WorldWideScience

Sample records for technology lifecycle analysis

  1. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  2. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  3. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    Science.gov (United States)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  4. Towards a Lifecycle Information Framework and Technology in Manufacturing.

    Science.gov (United States)

    Hedberg, Thomas; Feeney, Allison Barnard; Helu, Moneer; Camelio, Jaime A

    2017-06-01

    Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored.

  5. Product Lifecycle Management Centre of Technology

    CSIR Research Space (South Africa)

    Barnard, Rentia

    2017-10-01

    Full Text Available - Rentia Barnard.pdf.txt Content-Type text/plain; charset=UTF-8 1 Interactive activities Contents Product Lifecycle Management Centre of Technology Rentia Barnard National Industrialisation Support Initiative (NISI) 3 Initiative (NISI...

  6. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  7. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  8. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  9. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 2, Data Analysis-The Methods describes the methods for carrying out data analysis within the systems development life-cycle and demonstrates how the results of fact gathering can be used to produce and verify the analysis deliverables. A number of alternative methods of analysis other than normalization are suggested. Comprised of seven chapters, this book shows the tasks to be carried out in the logical order of progression-preparation, collection, analysis of the existing system (which comprises the tasks of synthesis, verification, an

  10. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  11. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  12. Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase (LIGHTEnUP) – Analysis Tool User’s Guide

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2016-06-22

    The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not select technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.

  13. Cost-effectiveness Analysis for Technology Acquisition.

    Science.gov (United States)

    Chakravarty, A; Naware, S S

    2008-01-01

    In a developing country with limited resources, it is important to utilize the total cost visibility approach over the entire life-cycle of the technology and then analyse alternative options for acquiring technology. The present study analysed cost-effectiveness of an "In-house" magnetic resonance imaging (MRI) scan facility of a large service hospital against outsourcing possibilities. Cost per unit scan was calculated by operating costing method and break-even volume was calculated. Then life-cycle cost analysis was performed to enable total cost visibility of the MRI scan in both "In-house" and "outsourcing of facility" configuration. Finally, cost-effectiveness analysis was performed to identify the more acceptable decision option. Total cost for performing unit MRI scan was found to be Rs 3,875 for scans without contrast and Rs 4,129 with contrast. On life-cycle cost analysis, net present value (NPV) of the "In-house" configuration was found to be Rs-(4,09,06,265) while that of "outsourcing of facility" configuration was Rs-(5,70,23,315). Subsequently, cost-effectiveness analysis across eight Figures of Merit showed the "In-house" facility to be the more acceptable option for the system. Every decision for acquiring high-end technology must be subjected to life-cycle cost analysis.

  14. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  15. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  16. Life-cycle cost analysis for Foreign Research Reactor, Spent Nuclear Fuel disposal

    International Nuclear Information System (INIS)

    Parks, P.B.; Geddes, R.L.; Jackson, W.N.; McDonell, W.R.; Dupont, M.E.; McWhorter, D.L.; Liutkus, A.S.

    1994-01-01

    DOE-EM-37 requested a life-cycle cost analysis for disposal of the Foreign Research Reactor-Spent Nuclear Fuel (FRR-SNF). The analysis was to address life-cycle and unit costs for a range of FRR-SNF elements from those currently available (6,000 elements) to the (then) bounding case (15,000 elements). Five alternative disposition strategies were devised for the FRR-SNF elements. Life-cycle costs were computed for each strategy. In addition, the five strategies were evaluated in terms of six societal and technical goals. This report summarizes the study that was originally documented to DOE-EM

  17. Total life-cycle cost analysis of conventional and alternative fueled vehicles

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1993-01-01

    Total Life-Cycle Cost (TLCC) Analysis can indicate whether paying higher capital costs for advanced technology with low operating and/or environmental costs is advantageous over paying lower capital costs for conventional technology with higher operating and/or environmental costs. While minimizing total life-cycle cost is an important consideration, the consumer often identifies non-cost-related benefits or drawbacks that make more expensive options appear more attractive. The consumer is also likely to heavily weigh initial capital costs while giving limited consideration to operating and/or societal costs, whereas policy-makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. This paper summarizes a TLCC model which was developed to facilitate consideration of the various factors involved in both individual and societal policy decision making. The model was developed as part of a US Department of Energy Contract and has been revised to reflect changes necessary to make the model more realistic. The model considers capital, operating, salvage, and environmental costs for cars, vans, and buses using conventional and alternative fuels. The model has been developed to operate on an IBM or compatible personal computer platform using the commercial spreadsheet program MicroSoft Excell reg-sign Version 4 for Windows reg-sign and can be easily kept current because its modular structure allows straightforward access to embedded data sets for review and update

  18. Infrastructures and Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2012-01-01

    Design and maintenance of infrastructures using Life-Cycle Cost-Benefit analysis is discussed in this paper with special emphasis on users costs. This is for several infrastructures such as bridges, highways etc. of great importance. Repair or/and failure of infrastructures will usually result...

  19. Comparative evaluation by lifecycle and risk assessment of agrobiological and technological routes of production

    NARCIS (Netherlands)

    Moll, H.C.; Schoot Uiterkamp, A.J.M.

    The application of lifecycle and risk assessment methodologies for environmental assessment of agricultural products is growing and produces interesting results. This allows comparisons between agricultural and technological routes of production. An evaluation of such assessments provides increased

  20. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  1. Integrating Life-cycle Assessment into Transport Cost-benefit Analysis

    DEFF Research Database (Denmark)

    Manzo, Stefano; Salling, Kim Bang

    2016-01-01

    Traditional transport Cost-Benefit Analysis (CBA) commonly ignores the indirect environmental impacts of an infrastructure project deriving from the overall life-cycle of the different project components. Such indirect impacts are instead of key importance in order to assess the long......-term sustainability of a transport infrastructure project. In the present study we suggest to overcome this limit by combining a conventional life-cycle assessment approach with standard transport cost-benefit analysis. The suggested methodology is tested upon a case study project related to the construction of a new...... fixed link across the Roskilde fjord in Frederikssund (Denmark). The results are then compared with those from a standard CBA framework. The analysis shows that indirect environmental impacts represent a relevant share of the estimated costs of the project, clearly affecting the final project evaluation...

  2. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  3. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    International Nuclear Information System (INIS)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J.

    2016-01-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume ''CURRENT TECHNOLOGY'' cases (nominally 2015) and a high-volume ''FUTURE TECHNOLOGY'' lower-carbon case (nominally 2025-2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  4. A Review of the Application of Lifecycle Analysis to Renewable Energy Systems

    Science.gov (United States)

    Lund, Chris; Biswas, Wahidul

    2008-01-01

    The lifecycle concept is a "cradle to grave" approach to thinking about products, processes, and services, recognizing that all stages have environmental and economic impacts. Any rigorous and meaningful comparison of energy supply options must be done using a lifecycle analysis approach. It has been applied to an increasing number of conventional…

  5. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle, Book 3: Activity Analysis - The Deliverables provides a comprehensive coverage of the deliverables of activity analysis. The book also details purpose of each deliverable in the context of the next tasks in the systems development cycle (SDC). The text first covers the concept of deliverables and the benefits of making deliverables visible. In the second chapter, the book introduces the main concepts and diagrammatic techniques of activity analysis. The third chapter deals with the important classes or categories of concept, while the fourth

  6. Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives

    International Nuclear Information System (INIS)

    Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

    1995-03-01

    The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal

  7. Analysis of the Lifecycle of Mechanical Engineering Products

    OpenAIRE

    Gubaidulina, Rauza Khamidovna; Gruby, S. V.; Davlatov, G. D.

    2016-01-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing techno...

  8. A review of battery life-cycle analysis : state of knowledge and critical needs.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  9. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  10. Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids

    International Nuclear Information System (INIS)

    Hamilton, Michelle C.; Lambert, James H.; Connelly, Elizabeth B.; Barker, Kash

    2016-01-01

    Innovative technologies are presenting opportunities to improve resilience of energy plans for industrial and military installations. The investment rationale is complicated by uncertain future conditions across the system lifecycle, including technology, climate, economy, and others. This paper introduces resilience analytics with scenario-based preferences as follows. Risk is addressed here as the degree of disruption of priorities for investments in engineering systems. The particular concern of this paper is disruption from shifts in public values, and to evaluate the resilience of investment plans to such shifts. It recognizes resilience models as compilations of instantaneous framings of initiatives, objectives, stakeholder preferences, and uncertainties. Problem frames can be considered in series, where inputs to frames are the outputs of previous frames. Or frames can be considered in parallel, featuring joint inputs while addressing differing questions. This paper presents a case study of resilience analytics focusing on two quantitative frames. In the first frame, scenario-based preferences are used to identify combinations of factors disruptive to energy innovation at installations. In the second frame, estimation of lifecycle costs is performed with respect to factors that were identified as influential in the previous frame. - Highlights: • Develops method for resilience analytics of system plans with deep uncertainties. • Describes economic, regulatory, environmental, technology, and other stressors. • Demonstrates that stressors disrupt the prioritization of microgrid initiatives. • Describes how overlapping model frames emphasize various aspects of the mission. • Presents a two-part demonstration: Initiatives prioritization and lifecycle costs.

  11. Optimal Life-Cycle Investing with Flexible Labor Supply: A Welfare Analysis of Life-Cycle Funds

    OpenAIRE

    Francisco J. Gomes; Laurence J. Kotlikoff; Luis M. Viceira

    2008-01-01

    We investigate optimal consumption, asset accumulation and portfolio decisions in a realistically calibrated life-cycle model with flexible labor supply. Our framework allows for wage rate uncertainly, variable labor supply, social security benefits and portfolio choice over safe bonds and risky equities. Our analysis reinforces prior findings that equities are the preferred asset for young households, with the optimal share of equities generally declining prior to retirement. However, variab...

  12. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  13. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  14. PROCESS OF INNOVATION IN PRODUCT LIFECYCLE MANAGEMENT BUSINESS STRATEGY

    OpenAIRE

    VALENTINA GECEVSKA; FRANC CUS; RADMIL POLENAKOVIC; PAOLO CHABERT

    2011-01-01

    This article proposes a scenario of Product Lifecycle Management (PLM), as a innovative business strategy based on the analysis of business drivers, industry requirements, limit of current solution, and recent state-of-the-art review in the domain related to PLM. Potential industrial impact of the developed PLM technology solutions is analyzed. It is hoped that the proposed PLM technology solutions will form the frontier basis for further research, development, and application of PLM systems ...

  15. Model of the Product Development Lifecycle.

    Energy Technology Data Exchange (ETDEWEB)

    He, Sunny L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roe, Natalie H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wood, Evan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nachtigal, Noel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Helms, Jovana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, and (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.

  16. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    International Nuclear Information System (INIS)

    Brecheisen, Thomas; Theis, Thomas

    2013-01-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. (letter)

  17. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  18. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    International Nuclear Information System (INIS)

    Goering, Markus; Fay, Alexander

    2013-01-01

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis

  19. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Markus [Vattenfall Europe Nuclear Energy GmbH, Hamburg, (Germany); Fay, Alexander [Helmut Schmidt Univ., Hamburg (Germany)

    2013-10-15

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  20. Lifecycle Analysis of Different Motors from the Standpoint of Environmental Impact

    Directory of Open Access Journals (Sweden)

    Orlova S.

    2016-12-01

    Full Text Available Comparative analysis is performed for different motors from the standpoint of damage inflicted by them during their lifecycle. Three types of motors have been considered: the synchronous reluctance motor, the permanent magnet assisted synchronous reluctance motor and the induction motor. The assessment of lifecycle has been made in terms of its four stages: manufacturing, distribution, use and end of life. The results show that the production costs of synchronous reluctance motor are lower compared to that of permanent magnet assisted motors, but due to their low efficiency they exert the greatest environmental impact. The main conclusion is that the assessment made at the early designing stage for the related environmental impact enables its reduction.

  1. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  2. Life-cycle private costs of hybrid electric vehicles in the current Chinese market

    International Nuclear Information System (INIS)

    Lin, Chengtao; Wu, Tian; Ou, Xunmin; Zhang, Qian; Zhang, Xu; Zhang, Xiliang

    2013-01-01

    Understanding the life-cycle private cost (LCPC) of the hybrid electric vehicle (HEV) is important for market feasibility analysis. An HEV LCPC model was established to evaluate HEV market prospects in China compared with traditional internal combustion engine vehicles (ICEV). The Kluger HV, a full-hybrid HEV sports utility vehicle (SUV), aimed at the Chinese market, was simulated as the 2010 model's technology details were well publicized. The LCPC of the Kluger HV was roughly the same (about 1.06 times) as that of its comparable ICEV (Highlander SUV). This aligns with other compact and midsize HEV cars (e.g., Toyota Prius, Honda Civic and Toyota Camry HEV) in China. With oil prices predicted to rise in the long-term, the advantage of HEVs energy saving will partly compensate the high manufacturing costs associated with their additional motor/battery components. Besides supporting technology development, enabling policy should be implemented to introduce HEV technology into taxi fleets and business cars. This technology's cost-competitiveness, compared with traditional ICEVs, is advantageous for these higher mileage vehicles. - Highlights: ► A model is set up to evaluate the life-cycle private cost of HEVs. ► Life-cycle private costs of HEVs are higher than conventional cars in China. ► HEVs become competitive when the oil price rises

  3. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  4. Product lifecycle management

    CERN Document Server

    Stark, John

    2016-01-01

    This third edition updates and adds to the successful second edition and gives the reader a thorough description of PLM, providing them with a full understanding of the theory and the practical skills to implement PLM within their own business environment. This new and expanded edition is fully updated to reflect the many technological and management advances made in PLM since the release of the second edition. Describing the environment in which products are developed, manufactured and supported, before addressing the Five Pillars of PLM: business processes, product data, PLM applications, Organisational Change Management (OCM) and Project Management, this book explains what Product Lifecycle Management is, and why it’s needed. The final part of the book addresses the PLM timeline, showing the typical steps and activities of a PLM project or initiative. “Product Lifecycle Management” will broaden the reader’s understanding of PLM, nurturing the skills needed to implement PLM successfully and to achi...

  5. Economics of lifecycle analysis and greenhouse gas regulations

    Science.gov (United States)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces

  6. A Life-Cycle Analysis of Social Security with Housing

    OpenAIRE

    Chen, Kaiji

    2009-01-01

    This paper incorporates two features of housing in a life-cycle analysis of social security: housing as a durable good and housing market frictions. We find that with housing as a durable good unfunded social security substantially crowds out housing consumption throughout the life cycle. By contrast, aggregate non-durable consumption is higher when social security is present, although it is postponed until late in life. Moreover, in the presence of housing market frictions, social security l...

  7. Environmental impact assessment of european non-ferro mining industries through life-cycle assessment

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    European mining industries are the vast industrial sector which contributes largely on their economy which constitutes of ferro and non-ferro metals and minerals industries. The non-ferro metals extraction and processing industries require focus of attention due to sustainability concerns as their manufacturing processes are highly energy intensive and impacts globally on environment. This paper analyses major environmental effects caused by European metal industries based on the life-cycle impact analysis technologies. This research work is the first work in considering the comparative environmental impact analysis of European non-ferro metal industries which will reveal their technological similarities and dissimilarities to assess their environmental loads. The life-cycle inventory datasets are collected from the EcoInvent database while the analysis is done using the CML baseline and ReCipe endpoint method using SimaPro software version 8.4. The CML and ReCipe method are chosen because they are specialized impact assessment methods for European continent. The impact categories outlined for discussion here are human health, global warming and ecotoxicity. The analysis results reveal that the gold industry is vulnerable for the environment due to waste emission and similar result retained by silver mines a little bit. But copper, lead, manganese and zinc mining processes and industries are environment friendly in terms of metal extraction technologies and waste emissions.

  8. Improving life-cycle cost management in the US. Army: analysis of the U.S. Army and Commercial Businesses life-cycle cost management.

    OpenAIRE

    White, Bradley A.

    2001-01-01

    The roles and responsibilities of the Army acquisition and logistics communities, as they pertain to the life-cycle management, are undergoing fundamental change. The early identification and total control of life-cycle cost, in particular operations and sustainment costs which comprises as much as 70-80% of a systems total life-cycle cost, is a high priority for the Army. The basis of this change is adoption of commercial best practices to support the Army's goal to organize. tram. equip, an...

  9. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  10. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  11. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried out...

  12. Product Lifecycle Management Technology Applied in Missile Launching Systems Production and Installation

    Directory of Open Access Journals (Sweden)

    V. O. Karasev

    2016-01-01

    Full Text Available The article highlights the problems in the construction of the launch-site "Vostochniy" production and installation logistic. The stages of complex high-end product lifecycle described. The concepts and techniques of life cycle management and variants of their application offered as solution of this problems. Practical way to optimize logistics and lifecycle management processes using ILS Suite multi-agent software submitted. Side effect of this solution is creating of relevant integrated logistic support database, that could be used in the future projects. Results for tests and some perspectives for future investigation described.

  13. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  14. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  15. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  16. Approach on Lifecycles on Research Environment and Analysis Based on Systems Engineering (SE)

    OpenAIRE

    Lintala , Marja; Ovtcharova , Jivka; Bonnal , Pierre

    2012-01-01

    Part 8: Formalization for PLM; International audience; In recent years, researchers and industrial communities have been increasingly interested in Product Lifecycle Management (PLM); hence the product lifecycles have received considerable attention. The general features of the lifecycles are well known, however the special character of the equipment in research environment: the particularly long life, experimental character, complexity and interdisciplinary, are still not completely understo...

  17. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  18. Evaluation of life-cycle air emission factors of freight transportation.

    Science.gov (United States)

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  19. Sustainable Development Factors in Pavement Life-Cycle: Highway/Airport Review

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-03-01

    Full Text Available Sustainability has gained as much importance as management in business. Sustainable pavement development as a business practice should involve making evaluations according to the triple bottom line in the pavement life-cycle. Despite the current approaches to evaluating the social as well as economic and environmental feasibility of pavement projects (involving highway and airport infrastructure, there has recently been a lack of consensus on a methodology to guarantee sustainability upon assessment and analysis during the pavement life-cycle. As sustainability is a complex issue, this study intends to further explore sustainability and elaborate on its meaning. The second step involves a general depiction of the major sustainability appraisal tools, namely cost-benefit analysis, life-cycle cost analysis, life-cycle assessment, multi-criteria decision-making, environmental impact assessment and social life-cycle assessment, and an explanation of their cons and pros. Subsequently, the article addresses the application of an organized methodology to highlight the main factors or concepts that should be applied in sustainable pavement development and, more specifically, in sustainable pavement management. In the final step, research recommendations toward sustainability are given. This study is aimed to assist decision-makers in pavement management to plan sustainability frameworks in accordance with probable boundaries and restrictions.

  20. Life-cycle assessment of computational logic produced from 1995 through 2010

    International Nuclear Information System (INIS)

    Boyd, S B; Horvath, A; Dornfeld, D A

    2010-01-01

    Determination of the life-cycle environmental and human health impacts of semiconductor logic is essential to a better understanding of the role information technology can play in achieving energy efficiency or global warming potential reduction goals. This study provides a life-cycle assessment for digital logic chips over seven technology generations, spanning from 1995 through 2010. Environmental indicators include global warming potential, acidification, eutrophication, ground-level ozone (smog) formation, potential human cancer and non-cancer health effects, ecotoxicity and water use. While impacts per device area related to fabrication infrastructure and use-phase electricity have increased steadily, those due to transportation and fabrication direct emissions have fallen as a result of changes in process technology, device and wafer sizes and yields over the generations. Electricity, particularly in the use phase, and direct emissions from fabrication are the most important contributors to life-cycle impacts. Despite the large quantities of water used in fabrication, across the life cycle, the largest fraction of water is consumed in generation of electricity for use-phase power. Reducing power consumption in the use phase is the most effective way to limit impacts, particularly for the more recent generations of logic.

  1. BeefTracker: Spatial Tracking and Geodatabase for Beef Herd Sustainability and Lifecycle Analysis

    Science.gov (United States)

    Oltjen, J. W.; Stackhouse, J.; Forero, L.; Stackhouse-Lawson, K.

    2015-12-01

    We have developed a web-based mapping platform named "BeefTracker" to provide beef cattle ranchers a tool to determine how cattle production fits within sustainable ecosystems and to provide regional data to update beef sustainability lifecycle analysis. After initial identification and mapping of pastures, herd data (class and number of animals) are input on a mobile device in the field with a graphical pasture interface, stored in the cloud, and linked via the web to a personal computer for inventory tracking and analysis. Pasture use calculated on an animal basis provides quantifiable data regarding carrying capacity and subsequent beef production to provide more accurate data inputs for beef sustainability lifecycle analysis. After initial testing by university range scientists and ranchers we have enhanced the BeefTracker application to work when cell service is unavailable and to improve automation for increased ease of use. Thus far experiences with BeefTracker have been largely positive, due to livestock producers' perception of the need for this type of software application and its intuitive interface. We are now in the process of education to increase its use throughout the U.S.

  2. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  3. The use of life-cycle analysis to address energy cycle externality problems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1996-01-01

    Life-cycle analysis is defined and the various impacts from energy systems to be included in such analysis are discussed. A preliminary version of a scenario for a future Danish energy systems based upon a bottom-up energy demand scenario and renewable energy sources. LCAs of wind turbine and Si solar roof-top modules are presented. The various impacts from Danish wind and building-integrated solar power generation are discussed and compared with the impacts from coal-fired power generation. The former electricity generating system looks more favorable. (author). 20 refs, 9 figs

  4. Streamline Your Project: A Lifecycle Model.

    Science.gov (United States)

    Viren, John

    2000-01-01

    Discusses one approach to project organization providing a baseline lifecycle model for multimedia/CBT development. This variation of the standard four-phase model of Analysis, Design, Development, and Implementation includes a Pre-Analysis phase, called Definition, and a Post-Implementation phase, known as Maintenance. Each phase is described.…

  5. Life-cycle assessment of Nebraska bridges.

    Science.gov (United States)

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  6. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  7. Determination of the appropriate use of pavement surface history in the KDOT life-cycle analysis process.

    Science.gov (United States)

    2008-09-01

    The primary objective of this study was to evaluate KDOTs pavement surfacing history and recommend : whether or not the departments life-cycle cost analysis (LCCA) procedure should include a surfacing history : component, and, if so, how the LC...

  8. Investigation into life-cycle costing as a comparative analysis approach of energy systems

    CSIR Research Space (South Africa)

    Mokheseng, B

    2010-08-31

    Full Text Available selection based on a simple payback period. Due to life-cycle stages, often the real costs of the project or equipment, either to the decision maker or the cost bearer, are not reflected by the upfront capital costs. In this paper, the life-cycle costing...

  9. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  10. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  11. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  12. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates

  13. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Science.gov (United States)

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  14. Life-Cycle Cost-Benefit (LCCB) Analysis of Bridges from a User and Social Point of View

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2009-01-01

    is to present and discuss some of these problems from a user and social point of view. A brief presentation of a preliminary study of the importance of including benefits in life-cycle cost-benefit analysis in management systems for bridges is shown. Benefits may be positive as well as negative from the user...... point of view. In the paper, negative benefits (user costs) are discussed in relation to the maintenance of concrete bridges. A limited number of excerpts from published reports that are related to the importance of estimating user costs when repairs of bridges are planned, and when optimized strategies......During the last two decades, important progress has been made in the life-cycle cost-benefit (LCCB) analysis of structures, especially offshore platforms, bridges and nuclear installations. Due to the large uncertainties related to the deterioration, maintenance, and benefits of such structures...

  15. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  16. Reliability and life-cycle analysis of deteriorating systems

    CERN Document Server

    Sánchez-Silva, Mauricio

    2016-01-01

    This book compiles and critically discusses modern engineering system degradation models and their impact on engineering decisions. In particular, the authors focus on modeling the uncertain nature of degradation considering both conceptual discussions and formal mathematical formulations. It also describes the basics concepts and the various modeling aspects of life-cycle analysis (LCA).  It highlights the role of degradation in LCA and defines optimum design and operation parameters. Given the relationship between operational decisions and the performance of the system’s condition over time, maintenance models are also discussed. The concepts and models presented have applications in a large variety of engineering fields such as Civil, Environmental, Industrial, Electrical and Mechanical engineering. However, special emphasis is given to problems related to large infrastructure systems. The book is intended to be used both as a reference resource for researchers and practitioners and as an academic text ...

  17. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  18. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Ogden, Joan M.; Williams, Robert H.; Larson, Eric D.

    2004-01-01

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  19. Water conservation implications for decarbonizing non-electric energy supply: A hybrid life-cycle analysis.

    Science.gov (United States)

    Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao

    2018-08-01

    Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    Science.gov (United States)

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management.

  1. Improving Students' Argumentation Skills through a Product Life-Cycle Analysis Project in Chemistry Education

    Science.gov (United States)

    Juntunen, M. K.; Aksela, M. K.

    2014-01-01

    The aim of the study discussed in this paper was to link existing research about the argumentation skills of students to the teaching of life-cycle analysis (LCA) in order to promote an evidence-based approach to the teaching of and learning about materials used in consumer products. This case-study is part of a larger design research project that…

  2. Lifecycle-analysis for heavy vehicles

    International Nuclear Information System (INIS)

    Gaines, L.

    1998-01-01

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants

  3. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  4. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  5. PRODUCT LIFECYCLE OPTIMISATION OF CAR CLIMATE CONTROLS USING ANALYTICAL HIERARCHICAL PROCESS (AHP ANALYSIS AND A MULTI-OBJECTIVE GROUPING GENETIC ALGORITHM (MOGGA

    Directory of Open Access Journals (Sweden)

    MICHAEL J. LEE

    2016-01-01

    Full Text Available A product’s lifecycle performance (e.g. assembly, outsourcing, maintenance and recycling can often be improved through modularity. However, modularisation under different and often conflicting lifecycle objectives is a complex problem that will ultimately require trade-offs. This paper presents a novel multi-objective modularity optimisation framework; the application of which is illustrated through the modularisation of a car climate control system. Central to the framework is a specially designed multi-objective grouping genetic algorithm (MOGGA that is able to generate a whole range of alternative product modularisations. Scenario analysis, using the principles of the analytical hierarchical process (AHP, is then carried out to explore the solution set and choose a suitable modular architecture that optimises the product lifecycle according to the company’s strategic vision.

  6. Automation life-cycle cost model

    Science.gov (United States)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  7. Life-Cycle environmental impact assessment of mineral industries

    Science.gov (United States)

    Hisan Farjana, Shahjadi; Huda, Nazmul; Parvez Mahmud, M. A.

    2018-05-01

    Mining is the extraction and processing of valuable ferro and non-ferro metals and minerals to be further used in manufacturing industries. Valuable metals and minerals are extracted from the geological deposits and ores deep in the surface through complex manufacturing technologies. The extraction and processing of mining industries involve particle emission to air or water, toxicity to the environment, contamination of water resources, ozone layer depletion and most importantly decay of human health. Despite all these negative impacts towards sustainability, mining industries are working throughout the world to facilitate the employment sector, economy and technological growth. The five most important miners in the world are South Africa, Russia, Australia, Ukraine, Guinea. The mining industries contributes to their GDP significantly. However, the most important issue is making the mining world sustainable thus reducing the emissions. To address the environmental impacts caused by the mining sectors, this paper is going to analyse the environmental impacts caused by the 5 major minerals extraction processes, which are bauxite, ilmenite, iron ore, rutile and uranium by using the life-cycle impact assessment technologies. The analysis is done here using SimaPro software version 8.4 using ReCipe, CML and Australian indicator method.

  8. Spatial lifecycles of cleantech industries – The global development history of solar photovoltaics

    International Nuclear Information System (INIS)

    Binz, Christian; Tang, Tian; Huenteler, Joern

    2017-01-01

    New industries develop in increasingly globalized networks, whose dynamics are not well understood by academia and policy making. Solar photovoltaics (PV) are a case in point for an industry that experienced several shifts in its spatial organization over a short period of time. A lively debate has recently emerged on whether the spatial dynamics in new cleantech sectors are in line with existing industry lifecycle models or whether globalization created new lifecycle patterns that are not fully explained in the literature. This paper addresses this question based on an extensive analysis of quantitative data in the solar PV sector. Comprehensive global databases containing 86,000 patents as well as manufacturing and sales records are used to analyze geographic shifts in the PV sector’s innovation, manufacturing and market deployment activities between 1990 and 2012. The analysis reveals spatial lifecycle patterns with lower-than-expected first mover advantages in manufacturing and market activities and an earlier entry of firms from emerging economies in manufacturing and knowledge creation. We discuss implications of these findings for the competitive positions of companies in developed and emerging economies, derive new stylized hypotheses for industry lifecycle theories, and sketch policy approaches that are reflexive of global interdependencies in emerging cleantech industries. - Highlights: • The global spatial lifecycle of the solar photovoltaic (PV) industry is analyzed. • Our data partly contradicts existing industry lifecycle theories. • Latecomers in China started manufacturing and deployment earlier than expected. • Pioneers in the US and EU retained significant first-mover advantages in patenting. • Industry lifecycle theory needs updates in the production and market dimensions.

  9. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  10. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo; Sarathy, Mani

    2016-01-01

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission

  11. Introduction to the ITIL service lifecycle

    CERN Document Server

    , AXELOS

    2012-01-01

    Introduction to the ITIL Service Lifecycle' introduces IT service management and ITIL. It summarises the best practices described in the 2011 editions' core guidance, explaining the basic concepts of ITIL and providing information on each stage of the service lifecycle.

  12. The process of life-cycle cost analysis on the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Chang, D.Y.; Jacoboski, J.A.; Fisher, L.A.; Beirne, P.J.

    1993-01-01

    The Estimating Services Department of the Fernald Environmental Restoration Management Corporation (FERMCO) is formalizing the process of life-cycle cost analysis (LCCA) for the Fernald Environmental Management Project (FEMP). The LCCA process is based on the concepts, principles, and guidelines described by applicable Department of Energy's (DOE) orders, pertinent published literature, and the National Bureau of Standards handbook 135. LCC analyses will be performed following a ten-step process on the FEMP at the earliest possible decision point to support the selection of the least-cost alternatives for achieving the FERMCO mission

  13. Virtual and augmented reality in the nuclear plant lifecycle perspective

    International Nuclear Information System (INIS)

    Johnsen, Terje; Mark, Niels-Kristian

    2010-01-01

    The paper presents a subset of the research and development performed over the last decade by the OECD Halden Reactor Project (HRP) using virtual reality (VR) and augmented reality (AR) in design, operation, maintenance and decommissioning to solve real world problems in the nuclear plant lifecycle. The use of VR in training at Leningrad Nuclear Power Plant (LNPP) in Russia started in 1999 with the introduction of VR technology developed by Institute for Energy Technology (IFE) for the training and presentation of procedures related to safe operation and maintenance of the refuelling machine. At Chernobyl Nuclear Power Plant (ChNPP) in Ukraine, the establishment of the Chernobyl Decommissioning Visualisation Centre (CDVC) was started in 2007. The CDVC will be used for planning, training and presentation of dismantling procedures. In the future, the CDVC will also offer calculation of the occupational dose. VR has proven to be an effective technology for better communicating the layout of project proposals in design of control rooms. AR can be used to supplement reality by blending the physical and the virtual in the actual physical environment. IFE has developed a practical solution for using the AR technology. The paper also discusses how and for what areas the VR and AR applications can contribute to the nuclear safety for symbiosis and sustainability. Finally, IFE's plans for future use of VR and AR technologies in a nuclear plant lifecycle perspective are discussed. (author)

  14. Cybersecurity and the Medical Device Product Development Lifecycle.

    Science.gov (United States)

    Jones, Richard W; Katzis, Konstantinos

    2017-01-01

    Protecting connected medical devices from evolving cyber related threats, requires a continuous lifecycle approach whereby cybersecurity is integrated within the product development lifecycle and both complements and re-enforces the safety risk management processes therein. This contribution reviews the guidance relating to medical device cybersecurity within the product development lifecycle.

  15. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  16. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    Energy Technology Data Exchange (ETDEWEB)

    Stadel, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Drexel Univ., Philadelphia, PA (United States); Gursel, Petek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  17. Materials Lifecycle and Environmental Consideration at NASA

    Science.gov (United States)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  18. Improving Life-Cycle Cost Management of Spacecraft Missions

    Science.gov (United States)

    Clardy, Dennon

    2010-01-01

    This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.

  19. ITER Remote Maintenance System (IRMS) lifecycle management

    Energy Technology Data Exchange (ETDEWEB)

    Tesini, Alessandro, E-mail: alessandro.tesini@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Otto' , Bede [Oxford Technologies Ltd, 7, Nuffield Way, Abingdon, Oxon OX14 1RJ (United Kingdom); Blight, John [FAAST 31c Allee de la Granette, 13600 Ceyreste (France); Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heckendorn, Frank [FD Technologies, PO Box 6686, Aiken, SC (United States); Martins, Jean-Pierre [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Marty, Thomas [Westinghouse, 122, avenue de Hambourg, 13008 Marseille (France); Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2011-10-15

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  20. ITER Remote Maintenance System (IRMS) lifecycle management

    International Nuclear Information System (INIS)

    Tesini, Alessandro; Otto', Bede; Blight, John; Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David; Heckendorn, Frank; Martins, Jean-Pierre; Marty, Thomas; Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran

    2011-01-01

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  1. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    International Nuclear Information System (INIS)

    Ballesteros Cánovas, J.A.; Stoffel, M.; Corona, C.; Schraml, K.; Gobiet, A.; Tani, S.; Sinabell, F.; Fuchs, S.; Kaitna, R.

    2016-01-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  2. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Cánovas, J.A., E-mail: juan.ballesteros@dendrolab.ch [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Stoffel, M. [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, CH-1205 Geneva (Switzerland); Corona, C. [Centre National de la Recherche Scientifique (CNRS) UMR6042 Geolab, 4 rue Ledru, F-63057 Clermont-Ferrand Cedex (France); Schraml, K. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria); Gobiet, A. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Central Office for Meteorology and Geodynamics (ZAMG), A-1190 Vienna (Austria); Tani, S. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Sinabell, F. [Austrian Institute of Economic Research, A-1030 Vienna (Austria); Fuchs, S.; Kaitna, R. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria)

    2016-07-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  3. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  4. On Lifecycle Constraints of Artifact-Centric Workflows

    Science.gov (United States)

    Kucukoguz, Esra; Su, Jianwen

    Data plays a fundamental role in modeling and management of business processes and workflows. Among the recent "data-aware" workflow models, artifact-centric models are particularly interesting. (Business) artifacts are the key data entities that are used in workflows and can reflect both the business logic and the execution states of a running workflow. The notion of artifacts succinctly captures the fluidity aspect of data during workflow executions. However, much of the technical dimension concerning artifacts in workflows is not well understood. In this paper, we study a key concept of an artifact "lifecycle". In particular, we allow declarative specifications/constraints of artifact lifecycle in the spirit of DecSerFlow, and formulate the notion of lifecycle as the set of all possible paths an artifact can navigate through. We investigate two technical problems: (Compliance) does a given workflow (schema) contain only lifecycle allowed by a constraint? And (automated construction) from a given lifecycle specification (constraint), is it possible to construct a "compliant" workflow? The study is based on a new formal variant of artifact-centric workflow model called "ArtiNets" and two classes of lifecycle constraints named "regular" and "counting" constraints. We present a range of technical results concerning compliance and automated construction, including: (1) compliance is decidable when workflow is atomic or constraints are regular, (2) for each constraint, we can always construct a workflow that satisfies the constraint, and (3) sufficient conditions where atomic workflows can be constructed.

  5. Energy and life-cycle cost analysis of a six-story office building

    Science.gov (United States)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  6. Benchmarking Naval Shipbuilding with 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management

    Science.gov (United States)

    2015-09-20

    are also available. These technologies are past the disillusionment stage and are in the enlightenment phase where benefits are being derived, as... technologies such as three-dimensional scanning (3DLS), product lifecycle management (PLM), and additive manufacturing (AM) to reduce costs while...naval shipbuilding savings. The research was conducted in two phases. In the first phase, secondary research was conducted on the three technologies

  7. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  8. Investigation of change in specifications during a product's lifecycle

    DEFF Research Database (Denmark)

    Sudin, Mohd Nizam Bin; Ahmed, Saeema

    2009-01-01

    design attributes likely be changed; the initiation of change and how change in specifications are described. For this purpose, document analysis for a complex product has been carried out. In total, 271 reports of change request of an aero-engine that were associated to change in specifications were......Engineering changes (ECs) constitutes a normal part of a product’s lifecycle. This paper aims to understand why changes are made to a product’s specification during a product’s lifecycle including understanding: the distribution of changes; the drivers for changes; how changes are discovered; which...... the request was initiated. The study showed that experience plays a vital role in discovering the need to change a complex product...

  9. Report on the FY 1999 results of the development of the wide area energy utilization network system - Eco/energy urban system. 2/2. Study of the systematization technology/evaluation technology out of the study of the energy system design technology (Study of the application method of element technology/system and trial calculation of the introduction effect); Koiki energy riyo network system kaihatsu (eco energy toshi system). 2/2. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu 1999 nendo seika hokokusho (zenkoku no netsu juyo no bunpu jokyo chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of smoothly introducing the equipment technology and system technology being studied in the development of element technology in the eco/energy urban project, the paper conducted the study of conditions/application method in applying the technology to the actual energy supply system, analysis of the introduction effect, arrangement of the subjects on technical development, etc. In the study, for the methanol/hydrogen base technology, heat pump technology, heat recovery technology, heat transport technology and heat power generation technology, the quantitative analysis was made in terms of the lifecycle energy consumption amount, lifecycle CO2 emission amount and lifecycle expenses. As to the methanol base system, the subject is the reduction in auxiliary power. Concerning the heat pump technology, the subject is the enlargement of simple equipment. As regards the heat recovery technology, the subject is the development of system with long useful year. Relating to the heat transport technology, subjects are the completion of the menu of large-diameter piping in the vacuum thermal insulation heat transport piping system, and reduction in conveyance power of heat medium. About the heat power generation technology, subjects are the stability/durability of the system. (NEDO).

  10. Economic potential of fuel recycling options: A lifecycle cost analysis of future nuclear system transition in China

    International Nuclear Information System (INIS)

    Gao, Ruxing; Choi, Sungyeol; Il Ko, Won; Kim, Sungki

    2017-01-01

    In today's profit-driven market, how best to pursue advanced nuclear fuel cycle technologies while maintaining the cost competitiveness of nuclear electricity is of crucial importance to determine the implementation of spent fuel reprocessing and recycling in China. In this study, a comprehensive techno-economic analysis is undertaken to evaluate the economic feasibility of ongoing national projects and the technical compatibility with China's future fuel cycle transition. We investigated the dynamic impacts of technical and economic uncertainties in the lifecycle of a nuclear system. The electricity generation costs associated with four potential fuel cycle transition scenarios were simulated by probabilistic and deterministic approaches and then compared in detail. The results showed that the total cost of a once-through system is lowest compared those of other advanced systems involving reprocessing and recycling. However, thanks to the consequential uncertainties caused by the further progress toward technology maturity, the economic potential of fuel recycling options was proven through a probabilistic uncertainty analysis. Furthermore, it is recommended that a compulsory executive of closed fuel cycle policy would pose some investment risk in the near term, though the execution of a series of R&D initiatives with a flexible roadmap would be valuable in the long run. - Highlights: • Real-time economic performance of the four scenarios of China's nuclear fuel cycle system transition until 2100. • Systematic assessments of techno-economic feasibility for ongoing national reprocessing projects. • Investigation the cost impact on nuclear electricity generation caused by uncertainties through probabilistic analysis. • Recommendation for sustainable implementation of fuel cycle R&D initiative ingrate with flexible roadmap in the long run.

  11. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  12. Corporate entrepreneurship in organisational life-cycle

    OpenAIRE

    Duobienė, Jurga

    2013-01-01

    Paper deals with the development of corporate entrepreneurship in different stages of organisational life-cycle. The research presents a model for the evaluation of corporate entrepreneurship and systemises relevant theoretical and empirical research in the field of entrepreneurship and corporate entrepreneurship. Moreover, it describes the development of corporate entrepreneurship in the entire organisational life-cycle since most of researchers who discuss the topics of corporate entreprene...

  13. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  14. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  15. The DCC Curation Lifecycle Model

    Directory of Open Access Journals (Sweden)

    Sarah Higgins

    2008-08-01

    Full Text Available Lifecycle management of digital materials is necessary to ensure their continuity. The DCC Curation Lifecycle Model has been developed as a generic, curation-specific, tool which can be used, in conjunction with relevant standards, to plan curation and preservation activities to different levels of granularity. The DCC will use the model: as a training tool for data creators, data curators and data users; to organise and plan their resources; and to help organisations identify risks to their digital assets and plan management strategies for their successful curation.

  16. Research on the Enhancement Effects of Using Ecological Principles in Managing the Lifecycle of Industrial Land

    Directory of Open Access Journals (Sweden)

    Libin Guo

    2018-06-01

    Full Text Available This paper introduces a performance level concept for industrial land use. The performance level concept uses ecological principles to evaluate index systems for industrial land. We used this concept to integrate local economics, land use, development potential, environmental health and ecosystem management with innovation, harmony, floral preservation, and shared land use. The concept helps promote the efficient use of industrial land and the sustainable use of land resources. We used the chemical medicine manufacturing industry in Chongqing Changshou Economic and Technological Development Zone as a case study. We selected eight companies for analysis and calculated an industrial land performance level for each company. We created three industrial land performance levels: growth potential type, positive development type, and inefficient recession type. To determine economic development and land sustainability, we applied administrative, economic, legal and technical measures to evaluate the entire lifecycle of industrial land. This lifecycle included preliminary project audit access, mid-period dynamic supervision and post land exit management. We conclude by proposing measures to mitigate environmental harm occurring from the intensive use of land for industrial use.

  17. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Fast Pyrolysis, and Hydrothermal Liquefaction: Update of the 2016 State-of-Technology Cases and Design Cases

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States; Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States; Pegallapati, Ambica [Argonne National Lab. (ANL), Argonne, IL (United States; Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States; Canter, Christina [Argonne National Lab. (ANL), Argonne, IL (United States; Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susanne [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.

  19. Biorefinery Analysis

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Fact sheet summarizing NREL's techno-economic analysis and life-cycle assessment capabilities to connect research with future commercial process integration, a critical step in the scale-up of biomass conversion technologies.

  20. Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fitzpatrick

    2009-11-01

    Full Text Available Novel methods to identify anthelmintic drug and vaccine targets are urgently needed, especially for those parasite species currently being controlled by singular, often limited strategies. A clearer understanding of the transcriptional components underpinning helminth development will enable identification of exploitable molecules essential for successful parasite/host interactions. Towards this end, we present a combinatorial, bioinformatics-led approach, employing both statistical and network analyses of transcriptomic data, for identifying new immunoprophylactic and therapeutic lead targets to combat schistosomiasis.Utilisation of a Schistosoma mansoni oligonucleotide DNA microarray consisting of 37,632 elements enabled gene expression profiling from 15 distinct parasite lifecycle stages, spanning three unique ecological niches. Statistical approaches of data analysis revealed differential expression of 973 gene products that minimally describe the three major characteristics of schistosome development: asexual processes within intermediate snail hosts, sexual maturation within definitive vertebrate hosts and sexual dimorphism amongst adult male and female worms. Furthermore, we identified a group of 338 constitutively expressed schistosome gene products (including 41 transcripts sharing no sequence similarity outside the Platyhelminthes, which are likely to be essential for schistosome lifecycle progression. While highly informative, statistics-led bioinformatics mining of the transcriptional dataset has limitations, including the inability to identify higher order relationships between differentially expressed transcripts and lifecycle stages. Network analysis, coupled to Gene Ontology enrichment investigations, facilitated a re-examination of the dataset and identified 387 clusters (containing 12,132 gene products displaying novel examples of developmentally regulated classes (including 294 schistosomula and/or adult transcripts with no

  1. Dynamic Analysis of Product Lifecycle and Sea/Air Modal Choice: Evidence of Export from Japan1

    Directory of Open Access Journals (Sweden)

    Hideki Murakami

    2014-12-01

    Full Text Available Here, we test the hypothesis that commodities at their peak valuation are transported by air, while those at their inception and maturity are shipped by sea, as well as the theory that shippers choose air to transport high-valued commodities. We empirically investigated how the product lifecycle of commodities is reflected by shippers’ choices of air over seaborne transportation. We also assumed that commodities that achieved substantial innovation in their lifecycles would be moved by air transportation so that these commodities could reach targeted markets as quickly as possible to avoid the opportunity costs that might be generated by missed business chances. We constructed two sets of unbalanced panel data of 14 commodities for 24 years drawn from Japan's customs, demographic, and international statistics. By estimating structural equation systems that consisted of commodity-specific export and export air ratio functions, we found that the product lifecycle of cargo outgoing from Japan exactly matched the upward and downward movement of the air ratio.

  2. Risk analysis of the proxy life-cycle investments in the second pillar pension scheme in Croatia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2015-03-01

    Full Text Available In this article we analyze the expected risk of pension funds with different risk profiles in the proxy life-cycle model of investments for the 2nd pillar pension scheme in Croatia. The benefits of implementing proxy life-cycle investments, compared to the previous model of mandatory pension funds investments, are clearly visible in the total expected amount of accumulated savings from the risk/return perspective. However, those benefits are partially diminished by the fact that the expected risk of a pension fund with the lowest risk profile is not substantially different from the expected risk of a pension fund with a medium risk profile, due to the lack of diversification. Additionally, we analyze the robustness of the proxy life-cycle model to a sudden and severe market shock, where we determine the presence of risk for those members who choose to switch to a pension fund with a lower risk profile at an unfavorable moment.

  3. Integrate life-cycle assessment and risk analysis results, not methods.

    Science.gov (United States)

    Linkov, Igor; Trump, Benjamin D; Wender, Ben A; Seager, Thomas P; Kennedy, Alan J; Keisler, Jeffrey M

    2017-08-04

    Two analytic perspectives on environmental assessment dominate environmental policy and decision-making: risk analysis (RA) and life-cycle assessment (LCA). RA focuses on management of a toxicological hazard in a specific exposure scenario, while LCA seeks a holistic estimation of impacts of thousands of substances across multiple media, including non-toxicological and non-chemically deleterious effects. While recommendations to integrate the two approaches have remained a consistent feature of environmental scholarship for at least 15 years, the current perception is that progress is slow largely because of practical obstacles, such as a lack of data, rather than insurmountable theoretical difficulties. Nonetheless, the emergence of nanotechnology presents a serious challenge to both perspectives. Because the pace of nanomaterial innovation far outstrips acquisition of environmentally relevant data, it is now clear that a further integration of RA and LCA based on dataset completion will remain futile. In fact, the two approaches are suited for different purposes and answer different questions. A more pragmatic approach to providing better guidance to decision-makers is to apply the two methods in parallel, integrating only after obtaining separate results.

  4. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  5. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  6. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S.

    2009-01-01

    This paper describes a design process based on risk-informed probabilistic design methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept embodies use of probabilistic risk assessments to establish target reliabilities for facility systems and components. The target reliabilities are used for system based code margin exchange and performance simulation analyses to optimize design over all phases (design, construction, operation and decommissioning) of a facility's life-cycle. System based code margin exchange reduces excessive level of construction margins for passive components to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. System and subsystem simulation analyses determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The paper includes a description of these risk-informed life-cycle design processes, a summary of work being done, and a discussion of additional work needed to implement the process.

  7. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  8. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  9. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    International Nuclear Information System (INIS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-01-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals. (letter)

  10. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    Science.gov (United States)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  11. A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project

    Directory of Open Access Journals (Sweden)

    Xun Xu

    2014-08-01

    Full Text Available BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM-based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organize the life-cycle information well, the information components and information flow during the project life-cycle are defined. Then, the application of BIM in life-cycle information management is analysed. This framework will provide a unified platform for information management and ensure data integrity.

  12. Enabling Data-Driven Methodologies Across the Data Lifecycle and Ecosystem

    Science.gov (United States)

    Doyle, R. J.; Crichton, D.

    2017-12-01

    opportunities to gain new insights from space missions and their vast data collections. We are working to innovate new architectures, exploit emerging technologies, develop new data-driven methodologies, and transfer them across disciplines, while working across the dual dimensions of the data lifecycle and the data ecosystem.

  13. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass

    OpenAIRE

    Delucchi, Mark; Lipman, Timothy

    2003-01-01

    An Appendix to the Report, “A Lifecycle Emissions Model (LEM): Lifecycle Emissions From Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materialsâ€

  14. Bus Lifecycle Cost Model for Federal Land Management Agencies.

    Science.gov (United States)

    2011-09-30

    The Bus Lifecycle Cost Model is a spreadsheet-based planning tool that estimates capital, operating, and maintenance costs for various bus types over the full lifecycle of the vehicle. The model is based on a number of operating characteristics, incl...

  15. Life-Cycle Inventory Analysis of I-joist Production in the United States

    Science.gov (United States)

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Creating environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one approach to provide scientific documentation of the products’ environmental performance. Many U.S. structural wood products have LCA-based “eco-labels” developed under the ISO...

  16. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  17. METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

    Directory of Open Access Journals (Sweden)

    MARKUS GÖRING

    2013-10-01

    On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  18. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  19. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  20. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  1. Analysis of material recovery facilities for use in life-cycle assessment

    OpenAIRE

    Pressley, Phillip N.; Levis, James W.; Damgaard, Anders; Barlaz, Morton A.; DeCarolis, Joseph F.

    2015-01-01

    Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different proc...

  2. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  3. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  4. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2013-01-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  5. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  6. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    Shen Wei; Han Weijian; Chock, David; Chai Qinhu; Zhang Aling

    2012-01-01

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  7. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  8. .net core application lifecycle on Openshift

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    # .net core application lifecycle on Openshift I will show an example of a lifecycle of an OpenShift application with an emphasis on the continuous integration and deployment. The application compatible with [.net Standard](https://docs.microsoft.com/en-us/dotnet/standard/net-standard) can be easily deployed on OpenShift using [Source2Image](https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/builds_and_image_streams.html#source-build) functionality, which doesn't require developers to maintain docker images of the application. I will also present how to efficiently integrate this feature into GitLab pipelines with an automated deployment of the "review" environment, as one its parts.

  9. Environmental hot spot analysis in agricultural life-cycle assessments – three case studies

    Directory of Open Access Journals (Sweden)

    Gerhard Piringer

    2016-06-01

    Full Text Available Present-day agricultural technology is facing the challenge of limiting the environmental impacts of agricultural production – such as greenhouse gas emissions and demand for additional land – while meeting growing demands for agricultural products. Using the well-established method of life-cycle assessment (LCA, potential environmental impacts of agricultural production chains can be quantified and analyzed. This study presents three case studies of how the method can pinpoint environmental hot spots at different levels of agricultural production systems. The first case study centers on the tractor as the key source of transportation and traction in modern agriculture. A common Austrian tractor model was investigated over its life-cycle, using primary data from a manufacturer and measured load profiles for field work. In all but one of the impact categories studied, potential impacts were dominated by the operation phase of the tractor’s life-cycle (mainly due to diesel fuel consumption, with 84.4-99.6% of total impacts. The production phase (raw materials and final assembly caused between 0.4% and 12.1% of impacts, while disposal of the tractor was below 1.9% in all impact categories. The second case study shifts the focus to an entire production chain for a common biogas feedstock, maize silage. System boundaries incorporate the effect of auxiliary materials such as fertilizer and pesticides manufacturing and application. The operation of machinery in the silage production chain was found to be critical to its environmental impact. For the climate change indicator GWP100 (global warming potential, 100-year reference period, emissions from tractor operation accounted for 15 g CO2-eq per kg silage (64% of total GWP100, followed by field emissions during fertilizer (biogas digestate application with 6 g CO2-eq per kg silage (24% of total GWP100. At a larger system scale that includes a silage-fed biogas plant with electricity generated by

  10. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  11. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    OpenAIRE

    Susmozas, Ana; Iribarren, Diego; Dufour, Javier

    2015-01-01

    Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydroge...

  12. Life-Cycle Inventory Analysis of Laminated Veneer Lumber Production in the United States

    Science.gov (United States)

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Developing environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one way to provide scientific documentation. Many U.S. structural wood products have LCA-based “eco-labels” using the ISO standard. However, the standard requires underlying...

  13. Product Lifecycle Management: CERN to host an important international conference

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN designs, builds and operates machines that contain millions of items of many types, such as software, electronics, and electrical, mechanical and chemical components. It is a challenge to maintain a coherent configuration of everything that has been developed and installed. To do this, CERN developed the EDMS system – an integrated Product Lifecycle Management (PLM) platform that enables management of all the information related to the entire lifecycle of each single component. On 5 and 6 September CERN will host an international PLM conference at which participants will exchange experience and address how best to apply PLM in their organisations.   Pictogram representation of a typical product lifecycle. Picture by the National Institute of Standards and Technology’s Manufacturing Engineering via Wikimedia Commons [Public domain]. PLM is the activity of managing, in the most effective way, an organisation’s products all the way through their lifecycles: from th...

  14. Rules of Thumb in Life-Cycle Saving Decisions

    OpenAIRE

    Winter, Joachim; Schlafmann, Kathrin; Rodepeter, Ralf

    2011-01-01

    We analyse life-cycle saving decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. We simulate life-cycle saving decisions using three simple rules and compute utility losses relative to the solution of the optimization problem. Our simulations suggest that utility losses induced by following simple decision rules are relatively low. Moreover, the two main saving motives re ected by the canonical life-cyc...

  15. Clinical Research Informatics: Supporting the Research Study Lifecycle.

    Science.gov (United States)

    Johnson, S B

    2017-08-01

    Objectives: The primary goal of this review is to summarize significant developments in the field of Clinical Research Informatics (CRI) over the years 2015-2016. The secondary goal is to contribute to a deeper understanding of CRI as a field, through the development of a strategy for searching and classifying CRI publications. Methods: A search strategy was developed to query the PubMed database, using medical subject headings to both select and exclude articles, and filtering publications by date and other characteristics. A manual review classified publications using stages in the "research study lifecycle", with key stages that include study definition, participant enrollment, data management, data analysis, and results dissemination. Results: The search strategy generated 510 publications. The manual classification identified 125 publications as relevant to CRI, which were classified into seven different stages of the research lifecycle, and one additional class that pertained to multiple stages, referring to general infrastructure or standards. Important cross-cutting themes included new applications of electronic media (Internet, social media, mobile devices), standardization of data and procedures, and increased automation through the use of data mining and big data methods. Conclusions: The review revealed increased interest and support for CRI in large-scale projects across institutions, regionally, nationally, and internationally. A search strategy based on medical subject headings can find many relevant papers, but a large number of non-relevant papers need to be detected using text words which pertain to closely related fields such as computational statistics and clinical informatics. The research lifecycle was useful as a classification scheme by highlighting the relevance to the users of clinical research informatics solutions. Georg Thieme Verlag KG Stuttgart.

  16. A life-cycle based decision-making framework for electricity generation system planning

    Energy Technology Data Exchange (ETDEWEB)

    Norrie, S.J.; Fang, L. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Environmental Applied Science and Management Graduate Program

    2006-07-01

    This paper proposed a framework for the consideration of multiple objectives in the long-term planning of electricity generation systems. The framework was comprised of 3 components: (1) information based on life-cycle inventories of electricity generation technologies; (2) a set of alternative scenarios to be evaluated and ranked using the framework; and (3) stakeholder values for decision objectives. Scenarios were developed to represent a set of future conditions, and values were derived through the use of questionnaires. Planning for electricity generation in Ontario was selected as a test case for the DM framework. Three scenarios were presented: (1) a business as usual scenario characterized by large, central power plants; (2) a mix of central power plants, distributed generation, and advanced conventional fuel technologies; and (3) small-scale distributed and renewable energy sources and aggressive demand-side management. The life-cycle based information from the scenario evaluation was used to estimate the performance of each scenario on the established decision criteria. Results showed that scenario 3 was the closest to achieving the fundamental objectives according to the decision criteria. It was concluded that the DM framework showed that the use of holistic environmental information and preferential information for multiple objectives can be integrated into a framework that openly and consistently evaluates a set of alternative scenarios. 31 refs., 7 tabs., 4 figs.

  17. A Spatio-Temporal Building Exposure Database and Information Life-Cycle Management Solution

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2017-04-01

    Full Text Available With an ever-increasing volume and complexity of data collected from a variety of sources, the efficient management of geospatial information becomes a key topic in disaster risk management. For example, the representation of assets exposed to natural disasters is subjected to changes throughout the different phases of risk management reaching from pre-disaster mitigation to the response after an event and the long-term recovery of affected assets. Spatio-temporal changes need to be integrated into a sound conceptual and technological framework able to deal with data coming from different sources, at varying scales, and changing in space and time. Especially managing the information life-cycle, the integration of heterogeneous information and the distributed versioning and release of geospatial information are important topics that need to become essential parts of modern exposure modelling solutions. The main purpose of this study is to provide a conceptual and technological framework to tackle the requirements implied by disaster risk management for describing exposed assets in space and time. An information life-cycle management solution is proposed, based on a relational spatio-temporal database model coupled with Git and GeoGig repositories for distributed versioning. Two application scenarios focusing on the modelling of residential building stocks are presented to show the capabilities of the implemented solution. A prototype database model is shared on GitHub along with the necessary scenario data.

  18. The NISTmAb Reference Material 8671 lifecycle management and quality plan.

    Science.gov (United States)

    Schiel, John E; Turner, Abigail

    2018-03-01

    Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.

  19. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives

    International Nuclear Information System (INIS)

    Meier, P.J.; Wilson, P.P.H.; Kulcinski, G.L.; Denholm, P.L.

    2005-01-01

    This study explores the boundaries of electric industry fuel switching in response to US carbon constraints. A ternary model quantifies how supply side compliance alternatives would change under increasingly stringent climate policies and continued growth in electricity use. Under the White House Climate Change Initiative, greenhouse gas emissions may increase and little or no change in fuel-mix is necessary. As expected, the more significant carbon reductions proposed under the Kyoto Protocol (1990--7% levels) and Climate Stewardship Act (CSA) (1990 levels) require an increase of some combination of renewable, nuclear, or natural gas generated electricity. The current trend of natural gas power plant construction warrants the investigation of this technology as a sustainable carbon-mitigating measure. A detailed life-cycle assessment shows that significant greenhouse gas emissions occur upstream of the natural gas power plant, primarily during fuel-cycle operations. Accounting for the entire life-cycle increases the base emission rate for combined-cycle natural gas power by 22%. Two carbon-mitigating strategies are tested using life-cycle emission rates developed for US electricity generation. Relying solely on new natural gas plants for CSA compliance would require a 600% increase in natural gas generated electricity and almost complete displacement of coal from the fuel mix. In contrast, a 240% increase in nuclear or renewable resources meets the same target with minimal coal displacement. This study further demonstrates how neglecting life-cycle emissions, in particular those occurring upstream of the natural gas power plant, may cause erroneous assessment of supply side compliance alternatives

  20. Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings

    Science.gov (United States)

    Uttarwar, Rohan G.

    simulations are performed using molecular dynamics methodology to study several structural and morphological features such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning properties of the coating film. At macro-scale, a paint spray system which is used for automotive coating application is studied by using CFD-based simulation methodology to generate crucial information about the effects of nanocoating technology on environmental emissions and coating film quality. The cradle-to-grave life-cycle based sustainability assessment study address all the critical issues related to economic benefits, environmental implications and societal effects of nanocoating technology through case studies of automotive coating systems. It is accomplished by identifying crucial correlations among measurable parameters at different stages and developing sustainability indicator matrices for analysis of each stage of life-cycle. The findings from the research can have great potential to draft useful conclusions in favor of future development of coating systems with novel functionalities and improved sustainability.

  1. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  2. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)

    Science.gov (United States)

    2012-11-01

    that have been incorporated into BIM technologies marketed by competing vendors (e.g., Industry Foundation Class [IFC], Construction Operations...ER D C SR -1 2- 2 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Information Modeling ( BIM ) US Army Corps of Engineers Directorate of Civil Works Engineering and Construction Branch Washington, DC 20314-1000 Final

  3. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  4. Towards the Building Information Modeling-Based Capital Project Lifecycle Management in the Luxury Yacht Industry

    Directory of Open Access Journals (Sweden)

    Liu Fuyong

    2017-11-01

    Full Text Available It will be a new approach that BIM’s capital project lifecycle management (CPLM applied to the yacht industry. This paper explored the feasibility of applying the principles and rationales of BIM for capital project lifecycle management in luxury yacht design, engineering, fabrication, construction and operation. The paper examined the premises and backbone technology of BIM. It then evaluated leading naval engineering and shipbuilding software applications and their development trends from the functional lens of BIM. To systematically investigate a BIM-based approach for capital project lifecycle management (CPLM in the luxury yacht industry, the paper proposed and outlined an implementation framework. A case study and a student competition use case were discussed to delineate the core constituents and processes of the proposed framework. The case of BIM was reviewed. Through the domestic custom luxury yacht design and prototyping student competition, the application of this framework in educational research is demonstrated and the initial quantitative assessment of the framework is carried out. Conclusions: a BIM-based CPLM implementation framework can help the luxury yacht industry capitalize on the global transformation to an information-centric and data-driven new business paradigm in shipbuilding with integrated design, manufacturing and production.

  5. The evolution, approval and implementation of the U.S. Geological Survey Science Data Lifecycle Model

    Science.gov (United States)

    Faundeen, John L.; Hutchison, Vivian

    2017-01-01

    This paper details how the United States Geological Survey (USGS) Community for Data Integration (CDI) Data Management Working Group developed a Science Data Lifecycle Model, and the role the Model plays in shaping agency-wide policies. Starting with an extensive literature review of existing data Lifecycle models, representatives from various backgrounds in USGS attended a two-day meeting where the basic elements for the Science Data Lifecycle Model were determined. Refinements and reviews spanned two years, leading to finalization of the model and documentation in a formal agency publication . The Model serves as a critical framework for data management policy, instructional resources, and tools. The Model helps the USGS address both the Office of Science and Technology Policy (OSTP) for increased public access to federally funded research, and the Office of Management and Budget (OMB) 2013 Open Data directives, as the foundation for a series of agency policies related to data management planning, metadata development, data release procedures, and the long-term preservation of data. Additionally, the agency website devoted to data management instruction and best practices (www2.usgs.gov/datamanagement) is designed around the Model’s structure and concepts. This paper also illustrates how the Model is being used to develop tools for supporting USGS research and data management processes.

  6. Life-Cycle Models for Survivable Systems

    National Research Council Canada - National Science Library

    Linger, Richard

    2002-01-01

    .... Current software development life-cycle models are not focused on creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high degree of assurance of survivability...

  7. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    the provision of high-quality data for LCA studies of products using these unit process datasets for the manufacturing processes, as well as the in-depth analysis of individual manufacturing unit processes.In addition, the accruing availability of data for a range of similar machines (same process, different......This report proposes a life-cycle analysis (LCA)-oriented methodology for systematic inventory analysis of the use phase of manufacturing unit processes providing unit process datasets to be used in life-cycle inventory (LCI) databases and libraries. The methodology has been developed...... and resource efficiency improvements of the manufacturing unit process. To ensure optimal reproducibility and applicability, documentation guidelines for data and metadata are included in both approaches. Guidance on definition of functional unit and reference flow as well as on determination of system...

  8. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    International Nuclear Information System (INIS)

    Lutz, James; Lekov, Alex; Chan, Peter; Whitehead, Camilla Dunham; Meyers, Steve; McMahon, James

    2006-01-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered

  9. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    Science.gov (United States)

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  10. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics

    DEFF Research Database (Denmark)

    Sidoli, Simone; Vandamme, Julien; Elisabetta Salcini, Anna

    2016-01-01

    We applied a middle-down proteomics strategy for large scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized post-translational modifications (PTMs) on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval......-occurring PTMs. We measured temporally distinct combinatorial PTM profiles during C. elegans development. We show that the doubly modified form H3K23me3K27me3, which is rare or non-existent in mammals, is the most abundant PTM in all stages of C. elegans lifecycle. The abundance of H3K23me3 increased during...... that is transmitted during dauer formation. Collectively, our data describe the dynamics of histone H3 combinatorial code during C. elegans lifecycle and demonstrate the feasibility of using middle-down proteomics to study in vivo development of multicellular organisms. This article is protected by copyright. All...

  11. Introducing the Guard-Stage-Milestone Approach for Specifying Business Entity Lifecycles

    Science.gov (United States)

    Hull, Richard; Damaggio, Elio; Fournier, Fabiana; Gupta, Manmohan; Heath, Fenno (Terry); Hobson, Stacy; Linehan, Mark; Maradugu, Sridhar; Nigam, Anil; Sukaviriya, Piyawadee; Vaculin, Roman

    A promising approach to managing business operations is based on business entities with lifecycles (BEL's) (a.k.a. business artifacts), i.e., key conceptual entities that are central to guiding the operations of a business, and whose content changes as they move through those operations. A BEL type includes both an information model that captures, in either materialized or virtual form, all of the business-relevant data about entities of that type, and a lifecycle model, that specifies the possible ways an entity of that type might progress through the business by responding to events and invoking services, including human activities. Most previous work on BEL's has focused on the use of lifecycle models based on variants of finite state machines. This paper introduces the Guard-Stage-Milestone (GSM) meta-model for lifecycles, which is an evolution of the previous work on BEL's. GSM lifecycles are substantially more declarative than the finite state machine variants, and support hierarchy and parallelism within a single entity instance. The GSM operational semantics are based on a form of Event-Condition-Action (ECA) rules, and provide a basis for formal verification and reasoning. This paper provides an informal, preliminary introduction to the GSM approach, and briefly overviews selected research directions.

  12. A Framework for BIM-enabled Life-cycle Information Management of Construction Project

    OpenAIRE

    Xu, n; Ma, Ling; Ding, Lieyun

    2014-01-01

    BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM- based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organ...

  13. Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [McGill Univ., Montreal, QC (Canada

    2016-09-06

    This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).

  14. Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia

    Science.gov (United States)

    Nayono, S.; Lehmann, A.; Kopfmüller, J.; Lehn, H.

    2016-09-01

    To support the implementation of the IWRM-Indonesia process in a water scarce and sanitation poor region of Central Java (Indonesia), sustainability assessments of several technology options of water supply and sanitation were carried out based on the conceptual framework of the integrative sustainability concept of the German Helmholtz association. In the case of water supply, the assessment was based on the life-cycle analysis and life-cycle-costing approach. In the sanitation sector, the focus was set on developing an analytical tool to improve planning procedures in the area of investigation, which can be applied in general to developing and newly emerging countries. Because sanitation systems in particular can be regarded as socio-technical systems, their permanent operability is closely related to cultural or religious preferences which influence acceptability. Therefore, the design of the tool and the assessment of sanitation technologies took into account the views of relevant stakeholders. The key results of the analyses are presented in this article.

  15. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.; Lekov, A.; Chan, P.; Dunham Whitehead, C.; Meyers, S.; McMahon, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.

    2006-03-01

    In 2001, the US Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered. (author)

  16. Impact of Life-Cycle Stage and Gender on the Ability to Balance Work and Family Responsibilities.

    Science.gov (United States)

    Higgins, Christopher; And Others

    1994-01-01

    Examined impact of gender and life-cycle stage on three components of work-family conflict using sample of 3,616 respondents. For men, levels of work-family conflict were moderately lower in each successive life-cycle stage. For women, levels were similar in two early life-cycle stages but were significantly lower in later life-cycle stage.…

  17. Life-cycle costs for the Department of Energy waste management programmatic environmental impact statement (draft)

    International Nuclear Information System (INIS)

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1995-08-01

    The U.S. Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the National Environmental Policy Act, and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided in the main document, and tables showing different breakdowns of the cost estimates are provided in the Appendices A-D. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report

  18. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context

    International Nuclear Information System (INIS)

    Wang, Michael; Huo Hong; Arora, Salil

    2011-01-01

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers' grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  19. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael, E-mail: mqwang@anl.gov [Center for Transportation Research, Argonne National Laboratory, Argonne, IL 60439 (United States); Huo Hong [Institute of Energy, Environment, and Economics, Tsinghua University, Beijing, 100084 (China); Arora, Salil [Center for Transportation Research, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-10-15

    Products other than biofuels are produced in biofuel plants. For example, corn ethanol plants produce distillers' grains and solubles. Soybean crushing plants produce soy meal and soy oil, which is used for biodiesel production. Electricity is generated in sugarcane ethanol plants both for internal consumption and export to the electric grid. Future cellulosic ethanol plants could be designed to co-produce electricity with ethanol. It is important to take co-products into account in the life-cycle analysis of biofuels and several methods are available to do so. Although the International Standard Organization's ISO 14040 advocates the system boundary expansion method (also known as the 'displacement method' or the 'substitution method') for life-cycle analyses, application of the method has been limited because of the difficulty in identifying and quantifying potential products to be displaced by biofuel co-products. As a result, some LCA studies and policy-making processes have considered alternative methods. In this paper, we examine the available methods to deal with biofuel co-products, explore the strengths and weaknesses of each method, and present biofuel LCA results with different co-product methods within the U.S. context.

  20. 'Lifecycle cost' management used in ITER project

    International Nuclear Information System (INIS)

    Xing Chao; Wu Fengfeng

    2013-01-01

    'Lifecycle cost' management is a new kind of management. The International Nuclear Fusion Energy Program was managing by 'lifecycle cost' method. The cost and other factors associated with cost were under control by the method. In the future, the system engineering method should be focused in engineering management, paying equal attention to both evaluation and management, and strengthening the application of information system in the cost management to effectively improve the management level. (authors)

  1. Stochastic cost estimating in repository life-cycle cost analysis

    International Nuclear Information System (INIS)

    Tzemos, S.; Dippold, D.

    1986-01-01

    The conceptual development, the design, and the final construction and operation of a nuclear repository span many decades. Given this lengthy time frame, it is quite challenging to obtain a good approximation of the repository life-cycle cost. One can deal with this challenge by using an analytic method, the method of moments, to explicitly assess the uncertainty of the estimate. A series expansion is used to approximate the uncertainty distribution of the cost estimate. In this paper, the moment methodology is derived and is illustrated through a numerical example. The range of validity of the approximation is discussed. The method of moments is compared to the traditional stochastic cost estimating methods and found to provide more and better information on cost uncertainty. The tow methods converge to identical results as the number of convolved variables increases and approaches the range where the central limit theorem is valid

  2. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2007-01-01

    This paper describes a design process based on risk-informed probabilistic methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept uses probabilistic risk assessments to identify target reliabilities for facility systems and components. Target reliabilities are used in system and subsystem simulation analyses to determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The target reliabilities are also used for system based code margin exchange to reduce excessive level of margins to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. The paper includes a description of a risk informed life-cycle design process, a summary of work being done, and a discussion of work needed to implement the process. (author)

  3. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  4. The case for applying an early-lifecycle technology evaluation methodology to comparative evaluation of requirements engineering research

    Science.gov (United States)

    Feather, Martin S.

    2003-01-01

    The premise of this paper is taht there is a useful analogy between evaluation of proposed problem solutions and evaluation of requirements engineering research itself. Both of these application areas face the challenges of evaluation early in the lifecycle, of the need to consider a wide variety of factors, and of the need to combine inputs from multiple stakeholders in making thse evaluation and subsequent decisions.

  5. The lifecycle approach as a driver for innovative power contracting; Der Lifecycle-Ansatz als Treiber fuer innovatives Energie-Contracting

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Alfred [RWE Energiedienstleistungen GmbH (Germany)

    2011-07-01

    The sensible and efficient use of energy raises more and more the general awareness. The efficiency of projects will be influenced not only by the replacement of existing technology, but also mainly by the general conception of the design of decentralized energy supplies. The integration of waste heat from production-related processes as well as the use of all forms of energy such as electricity, heat, refrigeration and compressed air to meet the customer needs in a comprehensive energy plan increase the complexity and significantly the efficiencies. In the implementation of such projects the contracting is becoming increasingly important because the future gains in efficiency are taken into account directly. Contracting projects include the traditional total-cost-of-ownership approach (lifecycle approach). This approach considers the investment costs as well as the consequential costs of a project and shows how to optimize the total cost.

  6. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Tonini, Davide; Møller, Flemming

    2016-01-01

    assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household......Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial...... be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated....

  7. An approach to incorporate risks into a product's life-cycle assessment

    International Nuclear Information System (INIS)

    Pirhonen, P.

    1995-01-01

    Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products' life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can be compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied

  8. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  9. Application Analysis of BIM Technology in Metro Rail Transit

    Science.gov (United States)

    Liu, Bei; Sun, Xianbin

    2018-03-01

    With the rapid development of urban roads, especially the construction of subway rail transit, it is an effective way to alleviate urban traffic congestion. There are limited site space, complex resource allocation, tight schedule, underground pipeline complex engineering problems. BIM technology, three-dimensional visualization, parameterization, virtual simulation and many other advantages can effectively solve these technical problems. Based on the project of Shenzhen Metro Line 9, BIM technology is innovatively researched throughout the lifecycle of BIM technology in the context of the metro rail transit project rarely used at this stage. The model information file is imported into Navisworks for four-dimensional animation simulation to determine the optimum construction scheme of the shield machine. Subway construction management application platform based on BIM and private cloud technology, the use of cameras and sensors to achieve electronic integration, dynamic monitoring of the operation and maintenance of underground facilities. Make full use of the many advantages of BIM technology to improve the engineering quality and construction efficiency of the subway rail transit project and to complete the operation and maintenance.

  10. Life-cycle assessments in the South African water sector: A review ...

    African Journals Online (AJOL)

    Therefore, in South Africa it is important to promote the use of LCAs for the water sector in order to improve efficiency of processes and systems, but also to promote life-cycle based water footprinting and to include differentiated water consumption data into life-cycle inventories to make more efficient use of water as a ...

  11. Product-related research: how research can contribute to successful life-cycle management.

    Science.gov (United States)

    Sandner, Peter; Ziegelbauer, Karl

    2008-05-01

    Declining productivity with decreasing new molecular entity output combined with increased R&D spending is one of the key challenges for the entire pharmaceutical industry. In order to offset decreasing new molecular entity output, life-cycle management activities for established drugs become more and more important to maintain or even expand clinical indication and market opportunities. Life-cycle management covers a whole range of activities from strategic pricing to a next generation product launch. In this communication, we review how research organizations can contribute to successful life-cycle management strategies using phosphodiesterase 5 inhibitors as an example.

  12. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  13. A standard methodology for cost-effectiveness analysis of new environmental technologies

    International Nuclear Information System (INIS)

    Booth, S.R.; Trocki, L.K.; Bowling, L.

    1994-01-01

    This paper outlines a methodology that is being applied to assess the cost-effectiveness of new environmental technologies under development by EM-50, DOE. Performance, total system effects, and life-cycle costs are all considered in the methodology to compare new technologies with existing or base-line technologies. An example of performance characterization is given in the paper. Sources of data for cost estimates and technology characterizations also appear in the paper. The Department of Energy (DOE) is facing a massive clean up effort of waste sites that contain hazardous, radioactive, or mixed materials. DOE has recognized that improvements in environmental restoration and waste management methods can potentially save the taxpayers billions of dollars as older, less-effective technologies are displaced. Consequently, DOE has targeted significant funding to search for new technologies and to test and demonstrate them in rapid and cost-effective manner with the goal of applying them quickly to address environmental problems

  14. Life-cycle nitrogen trifluoride emissions from photovoltaics.

    Science.gov (United States)

    Fthenakis, Vasilis; Clark, Daniel O; Moalem, Mehran; Chandler, Phil; Ridgeway, Robert G; Hulbert, Forrest E; Cooper, David B; Maroulis, Peter J

    2010-11-15

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF₃, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF₃ in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF₃ and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF₃ at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF₃ in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO₂(eq)/kWh, which can be displaced within the first 1-4 months of the PV system life.

  15. Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies

    International Nuclear Information System (INIS)

    Diao, Qinghua; Sun, Wei; Yuan, Xinmei; Li, Lili; Zheng, Zhi

    2016-01-01

    Highlights: • LCCs of BEVs and CVs are compared, considering the effects of traffic policy. • BEVs are economically competitive with both national and local subsidies. • Traffic policies have a significant impact on the competitiveness of BEVs. • The promotion of electric vehicles should prioritize mega-cities. - Abstract: Electric vehicles produce zero tailpipe emissions during operation and have thus been considered a most promising method for providing mobility while reducing the greenhouse gas emissions of the transportation sector in the future. The life-cycle cost of electric vehicles has been widely studied to evaluate their competitiveness compared to conventional vehicles. However, the competitiveness of electric vehicles is highly dependent on government promotion policies, and the effects of non-economic incentive policies are currently difficult to include in life-cycle cost analysis. These non-economic effects are usually measured by the intangible cost. Traffic policies represent typical non-economic incentive policies. In China, electric vehicles are exempted from purchase restrictions (license plate control policy) and driving restrictions; thus, the intangible cost of traffic policies has significant effects on the comparison of electric vehicles and conventional vehicles. In this paper, from the consumers’ perspective, the intangible cost of purchase and driving restrictions is modeled and expressed in monetary terms; then, the impact of these non-economic incentive policies are compared with subsidies and other costs of vehicles. Thus, a more comprehensive comparison between electric and conventional vehicles can be provided. Using three selected typical battery electric vehicles and three correspondingly similarly sized conventional vehicles in China, the private life-cycle costs of battery electric vehicles and conventional vehicles are calculated and compared, a parametric variation analysis is performed, and the effects of economic

  16. Development and Use of Life-Cycle Analysis Capabilities To Evaluate, Select, and Implement Plans to Accelerate Hanford Site Cleanup

    International Nuclear Information System (INIS)

    Shay, Michael R.; Johnson, Wayne L.; Frey, Jeffrey A.

    2004-01-01

    Over the past year the U.S. Department of Energy (DOE) has made significant progress in developing and executing plans to transform and accelerate cleanup of the Hanford Site. Notable progress has been in the cleanup of the River Corridor, including the relocation of spent nuclear fuel to the Central Plateau, and the stabilization of plutonium materials. However, difficult work still remains. DOE has already accelerated the completion of the Environmental Management (EM) cleanup mission from 2070 to 2035 and believes its completion can be achieved even sooner by reducing excess conservatism, substantively changing technical strategy and management approach, and making new front-end investments. Work is well under way in the detailed planning, analyses and decision making required to implement and support the execution of the accelerated cleanup program at Hanford. Various cleanup, contract, and regulatory approaches are being explored. DOE has instituted a process that allows DOE to efficiently explore and test alternative cleanup approaches using a life-cycle model. This paper provides a means to share the planning approach and the life-cycle modeling and analysis tools used with other sites and interested parties. This paper will be of particular interest to analysts performing similar planning and evaluations at other sites as well as provide insight into the current status of Hanford's cleanup program and DOE's plans for the future

  17. Operational Changes in a Shared Resource Laboratory with the Use of a Product Lifecycle Management Approach: A Case Study.

    Science.gov (United States)

    Hexley, Philip; Smith, Victoria; Wall, Samantha

    2016-04-01

    Shared Resource Laboratories (SRLs) provide investigators access to necessary scientific and resource expertise to leverage complex technologies fully for advancing high-quality biomedical research in a cost-effective manner. At the University of Nebraska Medical Center, the Flow Cytometry Research Facility (FCRF) offered access to exceptional technology, but the methods of operation were outdated and unsustainable. Whereas technology has advanced and the institute has expanded, the operations at the facility remained unchanged for 35 yr. To rectify this, at the end of 2013, we took a product lifecycle management approach to affect large operational changes and align the services offered with the SRL goal of education, as well as to provide service to researchers. These disruptive operational changes took over 10 mo to complete and allowed for independent end-user acquisition of flow cytometry data. The results have been monitored for the past 12 mo. The operational changes have had a positive impact on the quality of research, increased investigator-facility interaction, reduced stress of facility staff, and increased overall use of the resources. This product lifecycle management approach to facility operations allowed us to conceive of, design, implement, and monitor effectively the changes at the FCRF. This approach should be considered by SRL management when faced with the need for operationally disruptive measures.

  18. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks

    Science.gov (United States)

    Lee, Dong-Yeon; Elgowainy, Amgad; Kotz, Andrew; Vijayagopal, Ram; Marcinkoski, Jason

    2018-07-01

    This study provides a comprehensive and up-to-date life-cycle comparison of hydrogen fuel cell electric trucks (FCETs) and their conventional diesel counterparts in terms of energy use and air emissions, based on the ensemble of well-established methods, high-fidelity vehicle dynamic simulations, and real-world vehicle test data. For the centralized steam methane reforming (SMR) pathway, hydrogen FCETs reduce life-cycle or well-to-wheel (WTW) petroleum energy use by more than 98% compared to their diesel counterparts. The reduction in WTW air emissions for gaseous hydrogen (G.H2) FCETs ranges from 20 to 45% for greenhouse gases, 37-65% for VOC, 49-77% for CO, 62-83% for NOx, 19-43% for PM10, and 27-44% for PM2.5, depending on vehicle weight classes and truck types. With the current U.S. average electricity generation mix, FCETs tend to create more WTW SOx emissions than their diesel counterparts, mainly because of the upstream emissions related to electricity use for hydrogen compression/liquefaction. Compared to G.H2, liquid hydrogen (L.H2) FCETs generally provide smaller WTW emissions reductions. For both G.H2 and L.H2 pathways for FCETs, because of electricity consumption for compression and liquefaction, spatio-temporal variations of electricity generation can affect the WTW results. FCETs retain the WTW emission reduction benefits, even when considering aggressive diesel engine efficiency improvement.

  19. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    Science.gov (United States)

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  20. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    International Nuclear Information System (INIS)

    Johnson, L.M.

    1997-01-01

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge

  1. A technology map to facilitate the process of mine modernization throughout the mining cycle

    OpenAIRE

    Jacobs, J.; Webber-Youngman, R.C.W.

    2017-01-01

    It is vital for organizations and individual operations to have access to a platform with technology-related information to consider for further research and development. This paper presents a technology map that was created with the purpose of facilitating mine modernization through technological advancement throughout the mining lifecycle/cycle. To achieve this, a platform was created to represent the mining life-cycle that incorporates each of the mining phases, i.e. exploration, project e...

  2. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    genetic algorithms (GAs), particle swarm optimisation (PSOs), and stochastic hill climbing to create a generally well-performing search heuristics. In the LifeCycle model, we consider candidate solutions and their fitness as individuals, which, based on their recent search progress, can decide to become...... either a GA individual, a particle of a PSO, or a single stochastic hill climber. First results from a comparison of our new approach with the single search algorithms indicate a generally good performance in numerical optimization....

  3. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  4. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    Science.gov (United States)

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  5. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    OpenAIRE

    Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

    2013-01-01

    A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

  6. System Architecture Modeling for Technology Portfolio Management using ATLAS

    Science.gov (United States)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  7. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  8. A Life-Cycle Model of Outmigration and Economic Assimilation of Immigrants in Germany

    NARCIS (Netherlands)

    Bellemare, C.

    2004-01-01

    This paper estimates a structural dynamic life-cycle model of outmigration where, in each period, immigrants choose whether to work in the host country, not to work but remain in the host country, or outmigrate.The model incorporates several features of existing life-cycle theories of outmigration

  9. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    Science.gov (United States)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  10. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with

  11. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  12. UTILITY OF A FULL LIFE-CYCLE COPEPOD BIOASSAY APPROACH FOR ASSESSMENT OF SEDIMENT-ASSOCIATED CONTAMINANT MIXTURES. (R825279)

    Science.gov (United States)

    AbstractWe compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...

  13. Cost/benefit analysis for selected waste minimization technologies at TA-55

    International Nuclear Information System (INIS)

    Boerigter, S.T.

    1996-01-01

    The TA-55 plutonium facility at LANL is one of the remaining plutonium-handling facilities in the United States with significant operational capability. In recent years a great deal of attention has been focused on the waste streams generated by this facility. Costs of properly treating these streams have risen significantly. This paper discusses the characterization of several proposed radioactive waste minimization technologies as a function of Return on Investment (ROI). In particular, the DOE Environmental Management program has identified a specific funding channel for such technology development activities, but this funding channel requires a restrictive definition of ROI. Here, a simple extension to the required ROI equation is used to capture the lifecycle ROI due to offsets in future capital charges resulting from present spending

  14. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  15. ModelHub: Towards Unified Data and Lifecycle Management for Deep Learning

    OpenAIRE

    Miao, Hui; Li, Ang; Davis, Larry S.; Deshpande, Amol

    2016-01-01

    Deep learning has improved state-of-the-art results in many important fields, and has been the subject of much research in recent years, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of data management, model sharing, and lifecycle management are largely ignored. Deep learning modeling lifecycle generates a rich set of data artifacts, such as learned parameters and tr...

  16. 77 FR 38766 - Proposed Information Collection; Comment Request; International Client Life-Cycle Multi-Purpose...

    Science.gov (United States)

    2012-06-29

    ... Request; International Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration...-0151, 0625-0215, 0625-0220, 0625-0228, and 0625- 0238. These collections include all client intake... trade events to U.S. organizations. The International Client Life-cycle Multi-Purpose Forms, previously...

  17. Using Teamcenter engineering software for a successive punching tool lifecycle management

    Science.gov (United States)

    Blaga, F.; Pele, A.-V.; Stǎnǎşel, I.; Buidoş, T.; Hule, V.

    2015-11-01

    The paper presents studies and researches results of the implementation of Teamcenter (TC) integrated management of a product lifecycle, in a virtual enterprise. The results are able to be implemented also in a real enterprise. The product was considered a successive punching and cutting tool, designed to materialize a metal sheet part. The paper defines the technical documentation flow (flow of information) in the process of constructive computer aided design of the tool. After the design phase is completed a list of parts is generated containing standard or manufactured components (BOM, Bill of Materials). The BOM may be exported to MS Excel (.xls) format and can be transferred to other departments of the company in order to supply the necessary materials and resources to achieve the final product. This paper describes the procedure to modify or change certain dimensions of sheet metal part obtained by punching. After 3D and 2D design, the digital prototype of punching tool moves to following lifecycle phase of the manufacturing process. For each operation of the technological process the corresponding phases are described in detail. Teamcenter enables to describe manufacturing company structure, underlying workstations that carry out various operations of manufacturing process. The paper revealed that the implementation of Teamcenter PDM in a company, improves efficiency of managing product information, eliminating time working with search, verification and correction of documentation, while ensuring the uniqueness and completeness of the product data.

  18. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  19. Stochastic renewal process models for estimation of damage cost over the life-cycle of a structure

    NARCIS (Netherlands)

    Pandey, Mahesh D.; van der Weide, J.A.M.

    2017-01-01

    In the life-cycle cost analysis of a structure, the total cost of damage caused by external hazards like earthquakes, wind storms and flood is an important but highly uncertain component. In the literature, the expected damage cost is typically analyzed under the assumption of either the

  20. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  1. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol

    International Nuclear Information System (INIS)

    Gopal, Anand R; Kammen, Daniel M

    2009-01-01

    Many biofuel standards, including California's recently adopted low carbon fuel standard, consider just one feedstock from one supplying country for the production of sugarcane ethanol: fresh mill-pressed cane juice from a Brazilian factory. While cane juice is the dominant feedstock for ethanol in most Brazilian factories, a large number of producers in Indonesia, India, and the Caribbean, and a significant number in Brazil, manufacture most of their ethanol from molasses, a low value co-product of raw sugar. Several producers in these countries have the capacity to export ethanol to California, but the GREET (from: greenhouse gas, regulated emissions and energy use in transportation) model, which is the LCA (lifecycle assessment) model of choice for most biofuel regulators including California, does not currently include this production pathway. We develop a modification to GREET to account for this pathway. We use the upstream and process lifecycle results from the existing GREET model for Brazilian ethanol to derive lifecycle greenhouse gas emissions for ethanol manufactured from any combination of molasses and fresh cane juice. We find that ethanol manufactured with only molasses as a feedstock with all other processes and inputs identical to those of the average Brazilian mill has a lifecycle GHG (greenhouse gas) rating of 15.1 gCO 2 - eq MJ -1 , which is significantly lower than the current California-GREET assigned rating of 26.6 gCO 2 - eq MJ -1 . Our model can be applied at any level of granulation from the individual factory to an industry-wide average. We examine some ways in which current sugarcane producers could inaccurately claim this molasses credit. We discuss methods for addressing this in regulation.

  2. DCC DIFFUSE Standards Frameworks: A Standards Path through the Curation Lifecycle

    Directory of Open Access Journals (Sweden)

    Sarah Higgins

    2009-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 DCC DIFFUSE Standards Frameworks aims to offer domain specific advice on standards relevant to digital preservation and curation, to help curators identify which standards they should be using and where they can be appropriately implemented, to ensure authoritative digital material. The Project uses the DCC Curation Lifecycle Model and Web 2.0 technology, to visually present standards frameworks for a number of disciplines. The Digital Curation Centre (DCC is actively working with a different relevant organisations to present searchable frameworks of standards, for a number of domains. These include digital repositories, records management, the geo-information sector, archives and the museum sector. Other domains, such as e-science, will shortly be investigated.

  3. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy

    DEFF Research Database (Denmark)

    Nugent, Daniel; Sovacool, Benjamin

    2014-01-01

    This paper critically screens 153 lifecycle studies covering a broad range of wind and solar photovoltaic (PV) electricity generation technologies to identify 41 of the most relevant, recent, rigorous, original, and complete assessments so that the dynamics of their greenhouse gas (GHG) emissions...... profiles can be determined. When viewed in a holistic manner, including initial materials extraction, manufacturing, use and disposal/decommissioning, these 41 studies show that both wind and solar systems are directly tied to and responsible for GHG emissions. They are thus not actually emissions free......, this article uncovers best practices in wind and solar design and deployment that can better inform climate change mitigation efforts in the electricity sector...

  4. Exploring the Client–AEC Interface in Building Lifecycle Integration

    Directory of Open Access Journals (Sweden)

    John M. Kamara

    2013-07-01

    Full Text Available The creation and management of buildings over their lifecycle involves the cooperation of many organizations, which broadly fall into a client domain and AEC (architecture, engineering, construction domain. While this mix of expertise is essential, the ineffective management of the boundaries between these organizations can undermine building lifecycle performance. This paper explores client–AEC interactions at the project development and handover stages, with a view to discovering insights into client–AEC interface management for effective building lifecycle integration (BLI. The concept of boundary objects provided the theoretical framework to discuss findings from two case studies on the project development phase of a private finance initiative project, and the asset development process in a repeat client organization. The findings suggest that there are different emphases in boundary crossing activities at different stages, with boundary roles that relate to decision-making and authority to commit resources being more relevant at the project development stage, whereas the need to explain meanings appear to be more relevant at the handover stage. AEC professionals in client organizations play a crucial role in bridging knowledge boundaries about buildings, but this professional/functional strand to BLI needs to be effectively managed alongside the organizational boundaries, since the authority to resource BLI efforts resides within organizations.

  5. Characterizing Product Lifecycle in Online Marketing: Sales, Trust, Revenue, and Competition Modeling

    OpenAIRE

    C, Santosh K; Mukherjee, Arjun

    2017-01-01

    Recent researches have seen an upsurge in the analysis of consumer reviews. Although, several dimensions have been explored, less is known on the temporal dynamics of events that happen over the lifecycle of online products. What are the dominant sales patterns? How are they affected by review count, rating, helpfulness and sentiment? How is trust characterized and what are its effects on sales and revenue? What happens during a market competition? When does a takeover/recovery happen and by ...

  6. Predictive Technology Management for the Identification of Future Development Trends and the Maximum Achievable Potential Based on a Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Michael Fries

    2017-07-01

    Full Text Available A company’s ability to find the most profitable technology is based on a precise forecast of achievement potential. Technology Management (TM uses forecasting models to analyse future potentials, e.g. the Gartner Hype Cycle, Arthur D. Little’s technology lifecycle or McKinsey’s S-curve model. All these methods are useful for qualitative analysis in the planning of strategic research and development (R&D expenses. In a new approach, exponential and logistic growth functions are used to identify and quantify characteristic stages of technology development. Innovations from electrical, mechanical and computer engineering are observed and projected until the year 2025. Datasets from different industry sectors are analysed, as the number of active Facebook users worldwide, the tensile yield point of flat bar steel, the number of transistors per unit area on integrated circuits, the fuel efficiency per dimension of passenger cars, and the energy density of Lithium-Ion cells. Results show the period of performance doubling and the forecast for the end of the technological achievement potential. The methodology can help to answer key entrepreneurial questions such as the search for alternatives to applied technologies, as well as identifying the risk of substitution technology.

  7. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2012-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  8. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2013-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  9. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  10. Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol

    International Nuclear Information System (INIS)

    Malça, João; Freire, Fausto

    2012-01-01

    Despite the significant growth in the number of published life-cycle assessments of biofuels, important aspects have not captured sufficient attention, namely soil carbon emissions from land use change (LUC) and uncertainty analysis. The main goal of this article is to evaluate the implications of different LUC scenarios and uncertainty in the life-cycle energy renewability efficiency and GHG (greenhouse gases) intensity of wheat-based bioethanol replacing gasoline. A comprehensive assessment of different LUC scenarios (grassland or cropland converted to wheat cultivation) and agricultural practices is conducted, which results in different carbon stock change values. The types of uncertainty addressed include parameter uncertainty (propagated into LC (life-cycle) results using Monte-Carlo simulation) and uncertainty concerning how bioethanol co-product credits are accounted for. Results show that GHG emissions have considerably higher uncertainty than energy efficiency values, mainly due to soil carbon emissions from direct LUC and N 2 O release from cultivated soil. Moreover, LUC dominates the GHG intensity of bioethanol. Very different GHG emissions are calculated depending on the LUC scenario considered. Conversion of full- or low-tillage croplands to wheat cultivation results in bioethanol GHG emissions lower than gasoline emissions, whereas conversion of grassland does not contribute to bioethanol GHG savings over gasoline in the short- to mid-term. -- Highlights: ► We address different LUC scenarios and uncertainty in the LCA of wheat bioethanol. ► GHG emissions have considerably higher uncertainty than energy efficiency values. ► Bioethanol contributes to primary energy savings over gasoline. ► Very different life-cycle GHG emissions are calculated depending on the LUC scenario. ► GHG savings over gasoline are only achieved if cropland is the reference land use.

  11. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  12. Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques

    Directory of Open Access Journals (Sweden)

    Lakkana Piewkhaow

    2016-03-01

    Full Text Available The methodology of life-cycle assessment was applied in order to evaluate the environmental performance of a hypothetical Saskatchewan lignite-fueled Integrated Gasification Combined Cycle (IGCC electricity generation, with and without pre-combustion carbon dioxide (CO2 capture from a full life-cycle perspective. The emphasis here is placed on environmental performance associated with air contaminants of the comparison between IGCC systems (with and without CO2 capture and a competing lignite pulverized coal-fired electricity generating station in order to reveal which technology offers the most positive environmental effects. Moreover, ambient air pollutant modeling was also conducted by using American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD air dispersion modeling to determine the ground-level concentration of pollutants emitted from four different electricity generating stations. This study assumes that all stations are located close to Estevan. The results showed a significant reduction in greenhouse gas (GHG emissions and acidification potential by applying both post-combustion and pre-combustion CO2 capture processes. The GHG emissions were found to have reduced by 27%–86%, and IGCC systems were found to compare favorably to pulverized coal systems. However, in other environmental impact categories, there are multiple environmental trade-offs depending on the capture technology used. In the case of post-combustion capture, it was observed that the environmental impact category of eutrophication potential, summer smog, and ozone depletion increased due to the application of the CO2 capture process and the surface mining coal operation. IGCC systems, on the other hand, showed the same tendency as the conventional coal-fired electricity generation systems, but to a lesser degree. This is because the IGCC system is a cleaner technology that produces lower pollutant emission levels than the electricity

  13. Role of Knowledge Management in Development and Lifecycle Management of Biopharmaceuticals.

    Science.gov (United States)

    Rathore, Anurag S; Garcia-Aponte, Oscar Fabián; Golabgir, Aydin; Vallejo-Diaz, Bibiana Margarita; Herwig, Christoph

    2017-02-01

    Knowledge Management (KM) is a key enabler for achieving quality in a lifecycle approach for production of biopharmaceuticals. Due to the important role that it plays towards successful implementation of Quality by Design (QbD), an analysis of KM solutions is needed. This work provides a comprehensive review of the interface between KM and QbD-driven biopharmaceutical production systems as perceived by academic as well as industrial viewpoints. A comprehensive set of 356 publications addressing the applications of KM tools to QbD-related tasks were screened and a query to gather industrial inputs from 17 major biopharmaceutical organizations was performed. Three KM tool classes were identified as having high relevance for biopharmaceutical production systems and have been further explored: knowledge indicators, ontologies, and process modeling. A proposed categorization of 16 distinct KM tool classes allowed for the identification of holistic technologies supporting QbD. In addition, the classification allowed for addressing the disparity between industrial and academic expectations regarding the application of KM methodologies. This is a first of a kind attempt and thus we think that this paper would be of considerable interest to those in academia and industry that are engaged in accelerating development and commercialization of biopharmaceuticals.

  14. Analysis of material recovery facilities for use in life-cycle assessment

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Levis, James W.; Damgaard, Anders

    2015-01-01

    Insights derived from life-cycle assessment of solid waste management strategies depend critically on assumptions, data, and modeling at the unit process level. Based on new primary data, a process model was developed to estimate the cost and energy use associated with material recovery facilities...... (MRFs), which are responsible for sorting recyclables into saleable streams and as such represent a key piece of recycling infrastructure. The model includes four modules, each with a different process flow, for separation of single-stream, dual-stream, pre-sorted recyclables, and mixed-waste. Each MRF...... type has a distinct combination of equipment and default input waste composition. Model results for total amortized costs from each MRF type ranged from $19.8 to $24.9 per Mg (1 Mg = 1 metric ton) of waste input. Electricity use ranged from 4.7 to 7.8 kWh per Mg of waste input. In a single-stream MRF...

  15. Role of radiologists in CAD life-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pietka, Ewa, E-mail: ewa.pietka@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Kawa, Jacek, E-mail: jacek.kawa@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Spinczyk, Dominik, E-mail: dominik.spinczyk@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Badura, Pawel, E-mail: pawel.badura@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Wieclawek, Wojciech, E-mail: wojciech.wieclawek@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Czajkowska, Joanna, E-mail: joanna.czajkowska@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland); Rudzki, Marcin, E-mail: marcin.rudzki@polsl.pl [Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, ul. Akademicka 16, 44-100 Gliwice (Poland)

    2011-05-15

    A modern CAD (computer-aided diagnosis) system development involves a multidisciplinary team whose members are experts in medical and technical fields. This study indicates the activities of medical experts at various stages of the CAD design, testing, and implementation. Those stages include a medical analysis of the diagnostic problem, data collection, image analysis, evaluation, and clinical verification. At each stage the physicians knowledge and experience are indispensable. The final implementation involves integration with the existing Picture Archiving and Communication System. The term CAD life-cycle describes an overall process of the design, testing, and implementation of a system that in its final form assists the radiologists in their daily clinical routine. Four CAD systems (applied to the bone age assessment, Multiple Sclerosis detection, lung nodule detection, and pneumothorax measurement) developed in our laboratory are given as examples of how consecutive stages are developed by the multidisciplinary team. Specific advantages of the CAD implementation that include the daily clinical routine as well as research and education activities are discussed.

  16. Role of radiologists in CAD life-cycle

    International Nuclear Information System (INIS)

    Pietka, Ewa; Kawa, Jacek; Spinczyk, Dominik; Badura, Pawel; Wieclawek, Wojciech; Czajkowska, Joanna; Rudzki, Marcin

    2011-01-01

    A modern CAD (computer-aided diagnosis) system development involves a multidisciplinary team whose members are experts in medical and technical fields. This study indicates the activities of medical experts at various stages of the CAD design, testing, and implementation. Those stages include a medical analysis of the diagnostic problem, data collection, image analysis, evaluation, and clinical verification. At each stage the physicians knowledge and experience are indispensable. The final implementation involves integration with the existing Picture Archiving and Communication System. The term CAD life-cycle describes an overall process of the design, testing, and implementation of a system that in its final form assists the radiologists in their daily clinical routine. Four CAD systems (applied to the bone age assessment, Multiple Sclerosis detection, lung nodule detection, and pneumothorax measurement) developed in our laboratory are given as examples of how consecutive stages are developed by the multidisciplinary team. Specific advantages of the CAD implementation that include the daily clinical routine as well as research and education activities are discussed.

  17. 77 FR 38582 - Proposed Information Collection; Comment Request; Domestic Client Life-Cycle Multi-Purpose Forms

    Science.gov (United States)

    2012-06-28

    ... Request; Domestic Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration. ACTION..., 0625-0237, and 0625-0238. These collections include all client intake, events/activities and export... Client Life-cycle Multi-Purpose Forms, previously titled Export Information Services Order Forms, are...

  18. A full lifecycle bioenergetic model for bluefin tuna.

    NARCIS (Netherlands)

    Jusup, M.; Klanjscek, T.; Matsuda, H.; Kooijman, S.A.L.M.

    2011-01-01

    We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and

  19. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Urgun Demirtas, Meltem [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  20. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A multi-objective decision framework for lifecycle investment

    NARCIS (Netherlands)

    Timmermans, S.H.J.T.; Schumacher, J.M.; Ponds, E.H.M.

    2017-01-01

    In this paper we propose a multi-objective decision framework for lifecycle investment choice. Instead of optimizing individual strategies with respect to a single-valued objective, we suggest evaluation of classes of strategies in terms of the quality of the tradeoffs that they provide. The

  2. Life-cycle of fuel peat

    International Nuclear Information System (INIS)

    Leijting, J.; Silvo, K.

    1998-01-01

    The share of peat in the primary energy supply in Finland in 1996 was about 6.5 % and the area used for peat production was about 535 km 2 , corresponding to about 0.5 % of the original peatland area of Finland. Fuel peat production is hence a significant form of using natural resources. About 1.4 % of the total peatland area has been reserved for peat production. Approximately 95 % of the peat excavated in Finland is used as fuel peat, and 5 % as horticultural peat. As raw material and fuel peat can be considered to be slowly renewable material. The environmental impacts of fuel peat production, transportation and peat combustion were evaluated in this research by methods used in life-cycle assessment. Preparation and production phases of peat production areas, fuel peat transportation to power plants, combustion of peat in power plants, and disposal of the ashes formed the basis for the investigation. Data collected in 1994-1996 was used as the basic material in the research. Special attention was paid to the estimation of greenhouse gas balance when using a virgin bog and the forest drained peatland areas as starting points. Post-production use of peatlands were not inspected in the life-cycle assessment. The work was carried out in 1997 in cooperation with Vapo Oy. The regional environmental centers, VTT and Helsinki and Joensuu Universities assisted significantly in acquisition of the material and planning of the work 3 refs

  3. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  4. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    Energy Technology Data Exchange (ETDEWEB)

    Dones, Roberto [Paul Scherrer Inst., Villigen (Switzerland); Frischknecht, Rolf [Federal Institute of Technology, Zurich (Switzerland)

    1998-04-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  5. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    International Nuclear Information System (INIS)

    Dones, Roberto; Frischknecht, Rolf

    1998-01-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  6. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  7. SURVEY REGARDING THE LEVEL OF PRODUCT LIFECYCLE MANAGEMENT IN MANUFACTURING COMPANIES

    Directory of Open Access Journals (Sweden)

    František Freiberg

    2011-12-01

    Full Text Available This article is about a questionnaire survey regarding the level of product lifecycle management in manufacturing companies in the Czech Republic. Based on the research available from foreign and domestic literature, a questionnaire survey was compiled and carried out with the purpose of applying the methods used in the life cycle management in selected areas: maintenance, information systems and the cost of the product lifecycle. The survey is carried out through a printed as well as an electronic questionnaire with additional structured interviews in selected manufacturing companies in the Czech Republic, Slovak Republic and Romania.

  8. The Data Warehouse Lifecycle Toolkit

    CERN Document Server

    Kimball, Ralph; Thornthwaite, Warren; Mundy, Joy; Becker, Bob

    2011-01-01

    A thorough update to the industry standard for designing, developing, and deploying data warehouse and business intelligence systemsThe world of data warehousing has changed remarkably since the first edition of The Data Warehouse Lifecycle Toolkit was published in 1998. In that time, the data warehouse industry has reached full maturity and acceptance, hardware and software have made staggering advances, and the techniques promoted in the premiere edition of this book have been adopted by nearly all data warehouse vendors and practitioners. In addition, the term "business intelligence" emerge

  9. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels – A sensitivity analysis approach

    International Nuclear Information System (INIS)

    Benoist, Anthony; Dron, Dominique; Zoughaib, Assaad

    2012-01-01

    Available results about energy and GreenHouse Gases (GHG) balances of biofuels from Life-Cycle Assessment (LCA) or life-cycle based studies present large discrepancies and thus, may lead to contradictory policy-making measures. This work reviewed seven important European LCA studies in a sensitivity analysis approach in order to get a better understanding of the roots of such a debate for three major biofuels in European production: rape methyl ester and ethanol from wheat and sugar beet. Global trends and variability of energy and GHG balances were depicted and completed with a sensitivity analysis carried out for each methodological and data parameter, which allowed making recommendations on the carrying out of LCA in a policy-making or a biofuels comparison context. Methodological choices, and especially allocation rule, appeared as key elements for results variation with influences on balances up to 149%; system expansion approach was identified as the most relevant rule since it integrates the market potential and the environmental interest of by-products promotion, which was pointed out as a crucial point for biofuels sustainability. The influence of local specificity for cultivation data was evaluated up to 167%, which puts too large geographical coverage in question. Modelling uncertainties due to N 2 O emissions from soils showed influences from 17 to 46%, which represents a crucial challenge for research and for LCA results accuracy. Approximations evaluation pointed out the need to integrate agricultural machinery into the assessment. Finally, land-use issue revealed its dramatic importance for LCA results and the need to define explicit scenarios for land-use alternatives.

  10. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  11. General Concerns Life-Cycle Design of Economical Ice-Resistant Structures in the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Zhang Da-yong

    2017-08-01

    Full Text Available In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.

  12. On-orbit servicing system assessment and optimization methods based on lifecycle simulation under mixed aleatory and epistemic uncertainties

    Science.gov (United States)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; van Tooren, Michel

    2013-06-01

    To assess the on-orbit servicing (OOS) paradigm and optimize its utilities by taking advantage of its inherent flexibility and responsiveness, the OOS system assessment and optimization methods based on lifecycle simulation under uncertainties are studied. The uncertainty sources considered in this paper include both the aleatory (random launch/OOS operation failure and on-orbit component failure) and the epistemic (the unknown trend of the end-used market price) types. Firstly, the lifecycle simulation under uncertainties is discussed. The chronological flowchart is presented. The cost and benefit models are established, and the uncertainties thereof are modeled. The dynamic programming method to make optimal decision in face of the uncertain events is introduced. Secondly, the method to analyze the propagation effects of the uncertainties on the OOS utilities is studied. With combined probability and evidence theory, a Monte Carlo lifecycle Simulation based Unified Uncertainty Analysis (MCS-UUA) approach is proposed, based on which the OOS utility assessment tool under mixed uncertainties is developed. Thirdly, to further optimize the OOS system under mixed uncertainties, the reliability-based optimization (RBO) method is studied. To alleviate the computational burden of the traditional RBO method which involves nested optimum search and uncertainty analysis, the framework of Sequential Optimization and Mixed Uncertainty Analysis (SOMUA) is employed to integrate MCS-UUA, and the RBO algorithm SOMUA-MCS is developed. Fourthly, a case study on the OOS system for a hypothetical GEO commercial communication satellite is investigated with the proposed assessment tool. Furthermore, the OOS system is optimized with SOMUA-MCS. Lastly, some conclusions are given and future research prospects are highlighted.

  13. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    International Nuclear Information System (INIS)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko; Christensen, Frans; Baun, Anders; Olsen, Stig I.

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key “lessons learned” from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches for using these methods together for NM: “LC-based RA” (traditional RA applied in a life-cycle perspective) and “RA-complemented LCA” (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods for NM-risk research efforts to date as the former is rather a continuation of normal RA according to standard assessment procedures (e.g., REACH). Both these approaches along with recommendations for using LCA and RA together for NM are similar to those made previously for chemicals, and thus, there does not appear to be much progress made specific for NM. We have identified one issue in particular that may be specific for NM when applying LCA and RA at this time: the need to establish proper dose metrics within both methods.

  14. An exploratory study of lead recovery in lead-acid battery lifecycle in US market: An evidence-based approach

    International Nuclear Information System (INIS)

    Genaidy, A.M.; Sequeira, R.; Tolaymat, T.; Kohler, J.; Rinder, M.

    2008-01-01

    Background: This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. Objectives: The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. Methods: A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. Results: The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. Concluding remarks: One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the

  15. Simulation and Assessment of Whole Life-Cycle Carbon Emission Flows from Different Residential Structures

    Directory of Open Access Journals (Sweden)

    Rikun Wen

    2016-08-01

    Full Text Available To explore the differences in carbon emissions over the whole life-cycle of different building structures, the published calculated carbon emissions from residential buildings in China and abroad were normalized. Embodied carbon emission flows, operations stage carbon emission flows, demolition and reclamation stage carbon emission flows and total life-cycle carbon emission flows from concrete, steel, and wood structures were obtained. This study is based on the theory of the social cost of carbon, with an adequately demonstrated social cost of carbon and social discount rate. Taking into consideration both static and dynamic situations and using a social discount rate of 3.5%, the total life-cycle carbon emission flows, absolute carbon emission and building carbon costs were calculated and assessed. The results indicated that concrete structures had the highest embodied carbon emission flows and negative carbon emission flows in the waste and reclamation stage. Wood structures that started the life-cycle with stored carbon had the lowest carbon emission flows in the operations stage and relatively high negative carbon emission flows in the reclamation stage. Wood structures present the smallest carbon footprints for residential buildings.

  16. Lifecycle assessment of fuel ethanol from sugarcane in Brazil

    DEFF Research Database (Denmark)

    Ometto, A. R.; Hauschild, Michael Zwicky; Roma, W. N. L.

    2009-01-01

    This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg......, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products...... fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving...

  17. Product Lifecycle Management as a Tool to Create Value in the Fashion System

    OpenAIRE

    D'Amico, Simona; Giustiniano, Luca; Nenni, Maria Elena; Pirolo, Luca

    2013-01-01

    The aim of this paper is to present the fashion system as a “cluster” and to evaluate the characteristics of Product Lifecycle Management (PLM) taking into account various factors, in particular the different approaches to dealing with market needs. More specifically, the “readyto- wear fashion” and “fast fashion” models will be presented and compared. The paper takes the Italian fashion system as the unit of analysis and assumes that consumer behavioural factors act in a non-predictable (i.e...

  18. Technology strategy and the balance sheet: 3 points to consider.

    Science.gov (United States)

    Waldron, David J

    2005-05-01

    Most hospitals use technology strategically to differentiate themselves from their competition. The rapid rate of change in healthcare technologies necessitates development of a technology life-cycle management program. Having access to flexible sources of capital appropriate to each category of technology assets allows liabilities and assets to be matched on a "balanced" balance sheet.

  19. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  20. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  1. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    Energy Technology Data Exchange (ETDEWEB)

    Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Sharp, Michael [Univ. of Tennessee, Knoxville, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeffries, Brien [Univ. of Tennessee, Knoxville, TN (United States); Nam, Alan [Univ. of Tennessee, Knoxville, TN (United States); Strong, Eric [Univ. of Tennessee, Knoxville, TN (United States); Tong, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Welz, Zachary [Univ. of Tennessee, Knoxville, TN (United States); Barbieri, Federico [Univ. of Tennessee, Knoxville, TN (United States); Langford, Seth [Univ. of Tennessee, Knoxville, TN (United States); Meinweiser, Gregory [Univ. of Tennessee, Knoxville, TN (United States); Weeks, Matthew [Univ. of Tennessee, Knoxville, TN (United States)

    2014-11-06

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning of component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for

  2. Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Julio [School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Zhao, Fu, E-mail: fzhao@purdue.edu [Division of Environmental and Ecological Engineering, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2014-11-06

    Rare-earth elements (REEs) are a group of 17 elements with similar chemical properties, including 15 in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties, REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage). However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life-cycle assessment (LCA) has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore, reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life-cycle perspective.

  3. Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review

    International Nuclear Information System (INIS)

    Navarro, Julio; Zhao, Fu

    2014-01-01

    Rare-earth elements (REEs) are a group of 17 elements with similar chemical properties, including 15 in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties, REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage). However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life-cycle assessment (LCA) has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore, reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life-cycle perspective.

  4. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Laurent, Alexis; Miseljic, Mirko

    2012-01-01

    of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key ‘‘lessons learned’’ from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches...... for using these methods together for NM: ‘‘LC-based RA’’ (traditional RA applied in a life-cycle perspective) and ‘‘RA-complemented LCA’’ (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods......While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance...

  5. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    Science.gov (United States)

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  6. Life-cycle environmental performance of renewable building materials in the context of residential construction : phase II research report : an extension to the 2005 phase I research report. Module N, Life-cycle inventory of manufacturing prefinished engineered wood flooring in the eastern United States

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2011-01-01

    This study summarizes the environmental performance of prefinished engineered wood flooring using life-cycle inventory (LCI) analysis. Using primary mill data gathered from manufacturers in the eastern United States and applying the methods found in Consortium for Research on Renewable Industrial Materials (CORRIM) Research Guidelines and International Organization of...

  7. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    Science.gov (United States)

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  8. Analysis of Science and Technology Trend Based on Word Usage in Digitized Books

    Science.gov (United States)

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2013-03-01

    Throughout mankind's history, forecasting and predicting future has been a long-lasting interest to our society. Many fortune-tellers have tried to forecast the future by ``divine'' items. Sci-fi writers have also imagined what the future would look like. However most of them have been illogical and unscientific. Meanwhile, scientists have also attempted to discover future trend of science. Many researchers have used quantitative models to study how new ideas are used and spread. Besides the modeling works, in the early 21st century, the rise of data science has provided another prospect of forecasting future. However many studies have focused on very limited set of period or age, due to the limitations of dataset. Hence, many questions still remained unanswered. Fortunately, Google released a new dataset named ``Google N-Gram Dataset.'' This dataset provides us with 5 million words worth of literature dating from 1520 to 2008, and this is nearly 4% of publications ever printed. With this new time-varying dataset, we studied the spread and development of technologies by searching ``Science and Technology'' related words from 1800 to 2000. By statistical analysis, some general scaling laws were discovered. And finally, we determined factors that strongly affect the lifecycle of a word.

  9. 10 CFR 455.64 - Life-cycle cost methodology.

    Science.gov (United States)

    2010-01-01

    ...-investment ratio is the ratio of the present value of net cost savings attributable to an energy conservation measure to the present value of the net increase in investment, maintenance and operating, and replacement... present value. The format for displaying life-cycle costs shall be a savings-to-investment ratio. (b) An...

  10. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes

    International Nuclear Information System (INIS)

    Mason, J. B.; McKibbin, J.; Ryan, K.; Schmoker, D.

    2003-01-01

    THOR Treatment Technologies, LLC (THOR) is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC to further develop, market, and deploy Studsvik's patented THORSM non-incineration, steam reforming waste treatment technology. This paper provides an overview of the THORSM steam reforming process as applied to the denitration and conversion of Department of Energy (DOE) tank wastes to an immobilized mineral form. Using the THORSM steam reforming technology to treat nitrate containing tank wastes could significantly benefit the DOE by reducing capital and life-cycle costs, reducing processing and programmatic risks, and positioning the DOE to meet or exceed its stakeholder commitments for tank closure. Specifically, use of the THORSM technology can facilitate processing of up to 75% of tank wastes without the use of vitrification, yielding substantial life-cycle cost savings

  11. Designing Research Services: Cross-Disciplinary Administration and the Research Lifecycle

    Science.gov (United States)

    Madden, G.

    2017-12-01

    The sheer number of technical and administrative offices involved in the research lifecycle, and the lack of shared governance and shared processes across those offices, creates challenges to the successful preservation of research outputs. Universities need a more integrated approach to the research lifecycle that allows us to: recognize a research project as it is being initiated; identify the data associated with the research project; document and track any compliance, security, access, and publication requirements associated with the research and its data; follow the research and its associated components across the research lifecycle; and finally recognize that the research has come to a close so we can trigger the various preservation, access, and communications processes that close the loop, inform the public, and promote the continued progress of science. Such an approach will require cooperation, communications, and shared workflow tools that tie together (often across many years) PIs, research design methodologists, grants offices, contract negotiators, central research administrators, research compliance specialists, desktop IT support units, server administrators, high performance computing facilities, data centers, specialized data transfer networks, institutional research repositories, institutional data repositories, and research communications groups, all of which play a significant role in the technical or administrative success of research. This session will focus on progress towards improving cross-disciplinary administrative and technical cooperation at Penn State University, with an emphasis on generalizable approaches that can be adopted elsewhere.

  12. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    Science.gov (United States)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  13. The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics

    NARCIS (Netherlands)

    Joosten, Ludovicus Antonius Josephus

    2001-01-01

    This thesis deals with the question: Which are promising options for decreasing material consumption, energy consumption and CO2 emissions in the lifecycle of plastics? The research described in this thesis mainly focuses on measures that change the material system, i.e. measures that change the

  14. Default, Framing and Spillover Effects: The Case of Lifecycle Funds in 401(k) Plans

    OpenAIRE

    Olivia S. Mitchell; Gary R. Mottola; Stephen P. Utkus; Takeshi Yamaguchi

    2009-01-01

    Important behavioral factors such as default and framing effects are increasingly being employed to optimize decision-making in a variety of settings, including individually-directed retirement plans. Yet such approaches may have unintended "spillover" effects, as we show with regard to the introduction of lifecycle funds in U.S. 401(k) plans. As anticipated, lifecycle funds do reshape individual portfolio choices through large default and framing effects. But unexpectedly, they also create a...

  15. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.

    Science.gov (United States)

    Naguleswaran, Arunasalam; Doiron, Nicholas; Roditi, Isabel

    2018-04-02

    Trypanosoma brucei brucei, the parasite causing Nagana in domestic animals, is closely related to the parasites causing sleeping sickness, but does not infect humans. In addition to its importance as a pathogen, the relative ease of genetic manipulation and an innate capacity for RNAi extend its use as a model organism in cell and infection biology. During its development in its mammalian and insect (tsetse fly) hosts, T. b. brucei passes through several different life-cycle stages. There are currently four life-cycle stages that can be cultured: slender forms and stumpy forms, which are equivalent to forms found in the mammal, and early and late procyclic forms, which are equivalent to forms in the tsetse midgut. Early procyclic forms show coordinated group movement (social motility) on semi-solid surfaces, whereas late procyclic forms do not. RNA-Seq was performed on biological replicates of each life-cycle stage. These constitute the first datasets for culture-derived slender and stumpy bloodstream forms and early and late procyclic forms. Expression profiles confirmed that genes known to be stage-regulated in the animal and insect hosts were also regulated in culture. Sequence reads of 100-125 bases provided sufficient precision to uncover differential expression of closely related genes. More than 100 transcripts showed peak expression in stumpy forms, including adenylate cyclases and several components of inositol metabolism. Early and late procyclic forms showed differential expression of 73 transcripts, a number of which encoded proteins that were previously shown to be stage-regulated. Moreover, two adenylate cyclases previously shown to reduce social motility are up-regulated in late procyclic forms. This study validates the use of cultured bloodstream forms as alternatives to animal-derived parasites and yields new markers for all four stages. In addition to underpinning recent findings that early and late procyclic forms are distinct life-cycle stages

  16. Innovative activity of high-technology companies as assessment and forecasting object

    Directory of Open Access Journals (Sweden)

    A. E. Sklyarov

    2016-01-01

    Full Text Available Innovation activities, as well as innovations, are closely related meanings, and like many others economical definitions, have a broad range of meanings. Main characteristics and attributes of innovation involves new or significantly improved product, that’s being used, or in other words, found its application, and innovative activities – activities focused on realization of innovations. In this article, innovations are mainly considered in terms of high-technology production, evidence from Russian space industry. There are 5 basic stages of lifecycle of innovative project in considered industry: initiation, development, realization, expansion, consumption. Practically, third or fourth, or even both of these stages, often missing because there is no need of them. R&D activities, or even further serial production, based on previous developments, is an innovation activity, because these activities are stages of innovative projects lifecycle itself. Then it seems legit, to draw a conclusion, that in terms of high-technology production, company’s primary activity equals innovative activity. Basic characteristics of innovative activity of high-technology companies as assessment and forecasting object involves high level of uncertainty at every stage of projects lifecycle, high dependency on funding level of this activity, and high level and erratic structure of risk. All the above mentioned, means that assessment and forecasting of innovative activity of high-technology companies, needs development of its own methodological tools for each industry.

  17. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  18. Application of lifecycle management to design of the UK geological disposal facility

    International Nuclear Information System (INIS)

    Rendell, Philip G.P.; O'Grady, Henry J.P.; Currie, Malcolm F.

    2011-01-01

    The Radioactive Waste Management Directorate (RWMD) of the United Kingdom's (UK) Nuclear Decommissioning Authority (NDA) has been given the responsibility for delivery of a Geological Disposal Facility (GDF) for the UK's higher activity wastes in accordance with government policy. As part of this process, the RWMD has developed a project lifecycle, which addresses the overall lifecycle of the GDF in terms of five phases, from Preparatory Studies through to Operation and finally Closure, and is developing a staged approach to engineering design. The Engineering Design Process is broken down into seven stages, encompassing option development, requirements definition and preliminary and detailed design through to 'design development during closure'. Each stage finishes with a formally defined milestone (a 'gate') comprising a technical review and a specific set of engineering deliverables. This paper describes the background to the UK GDF development programme, the organisational issues associated with the RWMD's evolving role, the relationship between the top-level UK Government's Managing Radioactive Waste Safely programme and the RWMD engineering lifecycle, the formal reviews, the milestones and the overall contribution this makes to RWMD organisational development and UK regulatory approval. It also describes some of the lessons learnt. (author)

  19. Lifecycle1: Flute (piccolo), oboe, clarinet (bass clarinet), bassoon ...

    African Journals Online (AJOL)

    Lifecycle1: Flute (piccolo), oboe, clarinet (bass clarinet), bassoon, horn, 2 percussionists, 2 violins and cello, Xhosa vocal ensemble and indigenous instruments. J Zaidel-Rudoulph. Abstract. No Abstract Journal for the Musical Arts in Africa Vol. 3 2007: pp. 80-81. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  20. Comprehensive Lifecycle for Assuring System Safety

    Science.gov (United States)

    Knight, John C.; Rowanhill, Jonathan C.

    2017-01-01

    CLASS is a novel approach to the enhancement of system safety in which the system safety case becomes the focus of safety engineering throughout the system lifecycle. CLASS also expands the role of the safety case across all phases of the system's lifetime, from concept formation to decommissioning. As CLASS has been developed, the concept has been generalized to a more comprehensive notion of assurance becoming the driving goal, where safety is an important special case. This report summarizes major aspects of CLASS and contains a bibliography of papers that provide additional details.

  1. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  2. An introduction to Life-cycle Thinking and Management

    DEFF Research Database (Denmark)

    Remmen, Arne

    This booklet descibes how enterprises can begin developing cleaner products based on a life-cycle perspective. It focuses on a simple approach to preventive environmental initiatives, where enterprises can begin at a level that matches their ambitions and their preconditions. The report is aimed...... at enterprises that, irregardless of size or sector, are interested in reducing environmental impacts from their products....

  3. Life-cycle analysis of the total Danish energy system. An assessment of the present Danish energy system and selected furture scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, B; Soerensen, B

    1997-01-01

    The promise of life-cycle analysis (LCA) is to enable the incorporation of environmental and social impacts into decision-making processes. The challenge is to do it on the basis of the always incomplete and uncertain data available, in a way that is sufficiently transparent to avoid that the modeller introduces any particular bias into the decision process, by the way of selecting and treating the incomplete data. The life-cycle analysis of the currently existing system is to be seen as a reference, against which alternative solutions to the same problem is weighed. However, as it takes time to introduce new systems, the alternative scenarios are for a future situation, which is chosen as the middle of the 21st century. The reason for using a 30-50 year period is a reflection on the time needed for a smooth transition to an energy system based on sources different from the ones used today, with implied differences all the way through the conversion and end-use system. A scenario will only be selected if it has been identified and if there is social support for it, so construction of more exotic scenarios by the researcher would only be meaningful, if its advantages are so convincing that an interest can be created and the necessary social support be forthcoming. One may say that the energy scenarios based on renewable energy sources are in this category, as they were identified by a minority group (of scientists and other individuals) and successfully brought to the attention of the public debate during 1970ies. In any case it should be kept in mind, that no claim of having identified the optimum solution can be made after assessing a finite number of scenarios. (EG) 88 refs.

  4. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  5. Development of Mathematical Model for Lifecycle Management Process of New Type of Multirip Saw Machine

    Directory of Open Access Journals (Sweden)

    B. V. Phung

    2017-01-01

    Full Text Available The subject of research is a new type of the multirip saw machine with circular reciprocating saw blades. This machine has a number of advantages in comparison with other machines of similar purpose. The paper presents an overview of different types of saw equipment and describes basic characteristics of the machine under investigation.Using the concept of lifecycle management of the considered machine in a unified information space is necessary to improve quality and competitiveness in the current production environment. In this lifecycle all the members, namely designers, technologists, customers, etc., have a philosophy to tend to optimize the overall machine design as much as possible. However, it is not always possible to achieve. Conversely, at the boundary between the phases there are several mismatching situations, if not even conflicting inconsistencies. For example, improvement of mass characteristics can lead to poor stability and rigidity of the saw blade. Machine output improvement through increasing frequency of the machine motor rotation, on the other side, results in reducing stable ability of the saw blades and so on.In order to provide a coherent framework for the collaborative environment between the members of the life cycle, the article presents a technique to construct a mathematical model that allows combining all different members’ requirements in the unified information model. The article also gives analysis of kinematic and dynamic behavior and technological characteristics of the machine. Describes in detail all the controlled parameters, functional constraints, and quality criteria of the machine under consideration. Depending on the controlled parameters, the analytical relationships formulate functional constraints and quality criteria of the machine. The proposed algorithm allows fast and exact calculation of all the functional constraints and quality criteria of the machine for a given vector of the control

  6. Technology Trends and Opportunities for Construction Industry and Lifecycle Management

    OpenAIRE

    Janson, Vidar

    2017-01-01

    Master's thesis in for Offshore Technology: Industrial Asset Management The purpose of the report is to highlight methods that can make it easier for the construction industry and industry in general to benefit from new technology. The report is intended as a reference to technological solutions that along with some techniques, can streamline workflow for multiple tasks in planning, design, and operation and maintenance management. The problems focused on is how to: • Simplify the procu...

  7. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  8. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  9. Life-cycle of the European compost worm Dendrobaena veneta ...

    African Journals Online (AJOL)

    1990-06-05

    Jun 5, 1990 ... that this species does have potential to combat organic waste problems. The complete life-cycle of D. veneta has not been documented yeL We therefore included this ... in plastic containers with gauze lids. Fifty grams of the stabilized culture medium per wonn was added when the experiment was started.

  10. Life-cycle stages of Dinophysis acuminata (Dinophyceae) in the ...

    African Journals Online (AJOL)

    Despite many observations of different life-cycle stages of Dinophysis species, the complete life history of the genus is still unknown owing to the difficulties encountered in culturing these species. The seasonal distribution of D. acuminata was followed at two offshore stations in the brackish Baltic Sea by means of in situ ...

  11. Understanding Cloud Requirements - A Supply Chain Lifecycle Approach

    OpenAIRE

    Lindner, Mark; McDonald, Fiona; Conway, Gerry; Curry, Edward

    2011-01-01

    Cloud Computing is offering competitive advantages to companies through flexible and, scalable access to computing resources. More and more companies are moving to cloud environments; therefore understanding the requirements for this process is both important and beneficial. The requirements for migrating from a traditional computing environment to a cloud hosting environment are discussed in this paper, considering this migration from a supply chain lifecycle perspective...

  12. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  13. The individual life-cycle, annuity market imperfections and economic growth

    NARCIS (Netherlands)

    Heijdra, Ben J.; Mierau, Jochen O.

    We study the effects of an annuity market imperfection on individual agents' life-cycle decisions and on the macroeconomic growth rate in an overlapping generations model with single-sector endogenous growth. Our model features both age-dependent mortality and labour productivity. We model imperfect

  14. Integrated assessment of bioelectricity technology options

    International Nuclear Information System (INIS)

    Thornley, Patricia; Upham, Paul; Huang, Ye; Rezvani, Sina; Brammer, John; Rogers, John

    2009-01-01

    Power generation from biomass is a sustainable energy technology which can contribute to substantial reductions in greenhouse gas emissions, but with greater potential for environmental, economic and social impacts than most other renewable energy technologies. It is important therefore in assessing bioenergy systems to take account of not only technical, but also environmental, economic and social parameters on a common basis. This work addresses the challenge of analysing, quantifying and comparing these factors for bioenergy power generation systems. A life-cycle approach is used to analyse the technical, environmental, economic and social impacts of entire bioelectricity systems, with a number of life-cycle indicators as outputs to facilitate cross-comparison. The results show that similar greenhouse gas savings are achieved with the wide variety of technologies and scales studied, but land-use efficiency of greenhouse gas savings and specific airborne emissions varied substantially. Also, while specific investment costs and electricity costs vary substantially from one system to another the number of jobs created per unit of electricity delivered remains roughly constant. Recorded views of stakeholders illustrate that diverging priorities exist for different stakeholder groups and this will influence appropriate choice of bioenergy systems for different applications

  15. Life-cycle of the European compost worm Dendrobaena veneta ...

    African Journals Online (AJOL)

    The life-cycle of Dendrobaena veneta was studied to assess the potential of this species in vermiculture. The development, growth and reproduction were investigated by rearing worms at 25°C on urine-free cattle manure with a moisture content of 80% over a period of 200 days. It was found that cocoons are produced at a ...

  16. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Wander, Michelle M. [Univ. of Illinois, Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  17. Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail

    OpenAIRE

    Chester, Mikhail; Horvath, Arpad

    2009-01-01

    The development of life-cycle energy and emissions factors for passenger transportation modes is critical for understanding the total environmental costs of travel. Previous life-cycle studies have focused on the automobile given its dominating share of passenger travel and have included only few life-cycle components, typically related to the vehicle (i.e., manufacturing, maintenance, end-of-life) or fuel (i.e., extraction, refining, transport). Chester (2009) provides the first comprehensiv...

  18. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  19. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis.

    Science.gov (United States)

    Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer

    2014-06-01

    Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.

  20. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  1. The life-cycle research productivity of mathematicians and scientists.

    Science.gov (United States)

    Diamond, A M

    1986-07-01

    Declining research productivity with age is implied by economic models of life-cycle human capital investment but is denied by some recent empirical studies. The purpose of the present study is to provide new evidence on whether a scientist's output generally declines with advancing age. A longitudinal data set has been compiled for scientists and mathematicians at six major departments, including data on age, salaries, annual citations (stock of human capital), citations to current output (flow of human capital), and quantity of current output measured both in number of articles and in number of pages. Analysis of the data indicates that salaries peak from the early to mid-60s, whereas annual citations appear to peak from age 39 to 89 for different departments with a mean age of 59 for the 6 departments. The quantity and quality of current research output appear to decline continuously with age.

  2. A Lifecycle Knowledge Management Approach to Support Decommissioning and Environmental Remediation Projects

    International Nuclear Information System (INIS)

    Borrmann, F.; Booth, P.

    2016-01-01

    Full text: KM is a discipline that has a long tradition in nuclear. Nevertheless, the necessity for and the specifics of KM in decommissioning and environmental remediation have come into focus but quite recently. On one hand driven by major decommissioning programs like the NDA approach in UK or the phase-out decision in Germany, on the other hand as a request from decommissioning practitioners. In this paper we would like to emphasize the necessity to develop lifecycle wide KM approaches and specific tools for KM in decommissioning and environmental remediation. Additionally, KM approaches must be adapted to the phases of the facilities lifecycle. Especially decommissioning and environmental remediation require different KM systems to cope with a quickly changing environment. (author

  3. Influence of selfing and maternal effects on life-cycle traits and dispersal ability in the herb Hypochaeris radicata (Asteraceae)

    NARCIS (Netherlands)

    Pico Mercader, F.X.; Ouborg, N.J.; Groenendael, J.M. van

    2004-01-01

    The ecological and evolutionary implications of dispersal are many. Pollination type and maternal effects may affect plant fitness traits, including life-cycle traits as well as dispersal ability. This study investigated the joint influence of pollination type and maternal effects on both life-cycle

  4. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.

    2015-01-01

    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  5. Ferry Lifecycle Cost Model for Federal Land Management Agencies : User's Guide.

    Science.gov (United States)

    2011-09-30

    The Ferry Lifecycle Cost Model (model) is a spreadsheet-based sketch planning tool that estimates capital, operating, and total cost for various vessels that could be used to provide ferry service on a particular route given known service parameters....

  6. Method of Data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment

    Science.gov (United States)

    Zhukovskiy, Y.; Koteleva, N.

    2017-10-01

    Analysis of technical and technological conditions for the emergence of emergency situations during the operation of electromechanical equipment of enterprises of the mineral and raw materials complex shows that when developing the basis for ensuring safe operation, it is necessary to take into account not only the technical condition, but also the non-stationary operation of the operating conditions of equipment, and the nonstationarity of operational operating parameters of technological processes. Violations of the operation of individual parts of the machine, not detected in time, can lead to severe accidents at work, as well as to unplanned downtime and loss of profits. That is why, the issues of obtaining and processing Big data obtained during the life cycle of electromechanical equipment, for assessing the current state of the electromechanical equipment used, timely diagnostics of emergency and pre-emergency modes of its operation, estimating the residual resource, as well as prediction the technical state on the basis of machine learning are very important. This article is dedicated to developing the special method of data storing, collection and aggregation for definition of life-cycle resources of electromechanical equipment. This method can be used in working with big data and can allow extracting the knowledge from different data types: the plants’ historical data and the factory historical data. The data of the plants contains the information about electromechanical equipment operation and the data of the factory contains the information about a production of electromechanical equipment.

  7. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  8. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  9. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  10. Design Buildings Optimally: A Lifecycle Assessment Approach

    KAUST Repository

    Hosny, Ossama

    2013-01-01

    This paper structures a generic framework to support optimum design for multi-buildings in desert environment. The framework is targeting an environmental friendly design with minimum lifecycle cost, using Genetic Algorithms (Gas). GAs function through a set of success measures which evaluates the design, formulates a proper objective, and reflects possible tangible/intangible constraints. The framework optimizes the design and categorizes it under a certain environmental category at minimum Life Cycle Cost (LCC). It consists of three main modules: (1) a custom Building InformationModel (BIM) for desert buildings with a compatibility checker as a central interactive database; (2) a system evaluator module to evaluate the proposed success measures for the design; and (3) a GAs optimization module to ensure optimum design. The framework functions through three levels: the building components, integrated building, and multi-building levels. At the component level the design team should be able to select components in a designed sequence to ensure compatibility among various components, while at the building level; the team can relatively locate and orient each individual building. Finally, at the multi-building (compound) level the whole design can be evaluated using success measures of natural light, site capacity, shading impact on natural lighting, thermal change, visual access and energy saving. The framework through genetic algorithms optimizes the design by determining proper types of building components and relative buildings locations and orientations which ensure categorizing the design under a specific category or meet certain preferences at minimum lifecycle cost.

  11. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    International Nuclear Information System (INIS)

    Boeser, C; Chwalek, T; Giffels, M; Kuznetsov, V; Wildish, T

    2014-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  12. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    Science.gov (United States)

    Boeser, C.; Chwalek, T.; Giffels, M.; Kuznetsov, V.; Wildish, T.

    2014-06-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future. The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services. It allows cross-system integration tests of all three components to be performed in controlled environments, without interfering with production services. In this paper we discuss the design and implementation of the LifeCycle agent. We describe how it is used for small-scale debugging and validation tests, and how we extend that to large-scale tests of whole groups of sub-systems. We show how the LifeCycle agent can emulate the action of operators, physicists, or software agents external to the system under test, and how it can be scaled to large and complex systems.

  13. The life-cycle of the compost worm Eisenia ietida (Oligochaeta)

    African Journals Online (AJOL)

    161. The life-cycle of the compost worm Eisenia ietida (Oligochaeta). J.M. Venter* and A.J. Reinecke. Department of Zoology, Potchefstroom University for CHE, Potchefstroom, 2520 Republic of South Africa. Received 29 January, 1987; accepted 29 January 1988. To determine the full potential of the compost worm Eisenia ...

  14. Environmental impact of producing hardwood lumber using life-cycle inventory

    Science.gov (United States)

    Richard D. Bergman; S.A. Bowe

    2007-01-01

    Using sustainable building materials is gaining a significant presence in the United States therefore proving sustainability claims are becoming increasingly more important. Showing wood products as green building materials is vital for the long-term productivity of the wood building industry. This study examined hardwood lumber manufacturing using Life-Cycle Inventory...

  15. The life-cycle of the compost worm (Oligochaeta) | Venter | African ...

    African Journals Online (AJOL)

    To determine the full potential of the compost worm Eisenia fetida as waste processor and as source of protein, the life-cycle of this species had to be studied thoroughly. The development, growth and reproduction of Eisenia fetida were studied on cattle manure under favourable conditions of moisture, temperature and ...

  16. From here to efficiency : time lags between the introduction of new technology and the achievement of fuel savings

    International Nuclear Information System (INIS)

    Mintz, M.; Vyas, A.; Wang, M.; Stodolsky, F.; Cuenca, R.; Gaines, L.

    1999-01-01

    In this paper, the energy savings of new technology offering significant improvements in fuel efficiency are tracked for over 20 years as vehicles incorporating that technology enter the fleet and replace conventional light-duty vehicles. Two separate analyses are discussed: a life-cycle analysis of aluminum-intensive vehicles and a fuel-cycle analysis of the energy and greenhouse gas emissions of double vs. triple fuel-economy vehicles. In both efforts, market-penetration modeling is used to simulate the rate at which new technology enters the new fleet, and stock-adjustment modeling is used to capture the inertia in turnover of new and existing current-technology vehicles. Together, these two effects--slowed market penetration and delayed vehicle replacement--increase the time lag between market introduction and the achievement of substantial energy savings. In both cases, 15-20 years elapse, before savings approach these levels

  17. A Life-Cycle Overlapping-Generations Model of the Small Open Economy

    NARCIS (Netherlands)

    Heijdra, Ben J.; Romp, Ward E.

    2005-01-01

    In this paper we construct an overlapping generations model for the small open economy incorporating a realistic description of the mortality process. With agedependent mortality, the typical life-cycle pattern of consumption and saving results from the maximizing behaviour of individual households.

  18. Examining temporal effects of lifecycle events on transport mode choice decisions

    NARCIS (Netherlands)

    Verhoeven, M.; Arentze, T.A.; Timmermans, H.J.P.; Waerden, van der P.J.H.J.

    2005-01-01

    This paper describes the first results of a study on the impact of events on transport mode choice decisions. An Internet-based survey was designed to collect data concerning seven structural lifecycle events. In addition, respondents answered questions about personal and household characteristics,

  19. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  20. QUALITY OF VOCATIONAL TRAINING THROUGH PRODUCT LIFECYCLE MANAGEMENT INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Carmen\tCHAŞOVSCHI

    2015-12-01

    Full Text Available It appears that, during the process of continuous training, there is a growing need from VET providers of a reliable and easy to use tool ensuring the quality of the services provided. Product life cycle active management, including the use of suitable PLM software, is or may be a tool for monitoring and controlling product portfolio of an educational institution. It can be recommended not only for reasons of quality assurance, but also to facilitate the development of products for greater transparency in strategic business areas, and not least, to maintain competitiveness of VET providers. The Q-PLM project analysed the core of the product life cycle management in other sectors, identified the relevant variables that have an impact on the life cycle of VET provision and, on this basis, developed the beta version of a IT tool (software for product life cycle management addressed to VET providers, and a user manual for product life cycle management. The Q-PLM software makes possible the identification of the training products lifecycle, the life cycle stages, the key success factors and indicators for the training products lifecycle, separately for each training program and for each college.

  1. Product Lifecycle Management as a Tool to Create Value in the Fashion System

    Directory of Open Access Journals (Sweden)

    Simona D’Amico

    2013-08-01

    Full Text Available The aim of this paper is to present the fashion system as a “cluster” and to evaluate the characteristics of Product Lifecycle Management (PLM taking into account various factors, in particular the different approaches to dealing with market needs. More specifically, the “readyto- wear fashion” and “fast fashion” models will be presented and compared. The paper takes the Italian fashion system as the unit of analysis and assumes that consumer behavioural factors act in a non-predictable (i.e., random way in the constantly changing social and cultural environment. Considering the internal complexity of a whole market system, a simplified system dynamics model is proposed.

  2. Life-cycle inventory of manufacturing hardwood lumber in Southeastern US

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2012-01-01

    Environmental impacts associated with the building industry have become of increasing importance. Materials and energy consumed during manufacture of building materials such as lumber affect a building’s environmental performance. This study determined environmental impacts of manufacturing hardwood lumber in the southeastern US using the life-cycle inventory method....

  3. The Lifecycle of Trust in Educational Leadership: An Ecological Perspective

    Science.gov (United States)

    Kutsyuruba, Benjamin; Walker, Keith

    2015-01-01

    As establishing and fostering trust are imperative activities for school leaders, cognizance of the fundamental importance of trust is essential for the leader's moral agency and ethical decision-making. In this article, we use an ecological perspective to uncover the dynamics of the lifecycle of trust as evident from extant literature on…

  4. Getting more out of biomedical documents with GATE's full lifecycle open source text analytics.

    Science.gov (United States)

    Cunningham, Hamish; Tablan, Valentin; Roberts, Angus; Bontcheva, Kalina

    2013-01-01

    This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/outcome models in the UK's largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors' own group) who work in text processing for biomedicine and other areas. GATE is available online under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis.

  5. Getting more out of biomedical documents with GATE's full lifecycle open source text analytics.

    Directory of Open Access Journals (Sweden)

    Hamish Cunningham

    Full Text Available This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/outcome models in the UK's largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors' own group who work in text processing for biomedicine and other areas. GATE is available online under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis.

  6. Rules of thumb in life-cycle savings models

    OpenAIRE

    Rodepeter, Ralf; Winter, Joachim

    1999-01-01

    We analyze life-cycle savings decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. The decision rules we explore are a simple Keynesian rule where consumption follows income; a simple consumption rule where only a fraction of positive income shocks is saved; a rule that corresponds to the permanent income hypothesis; and two rules that have been found in experimental studies. Using these rules, we simulate lif...

  7. An analysis of the dynamics of activity and travel needs in response to social network and life-cycle dynamics : a structural equation model

    NARCIS (Netherlands)

    Sharmeen, F.; Arentze, T.A.; Timmermans, H.J.P.

    2014-01-01

    Several studies in transportation literature have shown that in the short-term social networks play an important role in discretionary activity and travel decisions of an individual. However, social networks may not remain unchanged in the long term, particularly in response to life-cycle events

  8. Consumption and Wage Humps in a Life-cycle Model with Education

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Seifried, Frank Thomas

    The observed hump-shaped life-cycle pattern in individuals' consumption cannot be explained by the classical consumption-savings model. We explicitly solve a model with utility of both consumption and leisure and with educational decisions affecting future wages. We show optimal consumption is hump...

  9. Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2010-10-01

    Full Text Available Citing the myriad applications of nanotechnology, this paper emphasizes the need to conduct “life cycle” based assessments as early in the new product development process as possible, for a better understanding of the potential environmental and human health consequences of nanomaterials over the entire life cycle of a nano-enabled product. The importance of this reasoning is further reinforced through an illustrative case study on automotive exterior body panels, which shows that the perceived environmental benefits of nano-based products in the Use stage may not adequately represent the complete picture, without examining the impacts in the other life cycle stages, particularly Materials Processing and Manufacturing. Nanomanufacturing methods often have associated environmental and human health impacts, which must be kept in perspective when evaluating nanoproducts for their “greenness.” Incorporating life-cycle thinking for making informed decisions at the product design stage, combining life cycle and risk analysis, using sustainable manufacturing practices, and employing green chemistry alternatives are seen as possible solutions.

  10. The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan

    International Nuclear Information System (INIS)

    Nishijima, Daisuke

    2017-01-01

    This study analyzed the impact on the life-cycle CO_2 emissions derived from a specific durable good (i.e., household air conditioners in this study) of industrial technology changes, product lifetime changes, and energy efficiency improvements. I proposed a comprehensive structural decomposition analysis including two factors of average lifetime and energy efficiency trend of household air conditioners and applied the decomposition method to the Japanese environmental input-output tables of 1990, 1995, 2000, and 2005. The empirical results show that “Household air-conditioner sector” itself contributed to reducing life-cycle CO_2 emissions derived from household air conditioners, while other sectors such as “On-site power generation sector” and “Retail trade sector” contributed to increasing life-cycle CO_2 emissions derived from household air conditioners. I also conducted combined scenario analysis about reduction potential of product lifetime and energy efficiency of air conditioners and the results showed the reduction rate of energy efficiency necessary for maintain CO_2 emissions in 2005 at 1990 level on each average lifetime scenario. (e.g. if average lifetime of air conditioners is shortened by 1 year, energy efficiency of air conditioners have to be further improved by 20.6% from current level. - Highlights: • This study provides a decomposition framework for air conditioner’s CO_2 emissions. • Technology, product lifetime and energy efficiency are considered in the framework. • “Household air conditioner” sector contributed to reducing CO_2 emissions largely. • “On-site power generation” indirectly contributed to increasing CO_2 emissions. • I showed the improvement rates of energy efficiency to achieve a reduction target.

  11. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  12. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  13. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    Science.gov (United States)

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  14. ROLE OF UML SEQUENCE DIAGRAM CONSTRUCTS IN OBJECT LIFECYCLE CONCEPT

    Directory of Open Access Journals (Sweden)

    Miroslav Grgec

    2007-06-01

    Full Text Available When modeling systems and using UML concepts, a real system can be viewed in several ways. The RUP (Rational Unified Process defines the "4 + 1 view": 1. Logical view (class diagram (CD, object diagram (OD, sequence diagram (SD, collaboration diagram (COD, state chart diagram (SCD, activity diagram (AD, 2.Process view (use case diagram, CD, OD, SD, COD, SCD, AD, 3. Development view (package diagram, component diagram, 4. Physical view (deployment diagram, and 5. Use case view (use case diagram, OD, SD, COD, SCD, AD which combines the four mentioned above. With sequence diagram constructs we are describing object behavior in scope of one use case and their interaction. Each object in system goes through a so called lifecycle (create, supplement object with data, use object, decommission object. The concept of the object lifecycle is used to understand and formalize the behavior of objects from creation to deletion. With help of sequence diagram concepts our paper will describe the way of interaction modeling between objects through lifeline of each of them, and their importance in software development.

  15. Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Zirker, L.R.; Francfort, J.E.

    2003-01-31

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  16. A lifecycle management program for NPP turbine balance of plant

    International Nuclear Information System (INIS)

    Manabe, Jun; Yamakami, Katsuhiko; Hiraoka, Satoshi; Kawai, Toshinari

    2009-01-01

    A lifecycle management program, for turbine balance of plant of light water reactor units which had been operated for more than 20 years but still having a long intended residual life time, was proposed and implemented from the view point of system and equipment supplier. Here would be introduced the program executed for several utilities. The program consists of unit surveillance analyzing both operation and inspection data, degradation assessment for the equipment and prospecting for the future by planning the proper measures for the issues based on both technology and economy. The program is introduced exampling the generating power affected by main steam pressure reduction derived from the scale adhesion and degradation of equipment. Multidisciplinary optimum design for the replacement of the feedwater heaters, one of the items of the planning, is introduced. Additionally would be introduced the new concept maintenance support program, mainly applied to the units already replaced their principal machines and auxiliaries, configured with both the condition based maintenance system monitoring the trend of parameters of a component and the diagnosis of malfunctions ascertaining the equipment by analyzing and synthesizing operation parameters. (author)

  17. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  18. Application of Cloud Storage on BIM Life-Cycle Management

    Directory of Open Access Journals (Sweden)

    Lieyun Ding

    2014-08-01

    Full Text Available Because of its high information intensity, strong consistency and convenient visualization features, building information modelling (BIM has received widespread attention in the fields of construction and project management. However, due to large amounts of information, high integration, the need for resource sharing between various departments, the long time-span of the BIM application, challenges relating to data interoperability, security and cost all slow down the adoption of BIM. This paper constructs a BIM cloud storage concept system using cloud storage, an advanced computer technology, to solve the problem of mass data processing, information security, and cost problems in the existing application of BIM to full life-cycle management. This system takes full advantage of the cloud storage technique. Achievements are reached in four areas of BIM information management, involving security and licensing management, file management, work process management and collaborative management. The system expands the time and space scales, improves the level of participation, and reduces the cost of BIM. The construction of the BIM cloud storage system is one of the most important directions of the development of BIM, which benefits the promotion and further development of BIM to better serve construction and engineering project management.

  19. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  20. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Templeton, K.J.

    1996-01-01

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company's Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division's treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  1. Integration of distributed plant lifecycle data using ISO 15926 and Web services

    International Nuclear Information System (INIS)

    Kim, Byung Chul; Teijgeler, Hans; Mun, Duhwan; Han, Soonhung

    2011-01-01

    Highlights: → The ISO 15926 parts that provide implementation methods are under development. → A prototype of an ISO 15926-based data repository called a facade was implemented. → The prototype facade has the advantages of data interoperability and integration. → These are obtained through the features of ISO 15926 and Web services. - Abstract: Considering the financial, safety, and environmental risks related to industrial installations, it is of paramount importance that all relevant lifecycle information is readily available. Parts of this lifecycle information are stored in a plethora of computer systems, often scattered around the world and in many native formats and languages. These parts can create a complete, holistic set of lifecycle data only when they are integrated together. At present, no software is available that can integrate these parts into one coherent, distributed, and up-to-date set. The ISO 15926 standard has been developed, and in part is still under development, to overcome this problem. In this paper, the authors discuss a prototype of an ISO 15926-based data repository called a facade, and its Web services are implemented for storing the equipment data of a nuclear power plant and servicing the data to interested organizations. This prototype is for a proof-of-concept study regarding the ISO 15926 parts that are currently under development and that are expected to provide implementation methods for the integration of distributed plant systems.

  2. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    OpenAIRE

    Delucchi, Mark

    2003-01-01

    This report documents changes to the methods and data in a recently revised version of the greenhouse-gas emissions model originally documented in Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, ANL/ESD/TM-22, Volumes 1 and 2, Center for Transportation Research, Argonne National Laboratory, Argonne (ANL), Illinois (DeLuchi, 1991, 1993). The revised Lifecycle Emissions Model (LEM) calculates energy use, air-pollutant emissions, and CO2-equivalent emissions o...

  3. Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO2 emissions

    International Nuclear Information System (INIS)

    Marano, J.J.; Rogers, S.; Spath, P.L.; Mann, M.K.

    1995-01-01

    The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO 2 -capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO 2 emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels

  4. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  5. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    Science.gov (United States)

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  6. Hanford River Protection Project Enhanced Mission Planning Through Innovative Tools: Lifecycle Cost Modeling And Aqueous Thermodynamic Modeling - 12134

    International Nuclear Information System (INIS)

    Pierson, K.L.; Meinert, F.L.

    2012-01-01

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

  7. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  8. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    International Nuclear Information System (INIS)

    Shonder, John A.; Hughes, Patrick; Atkin, Erica

    2006-01-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipment prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.

  9. Integrating life-cycle environmental and economic assessment with transportation and land use planning.

    Science.gov (United States)

    Chester, Mikhail V; Nahlik, Matthew J; Fraser, Andrew M; Kimball, Mindy A; Garikapati, Venu M

    2013-01-01

    The environmental outcomes of urban form changes should couple life-cycle and behavioral assessment methods to better understand urban sustainability policy outcomes. Using Phoenix, Arizona light rail as a case study, an integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is developed to assess the changes to energy consumption and air emissions from transit-oriented neighborhood designs. Residential travel, commercial travel, and building energy use are included and the framework integrates household behavior change assessment to explore the environmental and economic outcomes of policies that affect infrastructure. The results show that upfront environmental and economic investments are needed (through more energy-intense building materials for high-density structures) to produce long run benefits in reduced building energy use and automobile travel. The annualized life-cycle benefits of transit-oriented developments in Phoenix can range from 1.7 to 230 Gg CO2e depending on the aggressiveness of residential density. Midpoint impact stressors for respiratory effects and photochemical smog formation are also assessed and can be reduced by 1.2-170 Mg PM10e and 41-5200 Mg O3e annually. These benefits will come at an additional construction cost of up to $410 million resulting in a cost of avoided CO2e at $16-29 and household cost savings.

  10. Developing Second Graders' Creativity through Literacy-Science Integrated Lessons on Lifecycles

    Science.gov (United States)

    Webb, Angela Naomi; Rule, Audrey C.

    2012-01-01

    Young children need to develop creative problem-solving skills to ensure success in an uncertain future workplace. Although most teachers recognize the importance of creativity, they do not always know how integrate it with content learning. This repeated measures study on animal and plant lifecycles examined student learning of vocabulary and…

  11. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  12. Oil Bypass Filter Technology Performance Evaluation - January 2003 Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Laurence R. Zirker; James E. Francfort

    2003-01-01

    This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

  13. Life-Cycle Analysis of Building Retrofits at the Urban Scale—A Case Study in United Arab Emirates

    Directory of Open Access Journals (Sweden)

    Afshin Afshari

    2014-01-01

    Full Text Available A consensus is forming among experts that the best way to achieve emissions’ reduction in the near and mid-term is increasing the demand-side energy efficiency—this is especially true in developing countries where the potential for demand reduction is significant and achievable at relatively lower cost. Enhanced energy efficiency also reduces energy costs and can result in a financial benefit to end-users, if the life-cycle value of energy savings offsets the upfront cost of implementing the measure. At the same time, reducing energy demand translates into lower pull for fossil fuel import and supply/distribution capacity expansion. An ideal candidate for the implementation of demand-side energy efficiency measures is the building sector, since it contributes to a large extent to the total amount of greenhouse gases (GHGs emitted worldwide. In most developing countries, the contribution of the building sector to the total national GHG emissions is significantly higher than the worldwide average. This is in part due to the lower level of industrial activity. Other drivers of the high emissions of the building sector are the inefficiency of the envelope and technical systems of the existing buildings, as well as harsh climatic conditions requiring the use of energy intensive air-conditioning equipment. The United Arab Emirates (UAE currently have the highest ecological footprint per capita in the world. The Emirate of Abu Dhabi, the focus of this study, can be expected to have a footprint that is even higher, being the largest economy and the major oil producer among the seven Emirates. In addition to the environmental consequences of unrestrained energy consumption, the fact that energy prices are heavily subsidized in Abu Dhabi results in a significant financial burden for the government. In the UAE and the Emirate of Abu Dhabi, the air-conditioning load in buildings is the ideal target for demand-side management because it constitutes more

  14. A Configuration System for Supportive Purposes in the Middle of a Product Lifecycle

    DEFF Research Database (Denmark)

    Christensen, Tim Teglgaard; Hvam, Lars

    2006-01-01

    for supportive purposes in the middle of a product lifecycle. By doing so a product in operation (including maintenance) could be administrated more effectively. At the same time it is a good opportunity to hand over important runtime information and thereby create a basis for general improvements......This paper presents a new way of using configuration systems. Traditionally, these systems have been use for decision support for sales. The aim is now to support "Middle-Of-Lifecycle" (MOL) processes, which means that the decision support system is targeted for the customers and the manufacturer...... (field services, technical support and after sales). This is especially interesting, as manufacturing companies are increasingly focusing their operations on service operations. The background for this idea is that companies often experience a lack of information between the initial sale...

  15. Trading away damage. Quantifying environmental leakage through consumption-based, life-cycle analysis

    International Nuclear Information System (INIS)

    Ghertner, D. Asher; Fripp, Matthias

    2007-01-01

    This research quantifies the extent to which the US has shifted the environmental impact associated with the goods it consumes to other countries through trade. To achieve this, we use a life-cycle, consumption-based approach to measure the environmental impacts embodied in US trade activities for global warming potential (GWP), energy, toxics, and the criteria air pollutants. We use these values to determine the amount of environmental impact 'leaked' from current, production-based approaches to analyzing national environmental trends for the years 1998-2004. We find that in 2004, with reasonable assumptions about the environmental intensity of imports and exports, this leakage exceeds 10% for all studied impacts, exceeds 20% for GWP, energy, and most criteria air pollutants, and exceeds 80% for lead emissions and toxics. By including the environmental impacts embodied in trade activities into national environmental accounts, we provide consumption-based, US per capita, environmental impacts, which we use to evaluate the relationship between income and environmental impact. We find evidence for rising per capita environmental impacts over time in the US, contra the Environmental Kuznets Curve. The paper concludes with a discussion of the implications for international environmental policy of increasing embodied emissions in trade. (author)

  16. Trading away damage. Quantifying environmental leakage through consumption-based, life-cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghertner, D. Asher; Fripp, Matthias [Energy and Resources Group University of California, Berkeley 310 Barrows Hall 3050 Berkeley, CA 94720-3050 (United States)

    2007-08-01

    This research quantifies the extent to which the US has shifted the environmental impact associated with the goods it consumes to other countries through trade. To achieve this, we use a life-cycle, consumption-based approach to measure the environmental impacts embodied in US trade activities for global warming potential (GWP), energy, toxics, and the criteria air pollutants. We use these values to determine the amount of environmental impact 'leaked' from current, production-based approaches to analyzing national environmental trends for the years 1998-2004. We find that in 2004, with reasonable assumptions about the environmental intensity of imports and exports, this leakage exceeds 10% for all studied impacts, exceeds 20% for GWP, energy, and most criteria air pollutants, and exceeds 80% for lead emissions and toxics. By including the environmental impacts embodied in trade activities into national environmental accounts, we provide consumption-based, US per capita, environmental impacts, which we use to evaluate the relationship between income and environmental impact. We find evidence for rising per capita environmental impacts over time in the US, contra the Environmental Kuznets Curve. The paper concludes with a discussion of the implications for international environmental policy of increasing embodied emissions in trade. (author)

  17. Cost analysis guidelines

    International Nuclear Information System (INIS)

    Strait, R.S.

    1996-01-01

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy's (DOE's) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies

  18. A comparative study of changes across the lifecycle of complex products in a variant and a customised industry

    DEFF Research Database (Denmark)

    Vianello, Giovanna; Ahmed-Kristensen, Saeema

    2012-01-01

    selected and change documentation analysed. The two cases selected were: 1) a variant design product, an aeroengine and 2) a customised product, a drilling equipment for the oil industry. The change requests were analysed to understand their distribution and motivation across the lifecycle of the two...... products. The findings show that change requests peak during the manufacturing phase and indicate that the motivation for change varies throughout a product’s lifecycle. The results provide insights into the factors to be considered during the development process in order to reduce the number of change...... requests from the later phases of a product’s lifecycle and to support designers to efficiently address the unavoidable change requests. The findings also show that knowledge is transferred implicitly in the customised design case, resulting in very little knowledge of changes transferred to the next...

  19. Market Timing, lifecycle stage and Seasoned Equity offerings

    Directory of Open Access Journals (Sweden)

    Vilma Sousa Ismael da Costa

    2014-08-01

    Full Text Available The tradeoff theory suggests that companies must issue shares to investments, when its leverage index is greater than your target rate, while the pecking order theory predicts that when capital offerings occur, the capital will be used to finance investments as the last source of funding, after their debt capacity have been exhausted. In contrast, the market timing theory predicts arguments that companies will adopt opportunistic behavior by issuing shares to take advantage of the high prices of the shares. Although the market timing theory has a significant influence on the decision to make a SEO, Brazilian literature contains little evidence about their economic importance and their effects. Thus, the present research aims to fill this gap in the Brazilian scenario. Specifically, we sought to assess the explanatory power of the relationship of market timing and the lifecycle theory in the issuance of SEO, which predicts that young companies with high market-to-book (MB and low operating cash flow sell shares to finance the investment, while mature companies, with low MB, pay dividends and fund investment internally. The sample was composed by non-financial companies with shares traded on BM&FBovespa. As main results, we can conclude that there is relationship between SEO and MB and size. On the other hand, were not observed evidence confirming the relationship between lifecycle stage and stock return, both in the previous year, and the year following the completion of the offer.

  20. Regulation of hydraulic fracturing in South Africa: a project life-cycle ...

    African Journals Online (AJOL)

    This note deals with the 2015 regulations pertaining to hydraulic fracturing in South Africa from a project life-cycle approach. A brief history of the fragmentation of the regulation of environmental and mining related matters is provided, followed by a discussion of the application of the 2015 regulations during the project life ...

  1. The college gender gap reversal : Insights from a life-cycle perspective

    NARCIS (Netherlands)

    Reijnders, L.S.M.

    2014-01-01

    Why have women surpassed men in terms of educational attainment, even though they appear to have less incentives to go to college? The aim of this paper is to set up a basic theoretical life-cycle model in order to study the potential role of gender differences in the benefit of education in

  2. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Science.gov (United States)

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  3. Conceptual study of nuclear power generation facilities life-cycle support versatile engineering database. Procedure of development and consideration of fundamental functions

    International Nuclear Information System (INIS)

    Endo, Hidetoshi

    2009-05-01

    International Atomic Energy Agency (IAEA) stands out the activity of the knowledge management of nuclear safety and the movement to introduce the idea of the life cycle management into the quality control of maintenance of the nuclear power generation facilities to assure the knowledge preservation and to succeed the technology of facilities. Japan Atomic Energy Agency (JAEA) also has such activities as the knowledge preservation of research and development, and related information. The facilities' performance reliability can be easily checked with the technology of data processing in the general industry and the results of the knowledge repository, transmitting technology and knowledge management by referring to the information and knowledge if the information and knowledge at each step of the life-cycle of facilities can be built. This report shows the strategy of the construction of the engineering database to support the life cycle of facilities and the basic function of the management system. (author)

  4. Supporting the full BPM life-cycle using process mining and intelligent redesign

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.; Siau, K.

    2007-01-01

    Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis by the FileNet P8

  5. Site-dependent life-cycle impact assessment of acidification

    DEFF Research Database (Denmark)

    Potting, Josepha Maria Barbara; Schöpp, W.; Blok, Kornelis

    1998-01-01

    The lack of spatial differentiation in current life-cycle impact assessment (LCIA) affects the relevance of the assessed impact. This article first describes a framework for constructing factors relating the region of emission to the acidifying impact on its deposition areas. Next, these factors...... are established for 44 European regions with the help of the RAINS model, an integrated assessment model that combines information on regional emission levels with information on long-range atmospheric transport to estimate patterns of deposition and concentration for comparison with critical loads and thresholds...

  6. Short-term planning and the life-cycle consumption puzzle

    OpenAIRE

    Frank Caliendo; David Aadland

    2004-01-01

    This paper provides a new explanation for the hump-shaped age- consumption profile observed in household data. Standard life-cycle models are based on an optimization problem that spans the entire life expectancy. Alternatively, we examine the consumption profile of an individual with a shorter planning horizon. The actual consumption profile is the envelope of a continuum of control problems because the agent’s short-term planning horizon continually slides along the time- scale, and the age...

  7. \\t Capital Planning and Investment Control (CPIC) for the Management of Information Technology Investments

    Science.gov (United States)

    Capital Planning and Investment Control (CPIC) is the Information Technology (IT) governance and management methodology in use at EPA for selecting, controlling and evaluating the performance of EPA IT investments throughout the full lifecycle.

  8. Effects of co-products on the life-cycle impacts of microalgal biodiesel.

    Science.gov (United States)

    Soratana, Kullapa; Barr, William J; Landis, Amy E

    2014-05-01

    Microalgal biodiesel production has been investigated for decades, yet it is not commercially available. Part of the problem is that the production process is energy and chemical intensive due, in part, to the high portion of microalgal biomass left as residues. This study investigated cradle-to-gate life-cycle environmental impacts from six different scenarios of microalgal biodiesel and its co-products. Ozone depletion, global warming, photochemical smog formation, acidification and eutrophication potentials were assessed using the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI). Monte Carlo Analysis was conducted to investigate the processes with major contribution in each impact category. The market opportunity for each co-product was examined based on supply, demand and prices of the products that could potentially be substituted by the co-products. The results indicated that the scenario with the least life-cycle environmental impacts in all the five impact categories with the highest net energy ratio was the scenario utilizing a multitude of co-products including bioethanol from lipid-extracted microalgae (LEA), biomethane (to produce electricity and heat) from simultaneous saccharification-fermentation (SSF) residues, land-applied material from SSF residue anaerobic digestion (AD) solid digestate, recycling nutrients from SSF residue AD liquid digestate and CO2 recovered from SSF process contributed. Decreasing the energy consumption of the centrifuge in the land-applied material production process and increasing the lipid content of microalgae can reduce environmental footprints of the co-products. The same scenario also had the highest total income indicating their potential as co-products in the market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An Exploration of the Relationship between Improvements in Energy Efficiency and Life-Cycle Energy and Carbon Emissions using the BIRDS Low-Energy Residential Database.

    Science.gov (United States)

    Kneifel, Joshua; O'Rear, Eric; Webb, David; O'Fallon, Cheyney

    2018-02-01

    To conduct a more complete analysis of low-energy and net-zero energy buildings that considers both the operating and embodied energy/emissions, members of the building community look to life-cycle assessment (LCA) methods. This paper examines differences in the relative impacts of cost-optimal energy efficiency measure combinations depicting residential buildings up to and beyond net-zero energy consumption on operating and embodied flows using data from the Building Industry Reporting and Design for Sustainability (BIRDS) Low-Energy Residential Database. Results indicate that net-zero performance leads to a large increase in embodied flows (over 40%) that offsets some of the reductions in operational flows, but overall life-cycle flows are still reduced by over 60% relative to the state energy code. Overall, building designs beyond net-zero performance can partially offset embodied flows with negative operational flows by replacing traditional electricity generation with solar production, but would require an additional 8.34 kW (18.54 kW in total) of due south facing solar PV to reach net-zero total life-cycle flows. Such a system would meet over 239% of operational consumption of the most energy efficient design considered in this study and over 116% of a state code-compliant building design in its initial year of operation.

  10. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  11. A community-driven open data lifecycle model based on literature and practice

    NARCIS (Netherlands)

    Veenstra, A.F. van; Broek, T.A. van den

    2015-01-01

    Government organizations around the world have developed open data strategies to increase transparency and enable re-use of their data. However, in practice, many organizations find the process of opening up their data cumbersome and they do not know which steps to take. Lifecycle models can guide

  12. Life cycle environmental performance of renewable building materials in the context of residential construction : phase II research report: an extension to the 2005 phase I research report. Module C, Life-cycle inventory of hardwood lumber manufacturing in the Northeast and North Central United States.

    Science.gov (United States)

    Richard Bergman; Scott A. Bowe

    2008-01-01

    The goal of this study was to find the environmental impact of hardwood lumber production through a gate-to-gate Life-Cycle Inventory (LCI) on hardwood sawmills in the northeast and northcentral (NE/NC) United States. Primary mill data was collected per CORRIM Research Guidelines (CORRIM 2001). Life-cycle analysis is beyond the scope of the study.

  13. Techno-Economic Evaluation of Technologies to Mitigate Greenhouse Gas Emissions at North American Refineries.

    Science.gov (United States)

    Motazedi, Kavan; Abella, Jessica P; Bergerson, Joule A

    2017-02-07

    A petroleum refinery model, Petroleum Refinery Life-cycle Inventory Model (PRELIM), that estimates energy use and CO 2 emissions was modified to evaluate the environmental and economic performance of a set of technologies to reduce CO 2 emissions at refineries. Cogeneration of heat and power (CHP), carbon capture at fluid catalytic cracker (FCC) and steam methane reformer (SMR) units, and alternative hydrogen production technologies were considered in the analysis. The results indicate that a 3-44% reduction in total annual refinery CO 2 emissions (2-24% reductions in the CO 2 emissions on a per barrel of crude oil processed) can be achieved in a medium conversion refinery that processes a typical U.S. crude slate obtained by using the technologies considered. A sensitivity analysis of the quality of input crude to a refinery, refinery configuration, and prices of natural gas and electricity revealed how the magnitude of possible CO 2 emissions reductions and the economic performance of the mitigation technologies can vary under different conditions. The analysis can help inform decision making related to investment decisions and CO 2 emissions policy in the refining sector.

  14. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    Science.gov (United States)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  15. Benefits of Building Information Modelling in the Project Lifecycle: Construction Projects in Asia

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-08-01

    Full Text Available Building Information Modelling (BIM is a process involving the creation and management of objective data with property, unique identity and relationship. In the Architecture, Engineering and Construction (AEC industry, BIM is adopted a lot in the lifecycle of buildings because of the high integration of information that it enables. Four-dimensional (4D computer-aided design (CAD has been adopted for many years to improve the construction planning process. BIM is adopted throughout buildings' lifecycles, in design, construction and operation. This paper presents five large-scale public and financial projects that adopt BIM in the design, construction and operational phases. Different uses of BIM are compared and contrasted in the context of the separate backgrounds. It is concluded that productivity is improved where BIM is used to enable easy sharing and integration of information and convenient collaboration.

  16. Interfirm cooperation in life-cycle oreinted environmental management: examples and a conceptual framework

    DEFF Research Database (Denmark)

    Sharfman, Mark P.; Shaft, Teresa; Anex, Robert

    Firms are under pressure to manage their environmental "footprint" throughout the life-cycle of their products. Integral to this is that suppliers and customers become part of the environmental management process through interorganizational collaboration. We present a conceptual framework...

  17. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    .... The DoD Acquisition Reform Goal 10 required DoD to define requirements and establish an implementation plan for a cost-accounting system that provides routine visibility into weapon system life-cycle...

  18. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    Science.gov (United States)

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  19. Development and validation of a partial life-cycle test with Potamopyrgus antipodarum

    DEFF Research Database (Denmark)

    Geiss, Cornelia; Holbech, Henrik; Kinnberg, Karin Lund

    endpoints. The present study aims to develop and validate the partial life-cycle test on the reproduction of P. antipodarum. Here, results from two pre-validation studies of the reproduction test with the chemicals tributyltin (TBT) with nominal concentrations of 10 - 400 ng TBT-Sn/L and cadmium...

  20. Life-cycle savings, bequest, and a diminishing impact of scale on growth

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Jensen, Martin Kaae

    2009-01-01

    The present paper shows that the savings motive critically affects the size and sign of scale effects in standard endogenous growth models. If the bequest motive dominates, the scale effect is positive. If the life-cycle motive dominates, the scale effect is ambiguous and may even be negative....

  1. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Science.gov (United States)

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  2. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives

  3. A core ontology for business process analysis

    NARCIS (Netherlands)

    Pedrinaci, C.; Domingue, J.; Alves De Medeiros, A.K.; Bechhofer, S.; Hauswirth, M.; Hoffmann, J.; Koubarakis, M.

    2008-01-01

    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot

  4. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  5. Comparisons of four categories of waste recycling in China’s paper industry based on physical input–output life-cycle assessment model

    International Nuclear Information System (INIS)

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-01-01

    Highlights: ► Using crop straws and wood wastes for paper production should be promoted. ► Bagasse and textile waste recycling should be properly limited. ► Imports of scrap paper should be encouraged. ► Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input–output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China’s paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  6. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  7. A Family Life-Cycle Approach to the Socioeconomic Attainment of Working Women.

    Science.gov (United States)

    Hanson, Sandra L.

    1983-01-01

    Examined married women's (N=453) social and economic labor market attainments from a family life-cycle perspective using a longitudinal study. Findings suggest that the effects of early family experiences on attainment are larger and more permanent than those of later family experiences and actually increase over time. (Author/JAC)

  8. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    CERN Document Server

    Wildish, Anthony

    2013-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future.The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services (PhEDEx, DBS, DAS). It allows cross-system integration tests of all three components to be performed in contr...

  9. Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Schöpp, Wolfgang; Verkuijlen, Evert; Heijungs, Reinout; Reijnders, Lucas

    2001-01-01

    Simple models are often used to assess the potential impact of acidifying and eutrophying substances released during the life cycle of products. As fate, background depositions, and ecosystem sensitivity are not included in these models, environmental life-cycle assessment of products (LCA) may

  10. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char

  11. Initial investment to 3D printing technologies in a construction company

    Directory of Open Access Journals (Sweden)

    Cernohorsky, Zdenek

    2017-06-01

    Full Text Available This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot project. In the second part, there will be a more detailed discussion of the pilot project, more about each activities which should be its parts and which should analyze cost categories. These categories will be about particular lifecycle stages of the pilot project. In the third part, a summary is done. This article could be a handout for a construction company in a term of an initial investment to 3D printing.

  12. Benefit-Risk Analysis for Decision-Making: An Approach.

    Science.gov (United States)

    Raju, G K; Gurumurthi, K; Domike, R

    2016-12-01

    The analysis of benefit and risk is an important aspect of decision-making throughout the drug lifecycle. In this work, the use of a benefit-risk analysis approach to support decision-making was explored. The proposed approach builds on the qualitative US Food and Drug Administration (FDA) approach to include a more explicit analysis based on international standards and guidance that enables aggregation and comparison of benefit and risk on a common basis and a lifecycle focus. The approach is demonstrated on six decisions over the lifecycle (e.g., accelerated approval, withdrawal, and traditional approval) using two case studies: natalizumab for multiple sclerosis (MS) and bedaquiline for multidrug-resistant tuberculosis (MDR-TB). © 2016 American Society for Clinical Pharmacology and Therapeutics.

  13. Assessing software quality at each step of its life-cycle to enhance reliability of control systems

    International Nuclear Information System (INIS)

    Hardion, V.; Buteau, A.; Leclercq, N.; Abeille, G.; Pierre-Joseph, Z.; Le, S.

    2012-01-01

    A distributed software control system aims to enhance the upgrade ability and reliability by sharing responsibility between several components. The disadvantage is that it makes it harder to detect problems on a significant number of modules. With Kaizen in mind we have chosen to continuously invest in automation to obtain a complete overview of software quality despite the growth of legacy code. The development process has already been mastered by staging each life-cycle step thanks to a continuous integration server based on JENKINS and MAVEN. We enhanced this process, focusing on 3 objectives: Automatic Test, Static Code Analysis and Post-Mortem Supervision. Now, the build process automatically includes a test section to detect regressions, incorrect behaviour and integration incompatibility. The in-house TANGOUNIT project satisfies the difficulties of testing distributed components such as Tango Devices. In the next step, the programming code has to pass a complete code quality check-up. The SONAR quality server has been integrated in the process, to collect each static code analysis and display the hot topics on summary web pages. Finally, the integration of Google BREAKPAD in every TANGO Devices gives us essential statistics from crash reports and enables us to replay the crash scenarios at any time. We have already gained greater visibility on current developments. Some concrete results will be presented including reliability enhancement, better management of subcontracted software development, quicker adoption of coding standards by new developers and understanding of impacts when moving to a new technology. (authors)

  14. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  15. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  16. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  17. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Bloom, G.A.; Kuchynka, D.J.

    1994-01-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper

  18. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Fu, Ran; Chung, Donald; Horowitz, Kelsey; Remo, Timothy; Feldman, David; Margolis, Robert

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  19. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    Science.gov (United States)

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  1. 76 FR 56413 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-13

    ... intends to calculate three metrics. Life-cycle cost. Simple payback period. Cash flow. Life-cycle cost... exceed costs) will be considered cost effective. The payback period and cash flow analyses provide... of LCC analysis is the summing of costs and benefits over multiple years, it requires that cash flows...

  2. Development of hybrid lifecycle cost estimating tool (HLCET) for manufacturing influenced design tradeoff

    Science.gov (United States)

    Sirirojvisuth, Apinut

    In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this

  3. Implementation of a Cost-Accounting System for Visibility of Weapon Systems Life-Cycle Costs

    National Research Council Canada - National Science Library

    Ugone, Mary

    2001-01-01

    ... costs through activity-based costing and management. The system must deliver timely, integrated data for management purposes to permit understanding of total weapon costs, provide a basis for estimating costs of future systems, and feed other tools for life-cycle cost management.

  4. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  5. Versions in the lifecycle of academic papers user requirements and guidelins fo digital repositories

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    An academic research paper evolves through various stages during its lifecycle, for example from early conference presentation through working paper to final published refereed journal article. Different versions can co-exist in publicly available electronic form. Finding out researchers’ attitudes towards storing, labelling and making accessible these different versions, both of their own and of their peers’ work is at the heart of the VERSIONS Project, funded by the JISC under the Digital Repositories Programme. The project addresses the issues and uncertainties relating to versions of academic papers in digital repositories. By including a user requirements study, the project will clarify the needs of researchers and other stakeholders for deposit, storage and accessibility of different versions in the lifecycle of a digital resource. In addition to looking at user needs, the project will analyse researchers’ current practice in terms of retention of author copies of their own material. This investig...

  6. Engineering Documentation Control Handbook Configuration Management and Product Lifecycle Management

    CERN Document Server

    Watts, Frank B

    2011-01-01

    In this new edition of his widely-used Handbook, Frank Watts, widely recognized for his significant contributions to engineering change control processes, provides a thoroughly practical guide to the implementation and improvement of Engineering Documentation Control (EDC), Product Lifecycle Management and Product Configuration Management (CM). Successful and error-free implementation of EDC/CM is critical to world-class manufacturing. Huge amounts of time are wasted in most product manufacturing environments over EDC/CM issues such as interchangeability, document release and change control -

  7. A Patent Analysis for Sustainable Technology Management

    Directory of Open Access Journals (Sweden)

    Junhyeog Choi

    2016-07-01

    Full Text Available Technology analysis (TA is an important issue in the management of technology. Most R&D (Research & Development policies have depended on diverse TA results. Traditional TA results have been obtained through qualitative approaches such as the Delphi expert survey, scenario analysis, or technology road mapping. Although they are representative methods for TA, they are not stable because their results are dependent on the experts’ knowledge and subjective experience. To solve this problem, recently many studies on TA have been focused on quantitative approaches, such as patent analysis. A patent document has diverse information of developed technologies, and thus, patent is one form of objective data for TA. In addition, sustainable technology has been a big issue in the TA fields, because most companies have their technological competitiveness through the sustainable technology. Sustainable technology is a technology keeping the technological superiority of a company. So a country as well as a company should consider sustainable technology for technological competition and continuous economic growth. Also it is important to manage sustainable technology in a given technology domain. In this paper, we propose a new patent analysis approach based on statistical analysis for the management of sustainable technology (MOST. Our proposed methodology for the MOST is to extract a technological structure and relationship for knowing the sustainable technology. To do this, we develop a hierarchical diagram of technology for finding the causal relationships among technological keywords of a given domain. The aim of the paper is to select the sustainable technology and to create the hierarchical technology paths to sustainable technology for the MOST. This contributes to planning R&D strategy for the sustainability of a company. To show how the methodology can be applied to real problem, we perform a case study using retrieved patent documents related to

  8. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    Science.gov (United States)

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  9. Comparative life-cycle assessment of a small wind turbine for residential off-grid use

    International Nuclear Information System (INIS)

    Fleck, Brian; Huot, Marc

    2009-01-01

    As the popularity of renewable energy systems grows, small wind turbines are becoming a common choice for off-grid household power. However, the true benefits of such systems over the traditional internal combustion systems are unclear. This study employs a life-cycle assessment methodology in order to directly compare the environmental impacts, net-energy inputs, and life-cycle cost of two systems: a stand-alone small wind turbine system and a single-home diesel generator system. The primary focus for the investigation is the emission of greenhouse gases (GHG) including CO 2 , CH 4 , and N 2 O. These emissions are calculated over the life-cycle of the two systems which provide the same amount of energy to a small off-grid home over a twenty-year period. The results show a considerable environmental benefit for small-scale wind power. The wind generator system offered a 93% reduction of GHG emissions when compared to the diesel system. Furthermore, the diesel generator net-energy input was over 200 MW, while the wind system produced an electrical energy output greater than its net-energy input. Economically, the conclusions were less clear. The assumption was made that diesel fuel cost over the next twenty years was based on May 2008 prices, increasing only in proportion to inflation. As such, the net-present cost of the wind turbine system was 14% greater than the diesel system. However, a larger model wind turbine would likely benefit from the effects of the 'economy of scale,' producing superior results both economically and environmentally. (author)

  10. Economic analysis of direct hydrogen PEM fuel cells in three near-term markets

    International Nuclear Information System (INIS)

    Mahadevan, K.; Stone, H.; Judd, K.; Paul, D.

    2007-01-01

    Direct hydrogen polymer electrolyte membrane fuel cells (H-PEMFCs) offer several near-term opportunities including backup power applications in state and local agencies of emergency response; forklifts in high throughput distribution centers; and, airport ground support equipment. This paper presented an analysis of the market requirements for introducing H-PEMFCs successfully, as well as an analysis of the lifecycle costs of H-PEMFCs and competing alternatives in three near-term markets. It also used three scenarios as examples of the potential for market penetration of H-PEMFCs. For each of the three potential opportunities, the paper presented the market requirements, a lifecycle cost analysis, and net present value of the lifecycle costs. A sensitivity analysis of the net present value of the lifecycle costs and of the average annual cost of owning and operating each of the H-PEMFC opportunities was also conducted. It was concluded that H-PEMFC-powered pallet trucks in high-productivity environments represented a promising early opportunity. However, the value of H-PEMFC-powered forklifts compared to existing alternatives was reduced for applications with lower hours of operation and declining labor rates. In addition, H-PEMFC-powered baggage tractors in airports were more expensive than battery-powered baggage tractors on a lifecycle cost basis. 9 tabs., 4 figs

  11. A life-cycle comparison of alternative automobile fuels.

    Science.gov (United States)

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  12. A Life-Cycle Comparison of Alternative Automobile Fuels.

    Science.gov (United States)

    MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable

  13. The Lifecycle of a South African Non-governmental Organisation: Primary Science Programme, 1983-1999.

    Science.gov (United States)

    Harvey, Stephen; Peacock, Alan

    2001-01-01

    Traces the lifecycle of the Primary Science Programme (PSP), 1983-99, a representative South African nongovernmental organization. Shows how the social and economic environment shaped PSP development and demise. Highlights tensions between quality versus quantity, subject versus holistic focus, and participatory versus authoritarian management…

  14. Life-Cycle Inventory and Costs of Different Car Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Alexander

    2001-12-01

    This report contains two internal reports that document the data collected for a Ph.D. thesis (Roeder, A.: Integration of Life-Cycle Assessment and Energy Planning Models for the Evaluation of Car Power trains and Fuels, Dissertation ETH 14291, Zuerich/Villigen 2001). The aim of this thesis is a comparison of different car power trains and corresponding fuels under economic and ecological aspects. Such an analysis requires, of course, large amounts of data, and data mining was actually the most time-consuming part of the thesis. However, including a detailed documentation into the thesis would have made the latter far too bulky, so we decided to compile all data documentation into a single background document: the PSI report you are just reading. This report consists of two parts: The first part contains the life-cycle inventory (LCI), while the second part compiles the economic data. The LCI is based on the work of R. Frischknecht et al. that elaborated a very detailed inventory of energy systems in Switzerland (Frischknecht et al.: Oekoinventare von Energiesystemen, 3rd ed., BEW, Bern 1996). Processes already analysed in this reference (e.g. provision of most fossil energy carriers, basic processes such as standard materials or transport processes) have not been described here unless data quality requirements made a re-evaluation necessary (e.g. production of platinum- group metaIs). Within this report, you will find a description of the methodology used, the documentation of all input data, and a discussion of results. Numeric results can be found in the Appendix of the first part. The second part (that deals with the costs) is relatively short, compared to the LCI part. This is mainly because in many cases there was no need to analyse previous steps in a fuel chain or production chain in more detail: when the costs for natural gas for a European customer are known, it is clear that part of these costs is for exploration, part for extraction, part for processing

  15. Biomimicry of quorum sensing using bacterial lifecycle model.

    Science.gov (United States)

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  16. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  17. Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Zhou, Guanghui; Ou, Xunmin; Zhang, Xiliang

    2013-01-01

    China has promoted the use of electric vehicles vigorously since 2009; the program is still in its pilot phase. This study investigates the development of electric vehicle use in China from the perspectives of energy consumption and greenhouse-gas (GHG) emissions. Energy consumption and GHG emissions of plug-in hybrid electric vehicles (PHEVs) and pure battery electric vehicles (BEVs) are examined on the level of the regional power grid in 2009 through comparison with the energy consumption and GHG emissions of conventional gasoline internal combustion engine vehicles. The life-cycle analysis module in Tsinghua-LCAM, which is based on the GREET platform, is adopted and adapted to the life-cycle analysis of automotive energy pathways in China. Moreover, medium term (2015) and long term (2020) energy consumption and greenhouse-gas emissions of PHEVs and BEVs are projected, in accordance with the expected development target in the Energy Efficient and Alternative Energy Vehicles Industry Development Plan (2012–2020) for China. Finally, policy recommendations are provided for the proper development of electric vehicle use in China. - Highlights: • There was a marked difference in energy saving and GHG emission reduction for EVs powered by regional grids in China. • Energy saving and GHG emission reduction from EVs development will be more obvious in China in future. • EVs development will benefit the strategy of oil/ petroleum substitute in China

  18. Estimation of uranium resources by life-cycle or discovery-rate models: a critique

    International Nuclear Information System (INIS)

    Harris, D.P.

    1976-10-01

    This report was motivated primarily by M. A. Lieberman's ''United States Uranium Resources: An Analysis of Historical Data'' (Science, April 30). His conclusion that only 87,000 tons of U 3 O 8 resources recoverable at a forward cost of $8/lb remain to be discovered is criticized. It is shown that there is no theoretical basis for selecting the exponential or any other function for the discovery rate. Some of the economic (productivity, inflation) and data issues involved in the analysis of undiscovered, recoverable U 3 O 8 resources on discovery rates of $8 reserves are discussed. The problem of the ratio of undiscovered $30 resources to undiscovered $8 resources is considered. It is concluded that: all methods for the estimation of unknown resources must employ a model of some form of the endowment-exploration-production complex, but every model is a simplification of the real world, and every estimate is intrinsically uncertain. The life-cycle model is useless for the appraisal of undiscovered, recoverable U 3 O 8 , and the discovery rate model underestimates these resources

  19. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  20. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  1. Technology Trends Analysis Using Patent Landscaping

    Directory of Open Access Journals (Sweden)

    Sergey Vsevolodovich Kortov

    2017-09-01

    Full Text Available The article is devoted to the analysis and the choice of the priorities in technology development and, particularly, to the use of patent landscaping as a tool for the study of technology trends. Currently, patent activity indicators are often used for technology foresight and for competitive intelligence as well. Nevertheless, causal relationship between these indicators, on the one hand, and strategic and tactical decisions in the sphere of technological development on meso- and microeconomic level, on the other hand, are not adequately investigated to solve practical tasks. The goal of the work is to systemize the challenges of technology trends analysis, which could be effectively solved on the base of patent landscape analysis. The article analyses the patent landscaping methodology and tools, as well as their use for evaluating the current competitive environment and technology foresight. The authors formulated the generalized classification for the criteria of promising technologies for a selected region. To assess the compliance of a technology with these criteria, we propose a system of corresponding indicators of patenting activity. Using the proposed methodology, we have analysed the patent landscape to select promising technologies for the Sverdlovsk region. The research confirmed the hypothesis of the patent landscapes performance in evaluating such technology indicators as stages of the life cycle stage, universality (applicability in different industries, pace of worldwide development, innovations and science availability in the region and potential possibilities for scientific collaboration with international research institutions and universities. The results of the research may be useful to the wide audience, including representatives small and medium enterprises, large companies and regional authorities for the tasks concerned with the technology trends analysis and technology strategy design

  2. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility.

    Science.gov (United States)

    Thiel, Cassandra L; Schehlein, Emily; Ravilla, Thulasiraj; Ravindran, R D; Robin, Alan L; Saeedi, Osamah J; Schuman, Joel S; Venkatesh, Rengaraj

    2017-11-01

    To measure the waste generation and lifecycle environmental emissions from cataract surgery via phacoemulsification in a recognized resource-efficient setting. Two tertiary care centers of the Aravind Eye Care System in southern India. Observational case series. Manual waste audits, purchasing data, and interviews with Aravind staff were used in a hybrid environmental lifecycle assessment framework to quantify the environmental emissions associated with cataract surgery. Kilograms of solid waste generated and midpoint emissions in a variety of impact categories (eg, kilograms of carbon dioxide equivalents). Aravind generates 250 grams of waste per phacoemulsification and nearly 6 kilograms of carbon dioxide-equivalents in greenhouse gases. This is approximately 5% of the United Kingdom's phaco carbon footprint with comparable outcomes. A majority of Aravind's lifecycle environmental emissions occur in the sterilization process of reusable instruments because their surgical system uses largely reusable instruments and materials. Electricity use in the operating room and the Central Sterile Services Department (CSSD) accounts for 10% to 25% of most environmental emissions. Surgical systems in most developed countries and, in particular their use of materials, are unsustainable. Results show that ophthalmologists and other medical specialists can reduce material use and emissions in medical procedures using the system described here. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    Science.gov (United States)

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits

  4. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    Science.gov (United States)

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  5. GROWTH EFFECTS OF CONSUMPTION AND LABOR-INCOME TAXATION IN AN OVERLAPPING-GENERATIONS LIFE-CYCLE MODEL

    NARCIS (Netherlands)

    Heijdra, B.J.; Mierau, J.O.

    2010-01-01

    We study labor-income and consumption taxation in an overlapping-generations model featuring endogenous growth clue to interfirm investment externalities. Consumption, saving, and labor supply display life-cycle features because mortality and labor productivity are age-dependent and because annuity

  6. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    Science.gov (United States)

    Gopal, Anand Raja

    Lifecycle Assessment (LCA) is undergoing a period of rapid change as it strives to become more policy-relevant. Attributional LCA, the traditional LCA category, is beginning to be seen as particularly ill-equipped to assess the consequences of a policy. This has given birth to a new category of LCA known as Consequential LCA that is designed for use in LCA-based policies but is still largely unknown, even to LCA experts, and suffers from a lack of well developed methods. As a result, many LCA-based policies, like the California Low Carbon Fuel Standard (LCFS), use poor LCA methods that are both scientifically suspect and unable to model many biofuels, especially ones manufactured from byproduct feedstocks. Biofuels made from byproduct feedstocks, primarily molasses ethanol from Asia and the Caribbean, can contribute significantly to LCFS' carbon intensity targets in the near-term at low costs, a desperate need for the policy ever since US corn ethanol was rated as having a worse global warming impact than gasoline. In this dissertation, I develop the first fully consequential lifecycle assessment of a byproduct-based biofuel using a partial equilibrium foundation. I find that the lifecycle carbon content of Indian molasses ethanol is just 5 gCO2/MJ using this method, making it one of the cleanest first generation biofuels in the LCFS. I also show that Indian molasses ethanol remains one of the cleanest first-generation biofuels even when using the flawed methodology ratified for the LCFS, with a lifecycle carbon content of 24 gCO2/MJ. My fully consequential LCA model also shows that India's Ethanol Blending program, which currently subsidizes blending of molasses ethanol and gasoline for domestic consumption, can meet its objective of supporting domestic agriculture more cost-effectively by helping producers export their molasses ethanol to fuel markets that value carbon. However, this objective will be achieved at a significant cost to the poor who will face a 39

  7. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  8. Plant stress analysis technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    Monitoring vegetation is an active area of laser-induced fluorescence imaging (LIFI) research. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) is assisting in the transfer of the LIFI technology to the agricultural private sector through a market survey. The market survey will help identify the key eco-agricultural issues of the nations that could benefit from the use of sensor technologies developed by the Office of Science and Technology (OST). The principal region of interest is the Western Hemisphere, particularly, the rapidly growing countries of Latin America and the Caribbean. The analysis of needs will assure that the focus of present and future research will center on economically important issues facing both hemispheres. The application of the technology will be useful to the agriculture industry for airborne crop analysis as well as in the detection and characterization of contaminated sites by monitoring vegetation. LIFI airborne and close-proximity systems will be evaluated as stand-alone technologies and additions to existing sensor technologies that have been used to monitor crops in the field and in storage.

  9. Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)

    International Nuclear Information System (INIS)

    Abdul-Manan, Amir F.N.

    2017-01-01

    Biodiesel expansion can lead to unintended effects that offset the direct GHG benefits of biofuels. Two documented unintended effects are the indirect land use change (ILUC) and indirect energy use change (IEUC). ILUC has been included in many lifecycle GHG studies of biofuels, but IEUC has remained relatively elusive. This paper presents an updated assessment of the lifecycle GHG emissions of palm biodiesel from Malaysia and, for the first time, incorporating the two estimated indirect effects simultaneously. Future GHG emissions of palm biodiesel are projected by taking into account of Malaysia's Economic Transformation Programme (ETP) that aims to reform the oil palm industry in order to achieve a high-income nation. Uncertainties associated with lifecycle GHG models were dealt with using Monte Carlo simulation in order to identify the breadth and likelihood of GHG reductions relative to petroleum-based fuels in the context of the European directives. This study has shown that the ETP, if successfully implemented, can significantly improve the direct GHG emissions of palm biodiesel, but the benefits are offset by the rise in global emissions due to ILUC and IEUC. Biofuel policies should also include IEUC, in addition to ILUC, to avoid GHG emissions leakages. - Highlights: • Estimate current and future lifecycle GHG emissions of Malaysian palm biodiesel. • Evaluate the GHG effects of Malaysia's Economic Transformation Plan (ETP). • Direct GHG benefits of biodiesel offset by indirect market effects. • Palm biodiesel unlikely to enable global GHG emissions reductions. • Global biofuel policy must account for indirect effects.

  10. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    Science.gov (United States)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  11. Towards life-cycle awareness in decision support tools for engineering design

    OpenAIRE

    Nergård, Henrik; Sandberg, Marcus; Larsson, Tobias

    2009-01-01

    In this paper a decision support tool with the focus on how to generate and visualize decision base coupled to the business agreement is outlined and discussed. Decision support tools for the early design phases are few and especially tools that visualize the readiness level of activities throughout the product life-cycle. Aiming for the sustainable society there is an indication that business-to-business manufacturers move toward providing a function rather than selling off the hardware and ...

  12. Requirements on software lifecycle process (RSLP) for KALIMER digital computer-based MMIS design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Kwon, Kee Choon; Kim, Jang Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-04-01

    Digital Man Machine Interface System (MMIS) systems of Korea Advanced Liquid MEtal Reactor (KALIMER) may share code, data transmission, data, and process equipment to a greater degree than analog systems. Although this sharing is the basis for many of the advantages of digital systems, it also raises a key concern: a design using shared data or code has the potential to propagate a common-cause or common-mode failure via software errors, thus defeating the redundancy achieved by the hardware architectural structure. Greater sharing of process equipment among functions within a channel increases the consequences of the failure of a single hardware module and reduces the amount of diversity available within a single safety channel. The software safety plan describes the safety analysis implementation tasks that are to be carried out during the software life cycle. Documentation should exist that shows that the safety analysis activities have been successfully accomplished for each life cycle activity group. In particular, the documentation should show that the system safety requirement have been adequately addressed for each life cycle activity group, that no new hazards have been introduced, and that the software requirements, design elements, and code elements that can affect safety have been identified. Because the safety of software can be assured through both the process Verification and Validation (V and V) itself and the V and V of all the intermediate and final products during the software development lifecycle, the development of KALIMER Software Safety Framework (KSSF) must be established. As the first activity for establishing KSSF, we have developed this report, Requirement on Software Life-cycle Process (RSLP) for designing KALIMER digital MMIS. This report is organized as follows. Section I describes the background, definitions, and references of RSLP. Section II describes KALIMER safety software categorization. In Section III, we define the

  13. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    Science.gov (United States)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  14. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  15. An Adaptive Bacterial Foraging Optimization Algorithm with Lifecycle and Social Learning

    Directory of Open Access Journals (Sweden)

    Xiaohui Yan

    2012-01-01

    Full Text Available Bacterial Foraging Algorithm (BFO is a recently proposed swarm intelligence algorithm inspired by the foraging and chemotactic phenomenon of bacteria. However, its optimization ability is not so good compared with other classic algorithms as it has several shortages. This paper presents an improved BFO Algorithm. In the new algorithm, a lifecycle model of bacteria is founded. The bacteria could split, die, or migrate dynamically in the foraging processes, and population size varies as the algorithm runs. Social learning is also introduced so that the bacteria will tumble towards better directions in the chemotactic steps. Besides, adaptive step lengths are employed in chemotaxis. The new algorithm is named BFOLS and it is tested on a set of benchmark functions with dimensions of 2 and 20. Canonical BFO, PSO, and GA algorithms are employed for comparison. Experiment results and statistic analysis show that the BFOLS algorithm offers significant improvements than original BFO algorithm. Particulary with dimension of 20, it has the best performance among the four algorithms.

  16. Big Data Based Analysis Framework for Product Manufacturing and Maintenance Process

    OpenAIRE

    Zhang , Yingfeng; Ren , Shan

    2015-01-01

    Part 8: Cloud-Based Manufacturing; International audience; With the widely use of smart sensor devices in the product lifecycle management (PLM), it creates amount of real-time and muti-source lifecycle big data. These data allow decision makers to make better-informed PLM decisions. In this article, an overview framework of big data based analysis for product lifecycle (BDA-PL) was presented to provide a new paradigm by extending the techniques of Internet of Things (IoT) and big data analys...

  17. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    Energy Technology Data Exchange (ETDEWEB)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  18. Basics of Antibody Phage Display Technology.

    Science.gov (United States)

    Ledsgaard, Line; Kilstrup, Mogens; Karatt-Vellatt, Aneesh; McCafferty, John; Laustsen, Andreas H

    2018-06-09

    Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.

  19. Contraceptive use during the reproductive lifecycle as reported by 46-year-old women in Sweden.

    Science.gov (United States)

    Sköld, Annelie; Larsson, Margareta

    2012-03-01

    The aim of this study was to investigate the contraceptive methods 46-year-old women in Sweden had chosen during different phases of their reproductive lifecycle and, the factors affecting their choice. The design was a retrospective cross-sectional study and targeted 46-year-old women. Five hundred Swedish women were randomly selected from a national population-based register and sent a questionnaire with 18 multiple response questions: the response rate was 47%. The women used different contraceptive methods during different phases of their reproductive lifecycle. Women mainly used oral contraceptive pills and condoms before pregnancy, copper-IUD between pregnancies and, hormonal- and copper IUD after pregnancy. Condoms were used during all phases of women's fertile period. Women with early sexual debut were more likely to have used condom as their first contraceptive method than women with late sexual debut, and women who had children were more likely to use IUD as current contraception than women without children. High efficacy, accessibility and advice from a counselor were the most cited reasons for choosing a particular method. The most common reasons for discontinuing contraceptive use were a wish to be pregnant and concerns about side effects. The partner had little or no influence on choice of method, but advice from a gynecologist or midwife was influential. 46-year-old women in Sweden had chosen different contraceptive methods during different phases of their reproductive lifecycle. Partners appear to have limited influence over this choice. Individualized counseling by health care providers seems important. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Life-cycle cost trade studies for hardness assurance

    International Nuclear Information System (INIS)

    Millward, D.G.

    1996-01-01

    Based on hardness assurance (HA) cost trade studies conducted on a low-cost/high-volume tactical military system with moderate radiation environments, conventional strategies for design hardening and HA can result in higher life-cycle costs (LCC) than alternate approaches. The trade studies used variables designed to investigate LCC as a function of several critical parameters, including semiconductor procurement option, system quantity, HA testing option,a nd other variables. An LCC model and sample problem are included to illustrate the key results. Following the results of the trade studies, limitations of the simplified cost model are presented, the relationship of these results to current procurement practices are discussed, and the application of the results to modern military and commercial systems is discussed

  1. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    Directory of Open Access Journals (Sweden)

    Min-Jung Yoo

    2016-07-01

    Full Text Available This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT. The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI and Open Data Format (O-DF, which ensures data communication. (1 Background: Based on an existing product lifecycle management (PLM methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2 Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA uses the message format as a common protocol of product-service lifecycle data transfer; (3 Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4 Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5 Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF database.

  2. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    Science.gov (United States)

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  3. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  4. Initial investment to 3D printing technologies in a construction company

    OpenAIRE

    Cernohorsky, Zdenek; Matejka, Petr

    2017-01-01

    This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot p...

  5. Sensitivity analysis of GHG emissions from biofuels in Canada

    International Nuclear Information System (INIS)

    2006-01-01

    This report identified key factors influencing the life-cycle greenhouse gas (GHG) emissions of ethanol and biodiesel production pathways in Canada. The report was prepared for use by policy makers in order to facilitate decision making that positively impacts the lifecycle GHG performance of renewable fuels. Four ethanol production pathways were considered: (1) ethanol production from corn; (2) ethanol production from wheat in conventional starch ethanol facilities; (3) ethanol produced from wheat straw using lignocellulosic technology; and (4) ethanol from sugar cane imported into Canada. For the pathway analysis, ethanols were blended at low levels with sulphur gasoline or used as E85 with low levels of gasoline. All ethanol scenarios were modelled for light duty vehicles. Results of the study demonstrated that all 4 pathways showed significant reductions in GHG emissions when compared to low sulphur gasoline. Differences in vehicle operation emissions between gasoline and ethanol-blended gasoline were related to a combination of the difference in the carbon content per unit of energy and the energy efficiency improvement. The study examined land use changes and feedstock production as well as all other lifecycle processes for diesel, canola, soy, palm, tallow, tallow grease, and yellow grease. A variety of transportation distances were considered. It was concluded that the alternative uses of co-products such as combustion to provide thermal energy resulted in improved GHG results. 17 refs., 117 tabs., 13 figs

  6. TRANSCRIPTOME ANALYSES REVEAL DIFFERENTIAL GENE EXPRESSION PATTERNS BETWEEN THE LIFE-CYCLE STAGES OF EMILIANIA HUXLEYI (HAPTOPHYTA) AND REFLECT SPECIALIZATION TO DIFFERENT ECOLOGICAL NICHES(1).

    Science.gov (United States)

    Rokitta, Sebastian D; de Nooijer, Lennart J; Trimborn, Scarlett; de Vargas, Colomban; Rost, Björn; John, Uwe

    2011-08-01

    Coccolithophores, especially the abundant, cosmopolitan species Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, are one of the main driving forces of the oceanic carbonate pump and contribute significantly to global carbon cycling, due to their ability to calcify. A recent study indicates that termination of diploid blooms by viral infection induces life-cycle transition, and speculation has arisen about the role of the haploid, noncalcifying stage in coccolithophore ecology. To explore gene expression patterns in both life-cycle stages, haploid and diploid cells of E. huxleyi (RCC 1217 and RCC 1216) were acclimated to limiting and saturating photon flux densities. Transcriptome analyses were performed to assess differential genomic expression related to different ploidy levels and acclimation light intensities. Analyses indicated that life-cycle stages exhibit different properties of regulating genome expression (e.g., pronounced gene activation and gene silencing in the diploid stage), proteome maintenance (e.g., increased turnover of proteins in the haploid stage), as well as metabolic processing (e.g., pronounced primary metabolism and motility in the haploid stage and calcification in the diploid stage). Furthermore, higher abundances of transcripts related to endocytotic and digestive machinery were observed in the diploid stage. A qualitative feeding experiment indicated that both life-cycle stages are capable of particle uptake (0.5 μm diameter) in late-stationary growth phase. Results showed that the two life-cycle stages represent functionally distinct entities that are evolutionarily shaped to thrive in the environment they typically inhabit. © 2011 Phycological Society of America.

  7. Development of a decision support model for determining building life-cycle strategies in the Netherlands

    NARCIS (Netherlands)

    Binnemars, S.; Halman, Johannes I.M.; Durmisevic, Elma; Durmisevic, E.; Pasic, A.

    2012-01-01

    Over recent years, it has become increasingly apparent that there is a growing need for so-called green buildings with a lower environmental impact over the whole building life-cycle. The construction industry demands strategies that support a drastic change of the way we develop, construct and

  8. Social security wealth and aggregate consumption : An extended life-cycle model estimated for The Netherlands

    NARCIS (Netherlands)

    Zant, W.

    In this paper a method is developed to calculate a wealth variable accounting for the existence of the basic old-age provisions in The Netherlands (AOW). In line with Feldstein's extended life-cycle model, consumption functions with (gross) social security wealth are estimated for The Netherlands

  9. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  10. A case of a facultative life-cycle diversification in the fluke Pleurogenoides sp. (Lecithodendriidae, Plagiorchiida).

    Science.gov (United States)

    Hassl, Andreas R

    2010-10-01

    Numerous specimens of the native, intestinal digenean fluke Pleurogenoides sp. (Lecithodendriidae, Plagiorchiida), a genus known for the simultaneous co-existence of genuine adults and progenetic, adult-like metacercaria, were found by chance parasitizing in the oesophagus of a recently imported, tropical Bristly Bush Viper (Atheris hispida). The snake had before been force-fed with native water frogs, the assumed definitive host of these flukes. Hence water frogs act as the second intermediate host or as a paratenic host for Pleurogenoides flukes, as they must house progenetic fluke larvae, which develop to genuine adults when transmitted to an appropriate consecutive host, the ancestral definitive host, a reptile. The European Pleurogenoides fluke species seem to display a facultative life-cycle diversification, they can adjust their life-history strategy according to their immediate transmission opportunities. This phenotypic plasticity allows the parasite to respond quickly to any changes in the abundance of a host; usually this biological oddity results in a life-cycle truncation by the elimination of the definitive host.

  11. Life-Cycle Inventory of Manufacturing Prefinished Engineered Wood Flooring in the Eastern United States

    Science.gov (United States)

    Richard D. Bergman; Scott A. Bowe

    2010-01-01

    Building products have come under increased scrutiny because of environmental impacts from their manufacturing. However, environmental impacts of manufacturing some wood products—such as prefinished engineered wood flooring—have not been determined. This study examined prefinished engineered wood flooring in the eastern United States following the life-cycle inventory...

  12. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  13. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  14. Explicit formulas for the variance of discounted life-cycle cost

    International Nuclear Information System (INIS)

    Noortwijk, Jan M. van

    2003-01-01

    In life-cycle costing analyses, optimal design is usually achieved by minimising the expected value of the discounted costs. As well as the expected value, the corresponding variance may be useful for estimating, for example, the uncertainty bounds of the calculated discounted costs. However, general explicit formulas for calculating the variance of the discounted costs over an unbounded time horizon are not yet available. In this paper, explicit formulas for this variance are presented. They can be easily implemented in software to optimise structural design and maintenance management. The use of the mathematical results is illustrated with some examples

  15. Housing Habits and Their Implications for Life-cycle Consumption and Investment

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Wagner, Sebastian

    2017-01-01

    We solve a rich life-cycle model of household decisions involving consumption of perishable goods and housing services, habit formation for housing consumption, stochastic labor income, stochastic house prices, home renting and owning, stock investments, and portfolio constraints. In line...... with empirical observations, the optimal decisions involve (i) stock investments that are low or zero for many young agents and then gradually increasing over life, (ii) an age- and wealth-dependent housing expenditure share, (iii) non-housing consumption being significantly more sensitive to wealth and income...

  16. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  17. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test.

    NARCIS (Netherlands)

    Kuiper, R V; Brandhof, E J van den; Leonards, P E G; Ven, L T M van der; Wester, P W; Vos, J G

    2006-01-01

    Toxicological effects of the widely used flame retardant, tetrabromobisphenol A (TBBPA) were assessed in a partial life-cycle test with zebrafish (Danio rerio). Exposure of adult fish during 30 days to water-borne TBBPA in nominal concentrations ranging from 0 (control) to 1.5 muM was followed by

  18. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test

    NARCIS (Netherlands)

    Kuiper, R.V.; Brandhof, Van den E.J.; Leonards, P.E.G.; Ven, van der L.T.M.; Wester, P.W.; Vos, J.G.

    2007-01-01

    Toxicological effects of the widely used flame retardant, tetrabromobisphenol A (TBBPA) were assessed in a partial life-cycle test with zebrafish (Danio rerio). Exposure of adult fish during 30 days to water-borne TBBPA in nominal concentrations ranging from 0 (control) to 1.5 ¿M was followed by

  19. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    International Nuclear Information System (INIS)

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ''waste contaminated with chemically hazardous and radioactive species.'' The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  20. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  1. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment

    International Nuclear Information System (INIS)

    Liu, Chao; He, Chao; Gao, Hong; Xie, Hui; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2013-01-01

    The LCA (life-cycle assessment) was applied to evaluate EI (the environmental impact) of ORCPW (organic Rankine cycle power-plant for waste-heat-recovery) in this paper. The model of LCA on the ORCPW was established. The life-cycle of ORCPW was divided into construction, operation and decommissioning phases. The inventory of environmental emissions was listed for the ORCPW with 7 different working fluids. The GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), HTP (human toxicity potential), SWP (solid waste potential) and SAP (soot and dust potential) were investigated. Some EIs of ORCPW were compared with the EIs of other power generation modes. The results show that the construction phase of ORCPW contributes mostly to the GWP and EP. GWP is the most serious EI followed by HTP among all the environmental impacts. The average pay back times of greenhouse gas discharged from ORCPW is calculated on the basis of five other power generation modes. For 7 different working fluids, it is 3–5 years for CO 2 , about one year for CH 4 and 3–6 years for NO x . But CO cannot be paid back during the life-cycle of ORCPW according to the average pay back time. - Highlights: • LCA was proposed to evaluate the environmental performance of ORC. • The ORC life cycle environmental emissions inventory was established. • GWP is the most serious environmental impact, followed by HTP. • The ORC with R113 exhibits the lowest environment impact load, followed by Pentane. • The total GWP of ORC could be paid back in 5 years

  2. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  3. Adenomyosis: a life-cycle approach.

    Science.gov (United States)

    Benagiano, Giuseppe; Brosens, Ivo; Habiba, Marwan

    2015-03-01

    The life-cycle approach to endometriosis highlighted unexpected features of the condition; the same approach was therefore applied to gain insight into the clinical features of adenomyosis and to draw a comparison with endometriosis. This is possible today thanks to new imaging techniques enabling non-invasive diagnosis of adenomyosis. The specificity and sensitivity of magnetic resonance imaging and transvaginal ultrasound remain uncertain. Unlike endometriosis, little information is available on the presence of classic adenomyosis in adolescents, except for rare cystic forms that may not represent the true disease. Adenomyosis is most likely to affect adult women, although most reported incidences are still based on post-hysterectomy studies, and are affected by diligence in histopathologic diagnosis and the adopted cut-off point. The traditionally accepted associations of adult adenomyosis, such as multiparity, a link to infertility and its effect on pregnancy are uncertain. Active adenomyosis has been found in pre- and peri-menopausal women and in postmenopausal women receiving tamoxifen. In conclusion, major diagnostic limitations and the systematic bias of hysterectomy make it difficult to draw firm conclusions from existing evidence. In addition, no information is available on the natural history of adenomyosis and no study has systematically evaluated its existence in adolescents. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Technology integration plan

    International Nuclear Information System (INIS)

    Henry, R.; Sumpter, K.C.

    1995-01-01

    In 1992, the Secretary of Energy directed the Assistant Secretary for Environmental Management (EM) to develop an integrated, long-term, spent nuclear fuel (SNF) management program. In response, EM created the Integrated SNF Program to assess the US Department of Energy (DOE) SNF and SNF storage facilities. As shown in Figure 1 the Integrated SNF Program is responsible for life-cycle management of DOE SNF; that is characterization, processing, interim storage and preparation for disposal. In order to implement the Program it was recognized that technology needs must be identified. A Technology Integration Program was formed to integrate the DOE complex-wide efforts for establishing timely, cost effective and consistent technical criteria for the development of technical solutions. The program is directed toward identification of: (a) what activities need to be done, (b) when they need to be completed, and (c) what priority should be assigned to the various activities

  5. Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach

    Directory of Open Access Journals (Sweden)

    Filipe Paulino

    2018-01-01

    Full Text Available The road passenger transport is responsible for a large share of energy consumption and pollutants emission in Europe. Efforts have been made in the definition of new policies to reduce the environmental impacts of this sector. However, an integrated and consistent assessment of the most promising policies is required, using specific European indicators. For that matter, a life-cycle analysis was applied to the road passenger transport, for the European Union with 27 countries (EU27 in 2010, following a basket-of-products methodology and considering three main stages: production, use, and end-of-life of vehicles. Simapro 8 software was used, along with Ecoinvent 3 database and the impact assessment method International Reference Life Cycle Data System (ILCD 2011 Midpoint+. Changes in vehicle production processes, vehicle constitution, and energy sources for vehicle propulsion were analyzed. The policies resulting in a decrease in all impact categories are the use of smaller or lightweight vehicles by positively influencing use, production, and end-of-life of vehicles. The use of more recent vehicles technology or diesel vehicles show substantial reductions in, respectively, five and eight impact categories (out of 15, justifying their adoption in the European fleet. Generally, the most notorious policies compared to the actual transport paradigm, like compressed natural gas (CNG, biofuels, or electric vehicles use, show the greatest reduction in climate change (up to 46% but also a very significant rise of impacts in the categories that in the conventional basket-of-products already resulted in the worst indicators after normalization.

  6. Development of ultrasensitive spectroscopic analysis technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, K. S.; Kim, D. H.; Yang, K. H.; Jung, E. C.; Jeong, D. Y.; Yi, Y. J.; Lee, S. M.; Hong, K. H.; Han, J. M.; Yoo, B. D.; Rho, S. P.; Yi, J. H.; Park, H. M.; Cha, B. H.; Nam, S. M.; Lee, J. M.

    1997-09-01

    For the development of the laser initiated high resolution, ultra sensitive analysis technology following field of researches have been performed. 1) Laser resonance ionization technology, 2) Laser-induced rare isotope detection technology, 3) Laser-induced plasma analysis technology, 4) Microparticle analysis technology by using ion trap, 5) Laser induced remote sensing technique. As a result a monitoring system for photoionized product is developed and the test of system is performed with Sm sample. The rare isotope detection system is designed and a few key elements of the system are developed. In addition a laser-induced plasma analysis system is developed and samples such as Zircaloy, Zinc-base alloy, rock samples are reasonably analyzed. The detection sensitivity is identified as good as a few ppm order. An ion trap is developed and microparticles such as SiC are trapped inside the trap by ac and dc fields. The fluorescence signals from the organic dyes as well as rare earth element which are absorbed on the microparticles are detected. Several calibration curves are also obtained. In the field of laser remote sensing a mobile Lidar system is designed and several key elements are developed. In addition the developed system is used for the detection of Ozone, NO 2 , SO 2 , etc. (author). 57 refs., 42 figs

  7. People as an essential tool for considering ethics in the product lifecycle

    OpenAIRE

    Aftab, Mersha; James, Alana

    2017-01-01

    This paper explores the vital engagement of people at different stages of the product lifecycle. The incorporation of human values in the creation of empathy allows for ethics to be considered across the design and make process. A case study approach was adopted utilising data obtained from two large consumer goods companies. From this, a relationship was found to lie between the involvement of people as active participants and the creation of empathy. These empathetic values consequently fac...

  8. Regulation Of Hydraulic Fracturing In South Africa: A Project Life-Cycle Approach?

    Directory of Open Access Journals (Sweden)

    Willemien du Plessis

    2015-12-01

    Full Text Available This note deals with the 2015 regulations pertaining to hydraulic fracturing in South Africa from a project life-cycle approach. A brief history of the fragmentation of the regulation of environmental and mining related matters is provided, followed by a discussion of the application of the 2015 regulations during the project life cycle, ie the pre-commencement phase, the design and authorisation phase, the testing phase, the operational phase and the decommissioning and closure phase.

  9. The Software Life-Cycle Based Configuration Management Tasks for the KNICS Project

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Kwon, Kee Choon

    2005-01-01

    Software configuration management (SCM) is an activity, which configures the form of a software system (e.g., design documents and programs) and systematically manages and controls the modifications used to compile the plans, development, and operations resulting from software development and maintenance. The SCM tool, NuSCM, has been specifically developed for the software life-cycle configuration management of developing the KNICS plant protection system (PPS). This paper presents the application of NuSCM to the KNICS project

  10. Digital Preservation Tools for Repository Managers 2: institutional and lifecycle preservation costs

    OpenAIRE

    Hitchcock, Steve; Beagrie, Neil; Hole, Brian

    2010-01-01

    The 5-module JISC KeepIt course on Digital Preservation Tools for Repository Managers was designed by repository managers. Each module consists of a mix of short presentations and hands-on exercises to learn about the basics and gain practice with each of the tools covered. Module 2 covers lifecycle costs for managing digital objects, based on the LIFE approach, and institutional costs. Tools include Keeping Research Data Safe (KRDS) a model, method and survey for assessing the institutional ...

  11. Development of a life-cycle fugitive methane emissions model utilizing device level emissions and activity factors

    Science.gov (United States)

    Englander, J.; Brandt, A. R.

    2017-12-01

    There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b

  12. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton.

    Science.gov (United States)

    von Dassow, Peter; John, Uwe; Ogata, Hiroyuki; Probert, Ian; Bendif, El Mahdi; Kegel, Jessica U; Audic, Stéphane; Wincker, Patrick; Da Silva, Corinne; Claverie, Jean-Michel; Doney, Scott; Glover, David M; Flores, Daniella Mella; Herrera, Yeritza; Lescot, Magali; Garet-Delmas, Marie-José; de Vargas, Colomban

    2015-06-01

    Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.

  13. The effect of life-cycle cost disclosure on consumer behavior

    Science.gov (United States)

    Deutsch, Matthias

    For more than 20 years, analysts have reported on the so-called "energy paradox" or the "energy efficiency gap", referring to the fact that economic agents could in principle lower their total cost at current prices by using more energy-efficient technology but, nevertheless, often decide not to do so. Theory suggests that providing information in a simplified way could potentially reduce this "efficiency gap". Such simplification may be achieved by providing the estimated monetary operating cost and life-cycle cost (LCC) of a given appliance---which has been a recurring theme within the energy policy and efficiency labeling community. Yet, little is known so far about the causal effects of LCC disclosure on consumer action because of the gap between the acquisition of efficiency information and consumer purchasing behavior in the real marketplace. This dissertation bridges the gap by experimentally integrating LCC disclosure into two major German commercial websites---a price comparison engine for cooling appliances, and an online shop for washing machines. Internet users arriving on these websites were randomly assigned to two experimental groups, and the groups were exposed to different visual stimuli. The control group received regular product price information, whereas the treatment group was, in addition, offered information about operating cost and total LCC. Click-stream data of consumers' shopping behavior was evaluated with multiple regression analysis by controlling for several product characteristics. This dissertation finds that LCC disclosure reduces the mean energy use of chosen cooling appliances by 2.5% (p<0.01), and the energy use of chosen washing machines by 0.8% (p<0.001). For the latter, it also reduces the mean water use by 0.7% (p<0.05). These effects suggest a potential role for public policy in promoting LCC disclosure. While I do not attempt to estimate the costs of such a policy, a simple quantification shows that the benefits amount to

  14. Implementing and Sustaining Data Lifecycle best Practices: a Framework for Researchers and Repositories

    Science.gov (United States)

    Stall, S.

    2016-02-01

    Emerging data management mandates in conjunction with cross-domain international interoperability are posing new challenges for researchers and repositories. Domain repositories are serving in this critical, growing role monitoring and leading data management standards and capability within their own repository and working on mappings between repositories internationally. Leading research institutions and companies will also be important as they develop and expand data curation efforts. This landscape poses a number of challenges for developing and ensuring the use of best practices in curating research data, enabling discovery, elevating quality across diverse repositories, and helping researchers collect and organize it through the full data life cycle. This multidimensional challenge will continue to grow in complexity. The American Geophysical Union (AGU) is developing two programs to help researchers and data repositories develop and elevate best practices and address these challenges. The goal is to provide tools for the researchers and repositories, whether domain, institutional, or other, that improve performance throughout the data lifecycle across the Earth and space science community. For scientists and researchers, AGU is developing courses around handling data that can lead toward a certification in geoscience data management. Course materials will cover metadata management and collection, data analysis, integration of data, and data presentation. The course topics are being finalized by the advisory board with the first one planned to be available later this year. AGU is also developing a program aimed at helping data repositories, large and small, domain-specific to general, assess and improve data management practices. AGU has partnered with the CMMI® Institute to adapt their Data Management Maturity (DMM)SM framework within the Earth and space sciences. A data management assessment using the DMMSM involves identifying accomplishments and

  15. ICPP tank farm closure study. Volume III: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    International Nuclear Information System (INIS)

    1998-02-01

    This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option

  16. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Dunn, Jennifer B. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Kwon, Hoyoung [Environment and Production Technology Division, International Food Policy Research Institute, 2033 K St. NW Washington DC 20006 USA; Mueller, Steffen [Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street Chicago IL 60607 USA; Wander, Michelle M. [Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue Urbana IL 61801 USA

    2016-03-03

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.

  17. When a mature technology company pivots: A case study of Logitech

    OpenAIRE

    Anderson Darrell; Daniel Johnson

    2016-01-01

    Life cycle theory has been shown to be an important explanation of the relationship between sales and stock prices. This study explores how the technology company Logitech attempted a transition from a mature life-cycle company in computer peripherals to a growth company in the music, tablet, and gaming industries. We show that stock price correlates with accounting performance differently across the company’s life cycle.

  18. Housing Habits and Their Implications for Life-Cycle Consumption and Investment

    DEFF Research Database (Denmark)

    Kraft, Holger; Munk, Claus; Wagner, Sebastian

    We set up and solve a rich life-cycle model of household decisions involving consumption of both perishable goods and housing services, stochastic and unspanned labor income, stochastic house prices, home renting and owning, stock investments, and portfolio constraints. The model features habit...... formation for housing consumption, which leads to optimal decisions closer in line with empirical observations. Our model can explain (i) that stock investments are low or zero for many young agents and then gradually increasing over life, (ii) that the housing expenditure share is age- and wealth...

  19. Examining Data Processing Work as Part of the Scientific Data Lifecycle Comparing Practices Across Four Scientific Research Groups

    OpenAIRE

    Paine, Drew; Lee, Charlotte

    2015-01-01

    Slides from Charlotte P. Lee's presentation at the 2015 iConference on our paper "Examining Data Processing Work as Part of the Scientific Data Lifecycle: Comparing Practices Across Four Scientific Research Groups".

  20. NPP Information Model as an Innovative Approach to End-to-End Lifecycle Management of the NPP and Nuclear Knowledge Management Proven in Russia

    International Nuclear Information System (INIS)

    Tikhonovsky, V.; Kanischev, A.; Kononov, V.; Salnikov, N.; Shkarin, A.; Dorobin, D.

    2016-01-01

    Full text: Managing engineering data for an industrial facility, including integration and maintenance of all engineering and technical data, ensuring fast and convenient access to that information and its analysis, proves to be necessary in order to perform the following tasks: 1) to increase economic efficiency of the plant during its lifecycle, including the decommissioning stage; 2) to ensure strict adherence to industrial safety requirements, radiation safety requirements (in case of nuclear facilities) and environmental safety requirements during operation (including refurbishment and restoration projects) and decommissioning. While performing tasks 1) and 2), one faces a range of challenges: 1. A huge amount of information describing the plant configuration. 2. Complexity of engineering procedures, step-by-step commissioning and significant geographical distribution of industrial infrastructure. 3. High importance of plant refurbishment projects. 4. The need to ensure comprehensive knowledge transfer between different generations of operational personnel and, which is especially important for the nuclear energy industry, between the commissioning personnel generations. NPP information model is an innovative method of NPP knowledge management throughout the whole plant lifecycle. It is an integrated database with all NPP technical engineering information (design, construction, operation, diagnosing, maintenance, refurbishment). (author

  1. Improving family and community health in eastern Europe--the lifecycle approach at WHO

    DEFF Research Database (Denmark)

    Lazarus, Jeff; Bjørk, Christina; Ostergren, Mikael

    2006-01-01

    There are great differences in the health status of young children in the European Region. Central Asia and the Caucasus are the worst-off areas. After reviewing under-five mortality in the eight countries of this part of Eastern Europe, a new WHO strategy to improve child survival is presented. ....... Adopted in late 2005, the strategy has four main principles: a lifecycle approach, youth participation, equity and intersectoral collaboration....

  2. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  3. Relation between the organizational lifecycle and planning: a study of accounting service companies from the state of Santa Catarina

    Directory of Open Access Journals (Sweden)

    Dinorá Baldo de Faveri

    2014-11-01

    Full Text Available The study aims to identify the relation between the different stages of the organizational lifecycle and the planning process of accounting service companies in the State of Santa Catarina. This descriptive research with a quantitative approach was undertaken through a survey in a convenience sample of 116 companies. Therefore, the model by Miller and Friesen (1984 was used to identify the lifecycle stages and the instrument by Frezatti, Relvas, Nascimento, Junqueira and Souza (2010 to measure the usage level of the planning artifacts. The planning was analyzed in its three modalities: Strategic Planning, Budget and Budgetary Control. To analyze the data, discriminant and correlation analyses were used. The study results showed that the accounting service companies are classified in distinct stages of the organizational lifecycle, predominantly birth and rejuvenation. Only half of the companies analyzed use the budget, even when managed by people with a background in the area who know the importance of this instrument. In addition, a negative correlation was observed between the stages of birth and decline and the use of the planning artifacts and a positive correlation between the stages of growth, maturity and rejuvenation, in line with the results by Miller and Friesen (1984.

  4. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.

    Science.gov (United States)

    Scown, Corinne D; Gokhale, Amit A; Willems, Paul A; Horvath, Arpad; McKone, Thomas E

    2014-01-01

    Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ∼ 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.

  5. Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations

    Science.gov (United States)

    Richard Bergman; Elaine Oneil; Maureen Puettmann; Ivan Eastin; Indroneil Ganguly

    2014-01-01

    The marketplace has an increasing desire for credible and transparent product eco-labels based on life-cycle assessment (LCA) data, especially involving international trade. Over the past several years, stakeholders in the U.S. wood products industry have developed many such “eco-labels” under the ISO standard of LCA-based environmental product declarations (EPDs). The...

  6. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Ibn-Mohammed, Taofeeq; Mostafa, Hassan; Reaney, Ian M.; Koh, Lenny S. C.; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    along with low material and manufacturing costs as well as a favorable environmental profile in comparison with other energy harvesting technologies, can the true potential of TENGs be established. This paper presents a detailed techno-economic lifecycle

  7. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment

    NARCIS (Netherlands)

    Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; van Geert, Y.; Dendoncker, K.; Seuntjes, P.

    2015-01-01

    Abstract The latest life-cycle assessment methods account for land use, due to the production, use and disposal of products and services, in terms of ecosystem damage. The process of brownfield remediation converts otherwise idle urban space into productive space. The value to ecosystems in this

  8. Life-cycle Analysis of Bioproducts and Their Conventional Counterparts in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Adom, Felix [Argonne National Lab. (ANL), Argonne, IL (United States); Sather, Norm [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, Seth [Argonne National Lab. (ANL), Argonne, IL (United States); He, Chang [Northwestern Univ., Evanston, IL (United States); Gong, Jian [Northwestern Univ., Evanston, IL (United States); Yue, Dajun [Northwestern Univ., Evanston, IL (United States); You, Fengqi [Northwestern Univ., Evanston, IL (United States)

    2015-09-01

    To further expand upon the literature in this field and to develop a platform for bioproduct LCA, we developed LCA results for ten bioproducts produced either from algal glycerol or from corn stover-derived sugars. We used Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model as the platform for this study. The data and calculations reported herein are available to GREET users in a bioproducts module included in the fall 2015 GREET release. This report documents our approach to this analysis and the results. In Chapter 2, we review the process we underwent to select the bioproducts for analysis based on market and technology readiness criteria. In Chapter 3, we review key parameters for production of the two feedstocks we considered: corn stover and algae. Given the lack of publicly available information about the production of bioproducts, which is caused in large part by the emerging nature of the industry, we developed Aspen Plus® simulations of the processes that could be used to produce each bioproduct. From these simulations, we extracted the energy and material flows of these processes, which were important inputs to the GREET bioproducts module. Chapter 4 provides the details of these Aspen Plus simulations. It is important to compare the LCA results for bioproducts to those for their petroleum counterparts. We therefore also developed material and energy flow data for conventional products based mostly on the literature. These data are described in Chapter 5 and are also included in the GREET bioproducts module. In Chapter 6, we present results from this analysis and examine areas for refinement and future research.

  9. Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, K S; Kim, D H; Yang, K H; Jung, E C; Jeong, D Y; Yi, Y J; Lee, S M; Hong, K H; Han, J M; Yoo, B D; Rho, S P; Yi, J H; Park, H M; Cha, B H; Nam, S M; Lee, J M

    1997-09-01

    For the development of the laser initiated high resolution, ultra sensitive analysis technology following field of researches have been performed. (1) Laser resonance ionization technology, (2) Laser-induced rare isotope detection technology, (3) Laser-induced plasma analysis technology, (4) Microparticle analysis technology by using ion trap, (5) Laser induced remote sensing technique. As a result a monitoring system for photoionized product is developed and the test of system is performed with Sm sample. The rare isotope detection system is designed and a few key elements of the system are developed. In addition a laser-induced plasma analysis system is developed and samples such as Zircaloy, Zinc-base alloy, rock samples are reasonably analyzed. The detection sensitivity is identified as good as a few ppm order. An ion trap is developed and microparticles such as SiC are trapped inside the trap by ac and dc fields. The fluorescence signals from the organic dyes as well as rare earth element which are absorbed on the microparticles are detected. Several calibration curves are also obtained. In the field of laser remote sensing a mobile Lidar system is designed and several key elements are developed. In addition the developed system is used for the detection of Ozone, NO{sub 2}, SO{sub 2}, etc. (author). 57 refs., 42 figs.

  10. Life-Cycle Labor-Force Participation of Married Women: Historical Evidence and Implications

    OpenAIRE

    Goldin, Claudia

    1989-01-01

    The five-fold increase in the labor force participation rate of married women over the last half century was not accompanied by a substantial increase in the average job market experience of working women. Two data sets giving life-cycle labor force histories for cohorts of women born from the 1880s to 1910s indicate substantial (unconditional) heterogeneity in labor force participation. Married women in the labor force had a high degree of attachment to it; increased participation rates brou...

  11. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings

    Science.gov (United States)

    2015-03-21

    Policy - 37 - Naval Postgraduate School the number of brazes and welds from 25 to just five. There are currently more than 300 3D printing ...NPS-LM-15-002 ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D ...Program Sponsored Report Series Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative

  12. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  13. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    Science.gov (United States)

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  14. [Trauma & the reproductive lifecycle in women].

    Science.gov (United States)

    Born, Leslie; Phillips, Shauna Dae; Steiner, Meir; Soares, Claudio N

    2005-10-01

    Women are at significantly higher risk for developing post-traumatic stress disorder (PTSD) than men, resulting in increased psychosocial burden and healthcare related costs. Recent research has shown complex interactions between the impact of traumatic experiences, and the reproductive lifecycle in women. For example, women suffering from premenstrual dysphoric disorder (PMDD) who also report a history of sexual or physical abuse are more likely to present with different neuroendocrine reactivity to stressors, when compared to premenstrual dysphoric disorder subjects without prior history of trauma or abuse or non-premenstrual dysphoric disorder subjects. In addition, women with a history of abuse or trauma may experience re-emergence of symptoms during pregnancy. Lastly, females who experience miscarriage may present with even higher prevalence rates of post-traumatic stress disorder symptoms. In this manuscript we examine the existing data on gender differences in post-traumatic stress disorder, with particular focus on psychological and physiological factors that might be relevant to the development of symptoms after exposure to traumatic events associated with the reproductive life cycle. Current options available for the treatment of such symptoms, including group and counselling therapies and debriefing are critically reviewed.

  15. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  16. Modern information and telecommunication technologies in educational process as the element of ongoing personnel training for high-tech Russian industry

    Science.gov (United States)

    Matyatina, A. N.; Isaev, A. A.; Samovarschikov, Y. V.

    2017-01-01

    In the current work the issues of staffing high-tech sectors of Russian industry are considered in the context of global geopolitical instability, the comparative analysis of the age structure of domestic companies with the leading Western industrial organizations was conducted, "growth points" of human resources development were defined. For the purpose of informational and telecommunicational implementation in the educational process the analysis of normative-legal documents regulating the requirements to the electronic educational environment and distance learning technologies is presented. The basic models of distance learning technologies and remote resources as part of teaching materials are used. Taking into account the specifics and requirements of industrial enterprises a number of tools and methodology of e-learning based on the identified needs of the industrial sector were offered. The basis of the proposed model is built on one-parameter model through a three-tier learning: kindergarten - secondary - higher education (professional) where the lifecycle of parameter is a list of the industrial enterprises demands to the educational process.

  17. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  18. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  19. Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues

    International Nuclear Information System (INIS)

    Malca, Joao; Freire, Fausto

    2011-01-01

    Renewable energy sources, and particularly biofuels, are being promoted as possible solutions to address global warming and the depletion of petroleum resources. Nevertheless, significant disagreement and controversies exist regarding the actual benefits of biofuels displacing fossil fuels, as shown by a large number of life-cycle studies that have varying and sometimes contradictory conclusions. This article presents a comprehensive review of life-cycle studies of biodiesel in Europe. Studies have been compared in terms of nonrenewable primary energy requirement and GHG intensity of biodiesel. Recently published studies negate the definite and deterministic advantages for biodiesel presented in former studies. A high variability of results, particularly for biodiesel GHG intensity, with emissions ranging from 15 to 170 gCO 2 eq MJ f -1 has been observed. A detailed assessment of relevant aspects, including major assumptions, modeling choices and results, has been performed. The main causes for this high variability have been investigated, with emphasis on modeling choices. Key issues found are treatment of co-product and land use modeling, including high uncertainty associated with N 2 O and carbon emissions from cultivated soil. Furthermore, a direct correlation between how soil emissions were modeled and increasing values for calculated GHG emission has been found. A robust biodiesel life-cycle modeling has been implemented and the main sources of uncertainty have been investigated to show how uncertainty can be addressed to improve the transparency and reliability of results. Recommendations for further research work concerning the improvement of biofuel life cycle modeling are also presented. (author)

  20. Kinds of initial billets in renovation technologies

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available Nowadays, technologists in charge of repair, restoration, modernization, and utilization of engineering and other tangible objects widely use the concepts "renovation" and "renovation technologies" pioneered at BMSTU. In forming a new field of science these concepts, in the proper sense of the word, are of composite, generalized character. They concern all the activities and technologies aimed at increasing an object resource or its lifecycle extension, including object material recycling.In the cutting-edge renovation technologies an object (part, assembly, machine, etc. damaged in the operating process is considered to be an initial billet. In renovation, one of the most widespread kinds of initial billets is a damaged part.Such a part can be used again, if, for example, it has saved its material properties in full measure while only contact surfaces or parts of these surfaces have become damaged, and at a point of renovation they can be restored for recycling. If a part has lost its initial properties in full bulk of material, it may be reusable in the assemblies and machines with less rigid requirements for material properties.Or in case of properties loss below the permissible level a damaged part-billet is utilized. Thus, the part-billet state at the point of renovation defines the kind of renovation technology and the main (basic technological method to effect on the damaged part, as well as a set and a sequence of technological methods in general manufacturing process of renovation.However renovation technologies are used not only at the repair and restoration stages after operation-service. So, at the manufacturing stage of a new product to provide the quality to raise a resource are applied the same technological methods as renovation technologies for the objects damaged at the stage of operation. Besides, it is known that at the manufacturing stage a part quality depends not only on the last operation, but also on the features of