook

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    A new study of the Australian natural gas industry by leading Australian economics and policy consultancy ACIL Tasman highlights the significant supply and demand side uncertainties currently facing the industry. The ACIL Tasman 'Australian Gas Market Review and Outlook 2004' study presents modelling results for three supply/demand scenarios in Eastern Australia and two in Western Australia. The results show that, even under moderate assumptions about future levels of gas demand growth, major supply-side investment is likely to be needed over the next ten to fifteen years. The base supply/demand scenario for Eastern Australia and Northern Territory, illustrated in Figure 1, shows that even allowing for substantial new discoveries in existing production basins and major expansion of coal seam methane production, in the absence of a northern gas connection to the eastern states (Timor Sea or PNG Highlands) a significant supply gap will begin to emerge from around 2013. The study identifies several supply-side options for Eastern Australia - new discoveries in the established production provinces in Bass Strait and Central Australia; greenfield developments such as the Otway Basin offshore from Victoria and South Australia; continuing expansion of coal seam methane production in Queensland and New South Wales; and gas from Papua New Guinea, Timor Sea or from the North West Shelf region delivered via a trans-continental pipeline. The study concludes that it is unlikely that any single option will suffice to meet future demand. Almost inevitably, a combination of these sources will be needed if anticipated growth opportunities are to be met. With regard to prices, the study shows that in the short to medium term the outlook is for some real reductions in wholesale prices in most regional markets. This reflects increasing levels of upstream competition and declining real costs of pipeline transportation. However in the longer term, supply-side constraints will tend to

  17. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  18. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  19. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  20. Natural gas demand prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Jin [Korea Electric Power Corp. (KEPCO), Seoul (Korea, Republic of)

    1997-06-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs.

  1. Natural gas demand prospects in Korea

    International Nuclear Information System (INIS)

    Young-Jin Kwon

    1997-01-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs

  2. Business cycles and natural gas prices

    International Nuclear Information System (INIS)

    Apostolos, S.; Asghar, S.

    2005-01-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  3. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  4. Natural gas supply and demand outlook

    International Nuclear Information System (INIS)

    McGill, C.B.

    1998-01-01

    The outlook for U.S. natural gas supply and demand in the residential, commercial, industrial/cogeneration, electricity and transportation sectors for 1995, 2000, 2005, 2010, and 2015 was presented. A summary of gas well completions from 1990 to 1997 was also provided. The Canadian natural gas resource was estimated at 184 trillion cubic feet. In 1996, Canada produced 5.6 trillion cubic feet of natural gas, half of which was exported to the U.S. New pipeline projects have been proposed to transport natural gas from eastern offshore areas and the Western Canadian Sedimentary Basin. A table representing U.S. and Canada gas trade from 1990 to 1997 and a map of proposed Canadian and U.S. natural gas pipeline routes were also included. Looking into the future, this speaker predicted continued volatility in natural gas prices. 9 tabs., 9 figs

  5. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  6. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  7. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  8. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  9. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  10. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  11. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  12. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  13. U.S. natural gas pipeline flow and demand trends

    International Nuclear Information System (INIS)

    Carson, M.M.

    1992-01-01

    It is no surprise that regional natural gas supply and demand patterns in North America are constantly changing. A consensus of forecasters agree that the natural gas resource base is larger than envisaged in the early 1980s due to advances in exploration and production technology. In addition, on the demand side more gas will be burned by US power generators to meet growth in electricity. Gas consumption is up in the commercial sector, and natural gas is correctly seen as environmentally protective. But how much more natural gas does the US need? This paper reports that new pipeline projects are springing up all over the nation --- 43 to be exact, with most of them connecting gas deliverability out of basins west of the Mississippi to new markets along the Atlantic and Pacific coasts

  14. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  15. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  16. The participation of the production sector in the research projects financed by CTPETRO - National Brazilian Plan in Science and Technology for Petroleum and Natural Gas; A participacao do setor produtivo nos projetos financiados pelo CTPETRO - Plano Nacional de Ciencia e Tecnologia de Petroleo e Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fabiana; Pereira, Newton Mueller [Universidade Estadual de Campinas, SP (Brazil). Inst. de Geociencias. Dept. de Politica Cientifica e Tecnologica]. E-mail: fabiana@ige.unicamp.br; newpe@ige.unicamp.br

    2002-07-01

    This paper emphasizes the participation of the equipment and services suppliers for the petroleum sector in the projects financially supported by CTPETRO (National Brazilian Plan in Science and Technology for Petroleum and Natural Gas), according to the edit 03/2000.

  17. Natural gas reserve growth in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [Canadian Gas Potential Committee, Calgary, AB (Canada)]|[GasEnergy Strategies Inc., Calgary, AB (Canada)

    2003-07-01

    An appreciation study of a natural gas reservoir is a component of assessing its ultimate reserve potential. The Canadian Gas Potential Committee (CGPC) defines appreciation as the change in a reserve estimate from a previously booked pool or basin. Basins cannot appreciate through the addition of new pools. Ultimate potential includes all of the following: cumulative production; remaining discovered reserves; adjustments to remaining discovered reserves; and, full appreciated undiscovered reserves. This presentation outlined the procedures used by the CGPC in its appreciation studies. It also reviewed data supplier issues, regulatory practices, and booking issues. A series of graphs were also included depicting pools discovered in 1993 and the average pool gas in place. Reservoir loss from 1993 to 1998 was attributed to the fact that enhanced recovery technology cannot keep pace with the degradation in pool quality. It was noted that beyond 1998, significant increases in gas prices should increase recovery factors. Special studies by the Alberta Energy and Utilities Board have included the depreciation of unconnected gas pools and the appreciation of sheet sands. The challenge of tracking pool appreciation was discussed with reference to estimating new pool discoveries in established fields. 2 tabs., 6 figs.

  18. Smart with Natural Gas in the built environment; Slim met Gas in de gebouwde omgeving

    Energy Technology Data Exchange (ETDEWEB)

    Ensing, H.; Oude Elberink, L.; Holwerda, B. [et al.] (ed.)

    2011-12-15

    This magazine addresses the future of the energy system, the role of natural gas in the energy transition process and innovative (gas) technology for the built environment [Dutch] In dit magazine komen de toekomst van de energievoorziening, de rol van aardgas in het energietransitieproces en innovatieve (gas)technologie voor de gebouwde omgeving aan bod.

  19. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  20. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  1. FY 2000 report on the results of development of the technologies for recovering and utilizing carbon dioxide using coal and natural gas; 2000 nendo sekitan tennen gas katsuyogata nisanka tanso kaishu riyo gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    Described herein are the FY 2000 results of the research and development project for converting the gas, produced by reacting carbon dioxide and water with coal and natural gas using solar ray and heat, into methanol. A solar furnace operating with solar energy, composed of a simulated solar ray collector (5kW), CPC (Compound Parabolic Concentrator), molten salt furnace and coal gasifier, is designed, fabricated and installed. The motion in the molten salt furnace is simulated to analyze the heat flux. The wet and dry type coal gasification processes are simulated with Taiheiyo-coal as the basis. For the natural gas reforming solar furnace, various types of technical information on methane reforming and oxidation catalysts are pigeonholed. The catalytic reaction testing system is fabricated. The information of carbon dioxide separation technologies, e.g., membrane-aided separation, absorption, and membrane/absorption hybrid, is collected. The treatment test with the polyimide-based separation membrane is conducted. The information is pigeonholed and evaluated for development of the elementary techniques and optimization of the total system. The preliminary study on economic viability indicates that methanol production cost is 30 yen/kg-methanol or less, on the basis of releasing no carbon dioxide in the production step. (NEDO)

  2. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  3. Guidelines For Evaluation Of Natural Gas Projects

    International Nuclear Information System (INIS)

    Farag, H.; El Messirie, A.

    2004-01-01

    This paper is objected to give guidelines for natural gas projects appraisal These guidelines are summarized in modeling of natural gas demand forecast and energy pricing policies for different gas consumers mainly in the manufacturing, mining, transport, trade and agriculture sectors. Analysis of the results is made through sensitivity analysis and decision support system ( DSS )

  4. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  5. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  6. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  7. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  8. Gas supplies of interstate natural gas pipeline companies 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  9. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  10. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Kuenneke, R.W.; Arentsen, M.J.; Manders, A.M.P.; Plettenburg, L.A.

    1998-01-01

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  11. Natural gas conversion new route using halogen derivatives; Nova rota de conversao de gas natural utilizando derivados halogenados

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, Leandro A.; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia]. E-mail: noronha@iq.ufrj.br; Sousa Aguiar, E. Falabella [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Natural gas will have important position in the next decades. Nowadays, there is high demand for petrochemicals products, such as ethene and propene. With the nafta price variation, the development of alternative routes from natural gas will be stimulate, as occur in Rio de Janeiro. Between the main technologies for the natural gas use, arise the gas to liquids (GTL) routes for the conversion to hydrocarbons. Therefore, will be studied the transformation of methyl chloride to light olefins (ethene and propene) and other hydrocarbons in zeolitic catalysts. All of these reactions will be simulate occurring in the zeolitic surface, using a cluster that represents very much the catalyst structure. (author)

  12. Adsorbed natural gas usage in vehicles; Uso veicular do gas natural adsorvido

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Flavio Barboza; Miller, Francisco Mateus; Moura, Newton Reis de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper presents and evaluates the actual state of development of the natural gas storage in activated carbons (ANG - adsorbed natural gas) for vehicles applications. This paper also presents the technological challenges that must be overcome to turn ANG viable for vehicles applications. The main results published in ANG, its theoretical limit and a preliminary comparison between the ANG and the GNC technologies are also presented in this work. The parameters used in that comparison were storage capacity, reservoir's weight and volume. The maximum methane storage capacity in activated carbon monoliths (theoretical limit), determined by molecular simulation, is lower than the CNG ones. Therefore, the ANG contribution to vehicles applications is not related to a higher storage capacity but to its lower working pressure, that represents an advantage by the following aspects: reduction or elimination the loss of useful space inside the vehicle; safety and price reduction of NG at fueling station. (author)

  13. Mathematical models of natural gas consumption

    International Nuclear Information System (INIS)

    Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana

    2011-01-01

    In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.

  14. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  15. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  16. Market penetration of natural gas in Europe

    International Nuclear Information System (INIS)

    Haas, R.; Wirl, F.

    1992-01-01

    The strategy of restricting natural gas to noble uses (directive of EEC and endorsed by the IEA) impeded gas expansion despite substantial upward revisions in the assessment of available resources. However, increasing environmental concern slowly but gradually undermines this strategy because natural gas serves as a substitute for costly abatement. This article discusses the prospect of future natural gas consumption considering economic and ecological facts as well as strategic and political considerations. In fact, we argue that inconsistent political interventions first seriously lowered gas penetration but now favor its use

  17. Natural gas for New Brunswick: First report

    International Nuclear Information System (INIS)

    1998-01-01

    The development of the gas field off Sable Island and the imminent construction of a gas pipeline which will deliver natural gas to New Brunswick has prompted a thorough examination of energy-related issues in the province. This report presents the findings of the provincial energy committee which examined the implications of the arrival of natural gas to the province. The committee held a series of public hearings and consultations, and also received written submissions. After a historical perspective on natural gas as an energy source in the province and a review of the gas industry participants and their interests, the report discusses such issues as gas pipeline economics, local distribution company operations, infrastructure development, the regulatory framework, energy market competition, regional price equity, development of in-province gas sources, pipeline access, pipeline laterals and expansions, establishment of gas distribution franchises, municipal involvement in gas development, the impact of gas industry development on electric utility restructuring, and the environmental benefits of natural gas. Finally, recommendations are made regarding how natural gas should be regulated and distributed

  18. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  19. Annual report 1978. [Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    In the 1978 annual reports of the Deutscher Verein des Gas- und Wasserfaches (DVGW), the Bundesverband der deutschen Gas- und Wasserwirtschaft (BGW), and the Technische Vereinigung der Firmen im Gas- und Wasserfach e.V. (FIGAWA), the activities of organisations and Laender groups are dealt with, as well as tasks, work, and sales promotion measures.

  20. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  1. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  2. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  3. Conceptos Basicos Sobre el Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    El gas natural abastece cerca de 150.000 vehiculos en los Estados Unidos y aproximadamente 22 millones de vehiculos en todo el mundo. Los vehiculos de gas natural (NGV, por sus siglas en ingles) son una buena opcion para las flotas de vehiculos de alto kilometraje, tales como autobuses, taxis, vehiculos de recoleccion de basura, los cuales son alimentados centralmente u operan dentro de un area limitada o a lo largo de una ruta con estaciones de servicio de gas natural. Las ventajas del gas natural como combustible alternativo incluyen su disponibilidad interna, la red de distribucion establecida, un costo relativamente bajo, y los beneficios de las emisiones.

  4. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  5. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  6. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  7. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  8. Natural gas vehicles in public transport. A regional empiric investigation on economic, technical and environment-related factors in the use of the technology of natural gas vehicles at taxi companies; Erdgasfahrzeuge im oeffentlichen Personennahverkehr. Eine regionale empirische Untersuchung zu wirtschaftlichen, technischen und umweltbezogenen Faktoren im Einsatz von Erdgasfahrzeugtechnik bei Taxiunternehmen

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Andreas Gerhard

    2009-07-01

    The author of the book under consideration tries to figure out how taxi drivers in the Berlin area assess the introduction of natural gas driven vehicles as a whole and assess how they probably will behave in the future. Hence, the potential of the alternative fuel technology to natural gas driven vehicles are gathered. The results of quantitative studies are discussed in five chapters. The result-related topics are reflected as significant in comparison with subjective assessments and objective scientific research. Supporters regard natural gas driven vehicles in operation as more environmental friendly as opponents. The relevant research results supply a mixed picture on this statement, depending on the number, composition, survey and weighting of individual environmental factors. This does not result in a meaningful overall picture of the arguments that could explain the relevant issues comprehensively.

  9. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  10. North American Natural Gas Markets: Selected technical studies

    International Nuclear Information System (INIS)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  11. North American Natural Gas Markets: Selected technical studies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.G.; Schuler, G.E. [eds.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. North American Natural Gas Markets: Selected technical studies

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.G.; Schuler, G.E. (eds.)

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  13. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  14. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  15. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  16. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  17. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  18. SEAPORT LIQUID NATURAL GAS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports

  19. The natural gas as integration element in Latin America

    International Nuclear Information System (INIS)

    Morales, Maria Elizabeth; Dutra, Luis Eduardo; Rosa, Luiz Pinguelli

    1999-01-01

    The article discusses the following global aspects of natural gas development: natural gas and worldwide energetic integration; natural gas consumption rates in the world; natural gas industry development in Latin America; and natural gas industry in Brazil. The article concludes that the natural gas can integrate Latin-american economies since the Governments adopt coherent energetic politicians articulated to each other

  20. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  1. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  2. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  3. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  4. Natural gas 1994: Issues and trends

    International Nuclear Information System (INIS)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A)

  5. Natural gas 1994: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  6. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  7. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  8. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  9. Natural gas situation between 1970 and 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H; Trillhose, A

    1986-03-01

    Trends in production, consumption, reserves, international trade, and transport of natural gas are described and illustrated by tables. Natural gas today contributes about 20% to the total primary energy supply worldwide. The construction of two new pipelines is being planned, from Jamburg and Jakutsk to Japan via Sachalin.

  10. Natural gas foothold in world energy market

    International Nuclear Information System (INIS)

    D'Ermo, V.; Forli, C.

    1991-01-01

    In this article, the expansion of natural gas from the '50s to the early '80s is analyzed. Following its positive success in industrial, residential and thermoelectric uses, natural gas still has new market spaces to win both in conventional and technical and process innovation-oriented industries

  11. Wingas in natural gas supply in Belgium

    International Nuclear Information System (INIS)

    2003-01-01

    Recently Wingas has become active in the transport and supply of natural gas in Belgium and succeeded in entering contracts for the supply of natural gas which cover 6% of the Belgian market. Wingas is a German-Russian joint venture between BASF-daughter Wintershall and OAO Gasprom [nl

  12. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  13. Natural gas annual 1994: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  14. Deregulation of natural gas in Georgia

    International Nuclear Information System (INIS)

    Wise, S.

    2002-01-01

    The Natural Gas Competition and Deregulation Act of 1997 in Georgia is discussed. New legislation passed the Natural Gas Consumer Relief Act in 2002 legislative session to provide additional protection and increase competition. This Act and its impacts are discussed in detail. Additional commission responsibilities are summarized. (R.P.)

  15. Natural gas annual 1994: Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994

  16. Liberalising the European natural gas market

    International Nuclear Information System (INIS)

    Mulder, M.

    2002-01-01

    Europe's natural gas market is changing radically. The several national markets dominated by monopolistic suppliers are integrating into one European market in which production and trade are subject to competition, while transport through the networks will be unbundled and placed under regulatory influence. What will be the consequences of these changes on natural gas prices, supply security and the environment?

  17. Natural gas-driven driving on the way up

    International Nuclear Information System (INIS)

    Van Nifterik, G.

    1996-01-01

    The position of natural gas vehicles (NGV) is improving. Although there are no real breakthroughs yet, recently there have been some promising developments, in particular with regard to light-duty vehicles. More important, however, is the growing awareness of the automobile industry of the use of natural gas as an automotive fuel to improve the urban air quality. Apart from the production of dedicated NGV there is room for improvement in the field of conversion, and the major technological and financial obstacles

  18. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  19. Natural gas supply and demand in Italy

    International Nuclear Information System (INIS)

    Comaschi, C.; Di Giulio, E.; Sormani, E.

    2007-01-01

    This article explores the dynamics between natural gas supply and demand in Italy. In order to supply Italy with increasing volumes of gas, several new pipelines and re gasification plants are expected in the next future, but their implementation is uncertain. Thus, there exist the possibility of natural gas shortage in the future. On the other hand, if all the expected projects will be implemented, situations of oversupply cannot be excluded. A system dynamics model deepens such as issue [it

  20. Natural gas developments in Latin America

    International Nuclear Information System (INIS)

    Faith, P.L.

    1996-01-01

    Natural gas opportunities in Latin America are discussed with reference to the Bolivia to Brazil Gas Pipeline Project. This fully integrated natural gas project extends from reserves development to market consumption and involves cooperation between countries and between the public and private sector. The project's success will depend, it is argued on the thorough integration and cooperation of all stages from reserve exploration, through pipeline construction, and distribution to power generation. (UK)

  1. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  2. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  3. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  4. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  5. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  6. Fiscal 1994 entrusted task report. Surveys of advanced natural gas development and efficient utilization (Survey of coal hydrogasification technology development); 1994 nendo tennen gas kodo kaihatsu yuko riyo chosa tou itaku gyomu hokokusho. Sekitan suiten gaska gijutsu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    For the establishment of a practical process for substitute natural gas (SNG) production, technological and economical assessments were made, and tasks to discharge for the development were discussed. In this fiscal year, the results of surveys conducted in the past five-year period were compiled, and studies were made to prepare for a smooth transition to the element research stage. Findings obtained are described below. SNG producing technologies need to be developed, with the demand for SNG increasing sharply, to further stabilize the base for SNG supply; coal which is abundantly available should be used as the material for SNG; and coal hydrogasification, among various methods for producing SNG from coal, is the most suitable in view of efficiency and cost performance. It was also found after a prolonged study for the improvement of efficiency and cost performance that probabilities were high that the yield of BTX (benzene, toluene, xylene) would increase and cost performance would improve. Besides, a basic plan and an element technology research plan were prepared for the development of the ARCH (advanced rapid coal hydrogasification) process. (NEDO)

  7. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...

  8. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  9. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  10. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  11. Advanced Natural Gas Reciprocating Engines(s)

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James [Dresser, Inc., Addison, TX (United States)

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  12. South American natural gas trade: the road ahead

    International Nuclear Information System (INIS)

    Reinsch, A.E.; Tissot, R.; Peacey, D.

    1997-01-01

    The current state and future prospects for the natural gas sector in South America were examined, including the ability of the natural gas resource base to meet potential gas demand in the Southern Cone region (Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay). The physical, legal, fiscal, regulatory and political developments in the hydrocarbon-producing countries in the Southern Cone region were reviewed. For example, in Colombia, the domestic gas market potential and resource base argue in favor of a closed domestic gas sector development policy. In contrast, Venezuela, a country that already has a well developed domestic gas sector, is pursuing offshore market development through both petrochemical and liquefied natural gas initiatives. Following a comprehensive description of individual gas resources, markets and market potential, and legal, institutional and political environments, the study reports on a number of alternative scenarios concerning natural gas integration in the Southern Cone region, developed by using the South America Natural Gas (SANG) model. The following scenarios were reviewed: (1) closure and confinement, (2) integration and expansion, and (3) gains from technology. It was estimated that potential gas demand in the Southern Cone region is projected to grow from 900 billion cubic feet per year in 1994 to over 5.3 trillion cubic feet in 2021. The majority of growth is expected in Brazil. The overall conclusion of the study was that regardless of the scenario, Southern Core gas sector integration has strong economic and commercial merit, and that the natural gas resource base in the Southern Cone, as represented by the gas reserves database, is more than adequate to service potential demand. 100 refs., 50 tabs., 54 figs

  13. 'Natural Gas lift', a New Tool for Nigeria

    International Nuclear Information System (INIS)

    Lucas, C. D.

    2003-01-01

    Gas lift is the most common means of artificial lift in the Niger Delta and has been widely applied worldwide. The advent of remote monitoring and control devises (RMC) has added a new option in artificiallift, 'natural gas lift'. 'Natural gas lift' is an extension RMC in which a gas zone and one or more oil zones are produced through the same tubing string, using the gas enhance the production of the oil zones. The flow of gas is maintained in the optimal range using down hole chokes that are controlled from the surface. The gas flow rate is monitored using downhole pressure and .temperature gauges. The use of 'natural gas lift' has the advantages of gas lift but without the cost associated with gas lift; gas supply wells, compression etc. This is especially critical in areas that are remote from other facilities or in subsea completions where access to the wells is limited. Stacked reservoirs and frequent inclusion of both oil and gas reservoirs in the same field, as found in the Niger Delta, makes Nigeria a prime candidate for this technology. An example of this production from the North Sea will be presented along with a potential application using data from the Niger Delta. Design elements of the monitoring and control systems will be covered and the advantages and drawbacks of this application will be discussed

  14. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  15. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  16. Canadian natural gas market: dynamics and pricing

    International Nuclear Information System (INIS)

    2000-01-01

    This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price

  17. Development of a Cummins ISL Natural Gas Engine at 1.4g/bhp-hr NOx + NMHC Using PLUS Technology: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, M. M.

    2005-07-01

    NREL subcontractor report describes Cummins Westport, Inc.'s development of an 8.9 L natural gas engine (320 hp, 1,000 ft-lb peak torque) with CARB emissions certification of 1.4 g/bhp-hr NOx + NMHC.

  18. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  19. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  20. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  1. Natural gas in Norway - Possibilities and limitations

    International Nuclear Information System (INIS)

    Bjoerstad, H.; Eldegard, T.; Reve, T.; Sunnevaag, K.; Aarrestad, J.

    1995-06-01

    Norway is rich in gas resources. In recent years, gas sales from the Norwegian continental shelf have been in the order of 25 to 30 billion Sm 3 /yr and are expected to increase strongly the next 10 to 15 years. However, a scattered population, a difficult topography, long distances between large potential consumers and where the gas is brought ashore, make it difficult to utilize the gas commercially in this country. Moreover, the gas will have to compete with a highly developed hydro-electric network. This report evaluates possibilities and hindrances in the establishment of a home market for natural gas in Norway. The low population density implies that using gas for preheating of water, heating of rooms etc will not become important except, perhaps, locally, where gas may be available for other reasons. As a source of energy and raw material in many industrial processes, natural gas can become important in some coastal areas and in central parts of eastern Norway. Discussions are in progress on gas power stations for electricity production. This has aroused some controversy because of environmental problems, and for political acceptance gas power will have to replace coal power. As a fuel, gas may be of interest for domestic ferries and for busses. A lack of capital under financial risk and gas prices limit the market development. Although tax policy is presently favourable to gas power, the risk taken by private investors in converting to natural gas is increased by their not knowing for how long the gas will be exempt from environmental tax. 74 refs., 8 figs., 27 tabs

  2. Consortium for Petroleum & Natural Gas Stripper Wells

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel [Pennsylvania State Univ., University Park, PA (United States)

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  3. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  4. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  5. Development of natural gas vehicles in China

    Energy Technology Data Exchange (ETDEWEB)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  6. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  7. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  8. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  9. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  10. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  11. North American Natural Gas Markets. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  12. The dynamic linkages between crude oil and natural gas markets

    International Nuclear Information System (INIS)

    Batten, Jonathan A.; Ciner, Cetin; Lucey, Brian M.

    2017-01-01

    The time varying price spillovers between natural gas and crude oil markets for the period 1994 to 2014 are investigated. Contrary to earlier research, we show that in a large part of our sample the natural gas price leads the price of crude oil with price spillover effects lasting up to two weeks. This result is robust to a battery of tests including out-of-sample forecasting exercises. However, after 2006, we detect little price dependencies between these two energy commodities. These findings arise due to a conjunction of both demand and supply-side shocks arising from both natural and economic events, including Hurricane Katrina, the Tohoku earthquake and the Global Financial Crisis, as well as infrastructure and technological improvements. The increased use of new technologies such as hydraulic fracking for the extraction of gas and oil in particular affected supply in the latter part of the study. We conclude that the long term relation present in the early part of the sample has decoupled, such that price determination of these two energy sources is now independent. - Highlights: • Contrary to earlier research we find natural gas may lead crude oil prices over a long sample. • This finding holds in forecasting out of sample. • There may be a break in the relationship between oil and gas in 2006. • We suggest that new technologies and financial conditions have led to a decoupling of these markets. • Oil and natural gas prices may now be determined independently.

  13. Natural gas production verification tests

    International Nuclear Information System (INIS)

    1992-02-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO 2 )/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO 2 /sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  14. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  15. Natural gas commoditization - evolution and trends

    International Nuclear Information System (INIS)

    Albon, D.R.

    1998-01-01

    This presentation dealt with issues of deregulation in the natural gas industry. The commoditization process, the effect of deregulation as reflected by changes in the percentage distribution of market participation by profession in NYMEX in 1994 and for the first quarter of 1998, the natural gas supply and demand from 1990 to 1996, and natural gas market activities (i.e. swaps, EFPs, spreads, transportation look-alikes, triggers) were reviewed. An Alberta supply and demand forecast for the winter heating season of 1998-1999 and its impact on prices was also provided. tabs., figs

  16. The geopolitics of natural gas in Asia

    International Nuclear Information System (INIS)

    Bahgat, G.

    2001-01-01

    Over the last few years, natural gas has been the fastest-growing component of primary world energy consumption. This study seeks to examine the recent efforts by the Islamic Republic of Iran, Qatar, the United Arab Emirates and Saudi Arabia to develop their natural gas resources and capture a large share of the Asian market, particularly in Turkey, India, China, Japan and South Korea. Counter-efforts by rivals, such as the Russian Federation and the Caspian Basin states, are analysed. Finally, international ventures to transport natural gas from producers to consumers, including the Dolphin Project, the Trans-Caspian Pipeline and Blue Stream, are discussed. (author)

  17. North American natural gas supply and demand

    International Nuclear Information System (INIS)

    Goobie, G.

    2006-01-01

    This presentation was given by leading energy analysts Pervin and Gertz, and provided their outlook on the North American natural gas supply and demand as well as transportation and processing options for the Mackenzie Valley project and the Alaska natural gas project. Arctic gas development was discussed in relation to larger North American and world energy markets. The impacts of liquefied natural gas (LNG) infrastructure development were compared with the potential impacts of the Alaska and Mackenzie Valley pipelines. A review of North American gas supplies was presented. LNG imports to the United States are expected to exceed 8 BCF/D by 2010. In addition, huge growth in the LNG markets is expected in middle eastern countries as well as in Africa. There is currently strong growth in liquefaction capacity in most regions. However, many proposed LNG terminals will not proceed due to opposition on the west coast of North America. It is also expected that natural gas liquids (NGL) delivered to Alberta from the Mackenzie Valley Gas project are expected to be used by the heavy oil industry. Canadian crude supplies are expected to grow to nearly 4 million barrels per day by 2015. The impacts of Alaska and Mackenzie Valley gas projects on western NGL markets and the petrochemicals industry were reviewed. It was concluded that major investments in supply and infrastructure are need in order to develop Arctic gas, as LNG is likely to be the largest source of incremental supply. tabs., figs

  18. A natural adsorbent for natural gas industry; Um adsorvente nacional para a industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cachina, G.H.A.B.; Silveira, V.R.; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Balthar, A.R.; Oliveira, V.M.; Bayer, M.M. [CTGAS - Centro de Tecnologias do Gas, Natal, RN (Brazil); Barbosa, C.M.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    One the natural pollutants in the natural gas considered critical in reference to the corrosion is the H{sub 2}S. Its presence depends on the origin, as well as the own process used in the gas treatment, it can bring problems to the pipes and the final applications of natural gas (NG). The National Petroleum Agency (ANP) in its entrance number 104/02, establishes that the quantity of H{sub 2}S in NG, of national or imported origin, commercialized at the country can only be at the most 10 - 15 mg/m{sup 3}. In the Natural Gas Processing Unit (UPGN) different methods are used for the removal of H{sub 2}S, the absorption process (e.g. with aminas, Sulfinol{sup R} process) or for adsorption in tower filled with activated coal, zeolites and Sulfatreat{sup R}. In this work, the adsorbent material used is the mineral clay Paligorsquita. That class of clay minerals characterized by pores and a crystalline structure containing Tetrahedral layers linked by chains of longitudinal secondary lines. The typical unitary cell is formed basically by moisturized oxides of aluminum, Sicilian and magnesium of (Mg, Al)5SiO2O(OH)2(H20)4.4H20, with Mg specially located in octahedral sites. (author)

  19. The logic of natural gas penetration in Europe

    International Nuclear Information System (INIS)

    Bernardet, C.

    1992-01-01

    This paper is trying first to bring out some characteristic lines from the thirty years period of natural gas market growth in Europe: triggering role of domestic gas resources, relay by imports, background from an existing manufactured gas industry. The different roles of bulk usages and scattered ones are underlined. Through an example it is showed that market conditions are relying on a rapid shift of the gas prices competitiveness and on the historical opportunity of space heating growth. In a second part, this paper analyses in each great sector of consumption that could sustain the growth to come of natural gas in Europe. This development relies on marketing forces and on the disposal of new usages for gas and new services for customers, with the benefit from technological headway. 8 figs

  20. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  1. Northeast natural gas market outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    2001-01-01

    This power point presentation included several charts and graphs depicting the major pipeline projects, including the Alliance Pipeline, to move gas from the U.S. midwest (14.5 Bcfd) to the northeast (11.6 Bcfd). Alliance is expected to add 1.6 Bcfd of capacity and supplies could ultimately expand to 4 Bcfd. The addition of the Vector Pipeline could create excess capacity to eastern Canada. The major cause for increased power demand is power generation. For example, proposed gas combined cycle plants in Ontario equal 3.2 GW about 720 MMcfd at 90 per cent capacity, while environmental regulations have put 9.4 GW of coal at risk in Michigan. It was noted that U.S. northeast market growth is not likely to absorb all the proposed pipeline capacity, but potential capacity additions to the New England market are very significant compared to the market size. tabs., figs

  2. The new East Coast natural gas market

    International Nuclear Information System (INIS)

    MacLean, I.; Cowan, N.

    1998-01-01

    Market demand for natural gas in Canada's Maritime provinces was discussed. The Atlantic market represents the largest potential region, currently without access to natural gas in Canada or the United States. Maritimes and Northeast Pipelines and the Sable Offshore Energy partners have made great efforts to introduce and market natural gas as well as to provide pipeline transportation services in the Maritimes and New England markets. Maritimes and Northeast Pipelines is a partnership project with Westcoast Energy, Mobil Oil, and Duke Energy. Theirs is the first pipeline project to deliver gas, but it will certainly not be the last gas project in the region. Maritimes and Northeast Pipelines now has 180,000 MMBtu/day of phased-in Canadian load committed to firm service agreements for delivery in the first 24 months of operation. In addition to these firm service agreements, an additional 60,000 MMBtu/day is signed for future lateral extensions to service emerging markets. figs

  3. The future of European natural gas

    International Nuclear Information System (INIS)

    Ausems, D.

    1991-01-01

    Western Europe's natural gas markets abound with opportunities. They also contain major challenges. This paper presents a revealing assessment of both the challenges and the opportunities that arise from those markets. It also explains some of the surprising ways in which the European Commission and Dutch gas industry will influence gas markets throughout the Continent. Gas consumption is well-established and expanding in a small group of European nations. These countries rely on an equally small collection of suppliers, both within and beyond the Community's borders, to provide the required volumes of natural gas. Because supply and demand are likely to grow at significantly different rates, it is suggested what a major market imbalance could materialize before the end of the decade. Averting major gas supply problems beyond the year 2000 will require multi-billion dollar commitments by producers and will necessitate long-term take-or-pay contacts backed by strong and financially healthy buyers

  4. FSU's natural gas liquids business needs investment

    International Nuclear Information System (INIS)

    Plotnikov, V.S.; Berman, M.; Angerinos, G.F.

    1995-01-01

    Production of natural gas liquids has fallen seriously behind its potential in the former Soviet Union (FSU). Restoration of the gas liquids business thus represents a rich investment opportunity. Capital, however, must come from international sources, which remain uncertain about the FSU's legal, commercial, and political systems. If these hurdles can be overcome, FSU output of liquid petroleum gas alone might double between 1990 and 2010. In the FSU, LPG is produced from associated and nonassociated natural gas, condensate, and refinery streams. It also comes from what is known in the FSU as ShFLU--a mixture of propane, butane, pentane, and hexane produced at gas processing plants in Western Siberia and fractionated elsewhere. The paper reviews FSU production of gas liquids focusing on West Siberia, gives a production outlook, and describes LPG use and business development

  5. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  6. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  7. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Austvik, Ole Gunnar

    2003-01-01

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  8. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  9. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  10. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  11. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  12. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  13. Natural gas 1996 - issues and trends

    International Nuclear Information System (INIS)

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry

  14. More natural gas from Russia, but when?

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The fourth article in a series about changes in the European natural gas market focuses on Russia, a country with gigantic potential reserves (216,000 billion m 3 ) and a production unequalled in the world (780.4 billion m 3 in 1992 in the Russian Federation), but also with enormous economic and technical problems. The question is what role Russia is able to play in the European natural gas supply. Attention is paid to the organizational structure in former Soviet Union regarding the natural gas industry, the environmental effects of exploration and exploitation, the need for foreign capital, and the disappointing progress of the 1991 Energy Charter. On a short term the infrastructure must be improved. Also the conflicts on the price of natural gas transport between the transfer countries Ukraine, Slovenia and Czechoslovakia and the West-European clients must be solved. 1 fig., 7 ills., 2 tabs

  15. Unconventional Oil and Natural Gas Development

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  16. Natural gas encasement for highway crossings.

    Science.gov (United States)

    2015-03-01

    The University Transportation Center for Alabama researchers examined the Alabama Department of : Transportations current policy regarding the encasement of natural gas and hazardous liquid pipelines at roadway : crossings. The group collected inf...

  17. Liquefied natural gas tender crashworthiness research

    Science.gov (United States)

    2015-03-23

    Research is being conducted to develop technical : information needed to formulate effective natural gas fuel : tender crashworthiness standards. This research is being : performed for the Federal Railroad Administrations (FRAs) : Office of Res...

  18. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  19. Price discovery in European natural gas markets

    International Nuclear Information System (INIS)

    Schultz, Emma; Swieringa, John

    2013-01-01

    We provide the first high-frequency investigation of price discovery within the physical and financial layers of Europe's natural gas markets. Testing not only looks at short-term return dynamics, but also considers each security's contribution to price equilibrium in the longer-term. Results show that UK natural gas futures traded on the Intercontinental Exchange display greater price discovery than physical trading at various hubs throughout Europe. - Highlights: • We use intraday data to gauge price discovery in European natural gas markets. • We explore short and long-term dynamics in physical and financial market layers. • Results show ICE's UK natural gas futures are the main venue for price discovery

  20. Natural gas 1996 - issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  1. The future of the US natural gas market

    International Nuclear Information System (INIS)

    Linden, H.R.

    1993-01-01

    The United States gas industry is entering a period when it will have an excellent opportunity to recapture the 30 percent share of the primary energy market it enjoyed in 1973. In spite of unresolved problems stemming from its drastic restructuring during the Reagan and Bush administrations, most aspects of today's political and regulatory climate favor a substantial expansion of natural gas use in the economy. Combined with the now nearly universal recognition that Lower-48 natural gas resources and North American resources as a whole are abundant and recoverable at relatively low cost, this has created unusually high levels of preference for natural gas as a primary energy source. The favorable outlook for the US gas industry at the start of 1993 is the result of an extremely positive political, regulatory, and business climate for expanded use of natural gas, supported by a Lower-48 resource base capable of meeting expected levels of demand at competitive costs for at least 25 years. This assumes continued advances in the whole spectrum of technologies from exploration and production to end use that halted and partially reversed the sharp 1973 to 1986 decline of gas share of the US energy market. In addition to the uncertainties that cloud this assumption, as the gas industry's commitment to aggressive support of R ampersand D seems to be faltering, there are other problems that need to be resolved to ensure the full realization of the potential of gas as the bridge fuel to a sustainable energy system

  2. Competition in trade with natural gas

    International Nuclear Information System (INIS)

    1999-01-01

    On 22 June 1998, the European Parliament and the Council of Europe adopted Directive 98/30/EC on common rules for the internal market for natural gas. The Natural Gas Market Directive is aimed at increasing the competition on the gas market and creating an internal market for natural gas. To achieve this, the Directive includes provisions for ensuring that owners of transmission and distribution networks will allow other players access to these networks. The Directive is much more far-reaching and comprehensive than the present Swedish legislation in the field of natural gas. The main task of the committee is to submit a proposal for natural gas legislation that will meet the requirements of the new Directive. According to the committee directives, the work on the new legislation should aim at the regulations serving as a basis for a socio economically efficient market. However, it should also be borne in mind that the Swedish natural gas market is less developed than the markets in most other European countries, and that a lack of equilibrium in the opening of the gas markets should be avoided. Current international deliberations concerning the natural gas network in the Nordic countries and the Baltic Sea region should also be taken into account. Chapter 1 gives more detailed particulars of the points of departure for the work of the committee and the implementation of the work. The report is arranged in the form three main parts, i.e. a background part, a part describing the points of departure, and a proposals part

  3. Natural gas, energy with a future

    International Nuclear Information System (INIS)

    Dauger, Jean-Marie

    2010-01-01

    Similar to the trend observed over the last thirty years, the production of electricity will likely account for much of the growth in natural gas consumption worldwide, regardless of the region. However transportation, storage and distribution make up, on the average, 70% of the total costs of producing gas

  4. The - compromised? - future of natural gas

    International Nuclear Information System (INIS)

    Rodriguez, Ph.

    2009-01-01

    Will natural gas be the main loser of the January 2009 crisis between Ukraine and Russia? The demonstration is made that the European Union is not free from the risk of a severe supply disruption. This is a bad news considering that the power generation is the growth vector of natural gas. Even if the gas black-out cannot exist, the power black-out still can happen. As soon as the Russian-Ukrainian conflict has occurred, the other energy sources (nuclear and renewable) have been called for help in Europe while coal is in the expectation. Since some time now, gas has to face several trend changes. First, uncertainty is increasing considering its growth prospects. The new version of the gas pluri-annual indicative plan (PIP Gaz) would foresee a stagnation of gas consumption up to 2020 (consequence of the French environmental policy), while the previous plan had foreseen a 2.1% annual growth rate between 2005 and 2015. Second, the direct indexing of gas prices on oil prices can have undesirable effects. Finally, the u-turn of the USA with respect to liquefied natural gas (LNG) may penalize its development. What answers should the European Union give in front of these uncertainties? Have the companies modified their strategy? Is the future of gas still fine? These are the questions debated during a round table organized by the BIP, the French Bulletin of Petroleum Industry. (J.S.)

  5. Marketing of natural gas in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.); Knapp, U [Westfaelische Ferngas-A.G., Dortmund (Germany, F.R.)

    1979-08-01

    The exchange of experience with experts engaged in the US gas supply industry has shown that natural gas can be supplied there at a much lower price than in West Germany and that for this reason the price is not the main incentive to save energy. The low prices, which apply also to other forms of energy although not to the same extent, are a consequence of the energy policy pursued by the US government. The representatives of the gas supply industry are not in favour of this policy and attenpts have been made for some considerable time to effect a change in policy. As long as these attempts are not attended with success, the US gas supply industry is trying to achieve its aim by pointing out that natural gas is a national resource and that additional supplies will become available provided that present users adopt energy saving measures. The gas supply industry cooperates closely with the appliance manufacturers and retailers. Joint efforts have been made to help users reduce their energy bills by employing appliances that require less gas and by acquainting them with methods devised for making proper use of energy. The gas supply industry is further strongly interested in coal as a source of energy for largely substituting SNG for natural Gas.

  6. The eligibility of the natural gas consumers

    International Nuclear Information System (INIS)

    2004-07-01

    The eligible consumers are allowed to chose freely their natural gas producers and negotiate the prices and the supply modalities. In this context this information paper presents the legislative and regulation framework of the natural gas consumers eligibility, a definition of the possible eligible consumers and a list at the 30 january 2004. It provides also recommendations and answers to the more often asked questions on the administrative procedures and the contracts. (A.L.B.)

  7. Conveyance of natural gas. Organization and regulation

    International Nuclear Information System (INIS)

    1995-01-01

    This International Energy Agency (IEA) study deals with the conveyance of natural gas. The socio-economic factors are given as well as the different organization and regulations modes of natural gas conveyance and storage in the IEA countries and in central and eastern Europe. The main questions forming the subject of discussions in the IEA countries are analyzed too. (O.L.). 50 refs., 55 figs., 16 tabs

  8. Natural Gas Extraction, Earthquakes and House Prices

    OpenAIRE

    Hans R.A. Koster; Jos N. van Ommeren

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced earthquakes that may occur only after a couple of decades. We show that induced earthquakes that are noticeable to residents generate substantial non-monetary economic effects, as measured by their effects o...

  9. Price Comovement Between Biodiesel and Natural Gas

    OpenAIRE

    Janda, Karel; Kourilek, Jakub

    2016-01-01

    We study relationship between biodiesel, as a most important biofuel in the EU, relevant feedstock commodities and fossil fuels. Our main interest is to capture relationship between biodiesel and natural gas. They are both used either directly as a fuel or indirectly in form of additives in transport. Therefore, our purpose is to �nd price linkage between biofuel and natural gas to support or reject the claim that they compete as alternative fuels and potential substitutes. The estimated p...

  10. Research into the transmission of natural gas by gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gadonneix, P.

    1998-12-31

    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  11. Gas To Liquids Technology: A Futuristic View

    Energy Technology Data Exchange (ETDEWEB)

    El Shamy, A A [Egyptian General Petroleum Corporation, Opr. Development Depart., P.O No. 11742, Cairo (Egypt); Zayed, A M [Egyptian General Petroleum Corporation, Quality Control Department, P.O No. 11742, Cairo (Egypt)

    2004-07-01

    Worldwide efforts aimed to the formulation of environment friendly diesel fuels able to meet the advanced fuel specifications of the 21 st century and able to meet the global demand on diesel fuels. Synthetically derived gas to-liquid (GTL) diesel fuel promises to meet these challenges and spearhead the way to the future. This technology will produce almost zero sulfur, high cetane, low aromatic diesel and naphtha which will be sold regionally and internationally. GTL fuel is cleaner than any conventional fuel which will help the environment. It can be used in conventional diesel engines to give reductions in emission levels. Construction of such technology will reduce the gap between production and consumption by maximizing the gross profitability of natural gas.

  12. Gas To Liquids Technology: A Futuristic View

    International Nuclear Information System (INIS)

    El Shamy, A.A; Zayed, A.M

    2004-01-01

    Worldwide efforts aimed to the formulation of environment friendly diesel fuels able to meet the advanced fuel specifications of the 21 st century and able to meet the global demand on diesel fuels. Synthetically derived gas to-liquid (GTL) diesel fuel promises to meet these challenges and spearhead the way to the future. This technology will produce almost zero sulfur, high cetane, low aromatic diesel and naphtha which will be sold regionally and internationally. GTL fuel is cleaner than any conventional fuel which will help the environment. It can be used in conventional diesel engines to give reductions in emission levels. Construction of such technology will reduce the gap between production and consumption by maximizing the gross profitability of natural gas

  13. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    1994-02-01

    Lacking a detailed characterization of the resource base and a comprehensive borehole-to-burnertip evaluation model of the North American natural gas system, past R ampersand D, tax and regulatory policies have been formulated without a full understanding of their likely direct and indirect impacts on future gas supply and demand. The recent disappearance of the deliverability surplus, pipeline deregulation, and current policy debates about regulatory initiatives in taxation, environmental compliance and leasing make the need for a comprehensive gas evaluation system critical. Traditional econometric or highly aggregated energy models are increasingly regarded as unable to incorporate available geologic detail and explicit technology performance and costing algorithms necessary to evaluate resource-technology-economic interactions in a market context. The objective of this research is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the natural gas system, including resource base, exploration and development, extraction technology performance and costs, transportation and storage and end use. The primary focus is the detailed characterization of the resource base at the reservoir and sub-reservoir level and the impact of alternative extraction technologies on well productivity and economics. GSAM evaluates the complex interactions of current and alternative future technology and policy initiatives in the context of the evolving gas markets. Scheduled for completion in 1995, a prototype is planned for early 1994. ICF Resources reviewed relevant natural gas upstream, downstream and market models to identify appropriate analytic capabilities to incorporate into GSAM. We have reviewed extraction technologies to better characterize performance and costs in terms of GSAM parameters

  14. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  15. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  16. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  17. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  18. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  19. The Pacific Rim and global natural gas

    International Nuclear Information System (INIS)

    Dreyfus, D.A.

    1993-01-01

    There is a growing interest in natural gas as a part of national or international strategies to moderate the environmental consequences of fuel use. Although the underutilized global gas resource justifies the interest, the future consumption of gas is likely to be constrained by the high capital costs of new transportation facilities to bring remote gas supplies into areas of growing energy demand. The Asian Pacific Rim countries include rapidly growing demand areas as well as significant reserves of gas. The region will continue to play a leading role in the evolution of a world trade in gas. Gas resources within the Asian Pacific region are adequate to serve the foreseeable demands, but historically the region has utilized liquefied natural gas (LNG) imports. Financial constraints upon the gas producing countries of the region and political instability in some of them will probably continue to require the importing of sustantial quantities of gas from the Middle East and possibly from Alaska and the former USSR as the resources indigenous to the region itself are developed more slowly than demand. The financial arrangements and contractual approaches that evolve to meet the needs of the Asia Pacific Rim will shape the future of world LNG markets. (Author)

  20. Natural gas heating. The energy saving concept. Topical tasks of consumer guidance

    Energy Technology Data Exchange (ETDEWEB)

    Windfeder, H

    1978-01-01

    Brief comments on natural gas, the technology of using natural gas for heating purposes, consumer psychology, and on energy policies are presented. It is concluded that the more natural gas heating is installed, the more primary energy can be saved. Some fundamental thoughts on consumer guidance are given for discussion.

  1. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  2. Logistical management system for natural gas distribution; Sistema de gestao logistica para a distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Joao Bosco F; Nobre, Junior, Ernesto F; Praca, Eduardo R [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transportes e Desenvolvimento

    2004-07-01

    The Brazilian Federal Government has the very purpose of increasing the participation of the Natural Gas in the primary energy internal supply from 7,5% nowadays to about 12% till 2010. However, for that, it is necessary to eliminate the great impedance represented by the restricted accessibility to the product, due to the high distribution costs involved. So, there is an urgent need for availability of technologies to help natural gas distribution systems. This paper proposes an innovative logistics-based approach on the subject of the natural gas distribution, through a computational tool (GASLOG System) to be applied in the North and Northeastern urban and country areas of Brazil, with initial case study in the city of Fortaleza. In its conception, the GASLOG System focuses on the point-of-view of everyone of the actors involved with the natural gas distribution process trying to respond their particular necessities in the sector. (author)

  3. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  4. 1991 worldwide natural gas industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides information for the natural gas industry, just as other PennWell directories have for the petroleum industry. Comprehensive in scope, each company listing includes address, phone, fax telex and cable numbers, key personnel, subsidiaries, branches and brief descriptions. The directory is organized in major areas of operation and includes sections on: Distribution, Drilling/Exploration/Production, Gas Utilities, Gathering/Transmission, Industry Associations/Organizations, LNG, LPG, Marketing, Processing, Regulatory Agencies, and Service, Supply and Manufacturers. An invaluable reference source for the natural gas professional

  5. The natural gas industry and interest rates

    International Nuclear Information System (INIS)

    Yoon, Y.J.

    1995-01-01

    In discussing the impact of Federal Energy Regulatory Commission (FERC) Order 636, the latest rule on the restructuring and deregulation of the US natural gas industry, the effect of interest rates on the success of the FERC policy is often overlooked. The thesis of this paper is that interest rates play an important role in integrating seasonal gas markets and in stimulating investment in storage infrastructure. We propose a model to analyse the equilibrium condition for an efficient gas market. Also analysed are the implications of pipeline rate design of FERC 636 for gas despatch decisions. (author)

  6. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  7. Natural gas: reserves keep ahead of production

    Energy Technology Data Exchange (ETDEWEB)

    Hough, G V

    1983-08-01

    World production of natural gas in 1982 fell only 1.6% below 1981 levels, while proven recoverable reserves were up by 3.6% for a total of 3.279 quadrillion CF, which is 32.4% higher than had been estimated in 1978. Gas consumption, however, has experienced greater changes, with most of the industrialized countries (except for Japan) reporting declines in gas demand resulting from falling oil prices, reduced energy demand, and a slack world economy. Although gas seems to be holding its own in energy markets, further progress will not be easy to achieve.

  8. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  9. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Science.gov (United States)

    2010-08-31

    .... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372

  10. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  11. Progress in industrial utilization of natural gas

    International Nuclear Information System (INIS)

    Boschetto, F.

    1991-01-01

    For many years, due to its intrinsic qualities, flexibility, cleanness, etc., natural gas has been one of the major energy sources used in industry. This paper examines gas appliances of a new conception which use ceramic products in order to reach temperatures of about 1400 degrees C: jet gas burners, counter-rotation burners, integrated preheating burners, high speed burners, double recuperation burners and regenerative ones. Furthermore, the paper deals with these burners applied to industrial furnaces, radiant panels, liquid heating systems and to thermal treatment and crucible furnaces. Particular reference to made to the steam pump, which permits reaching the highest efficiency, and to the gas combustion regulator. With the increased marketing of these new appliances, natural gas ill certainly consolidate its leading position in the industrial and energy fields

  12. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  13. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  14. Natural gas pricing policies in Southeast Asia

    International Nuclear Information System (INIS)

    Pacudan, R.B.

    1998-01-01

    The very dynamic economies of Southeast Asia have recently been experiencing a rapid increase in energy demand. Parallel to this development, there has been an increase in the utilization of indigenous natural gas resources. This article reviews gas-pricing policies in the region, which partly explain the rise in gas utilization. Although diverse, energy pricing policies in Southeast Asia address the common objective of enhancing domestic gas production and utilization. The article concludes that a more rational gas-pricing policy framework is emerging in the region. In global terms, gas pricing in the region tends to converge in a market-related framework, despite the many different pricing objectives of individual countries, and the predominance of non-economic pricing objectives in certain countries (especially gas-rich nations). Specifically, governments have been flexible enough to follow global trends and initiate changes in contractual agreements (pricing and profit-sharing), giving oil companies more favourable terms, and encouraging continued private investment in gas development. At the same time, promotional pricing has also been used to increase utilization of gas, through set prices and adjusted taxes achieving a lower price level compared to substitute fuels. For an efficient gas-pricing mechanism, refinements in the pricing framework should be undertaken, as demand for gas approaches existing and/or forecast production capacities. (author)

  15. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012 AGENCY: Office of... LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P 12-03-NG WPX... granting authority to import and export natural gas and liquefied natural gas. These Orders are summarized...

  16. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY... International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12-41-NG Sequent... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  17. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... and Export Natural Gas and Liquefied Natural Gas During February 2012 FE Docket Nos. FREEPORT LNG...-LNG QUICKSILVER RESOURCES INC 12-12-NG UNITED ENERGY TRADING CANADA, ULC 12-13-NG ENCANA NATURAL GAS... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  18. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE... granting authority to import and export natural gas and liquefied natural gas and vacating prior [[Page...

  19. Canadian natural gas : market review and outlook

    International Nuclear Information System (INIS)

    2001-01-01

    This annual working paper provides summaries of trends within the North American natural gas industry and also reviews Canadian gas exports. It is designed to promote dialogue between industry and the government and to obtain feedback on natural gas issues. The main section of the report consists of graphs, with limited text comments on the side. It provides a structured look at supply and demand for the year 2000 as well as for the near term (2001) and long-term (2010). The sources of information included private consultants, industry associations and federal agencies in Canada and the United States. It was shown that gas demand had grown steadily in North America since 1997, at about 2.5 per cent annually, and then fell 3.4 per cent in 1998 and remained low in 1999, below 1997 demand. This was due mainly to mild winters. In 2000, the demand for natural gas increased again to 5 per cent as a result of a colder winter and increased gas use for power generation. The report also stated that the combination of various factors including low storage balances due to previously low drilling years and high oil prices, were responsible for natural gas price increases in 2000. The tight supply/demand balance was exacerbated by restraints in pipeline capacity. Producers and pipeline groups are now looking seriously at developing the large gas deposits in Alaska and the Mackenzie Delta which were previously considered to be uneconomic. It was noted that in the near term, storage must be rebuilt to normal levels. Storage balances will be a good indicator of the relative strengths of gas production and demand growth. It was forecasted that Canada to U.S. gas exports should continue to increase in 2001 as a large new export pipeline was completed in 2000, but there is considerable uncertainty for the medium to longer-term. refs., tabs., figs

  20. Feeling the pressure from natural gas

    International Nuclear Information System (INIS)

    Taffe, Peter

    1998-01-01

    The European directive establishing a competitive internal natural gas market will be the most important, though not the only, factor in advancing the rapid and far reaching changes which Europe's natural gas sector is undergoing. The knock-on effects which these changes will have on the chemical industry are examined. The benefits of opening up the gas market will be more consumer choice and a more efficient and globally competitive EU gas industry. But for the chemical industry it raises strategic issues surrounding gas procurement such as price risks and security of supply. These are especially acute where gas is used not just as a fuel but also as a feedstock. As the electricity market is progressively deregulated, independent power generation using combined heat and power could be an attractive choice in the chemical industry with the possibility of selling surplus electricity on the spot market. Other changes in the gas sector could arise from the environmental targets agreed in Kyoto which are likely to lead to an increase in fuel taxation, and the development of a spot market in gas as the link between oil and gas prices becomes less direct. (UK)