WorldWideScience

Sample records for technology laboratories laboratory

  1. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  2. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  3. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  4. A Laboratory Course in Technological Chemistry.

    Science.gov (United States)

    Wiseman, P.

    1986-01-01

    Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…

  5. Laboratory automation: trajectory, technology, and tactics.

    Science.gov (United States)

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  6. Proceedings of symposium on technology in laboratories

    International Nuclear Information System (INIS)

    2008-03-01

    The Symposium on Technology in Laboratories was held on both 10th and 11th March 2008 at Ceratopia Toki in Toki city, Gifu Prefecture, Japan, which hosted by the National Institute for Fusion Science (NIFS). 287 people participated and 97 papers were presented from many universities, national laboratories, technical colleges, and some industries in Japan. Technical experience and new techniques were reported and discussed in four fields: technology of fabrication and cryogenics', 'device technology', 'diagnostic and control system', and 'computer and processing'. The 37 of the presented papers are indexed individually. (J.P.N.)

  7. High Technology Mass Spectrometry Laboratory

    Science.gov (United States)

    2010-08-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Preparedness for acts of chemical terrorism and warfare require detecti testing will allow...chemical terrorism and warfare require detection and response to such attacks. Appropriate chemical testing will allow for the proper diagnosis and...acrylonitrile and acrolein in human blood, and potentially to devise rapid, high throughput screening technology to enable examination of large groups of

  8. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  9. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  10. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends

  11. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  12. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  13. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  14. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  15. Radiation and Health Technology Laboratory Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  16. Radiation and Health Technology Laboratory Capabilities

    International Nuclear Information System (INIS)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-01-01

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M and TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M and TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M and TE. This report describes the standards and calibrations laboratory.

  17. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  18. [Perspective technologies and researches in the areaof medical laboratory diagnostics].

    Science.gov (United States)

    Ivanov, A M; Zhdanov, K V; Krivoruchko, A A; Ivoĭlov, O O

    2013-06-01

    The main principles of organisation of medical laboratory diagnostics are efficiency of analysis, mobility of laboratory services and quality of researches. These goals can be achieved by the use of portative laboratory analizers, by automation and computerization of the laboratorial service, by development and adoption of new laboratory technologies, integrating different methods and types of research. It is necessary to pay attention to the problem of NPT and indication of pathogenic germs. Priority areas of medical laboratory diagnostics development are: development and use of portative laboratory analyzers; development of chemical, that help to speed up and cheapen researches, improve effectiveness of laboratory diagnostics of infections and indications of pathogenic and other germ; development of new, more sensitive, specific, but simple methods of laboratory analysis; development of complex methods and types of researches, further implementation of methods and researches with different principles of action; development and implementation of new methods of NPT results recording; automation and computerization of the laboratorial diagnostics.

  19. Guidance, Navigation and Control Digital Emulation Technology Laboratory. Volume 1. Part 2. Task 1: Digital Emulation Technology Laboratory

    Science.gov (United States)

    1991-09-27

    Engineering Research Laboratory " Autnor: Stephen R. Wachtel extern int level; I extern char "list( vic. ca.. staterent ( identifier, opion...ENGINEERING RESEARCH LABORATORY Georgia Institute of Technology Atlanta, Georgia 30332 - 0540 Contract Data Requirements List Item A005 Period Covered: FY 91...COMPUTER ENGINEERING RESEARCH LABORATORY Georgia Institute of Technology Atlanta, Georgia 30332 - 0540 Eugene L. Sanders Cecil 0. Alford USASDC Georgia

  20. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  1. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  2. MIT Lincoln Laboratory: Technology in Support of National Security

    Science.gov (United States)

    2011-01-01

    Carter, Cathy Ho, Ngaire Underhill, Sara James, Jessica Olszta, Jessica Brooks, Melissa May, and Rodolfo Cuevas. Because Lincoln Laboratory is at the...Corporation Applicon Arcon Corporation Ascension Technology Atlantic Aerospace Electronics Axsun Technologies Broadcloud Communications Carl Blake

  3. Laboratory 3.0: Manufacturing Technologies Laboratory Virtualization with a Student-Centred Methodology

    Science.gov (United States)

    Fabregat-Sanjuan, Albert; Pàmies-Vilà, Rosa; Ferrando Piera, Francesc; De la Flor López, Silvia

    2017-01-01

    This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning…

  4. HyTech - The Hydrogen Technology Laboratory at Savannah River

    International Nuclear Information System (INIS)

    Motyka, T.; Knight, J.R.; Heung, L.K.; Lee, M.W.

    1995-01-01

    SRS recently announced the formation of the Hydrogen Technology Laboratory (HyTech) to work with industry and government in developing technologies based on the site's four decades of experience with tritium and other forms of H. HyTech will continue to sustain the site's ongoing role in H technology applications for defense programs. In addition, the laboratory will work with the chemical, transportation, power, medical, and other industries to develop and test related technologies. HyTech, which is located in the Savannah River Technology Center, will make use of its facilities and staff, as well as the infrastructure within the site's Tritium Facilities. More than 80 SRS scientists, engineers, and technical professionals with backgrounds in chemistry, engineering, materials science, metallurgy, physics, and computer science will work with the laboratory. This paper describes some of HyTech's current initiatives in the area of H storage, transportation, and energy applications

  5. Materials technology at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Betten, P.

    1989-01-01

    Argonne is actively involved in the research and development of new materials research and development (R ampersand D). Five new materials technologies have been identified for commercial potential and are presented in this paper as follows: (1) nanophase materials, (2) nuclear magnetic resonance (NMR) imaging of ceramics, (3) superconductivity developments and technology transfer mechanisms, and (4) COMMIX computer code modeling for metal castings, and (5) tribology using ion-assisted deposition (IAB). 4 refs., 7 figs., 1 tab

  6. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  7. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  8. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  9. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  10. Dental laboratory technology education in China: current situation and challenges.

    Science.gov (United States)

    Zheng, Liwei; Yue, Li; Zhou, Min; Yu, Haiyang

    2013-03-01

    Modern dentistry and dental education in China were first introduced from abroad by Dr. Lindsay in 1907. However, advancements in the field of dental laboratory technology did not occur to the same degree in specialties such as prosthodontics and orthodontics. Since the 1990s, orders from abroad demanding dental appliances surged as the image of China as the "world's factory" strengthened. The assembly line model, in which technicians work like simple procedure workers, was rapidly applied to denture production, while the traditional education system and apprenticeship systems demonstrated little progress in these years. The lack of advancement in dental laboratory technology education caused insufficient development in China's dental technology industry. In order to alter the situation, a four-year dental laboratory technology undergraduate educational program was established in 2005 by West China School of Stomatology, Sichuan University (WCSS, SCU). This program was based on SCU's undergraduate education and WCSS's junior college education systems. The program introduced scientific methods in relevant subjects into laboratory technicians' training and made many improvements in the availability of trained faculty, textbooks, laboratory facilities, and curriculum.

  11. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  12. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  13. [Guidelines for blood transfusion teaching to medical laboratory technology students].

    Science.gov (United States)

    Moncharmont, P; Tourlourat, M; Fourcade, C; Julien, E; Peyrard, T; Cabaud, J-J

    2012-02-01

    The new French law about clinical laboratory medicine, the requirements of the ISO/CEI 15189 standard, the numerous abilities expected from the medical laboratory technologists and their involvement in blood bank management has led the working group "Recherche et démarche qualité" of the French Society of Blood Transfusion to initiate an inventory of blood transfusion teaching syllabus for medical laboratory technology students and to propose transfusion medicine teaching guidelines. Seven worksheets have been established for that purpose including red blood cell antigen typing and antibody screening, blood sampling in immunohaematology, automation, clinical practices, blood products, blood delivery and haemovigilance. These guidelines aim at contributing to the harmonization of transfusion medicine teaching and at providing objective elements to the medical laboratory managers regarding the practical and theoretical skills of theirs collaborators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Laboratory 3.0: Manufacturing technologies laboratory virtualization with a student-centred methodology

    Directory of Open Access Journals (Sweden)

    Albert Fabregat-Sanjuan

    2017-06-01

    Full Text Available This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning platform has been used. This methodology ensured engaging classes at the same time that provided a useful live feedback for students and teachers. The virtualization of the laboratory was achieved by two different e-learning activities, self-assessment tasks and video clips. These e-learning tools have been used not only to improve the students’ learning but also to enhance their motivation. The results from academic outputs show a significant improvement after the new blended learning method is applied. Moreover, a student satisfaction survey shows the positive impact of the methodology on the students’ engagement and motivation.

  15. Oak Ridge National Laboratory Technology Logic Diagram. Indexes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Decontamination and Decommissioning (D&D) Index provides a comprehensive list of site problems, problem area/constituents, remedial technologies, and regulatory terms discussed in the D&D sections of the Oak Ridge National Laboratory Technology Logic Diagram. All entries provide specific page numbers, or cross-reference entries that provide specific page numbers, in the D&D volumes (Vol. 1, Pt. A; Vol. 2, Pt. A; and appropriate parts of Vol. 3). The Oak Ridge National Laboratory Technology (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA) and WM activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk.

  16. Promoting Rapid Learning in the Histology Laboratory by Integrating Technology

    Science.gov (United States)

    Shields, Vonnie

    2008-01-01

    This paper describes the results of incorporating technology in the histology laboratory by using high-resolution video-imaging equipment (VIE). The study sought to determine if (1) the VIE would allow students to more easily and rapidly find histological structures over more conventional methods, and (2) if they could find the structures with the…

  17. Avanços tecnológicos em hematologia laboratorial Technological advances in laboratorial haematology

    Directory of Open Access Journals (Sweden)

    Paulo C. Naoum

    2001-08-01

    Full Text Available O recente avanço científico e tecnológico direcionado à identificação imuno-hematológica de produtos celulares (ex.: citocinas, interleucinas, interferons, entre outros sintetizados por determinadas células sanguíneas, bem como na identificação de antígenos de membrana de leucócitos e células progenitoras hematopoiéticas, promoveram excepcional desenvolvimento no diagnóstico laboratorial de diversas doenças hematológicas. Somam-se a esse fato as aplicações das técnicas de biologia molecular que se tornam cada vez mais instrumentos laboratoriais de grande definição no diagnóstico e na prevenção de doenças hematológicas, notadamente aquelas de origem hereditária. O presente artigo teve o objetivo de expor as principais aplicações de novas tecnologias que deverão ser adotadas rapidamente pela moderna hematologia laboratorial, bem como a de sensibilizar os profissionais hematologistas, clínicos e laboratoriais, para a necessidade de se atualizarem numa nova ciência, a dos produtos celulares.Recent progress towards the identification of products synthesised by some blood cells (ex.: cytokines, interleukins, interferons, etc as well as the identification of white blood cell and stem cell membrane antigens, has aided the exceptional development of laboratory diagnostics of several haematological diseases. In addition to this there has been a great development in the use of molecular biology techniques which have become instrumentals of high definition in the diagnosis and prevention of haematological diseases, specifically those of hereditary origin. This article has the aim of disclosing the main applications of the new technologies that will soon be used widely in laboratory haematology.

  18. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  19. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  20. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  1. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  2. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  3. Decreasing mislabeled laboratory specimens using barcode technology and bedside printers.

    Science.gov (United States)

    Brown, Judy E; Smith, Nancy; Sherfy, Beth R

    2011-01-01

    Mislabeling of laboratory samples has been found to be a high-risk issue in acute care hospitals. The goal of this study was to decrease mislabeled blood specimens. In the first year after the implementation of a positive patient identification system using barcoding and computer technology, the number of labeling errors decreased from 103 to 8 per year. The outcome was clinically and statistically significant (P < .001).

  4. Advances in Measurement Technology at NIST's Physical Measurement Laboratory

    Science.gov (United States)

    Dehmer, Joseph

    2014-03-01

    The NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology. The Physical Measurement Laboratory (PML) has responsibility for maintaining national standards for two dozen physical quantities needed for international trade; and, importantly, it carries out advanced research at the frontiers of measurement science to enable extending innovation into new realms and new markets. This talk will highlight advances being made across several sectors of technology; and it will describe how PML interacts with its many collaborators and clients in industry, government, and academe.

  5. The principles of Health Technology Assessment in laboratory medicine.

    Science.gov (United States)

    Liguori, Giorgio; Belfiore, Patrizia; D'Amora, Maurizio; Liguori, Renato; Plebani, Mario

    2017-01-01

    The Health Technology Assessment (HTA) is a multi-professional and multidisciplinary evaluation approach designed to assess health technology in the broadest sense of the term, from its instruments to the rearranging of its organizational structures. It is by now an established methodology at national and international levels that involves several medical disciplines thanks to its versatility. Laboratory medicine is one of these disciplines. Such specialization was subjected, in recent years, to deep changes even from an organizational standpoint, in order to meet the health needs of the population, making them as effective and cost-effective as possible. In this regard, HTA was the tool used to assess implications in different areas.

  6. Remote participation technologies in the EFDA Laboratories - status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  7. Remote participation technologies in the EFDA Laboratories - status and prospects

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  8. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  9. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  10. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  11. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  12. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    International Nuclear Information System (INIS)

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations

  14. A Review of Research on Technology-Assisted School Science Laboratories

    Science.gov (United States)

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  15. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  16. Delivery of laboratory data with World Wide Web technology.

    Science.gov (United States)

    Hahn, A W; Leon, M A; Klein-Leon, S; Allen, G K; Boon, G D; Patrick, T B; Klimczak, J C

    1997-01-01

    We have developed an experimental World Wide Web (WWW) based system to deliver laboratory results to clinicians in our Veterinary Medical Teaching Hospital. Laboratory results are generated by the clinical pathology section of our Veterinary Medical Diagnostic Laboratory and stored in a legacy information system. This system does not interface directly to the hospital information system, and it cannot be accessed directly by clinicians. Our "meta" system first parses routine print reports and then instantiates the data into a modern, open-architecture relational database using a data model constructed with currently accepted international standards for data representation and communication. The system does not affect either of the existing legacy systems. Location-independent delivery of patient data is via a secure WWW based system which maximizes usability and allows "value-added" graphic representations. The data can be viewed with any web browser. Future extensibility and intra- and inter-institutional compatibility served as key design criteria. The system is in the process of being evaluated using accepted methods of assessment of information technologies.

  17. An Analysis of Medical Laboratory Technology Journals' Instructions for Authors.

    Science.gov (United States)

    Horvat, Martina; Mlinaric, Ana; Omazic, Jelena; Supak-Smolcic, Vesna

    2016-08-01

    Instructions for authors (IFA) need to be informative and regularly updated. We hypothesized that journals with a higher impact factor (IF) have more comprehensive IFA. The aim of the study was to examine whether IFA of journals indexed in the Journal Citation Reports 2013, "Medical Laboratory Technology" category, are written in accordance with the latest recommendations and whether the quality of instructions correlates with the journals' IF. 6 out of 31 journals indexed in "Medical Laboratory Technology" category were excluded (unsuitable or unavailable instructions). The remaining 25 journals were scored based on a set of 41 yes/no questions (score 1/0) and divided into four groups (editorial policy, research ethics, research integrity, manuscript preparation) by three authors independently (max score = 41). We tested the correlation between IF and total score and the difference between scores in separate question groups. The median total score was 26 (21-30) [portion of positive answers 0.63 (0.51-0.73)]. There was no statistically significant correlation between a journal's IF and the total score (rho = 0.291, P = 0.159). IFA included recommendations concerning research ethics and manuscript preparation more extensively than recommendations concerning editorial policy and research integrity (Ht = 15.91, P = 0.003). Some policies were poorly described (portion of positive answers), for example: procedure for author's appeal (0.04), editorial submissions (0.08), appointed body for research integrity issues (0.08). The IF of the "Medical Laboratory Technology" journals does not reflect a journals' compliance to uniform standards. There is a need for improving editorial policies and the policies on research integrity.

  18. Laboratory Tests

    Science.gov (United States)

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  19. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  20. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  1. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  2. Load Disaggregation Technologies: Real World and Laboratory Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.; Butner, Ryan S.; Johnson, Erica M.

    2016-09-28

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; which has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.

  3. CANMET Materials Technology Laboratory technical review 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This technical review described research activities of the CANMET Materials Technology Laboratory, whose mandate is to develop and deploy technologies that improve aspects of producing and using products derived from minerals and metals. During the reporting period, 126 reports for clients were published and the lab participated in 15 national and international consortia. The Advanced Concrete Technology Program was reviewed. The Advanced Materials Technologies Program was discussed, and recent advances in the hydroforming of tubes and corrosion protection techniques for magnesium used in automobiles were presented. A review of the Sustainable Casting Program was presented. New materials for the mining industry were discussed, as well as issues concerning lost-foam casting. Details of the Efficient Metal Production Program were provided and new galvanized TRIP steel and metal inert gas welding processes were outlined. New additions to the Infrastructure Reliability Program included intelligent systems for pipeline infrastructure reliability; software for corrosion control; and risk management of pipelines. Additions to the Certifying Agency for Non-Destructive Testing included a new certification of X-Ray Fluorescence operators and revisions to the non-destructive testing qualification and certification of personnel. New patents developed by the laboratory included a hydrogen sensor using a solid hydrogen ion conducting electrolyte; reinforcement preform for the production of magnesium composite and other metal matrix composite materials; a rechargeable battery electrode testing device; a sulfide biosensor; and a bio-corrosion probe. During the 2 year review period, staff received 13 national and international awards. An outline of major facilities and equipment was presented, as well as details of new materials for use by the transportation sector. Advances in concrete and other construction materials were outlined, as well as metallurgical process improvements. A

  4. Instructional Efficiency of Tutoring in an Outreach Gene Technology Laboratory

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    Our research objective focused on examining the instructional efficiency of tutoring as a form of instructional change as opposed to a non-tutoring approach in an outreach laboratory. We designed our laboratory based on cognitive load (CL) theory. Altogether, 269 twelfth-graders participated in our day-long module "Genetic Fingerprinting." In a…

  5. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Liudmyla M. Nakonechna

    2010-08-01

    Full Text Available Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  6. THE EMPLOYMENT OF COMPUTER TECHNOLOGIES IN LABORATORY COURSE ON PHYSICS

    OpenAIRE

    Liudmyla M. Nakonechna

    2010-01-01

    Present paper considers the questions on development of conceptually new virtual physical laboratory, the employment of which into secondary education schools will allow to check the theoretical knowledge of students before laboratory work and to acquire the modern methods and skills of experiment.

  7. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  8. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  9. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  10. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  11. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  12. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  13. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  14. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  15. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  16. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  17. Technological capability at the Brazilian official pharmaceutical laboratories

    Directory of Open Access Journals (Sweden)

    José Vitor Bomtempo Martins

    2008-10-01

    Full Text Available This paper studies the technological capability in the Brazilian Official Pharmaceutical Laboratories [OPL]. The technological capability analysis could contribute to organization strategies and governmental actions in order to improve OPL basic tasks as well to incorporate new ones, particularly concerning the innovation management. Inspired in Figueiredo (2000, 2003a, 2003b and Figueiredo and Ariffin (2003, a framework was drawn and adapted to pharmaceutical industry characteristics and current sanitary and health legislation. The framework allows to map different dimensions of the technological capability (installations, processes, products, equipments, organizational capability and knowledge management and the level attained by OPL (ordinary or innovating capability. OPL show a good development of ordinary capabilities, particularly in Product and Processes. Concerning the other dimensions, OPL are quite diverse. In general, innovating capabilities are not much developed. In the short term, it was identified a dispersion in the capacitating efforts. Considering their present level and the absorption efforts, good perspectives can be found in Installations, Processes and Organizational Capability. A lower level of efforts in Products and Knowledge Management could undermine these capabilities in the future.

  18. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  19. Monsanto/Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. We contend that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be: (1) water detritiated to a level below the Radioactivity Concentration Guide or detritiated to a level that would permit safe recycle in a closed loop operation and, (2) enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  20. Energy and Technology Review, July 1984: state of the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Each year, Director Roger Batzel addresses the LLNL staff on the state of the Laboratory and the achievements of the past year. On May 17, 1984, Dr. Batzel reported on the estimated budget for fiscal year 1985, which includes an 8.5% increase in operating funds, and on recent progress in our major programs. In this issue, we summarize Dr. Batzel's address and present a sampling of Laboratory achievements.

  1. Energy and Technology Review, July 1984: state of the Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Each year, Director Roger Batzel addresses the LLNL staff on the state of the Laboratory and the achievements of the past year. On May 17, 1984, Dr. Batzel reported on the estimated budget for fiscal year 1985, which includes an 8.5% increase in operating funds, and on recent progress in our major programs. In this issue, we summarize Dr. Batzel's address and present a sampling of Laboratory achievements

  2. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  3. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  4. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  5. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  6. Protective Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a 40 by 28 by 9 foot facility that is equipped with tools for the development of various items of control technology related to the transmission...

  7. Elastomers Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Primary capabilities include: elastomer compounding in various sizes (micro, 3x5, 8x12, 8x15 rubber mills); elastomer curing and post curing (two 50-ton presses, one...

  8. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  9. Audio Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment and facilities for auditory display research. A primary focus is the performance use of binaurally rendered 3D sound in conjunction...

  10. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  11. Laboratory technology for hydrogen purification in liquefying installations

    International Nuclear Information System (INIS)

    Avram, I.; David, E.; Dordea, M.; Peculea, M.; Pop, F.; Stanciu, V.; Varzaru, O.; Panu, E.; Curuia, M.; Fron, P.; Balint, I.; Culcer, M.; Roman, T.; Smeureanu, N.

    1995-01-01

    This paper presents the development of a laboratory installation for purification of the hydrogen to be liquefied. The purification is achieved by the procedure of physical adsorption at low temperature. This procedure implies the use of materials with extensive active surfaces such as activated carbon, molecular sieves and silica gels. The main stages of the purification process are described

  12. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  13. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  14. Applied Neuroscience Laboratory Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  15. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  16. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  17. 77 FR 68752 - Notice of Intent To Grant Exclusive License Between National Energy Technology Laboratory and...

    Science.gov (United States)

    2012-11-16

    ... Eugene, Oregon. The inventions are owned by the United States of America as represented by the Department... person setting forth reasons why it would not be in the best interest of the United States to grant the... Technology Laboratory and Corrosion Solutions AGENCY: National Energy Technology Laboratory, Department of...

  18. TECHNOLOGY TRANSFER: Several Factors Have Led to a Decline in Partnerships at DOE's Laboratories

    National Research Council Canada - National Science Library

    2002-01-01

    Since 1980, the Congress has enacted several laws designed to make federally funded technology available to the public by facilitating the transfer of technology from federal laboratories to U.S. businesses...

  19. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  20. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  1. Laboratory investigations

    International Nuclear Information System (INIS)

    Handin, J.

    1980-01-01

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  2. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  3. Mechanical Components and Tribology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory evaluates fundamental friction, wear, and lubrication technologies for improved, robust, and power-dense vehicle transmissions. The facility explores...

  4. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  5. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2012-11-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... Assistant for Laboratory Management, AMRDEC, 5400 Fowler Road, Redstone Arsenal, AL 35898-5000; Engineer...

  6. 78 FR 29335 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2013-05-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense...: Special Assistant for Laboratory Management, AMRDEC, 5400 Fowler Road, Redstone Arsenal, AL 35898-5000...

  7. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    Science.gov (United States)

    Jagodzinski, Piotr; Wolski, Robert

    2015-01-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar…

  8. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  9. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  10. The History of Industrial Research Laboratories as a Resource for Teaching about Science-Technology Relationships.

    Science.gov (United States)

    de Vries, Marc

    2001-01-01

    Studies the complex relationship between science and technology. Derives three different interaction patterns from the history of industrial research laboratories: (1) science as enabler for technology; (2) science as a forerunner of technology; and (3) science as a knowledge resource for technology. (Contains 21 references.) (DDR)

  11. Review and Identification of DOE Laboratory Technologies for Countermine/Unexploded Ordnance Detection

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.

    2002-04-03

    Several Department of Energy (DOE) laboratories have worked and/or are working on technologies that are applicable to the detection of landmines and/or unexploded ordnance. This report is a compilation of technical summaries for many of these technologies. For additional information on any technology, appropriate points of contact are provided for each technology.

  12. EXPERIENCE OF THE ORGANIZATION OF VIRTUAL LABORATORIES ON THE BASIS OF TECHNOLOGIES OF CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    V. Oleksyuk

    2014-06-01

    Full Text Available The article investigated the concept of «virtual laboratory». This paper describes models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The author suggests private cloud platforms to deploying the virtual laboratory. This paper describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University. The object of the research are virtual laboratories as components of IT infrastructure of higher education. The subject of the research are clouds as base of deployment of the virtual laboratories. Conclusions. The use of cloud technologies in the development virtual laboratories of the is an actual and need of the development. The hybrid model is the most appropriate in the deployment of cloud infrastructure of higher educational institution. It is reasonable to use the private (Cloudstack, Eucalyptus, OpenStack cloud platform in the universities.

  13. Virtual Cultural Landscape Laboratory Based on Internet GIS Technology

    Science.gov (United States)

    Bill, R.

    2012-07-01

    In recent years the transfer of old documents (books, paintings, maps etc.) from analogue to digital form has gained enormous importance. Numerous interventions are concentrated in the digitalisation of library collections, but also commercial companies like Microsoft or Google try to convert large analogue stocks such as books, paintings, etc. in digital form. Data in digital form can be much easier made accessible to a large user community, especially to the interested scientific community. The aim of the described research project is to set up a virtual research environment for interdisciplinary research focusing on the landscape of the historical Mecklenburg in the north-east of Germany. Georeferenced old maps from 1786 and 1890 covering complete Mecklenburg should be combined with current geo-information, satellite and aerial imagery to support spatio-temporal research aspects in different scales in space (regional 1:200,000 to local 1:25.000) and time (nearly 250 years in three time steps, the last 30 years also in three time slices). The Virtual Laboratory for Cultural Landscape Research (VKLandLab) is designed and developed by the Chair of Geodesy and Geoinformatics, hosted at the Computing Centre (ITMZ) and linked to the Digital Library (UB) at Rostock University. VKLandLab includes new developments such as wikis, blogs, data tagging, etc. and proven components already integrated in various data-related infrastructures such as InternetGIS, data repositories and authentication structures. The focus is to build a data-related infrastructure and a work platform that supports students as well as researchers from different disciplines in their research in space and time.

  14. VIRTUAL CULTURAL LANDSCAPE LABORATORY BASED ON INTERNET GIS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    R. Bill

    2012-07-01

    Full Text Available In recent years the transfer of old documents (books, paintings, maps etc. from analogue to digital form has gained enormous importance. Numerous interventions are concentrated in the digitalisation of library collections, but also commercial companies like Microsoft or Google try to convert large analogue stocks such as books, paintings, etc. in digital form. Data in digital form can be much easier made accessible to a large user community, especially to the interested scientific community. The aim of the described research project is to set up a virtual research environment for interdisciplinary research focusing on the landscape of the historical Mecklenburg in the north-east of Germany. Georeferenced old maps from 1786 and 1890 covering complete Mecklenburg should be combined with current geo-information, satellite and aerial imagery to support spatio-temporal research aspects in different scales in space (regional 1:200,000 to local 1:25.000 and time (nearly 250 years in three time steps, the last 30 years also in three time slices. The Virtual Laboratory for Cultural Landscape Research (VKLandLab is designed and developed by the Chair of Geodesy and Geoinformatics, hosted at the Computing Centre (ITMZ and linked to the Digital Library (UB at Rostock University. VKLandLab includes new developments such as wikis, blogs, data tagging, etc. and proven components already integrated in various data-related infrastructures such as InternetGIS, data repositories and authentication structures. The focus is to build a data-related infrastructure and a work platform that supports students as well as researchers from different disciplines in their research in space and time.

  15. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... Berry, U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), 6501 East 11...

  16. 78 FR 64204 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Amendment... ONR Personnel Management Demonstration Project (75 FR 77380-77447, December 10, 2010). SUMMARY: On...

  17. Professionalising the asphalt construction process: aligning information technologies, operators' knowledge and laboratory practices

    NARCIS (Netherlands)

    Bijleveld, Frank

    2015-01-01

    This research addresses the need to professionalise the asphalt construction process. A distinctive action research strategy is designed and carried out to progressively improve operational strategies of asphalt teams from technological, human (operator) and laboratory perspectives. Using

  18. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  19. Energy and technology review, January--February 1995. State of the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

    1995-02-01

    This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

  20. DOE weapons laboratories' contributions to the nation's defense technology base

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S.S.

    1988-04-01

    The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

  1. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  2. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  3. Communications and Information Sharing (CIS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — TheCommunications and Information Sharing (CIS) Laboratory is a Public Safety interoperable communications technology laboratory with analog and digital radios, and...

  4. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  5. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  6. Oak Ridge National Laboratory Technology Logic Diagram. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-30

    This executive summary contains a description of the logic diagram format; some examples from the diagram (Vol. 2) and associated technology evaluation data sheets (Vol. 3); a complete (albeit condensed) listing of the RA, D&D, and WM problems at ORNL; and a complete listing of the technology rankings for all the areas covered by the diagram.

  7. Lawrence and his laboratory

    International Nuclear Information System (INIS)

    Hellbron, J.L.; Seidel, R.W.

    1989-01-01

    The birthplace of nuclear chemistry and nuclear medicine is the subject of this study of the Radiation Laboratory in Berkeley, California, where Ernest Lawrence used local and national technological, economic, and manpower resources to build the cyclotron

  8. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  9. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  10. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  11. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  12. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  13. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  14. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  15. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  16. The Martin Marietta Energy Systems Associated Laboratories for Excellence in Radiation Technology (ALERT)

    International Nuclear Information System (INIS)

    Bogard, J.S.; Casson, W.H. Sr.; Bauer, M.L.; Gregory, D.C.

    1993-01-01

    The excellence and uniqueness of radiation technology expertise at Oak Ridge National Laboratory (ORNL) was recognized during a review by the DOE Oak Ridge Field Office prior to a 1990 Tiger Team review, and the Laboratory was encouraged at that time to explore ways of sharing this expertise with other DOE facilities. The subsequent evolution of DOE Laboratory Accreditation Programs, with their challenging performance requirements, and of program guidance such as that contained in the DOE Radiation Control Manual, which requires improved radiological instrument services and encourages standardization, reemphasizes the importance of sharing ORNL's extensive capabilities for supporting improved radiological safety and health programs

  17. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  18. Computerized Laboratory in Science and Technology Teaching: Course in Machine Elements

    OpenAIRE

    Ivan KOLAROV

    2005-01-01

    The computer registration of physical and mechanical quantities gives a lot of possibilities for machine elements and mechanisms research. The advantages of well-organized computer laboratory both technical and methodological are namely: registration and on-line observation of a number of processes with random speed; replacement of high-cost specialized laboratory equipment; mathematical data processing; solving educational problems by modern technologies. The purpose of this paper is to ...

  19. Pacific Northwest Laboratory environmental technologies available for deployment

    International Nuclear Information System (INIS)

    Slate, S.C.

    1994-07-01

    The Department of Energy created the Office of Environmental Management (EM) to conduct a 30-year plus, multi-billion dollar program to manage the wastes and cleanup the legacy from over fifty years of nuclear material production. Across the DOE System there are thousands of sites containing millions of metric tons of buried wastes and contaminated soils and groundwater. Additionally, there are nearly 400,000 m 3 of highly radioactive wastes in underground storage tanks, over 1,400 different mixed-waste streams, and thousands of contaminated surplus facilities, some exceeding 200,000 m 2 in size. Costs to remediate all these problems have been estimated to be as much as several hundred billion dollars. The tremendous technical challenges with some of the problems and the high costs of using existing technologies has led the Department to create the Office of Technology Development (TD) to lead an aggressive, integrated national program to develop and deploy the needed advanced, cost-effective technologies. This program is developing technologies for all major cleanup steps: assessment, characterization, retrieval, treatment, final stabilization, and disposal. Work is focused on the Department's five major problem areas: High-Level Waste Tank Remediation; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; Contaminated Soils and Buried Wastes Facility Transitioning, Decommissioning, and Final Disposal

  20. Hypermedia Laboratory, Defense Applied Information Technology Center; Review for 1988

    Science.gov (United States)

    1988-12-01

    technology and the CCL system to produce an Artificial Inteligence driven Hypermedia environment to access heterogenous database systems. The development...8, December 1988 a minicomputer * HYPERTEXT * multiuser dgis artificial inteligence hypermedi Hypermedia for ASCII Hyperext on the VAX is an ASCII...CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Hypermedia, Artificial Intelligence

  1. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  2. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  3. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The Symposium on Technology in Laboratories was held on March 14 and 15 at Ceratopia Toki in Toki City, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 407 participants from many Japanese universities, national laboratories, technical colleges and from some Japanese Industrial world. One hundred and thirty one papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technology of fabrication, device technology, diagnostic and control system, cryogenics, computer and data processing. (author)

  4. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  5. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  6. Integration of tablet technologies in the e-laboratory of cytology: a health technology assessment.

    Science.gov (United States)

    Giansanti, Daniele; Pochini, Marco; Giovagnoli, Maria Rosaria

    2014-10-01

    Although tablet systems are becoming a powerful technology, particularly useful in every application of medical imaging, to date no one has investigated the acceptance and performance of this technology in digital cytology. The specific aims of the work were (1) to design a health technology assessment (HTA) tool to assess, in terms of performance and acceptance, the introduction of tablet technologies (wearable, portable, and non portable) in the e-laboratories of cytology and (2) to test the tool in a first significant application of digital cytology. An HTA tool was proposed operating on a domain of five dimensions of investigation comprising the basic information of the product of digital cytology, the perceived subjective quality of images, the assessment of the virtual navigation on the e-slide, the assessment of the information and communication technologies features, and the diagnostic power. Six e-slides regarding studies of cervicovaginal cytology digitalized by means of an Aperio ( www.aperio.com ) scanner and uploaded onto the www.digitalslide.it Web site were used for testing the methodology on three different network connections. Three experts of cytology successfully tested the methodology on seven tablets found suitable for the study in their own standard configuration. Specific indexes furnished by the tool indicated both a high degree of performance and subjective acceptance of the investigated technology. The HTA tool thus could be useful to investigate new tablet technologies in digital cytology and furnish stakeholders with useful information that may help them make decisions involving the healthcare system. From a global point of view the study demonstrates the feasibility of using the tablet technology in digital cytology.

  7. Environmental Technology (Laboratory Analysis and Environmental Sampling) Curriculum Development Project. Final Report.

    Science.gov (United States)

    Hinojosa, Oscar V.; Guillen, Alfonso

    A project assessed the need and developed a curriculum for environmental technology (laboratory analysis and environmental sampling) in the emerging high technology centered around environmental safety and health in Texas. Initial data were collected through interviews by telephone and in person and through onsite visits. Additional data was…

  8. Science and Technology Teachers' Views about the Causes of Laboratory Accidents

    Science.gov (United States)

    Aydogdu, Cemil

    2015-01-01

    The aim of this study was to determine science and technology teachers' views about the causes of the problems encountered in laboratories. In this research, phenomenology, a qualitative research design, was used. 21 science and technology teachers who were working in elementary schools in Eskisehir during the 2010-2011 spring semester were the…

  9. Incubator management in an assisted reproductive technology laboratory.

    Science.gov (United States)

    Higdon, H Lee; Blackhurst, Dawn W; Boone, William R

    2008-03-01

    To study the effect of incubator management on assisted reproductive technology (ART) outcomes. Series of retrospective and controlled, randomized studies. Tertiary care infertility practice. Mammalian gametes/embryos. Evaluation of human and bovine oocytes/embryos cultured in various environmental conditions. Fertilization and embryo development rate as well as clinical pregnancy rate (PR). Here we review the general topic of incubator management as it pertains to ART. Discussed within the context of this article will be our experiences as they relate to incubator management. Details as they apply to incubator environment also will include gamete/embryo positions within incubator, air quality, and quality control.

  10. Comparison of semen quality between university-based and private assisted reproductive technology laboratories

    DEFF Research Database (Denmark)

    Jensen, Christian Fuglesang S; Khan, Omar; Sønksen, Jens

    2018-01-01

    .9%). No significant differences were found in volume, concentration and total motile sperm count although the Bland-Altman plot bias for concentration was clinically significant (15.9 × 106/ml). CONCLUSIONS: In this small series, motility was significantly higher at private laboratories compared to a university......OBJECTIVE: Obtaining a semen analysis (SA) is an essential step in evaluating infertile men. Despite using standardized procedures for analysis semen quality in the same individual often varies on repeated tests. The objective of this study was to investigate inter-laboratory variation in semen...... quality between private- and university-based assisted reproductive technology (ART) laboratories. MATERIALS AND METHODS: IRB approval was obtained to retrospectively evaluate men with a SA at both the private- and university-based ART laboratories. When more than one SA was available from either...

  11. Cost comparison of laboratory methods and four field screening technologies for uranium-contaminated soil

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.

    1994-01-01

    To address the problem of characterizing uranium-contaminated surface soil at federal facilities, the Department of Energy has the development of four uranium field screening technologies, under the direction of the Uranium-in-Soils Integrated Demonstration (USID) Program. These four technologies include: a long-range alpha detector a beta scintillation detector, an in situ gamma detector, and a mobile laser ablation-inductively coupled plasma/atomic emission spectrometry (LA-ICP/AES) laboratory. As part of the performance assessment for these field screening technologies, cost estimates for the development and operation of each technology were created. A cost study was conducted to compare three of the USID field screening technologies to the use of traditional field surveying equipment to adequately characterize surface soils of a one-acre site. The results indicate that the use of traditional equipment costs more than the in situ gamma detector, but less than the beta scintillation detector and LRAD. The use of traditional field surveying equipment results in cost savings of 4% and 34% over the use of the beta scintillation and LRAD technologies, respectively. A study of single-point surface soil sampling and laboratory analysis costs was also conducted. Operational costs of the mobile LA-ICP/AES laboratory were compared with operational costs of traditional sampling and analysis, which consists of collecting soil samples and conducting analysis in a radiochemical laboratory. The cost study indicates that the use of the mobile LA-ICP/AES laboratory results in cost savings of 23% and 40% over traditional field sampling and laboratory analysis conducted by characterization groups at two DOE facilities

  12. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, O.

    2010-04-01

    As a Laboratories for the 21st Century (Labs21) partner, NREL set aggressive goals for energy savings, daylighting, and achieving a LEED Gold rating (through the U.S. Green Building Council's Leadership in Energy and Environmental Design program) for its S&TF building.

  13. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    International Nuclear Information System (INIS)

    1994-07-01

    The Symposium on Technology in Laboratories was held on March 23 and 24 at Ceratopia Toki, and Toki Chamber of Commerce and Industry in Toki city, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 273 participants from many Japanese universities and laboratories, from some Japanese industrial world. Seventy eight papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technologies of fabrication, cryogenics, diagnostic and control system, computer and experimental apparatus. (author)

  14. Solid oxide cell R&D at Riso National Laboratory-and its transfer to technology

    DEFF Research Database (Denmark)

    Linderoth, Søren

    2009-01-01

    Risø National Laboratory has conducted R&D on solid oxide cells for almost 20 years—all the time together with industries with interest in deploying the technology when mature. Risø National Laboratory (Risø) and Topsoe Fuel Cell A/S (TOFC) have for several years jointly carried out a development...... by the consortium, e.g. a metal-supported cell. TOFC has an extended program to develop the SOFC technology all the way to a marketable product....

  15. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part C, Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents activities at ORNL including waste management and remedial action at the site; also waste processing and disposal; robotics and automation of the laboratory; and regulatory compliance

  16. Rome Laboratory speech and audio processing technologies with applicability to law enforcement

    Science.gov (United States)

    Walter, Sharon M.; Ratley, Roy J.; Cupples, Edward J.

    1997-02-01

    Rome Laboratory, one of the United States Air Force's four Super Laboratories, has been designated by the National Institute of Justice (NIJ) to be its National Law Enforcement and Corrections Technology Center for the Northeast (NLECTC-NE). A Department of Defense leader in research and development (R&D) in speech and audio processing for over 25 years, Rome Laboratory's main thrust in these R&D areas has focused on developing technology to improve the collection, handling, identification and intelligibility of communication signals. Rome Laboratory speech and audio technology is unique and particularly appropriate for application to law enforcement requirements because it addresses the military need for time critical decisions and actions, operating within noisy environments, and use by uncooperative speakers in tactical, real-time applications. Speech enhancement and speaker recognition are the primary technologies discussed in this paper. Automatic language and dialect identification, automatic gisting, spoken language translation, co-channel speaker separation and audio manipulation technologies are briefly discussed.

  17. Culham Laboratory

    International Nuclear Information System (INIS)

    1979-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Labortory, and a list of papers written by Culham staff. (U.K.)

  18. 78 FR 34655 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-06-10

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Proposed..., 2010 (75 FR 77380-77447), DoD published a notice of approval of a personnel management demonstration...

  19. 76 FR 67154 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Program

    Science.gov (United States)

    2011-10-31

    ... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act... flexibilities, modifying demo project plans, or executing Federal Register Notices has identified some areas for...

  20. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    Science.gov (United States)

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  1. Advanced methods for teaching electronic-nose technologies to diagnosticians and clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    Electronic-detection technologies and instruments increasingly are being utilized in the biomedical field to perform a wide variety of clinical operations and laboratory analyses to facilitate the delivery of health care to patients. The introduction of improved electronic instruments for diagnosing diseases and for administering treatments has required new training of...

  2. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  3. Bringing the laboratory and clinic to the community: mobile technologies for health promotion and disease prevention.

    Science.gov (United States)

    Kaplan, Robert M; Stone, Arthur A

    2013-01-01

    Health-related information collected in psychological laboratories may not be representative of people's everyday health. For at least 70 years, there has been a call for methods that sample experiences from everyday environments and circumstances. New technologies, including cell phones, sensors, and monitors, now make it possible to collect information outside of the laboratory in environments representative of everyday life. We review the role of mobile technologies in the assessment of health-related behaviors, physiological responses, and self-reports. Ecological momentary assessment offers a wide range of new opportunities for ambulatory assessment and evaluation. The value of mobile technologies for interventions to improve health is less well established. Among 21 randomized clinical trials evaluating interventions that used mobile technologies, more than half failed to document significant improvements on health outcomes or health risk factors. Theoretical and practical issues for future research are discussed.

  4. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  5. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    International Nuclear Information System (INIS)

    Mazari, M.

    1989-01-01

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  6. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  7. The advance of technology as a prelude to the laboratory of the twenty-first century.

    Science.gov (United States)

    Woo, J; Henry, J B

    1994-09-01

    Technological changes in the clinical laboratory are usually driven by the goal of patient care optimization. In the last decade, the trend appeared to be directed at clinical laboratory decentralization. A new generation of analytical instruments, the biosensors, is redirecting laboratory testing closer to the patient, at the bedside, in the physician's office, and by the patient at home. These miniaturized biosensors are easy to operate, require small specimen size, and provide reliable results with rapid TAT. Thus far, bedside testing using biosensor technology appears to offer unique opportunities for earlier availability of clinical laboratory data, decision making, and more specific diagnosis, and faster and more frequent monitoring; these may translate into improved patient care and reduced hospital costs. It is likely that this trend will continue into the twenty-first century. Electrochemical sensors (e.g., for electrolytes, glucose, urea, and hematocrit) and pulse oximetry, having gained clinical acceptance, will probably be the leading instrumentation for bedside testing. Continuous monitoring either by near-infrared sensing technology or with an implantable sensor is valuable in the care of the critically ill patient. Acceptance for clinical use will depend on complete data integration and a favorable cost-benefit ratio.

  8. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  9. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  10. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  11. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  12. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  13. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  14. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  15. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  16. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  17. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  18. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  19. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  20. Geospatial Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: To process, store, and disseminate geospatial data to the Department of Defense and other Federal agencies.DESCRIPTION: The Geospatial Services Laboratory...

  1. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  2. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  3. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  4. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  5. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  6. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  7. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  8. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  9. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  10. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  11. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  12. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  13. Photovoltaic Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's PV characterization laboratory is used to measure the electrical performance and opto-electronic properties of solar cells and modules. This facility consists...

  14. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  15. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  16. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  17. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  18. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  19. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  20. Wind Structural Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components...

  1. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  2. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  3. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    Science.gov (United States)

    Raftery, Philomena; Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region.

  4. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening

    Science.gov (United States)

    Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    be integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region. PMID:29304039

  5. Department of Energy Multiprogram Laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    Volume III includes the following appendices: laboratory goals and missions statements; laboratory program mix; class waiver of government rights in inventions arising from the use of DOE facilities by or for third party sponsors; DOE 4300.2: research and development work performed for others; procedure for new work assignments at R and D laboratories; and DOE 5800.1: research and development laboratory technology transfer program

  6. Meet the best Award-winning technologies from Pacific Northwest Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Battelle Memorial Institute has managed the Pacific Northwest Laboratory (PNL) for the US Department of Energy for 25 years. During this time, numerous new technologies have been discovered and developed at PNL as a result of our research programs. This document will introduce you to some of the more significant discoveries and newly commercialized technologies. Each of the technologies described has received an award from Research Development magazine or the Federal Laboratory Consortium--sometimes both Each technology is available to you through PNL's technology transfer program or one of our licensees. Similarly, our award-winning scientists and engineers are available to assist you as you search for innovative technologies to solve your technical problems. These researchers are familiar with current problems confronting industry, government agencies, and the academic community. They are happy to apply their skills and PNL's resources to your problems. PNL encourages its researchers to work with government agencies, universities, and US industries. PNL technology transfer programs address the nation's drive toward increased competitiveness by being flexible and aggressive, and are designed to tailor results to fit your needs and those of your clients. If you are in search of a new technology or increased competitiveness, consider collaborative efforts with our award-winning staff, whose accomplishments are synopsized in this booklet.

  7. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  8. Laboratory open-quotes proof of principleclose quotes investigation for the acoustically enhanced remediation technology

    International Nuclear Information System (INIS)

    Iovenitti, J.L.; Spencer, J.W.; Hill, D.G.

    1995-01-01

    This document describes a three phase program of Weiss Associates which investigates the systematics of using acoustic excitation fields (AEFs) to enhance the in-situ remediation of contaminated soil and ground water under both saturated and unsaturated conditions. The focus in this particular paper is a laboratory proof of principle investigation. The field deployment and engineering viability of acoustically enhanced remediation technology is also examined

  9. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  10. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    International Nuclear Information System (INIS)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis

  11. Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements

    Science.gov (United States)

    2013-12-01

    moisture damage and low-temperature cracking , durability, and workability. The use of high reclaimed asphalt pavement (RAP) contents was also evaluated...ER D C/ G SL T R -1 3 -4 1 Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements G eo te ch n ic al a... Pavements Jesse D. Doyle, John F. Rushing, Mariely Mejías-Santiago, Timothy J. McCaffrey, Lance C. Warnock, and M. Kevin Taylor Geotechnical and

  12. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  13. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    Science.gov (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  14. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  15. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    1995-01-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  16. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part A, Characterization, Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram; and Vol. 3, Technology Evaluation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B,and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA, and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2. The data sheets are arranged alphanumerically by the TEDS code number in the upper right comer of each sheet.

  17. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  18. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  20. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  1. FEATURES OF TECHNOLOGIES CREATE INTERACTIVE ELECTRONIC DOCUMENT FOR SUPPORT OF LABORATORY PRACTICAL PHYSICS

    Directory of Open Access Journals (Sweden)

    Mykola A. Meleshko

    2014-02-01

    Full Text Available The article discusses the content of the «flash-book» construct, defining its properties and possible components. There are presented some examples of components programming steps of “authoring flash – book”, considered the possibility of using such an electronic document to optimize the learning process at the Technical University in the performance of laboratory training on general physics. The technique of its using to provide individualized approach to learning and the use of various experimental base from classical to digital equipment laboratories is proposed. It was carried out the analysis of ways to improve such interactive electronic document for the development of information technology competence of engineering students.

  2. 7 CFR 996.21 - USDA laboratory.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing Service, USDA, which chemically analyze peanuts for aflatoxin content. ...

  3. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  4. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  5. Radiochemical Processing Laboratory (RPL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Radiochemical Processing Laboratory (RPL)�is a scientific facility funded by DOE to create and implement innovative processes for environmental clean-up and...

  6. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  7. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  8. FLEXIBLE FOOD PACKAGING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment to fabricate and test prototype packages of many types and sizes (e.g., bags, pouches, trays, cartons, etc.). This equipment can...

  9. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  10. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  11. Product Evaluation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory offers the services of highly trained and experienced specialists that have a full complement of measuring equipment. It is equipped with two optical...

  12. Philadelphia District Laboratory (PHI)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesPHI-DO Pharmaceutical Laboratory specializes in the analyses of all forms and types of drug products.Its work involves nearly all phases of drug...

  13. Building the Korogwe Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob; von Seidlein, Lorenz; Richard, Jean Pierre

    2011-01-01

    An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania.......An illustrated description of the building of a biomedical research laboratory in Korogwe, Tanzania....

  14. Detroit District Laboratory (DET)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDET-DO Laboratory is equipped with the usual instrumentation necessary to perform a wide range of analyses of food, drugs and cosmetics. Program...

  15. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  16. Electro-Deposition Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The electro-deposition laboratory can electro-deposit various coatings onto small test samples and bench level prototypes. This facility provides the foundation for...

  17. Superfund Contract Laboratory Program

    Science.gov (United States)

    The Contract Laboratory Program (CLP) is a national network of EPA personnel, commercial laboratories, and support contractors whose primary mission is to provide data of known and documented quality to the Superfund program.

  18. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  19. Human Factors Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The purpose of the Human Factors Laboratory is to further the understanding of highway user needs so that those needs can be incorporated in roadway design,...

  20. High Bay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory is a specially constructed facility with elevated (37 feet) ceilings and an overhead catwalk, and which is dedicated to research efforts in reducing...

  1. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  2. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  3. Laboratory Demographics Lookup Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — This website provides demographic information about laboratories, including CLIA number, facility name and address, where the laboratory testing is performed, the...

  4. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ''past practice'' technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable

  5. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  6. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  8. An Experimental Study of Laboratory Hybrid Power System with the Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Daniel Minarik

    2014-01-01

    Full Text Available This paper presents very small laboratory hybrid photovoltaic-hydrogen power system. The system was primarily assembled to verify the operability of the control algorithms and practical deployment of available commercial hydrogen technologies that are directly usable for storage of electricity produced from renewable energy sources in a small island system. This energetic system was installed and tested in Laboratory of fuel cells that is located in the university campus of VSB-Technical University of Ostrava. The energetic system consists of several basic components: a photovoltaic field, accumulators bank, water commercial electrolyzer and compact fuel cell system. The weather conditions recorded in two different weeks as model weather and solar conditions are used as case studies to test the energetic system and the results for two different cases are compared each other. The results show and illustrate selected behaviour curves of the power system and also average energy storage efficiency for accumulation subsystem based on hydrogen technologies or at the energetic system embedded components. On the basis of real measurement and its evaluation the ideal parameters of the photovoltaic field were calculated as well as the hydrogen technologies for supposed purpose and the power requirements.

  9. Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990

  10. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  11. Nanotechnology Laboratory Continues Partnership with FDA and National Institute of Standards and Technology | Poster

    Science.gov (United States)

    The NCI-funded Nanotechnology Characterization Laboratory (NCL)—a leader in evaluating promising nanomedicines to fight cancer—recently renewed its collaboration with the U.S. Food and Drug Administration (FDA) and the National Institute of Standards and Technology (NIST) to continue its groundbreaking work on characterizing nanomedicines and moving them toward the clinic. In partnership with NIST and the FDA, NCL has laid a solid, scientific foundation for using the power of nanotechnology to increase the potency and target the delivery

  12. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  13. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  14. Los Alamos National Laboratory.

    Science.gov (United States)

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  15. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  16. The Canfranc Underground Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Amare, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Beltran, B. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Carmona, J.M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Cebrian, S. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Garcia, E. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Irastorza, I.G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Gomez, H. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Luzon, G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Martinez, M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Morales, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ortiz de Solorzano, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Pobes, C. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Puimedon, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Rodriguez, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ruz, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Sarsa, M.L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Torres, L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Villar, J.A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain)

    2005-06-15

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories.

  17. The ideal laboratory information system.

    Science.gov (United States)

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  18. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II

  19. Emerging technologies in education and training: applications for the laboratory animal science community.

    Science.gov (United States)

    Ketelhut, Diane Jass; Niemi, Steven M

    2007-01-01

    This article examines several new and exciting communication technologies. Many of the technologies were developed by the entertainment industry; however, other industries are adopting and modifying them for their own needs. These new technologies allow people to collaborate across distance and time and to learn in simulated work contexts. The article explores the potential utility of these technologies for advancing laboratory animal care and use through better education and training. Descriptions include emerging technologies such as augmented reality and multi-user virtual environments, which offer new approaches with different capabilities. Augmented reality interfaces, characterized by the use of handheld computers to infuse the virtual world into the real one, result in deeply immersive simulations. In these simulations, users can access virtual resources and communicate with real and virtual participants. Multi-user virtual environments enable multiple participants to simultaneously access computer-based three-dimensional virtual spaces, called "worlds," and to interact with digital tools. They allow for authentic experiences that promote collaboration, mentoring, and communication. Because individuals may learn or train differently, it is advantageous to combine the capabilities of these technologies and applications with more traditional methods to increase the number of students who are served by using current methods alone. The use of these technologies in animal care and use programs can create detailed training and education environments that allow students to learn the procedures more effectively, teachers to assess their progress more objectively, and researchers to gain insights into animal care.

  20. Developing linear-alpha-Olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, Andreas; Woehl, Anina; Mueller, Wolfgang; Boelt, Heinz V. [Linde AG, Pullach (Germany). Engineering Div.; Mosa, Fuad M.; Al-Hazmi, Mohammed H. [Saudi Basic Industries Corporation, Riyadh (Saudi Arabia)

    2012-06-15

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN {sup registered} technology for a full range LAO plant as well as a 1-Hexene selective On Purpose technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN {sup registered} as well as the LAO OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN {sup registered} technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed LAO OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  1. Developing linear-alpha-olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Woehl, A.; Mueller, W.; Boelt, H. [Linde AG, Pullach (Germany)

    2011-07-01

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN technology for a full range LAO plant as well as a 1-Hexene selective ''On Purpose'' technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN as well as the OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  2. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  3. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  4. Underground laboratory in China

    Science.gov (United States)

    Chen, Heshengc

    2012-09-01

    The underground laboratories and underground experiments of particle physics in China are reviewed. The Jinping underground laboratory in the Jinping mountain of Sichuan, China is the deepest underground laboratory with horizontal access in the world. The rock overburden in the laboratory is more than 2400 m. The measured cosmic-ray flux and radioactivities of the local rock samples are very low. The high-purity germanium experiments are taking data for the direct dark-matter search. The liquid-xenon experiment is under construction. The proposal of the China National Deep Underground Laboratory with large volume at Jinping for multiple discipline research is discussed.

  5. Characterizing the Laboratory Market

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMates, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Laboratories are estimated to be 3-5 times more energy intensive than typical office buildings and offer significant opportunities for energy use reductions. Although energy intensity varies widely, laboratories are generally energy intensive due to ventilation requirements, the research instruments used, and other health and safety concerns. Because the requirements of laboratory facilities differ so dramatically from those of other buildings, a clear need exists for an initiative exclusively targeting these facilities. The building stock of laboratories in the United States span different economic sectors, include governmental and academic institution, and are often defined differently by different groups. Information on laboratory buildings is often limited to a small subsection of the total building stock making aggregate estimates of the total U.S. laboratories and their energy use challenging. Previous estimates of U.S. laboratory space vary widely owing to differences in how laboratories are defined and categorized. A 2006 report on fume hoods provided an estimate of 150,000 laboratories populating the U.S. based in part on interviews of industry experts, however, a 2009 analysis of the 2003 Commercial Buildings Energy Consumption Survey (CBECS) generated an estimate of only 9,000 laboratory buildings. This report draws on multiple data sources that have been evaluated to construct an understanding of U.S. laboratories across different sizes and markets segments. This 2016 analysis is an update to draft reports released in October and December 2016.

  6. Personalized laboratory medicine

    DEFF Research Database (Denmark)

    Pazzagli, M.; Malentacchi, F.; Mancini, I.

    2015-01-01

    Developments in "omics" are creating a paradigm shift in Laboratory Medicine leading to Personalised Medicine. This allows the increasing in diagnostics and therapeutics focused on individuals rather than populations. In order to investigate whether Laboratory Medicine is able to implement new...... diagnostic tools and expertise and commands proper state-of-the-art knowledge about Personalized Medicine and Laboratory Medicine in Europe, the joint Working Group "Personalized Laboratory Medicine" of the EFLM and ESPT societies compiled and conducted the Questionnaire "Is Laboratory Medicine ready...... for the era of Personalized Medicine?". 48 laboratories from 18 European countries participated at this survey. The answers of the participating Laboratory Medicine professionals indicate that they are aware that Personalized Medicine can represent a new and promising health model. Whereas they are aware...

  7. Department of Energy Multiprogram Laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel assessed DOE policies and procedures with respect to the laboratories as well as the effectiveness of the use DOE made of the laboratory capabilities in energy related areas. Recommendations are given for the appropriate roles and missions as opposed to the private sector; the scientific and technology transfer; organizational efficiencies; and contingency plans for coping with declining budgets

  8. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.; Herman, Connie C.

    2017-03-08

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-based technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.

  9. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet

  10. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  11. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  12. Culture media influenced laboratory outcomes but not neonatal birth weight in assisted reproductive technology.

    Science.gov (United States)

    Yin, Tai-lang; Zhang, Yi; Li, Sai-jiao; Zhao, Meng; Ding, Jin-li; Xu, Wang-ming; Yang, Jing

    2015-12-01

    Whether the type of culture media utilized in assisted reproductive technology has impacts on laboratory outcomes and birth weight of newborns in in-vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) was investigated. A total of 673 patients undergoing IVF/ICSI and giving birth to live singletons after fresh embryo transfer on day 3 from Jan. 1, 2010 to Dec. 31, 2012 were included. Three types of culture media were used during this period: Quinn's Advantage (QA), Single Step Medium (SSM), and Continuous Single Culture medium (CSC). Fertilization rate (FR), normal fertilization rate (NFR), cleavage rate (CR), normal cleavage rate (NCR), good-quality embryo rate (GQER) and neonatal birth weight were compared using one-way ANOVA and χ (2) tests. Multiple linear regression analysis was performed to determine the impact of culture media on laboratory outcomes and birth weight. In IVF cycles, GQER was significantly decreased in SSM medium group as compared with QA or CSC media groups (63.6% vs. 69.0% in QA; vs. 71.3% in CSC, P=0.011). In ICSI cycles, FR, NFR and CR were significantly lower in CSC medium group than in other two media groups. No significant difference was observed in neonatal birthweight among the three groups (P=0.759). Multiple linear regression analyses confirmed that the type of culture medium was correlated with FR, NFR, CR and GQER, but not with neonatal birth weight. The type of culture media had potential influences on laboratory outcomes but did not exhibit an impact on the birth weight of singletons in ART.

  13. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  14. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  15. NRAO Central Development Laboratory (CDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the CDL is to support the evolution of NRAO's existing facilities and to provide the technology and expertise needed to build the next generation of...

  16. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  17. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  18. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  19. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  20. Communication and computing technology in biocontainment laboratories using the NEIDL as a model.

    Science.gov (United States)

    McCall, John; Hardcastle, Kath

    2014-07-01

    The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, is a globally unique biocontainment research facility housing biosafety level 2 (BSL-2), BSL-3, and BSL-4 laboratories. Located in the BioSquare area at the University's Medical Campus, it is part of a national network of secure facilities constructed to study infectious diseases of major public health concern. The NEIDL allows for basic, translational, and clinical phases of research to be carried out in a single facility with the overall goal of accelerating understanding, treatment, and prevention of infectious diseases. The NEIDL will also act as a center of excellence providing training and education in all aspects of biocontainment research. Within every detail of NEIDL operations is a primary emphasis on safety and security. The ultramodern NEIDL has required a new approach to communications technology solutions in order to ensure safety and security and meet the needs of investigators working in this complex building. This article discusses the implementation of secure wireless networks and private cloud computing to promote operational efficiency, biosecurity, and biosafety with additional energy-saving advantages. The utilization of a dedicated data center, virtualized servers, virtualized desktop integration, multichannel secure wireless networks, and a NEIDL-dedicated Voice over Internet Protocol (VoIP) network are all discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  2. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  3. Electromedical devices test laboratories accreditation

    International Nuclear Information System (INIS)

    Murad, C; Rubio, D; Ponce, S; Alvarez Abri, A; Terron, A; Vicencio, D; Fascioli, E

    2007-01-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University

  4. Electromedical devices test laboratories accreditation

    Science.gov (United States)

    Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.

    2007-11-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.

  5. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  6. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  7. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  8. Biochemical Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This biochemistry lab is set up for protein analysis using Western blot, enzyme linked immunosorbent assays, immunohistochemistry, and bead-based immunoassays. The...

  9. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  10. Behavioral Neuroscience Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This lab supports cognitive research using rodent models. Capabilities for behavioral assessments include:Morris water maze and Barnes maze (spatial memory)elevate...

  11. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  12. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  13. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  14. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  15. Free Surface Hydrodynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Investigates processes and interactions at the air-sea interface, and compares measurements to numerical simulations and field data. Typical phenomena of...

  16. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  17. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    Gore, Jay P.; Kramer, Robert; Pourpoint, Timothee L.; Ramachandran, P.V.; Varma, Arvind; Zheng, Yuan

    2011-01-01

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  18. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  19. KfK Laboratory for Isotope Technology. Progress report on research and development activities in 1990

    International Nuclear Information System (INIS)

    1991-03-01

    The R and D work done by the laboratory for isotope technology (LIT) in 1990 under the project of pollutant control in the environment, concentrated on thermal waste treatment processes, above all on the classical refuse incineration, for which closed-circuit pollutant balances were established, and process engineering studies were made aimed at reducing pollutants in waste gas. The central research facility of the LIT is the semi-technical pilot plant TAMARA (test plant for refuse incineration, waste gas purification, residue recycling, waste water treatment) with a throughput of 200 kg/hour of refuse. It was put into operation in 1986. The annex lists the publications by the LIT staff. (BBR) [de

  20. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  1. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2003-01-01

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts

  2. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts

  3. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  4. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  5. Study of cognitive and technological prerequisites for virtual laboratories and collaborative virtual environments for radiopharmacy

    International Nuclear Information System (INIS)

    Melo, Roberto Correia de

    2009-01-01

    This academic work explains a general view of virtual laboratories (VL) and collaborative virtual environments (CVE) (called, together, a VL/CVE set), focusing their technological features and analyzing the common cognitive features of their users. Also is presented a detailed description of VL/CVE VirRAD (Virtual Radiopharmacy), created specially to connect and support the international radiopharmacy community around the world, and is explained an analysis of their users' cognitive profile, under the perspective of two of the most important cognitive theories of the 20th century: multiple intelligences, by Howard Gardner, and mindful learning, by Ellen Langer. Conclusions from this study has been incorporated, as feature enhancements, to a software prototype created based upon VirRAD software solution, and the hardcopy of their screens is exposed at the end of this work. It is also an essential idea that the conclusions of this work are relevant to any VL/CVE environment. (author)

  6. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  7. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Directory of Open Access Journals (Sweden)

    Beaudoing Emmanuel

    2006-09-01

    Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

  8. A mobile concrete laboratory to support quality concrete, technology transfer, and training.

    Science.gov (United States)

    2016-07-01

    This report is a summary of work performed by the Mobile Infrastructure Materials Testing Laboratory (MIMTL) as a part of the Joint : Transportation Research Program (JTRP) through SPR-3858. The development of the MIMTL began in February of 2014 and ...

  9. Research Group Introduction : Mechanical Control Engineering Laboratory, Mechanical Engineering Department, Shibaura Institute of Technology

    Science.gov (United States)

    内村, 裕

    Mechanical Control Engineering Laboratory focuses on the control theory and implementation for the robotic applications. The research themes include network based tele-operation, mobile robots control for network relay, autonomous outdoor mobile robot and biped robot.

  10. Physical Research Laboratory

    Indian Academy of Sciences (India)

    The Physical Research Laboratory (PRL) is a leading research institution of the country engaged in basic research in several areas of experimental and theoretical physics, space and earth sciences. The Laboratory conducts summer training programme for students every year for about 2 months (during May 15 - July 15) ...

  11. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  12. The Virtual Robotics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  13. The Virtual Robotics Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Love, L.J.

    1997-01-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations

  14. Practical Laboratory Planning.

    Science.gov (United States)

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  15. Quality in Teaching Laboratories.

    Science.gov (United States)

    Stubington, John F.

    1995-01-01

    Describes a Japanese process-oriented approach called KAIZEN for improving the quality of existing teaching laboratories. It provides relevant quality measurements and indicates how quality can be improved. Use of process criteria sidesteps the difficulty of defining quality for laboratory experiments and allows separation of student assessment…

  16. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2009-2010 (Contract research)

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Noda, Masaru; Nobuto, Jun; Matsui, Hiroya; Mikake, Shinichiro; Hashizume, Shigeru

    2014-03-01

    As Mizunami Underground Research Laboratory project, research on engineering technology at a deep underground has been carried out in order to establish the technological basis. The research is mainly aimed in four categories: “Development of design and construction planning technology”, “Development of construction technology”, “Development of countermeasure technology” and “Development of technology for security”. In the Construction Phase (Phase 2) of the MIU plan, these four categorized researches on engineering technology were examed based on the data obtained during construction. Following are the details of the research activities performed in each category. Regarding “Development of design and construction planning technology”, design validation using the data obtained during the excavation down through granite to GL-460m, evaluation of the pilot borehole investigation conducted at the Main and Ventilation shafts and the pilot borehole investigation plan below GL-500m, validity assessment of the risk management method using its prototype focused on the large scale underground development project, and social risk measurement and management of the MIU using case study were performed. As for “Development of construction technology”, as quality control management, evaluation of the technique applied for the execution management and examination focused on the liner concrete, also estimation of the short step method adopted for the shaft excavation based on the actual construction cycle time were conducted, and then excavation schedule down to GL-1000m was predicted based on the actual excavation progress. As for “Development of countermeasure technology”, countermeasure method adopted for groundwater inflow around GL-400m in the Ventilation shaft was evaluated and grouting plan below GL-500m was presented. And for “Development of technology for security”, from the point of view of long term maintenance including the safety

  17. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  18. Handbook of laboratory techniques

    International Nuclear Information System (INIS)

    2002-01-01

    The Nuclear Regulatory Authority in Argentina have laboratories of support to regulations functions on radiological and nuclear safety, safeguards and physical protection, that have a surface of 2950 m 2 in the Ezeiza Atomic Center. The manual describes in seven chapters the different techniques developed and applied in the laboratories along four decades of existence. The chapter 1: Dedicated to the treatment of environmental samples, described the procedures associated with the different types of samples: deposits, waters, sediments, vegetables, milk, fish and diet. The chapter 2: Details 48 radiochemical techniques associated to the measurements of americium 241, carbon 16, strontium 90, iodine 129, plutonium, radium 226, radon, uranium, nickel and actinides. The chapter 3: Describes the measurements techniques of alpha and gamma spectrometry. The different techniques of biological and physical dosimetry are described in the chapters 5 and 6 respectively. The final chapter is dedicated the techniques of external and internal contamination. It s important to emphasize that this manual contains the standardized technologies that the Nuclear Regulatory Authority of Argentina submits regularly to international comparisons

  19. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  20. INFORMATION TECHNOLOGIES AS THE TOOL OF EFFICIENCY IMPROVING OF FUTURE PHYSICS TEACHERS TRAINING TO LABORATORY SESSION IN OPTICS

    Directory of Open Access Journals (Sweden)

    Goncharenko T.

    2017-12-01

    Full Text Available The analysis of the problem of the use of information technologies implementation as the tool of the efficiency improving of future physics teachers training to execution of laboratory session in Optics is considered in the article. The problems and contradictions concerning ICT tools use in higher education institutions, the work of which is aimed at future physics teachers training are described. Due to the specifics of future teachers training in higher education institutions, labor market requirements and public procurement, the main ICT tools are identified, that are effective in students’ self-activity work to laboratory session execution. The developed list of electronic resources is divided into blocks according to the topics of laboratory works in Optics. The methodology of using of ICT tools at future students training for laboratory session on the example of individual topics is considered.

  1. Brazilian laboratory indicators program.

    Science.gov (United States)

    Shcolnik, Wilson; de Oliveira, Carla Albuquerque; de São José, Adriana Sá; de Oliveira Galoro, César Alex; Plebani, Mario; Burnett, David

    2012-11-01

    This paper describes the evolution, structure, operation and some outcomes of the Brazilian Laboratory Indicators Program created by the Brazilian Society of Clinical Pathology/Laboratory Medicine (Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial, or SBPC/ML), in partnership with ControlLab, a Brazilian Company that provides services for proficiency testing, internal control, calibration, and training indicators for clinical laboratories. This web-based program is confidential for all participants. It contains 61 indicators categorized into three groups. Program operation and data analysis methods are described and indicators are reported in box plot format, with grouping varying in accordance with the profiles of the participating laboratories. Three indicators were selected as examples of program effectiveness in 2011: hemolysis, blood re-collection and productivity. Participants profile, examples of three indicators for the year 2011 (hemolysis, blood re-collection and productivity) and exploratory research conducted in 2012 on the implementation of the program are presented. Data related to laboratories participating in the program from 2006 to 2011 were collected and graphically represented. The Brazilian Laboratory Indicators Program brings important benefits for participants, contributing to the improvement of existing health systems in Brazil.

  2. Carbon Characterization Laboratory Report

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  3. Design of metrology laboratory and microfab center against vibration from shakers laboratory of the new Hong Kong University of Science and Technology

    Science.gov (United States)

    Hong, Westwood K. W.; Boulter, Nicholas

    1992-02-01

    The design of vibration-sensitive laboratories normally requires the protection of these areas from incoming vibration generated by plant, road traffic and footfall impacts. The compact nature of the new HKUST campus requires a more exact design than one would find for a spacious campus with laboratory buildings nicely separated. The HKUST user required a centralized laboratory service with easy access to the major testing facilities. This resulted in the location of vibration sensitive areas (micro-fabrication center and metrology laboratory) close to a Structural Laboratory housing large shakers. These were to be used for seismic and modal testing of structural elements and prototypes. The design of the support structure for the shakers, known as the reaction floor, was critical to the success of the building. Particular attention was paid to the design and construction of the foundations for the reaction floor. For controlling the vibration generated by 10-ton-force rated shakers, a massive structure with caisson supports was designed for the reaction floor and reaction wall. Finite element models were employed to calculate the response of the laboratory floors located above the reaction floor in other parts of the building. The metrology laboratory structure and the foundation design of the reaction floor and a wafer fab built in the U.K. will be presented.

  4. Rethinking Laboratory Notebooks

    DEFF Research Database (Denmark)

    Klokmose, Clemens Nylandsted; Zander, Pär-Ola

    2010-01-01

    We take digitalization of laboratory work practice as a challenging design domain to explore. There are obvious drawbacks with the use of paper instead of ICT in the collaborative writing that takes place in laboratory notebooks; yet paper persist in being the most common solution. The ultimate aim...... with our study is to produce design relevant knowledge that can envisage an ICT solution that keeps as many advantages of paper as possible, but with the strength of electronic laboratory notebooks as well. Rather than assuming that users are technophobic and unable to appropriate state of the art software...

  5. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  7. Statement on the Science and Technology Program and the Role of Department of Defense Laboratories FY 1979,

    Science.gov (United States)

    1978-05-16

    Di~t Scci ~_STATEMENT ON THE SCIENCI AND TECHNOLOGY PROGRAM AND THE ROLE OF DEPARTMENT OF ’DEFENSE LABORATORIES DR. RUTH M. /DAVIS DEPUTY UNDER...what direction the technology should be pushed. It is often necessary to do the testing there, since many of our labs have unique test facilities. Lastly...overall in-house level would be approximately 30 percent. L 7 The direction concerning the level of in-house Technology Base activity was applied at

  8. Evaluating a technology supported interactive response system during the laboratory section of a histology course.

    Science.gov (United States)

    Rinaldi, Vera D; Lorr, Nancy A; Williams, Kimberly

    2017-07-01

    Monitoring of student learning through systematic formative assessment is important for adjusting pedagogical strategies. However, traditional formative assessments, such as quizzes and written assignments, may not be sufficiently timely for making adjustments to a learning process. Technology supported formative assessment tools assess student knowledge, allow for immediate feedback, facilitate classroom dialogues, and have the potential to modify student learning strategies. As an attempt to integrate technology supported formative assessment in the laboratory section of an upper-level histology course, the interactive application Learning Catalytics TM , a cloud-based assessment system, was used. This study conducted during the 2015 Histology courses at Cornell University concluded that this application is helpful for identifying student misconceptions "on-the-go," engaging otherwise marginalized students, and forming a new communication venue between students and instructors. There was no overall difference between grades from topics that used the application and grades from those that did not, and students reported that it only slightly helped improve their understanding of the topic (3.8 ± 0.99 on a five-point Likert scale). However, they highly recommended using it (4.2 ± 0.71). The major limitation was regarding the image display and graphical resolution of this application. Even though students embrace the use of technology, 39% reported benefits of having the traditional light microscope available. This cohort of students led instructors to conclude that the newest tools are not always better, but rather can complement traditional instruction methods. Anat Sci Educ 10: 328-338. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  9. Development of an in vitro laboratory manual for nuclear medicine technology students

    International Nuclear Information System (INIS)

    Meyers, A.

    1989-01-01

    This study evaluated existing in vitro education materials in qualitative and quantitative parameters that currently exist to educate potential clinicians of nationally accredited nuclear medicine programs. A review of over 300 articles, texts, and manuals pertaining to in vitro nuclear medicine procedures clearly demonstrated that no in vitro laboratory manual for undergraduate students presently exited. Every nuclear medicine program director in the United States was surveyed. They were asked for their overall philosophy in terms of developing an in vitro manual and requested to evaluate the significant of 22 general principles/concepts and 34 specific laboratory testing procedures. From the response to the survey, an in vitro nuclear medicine manual was created and appended to the study. The manual consists of lecture and study material, chapter reviews, and laboratory assignments and exercises

  10. Federal laboratories for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  11. Biomedical Engineering Laboratory

    National Research Council Canada - National Science Library

    Bodruzzama, Mohammad

    2003-01-01

    ... and on-line analysis of the biomedical signals. Each Biopac system-based laboratory station consists of real-time data acquisition system, amplifiers for EMG, EKG, EEG, and equipment for the study of Plethysmography, evoked response, cardio...

  12. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  13. Immersive Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Develops and tests novel user interfaces for 3D virtual simulators and first-person shooter games that make user interaction more like natural interaction...

  14. Active Materials Characterization Laboratory

    National Research Council Canada - National Science Library

    Lagoudas, Dimitris

    2001-01-01

    The Active Materials Laboratory has recently acquired upgraded and new equipment made possible by the AFOSR in the form of a research grant as a part of the Defense University Research Instrumentation Program...

  15. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  16. Fritz Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Features 800,000 lb and 5,000,000 lb universal testing machines, and a dynamic test bed with broad fatigue-testing capabilities, and a wide range of instrumentation....

  17. Laboratory Handbook Electronics

    CERN Multimedia

    1966-01-01

    Laboratory manual 1966 format A3 with the list of equipment cables, electronic tubes, chassis, diodes transistors etc. One of CERN's first material catalogue for construction components for mechanical and electronic chassis.

  18. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  19. Structural Static Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Structural testing is performed to verify the structural integrity of space flight and ground test hardware. Testing is also performed to verify the finite element...

  20. European Molecular Biology Laboratory

    CERN Multimedia

    1973-01-01

    On 10 May an Agreement was signed at CERN setting up a new European Laboratory. It will be concerned with research in molecularbiology and will be located at Heidelberg in the Federal Republic of Germany.

  1. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  2. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  3. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  4. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  5. Teaching Laboratory Renovation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah; Rodda, Kabrena E.; Yousif, Emad

    2016-12-21

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirements relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  7. Pacific Northwest Laboratory report on controlled thermonuclear reactor technology, January 1975--September 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The PNL staff has been studying fusion technology in areas such as economics, fusion-fission hybrid concepts, materials, neutronics, environment and safety. These studies have been scoped to make efficient use of ERDA resources, and to complement and support efforts at other laboratories. The effect the plasma and associated radiation and emission will have upon the surfaces of the first wall are being studied. Neutron sputtering experiments were made on niobium and gold and the results were evaluated for absolute neutron yields. Molybdenum and vanadium were studied for effects of ion bombardment under various conditions of helium injection. Graphite cloth is being irradiated for examination of radiation effects because it is suggested for use in several CTR concepts as a shield between the plasma and the first wall. Helium effects are being studied to characterize degradation of structural metal properties. Work is progressing on absolute measurement of the electrical resistivity of insulators and the demonstration of the feasibility of producing insulating coatings by sputter deposition

  8. A new ion-beam laboratory for materials research at the Slovak University of Technology

    Science.gov (United States)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  9. Spent fuel storage technology demonstrations at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Schoonen, D.H.; Jensen, M.F.; Fisher, M.W.

    1987-01-01

    Spent nuclear fuel research and development activities are conducted in accordance with Section 218 of the 1982 Nuclear Waste Policy Act (NWPA). Major objectives of Section 218 are to encourage and expedite the efficient use of existing storage facilities and the addition of new at-reactor storage capacity. Activities at the Idaho Engineering Laboratory (INEL) are pertinent to the following objectives: A cooperative demonstration program with the private sector to develop dry storage technologies that the Nuclear Regulatory Commission (NRC) can generically approve; A cost-shared dry storage research and development program at Federal facilities to collect the necessary licensing data. These items are supported by tasks being performed at the INEL. Research and development programs include the testing of metal storage casks containing either consolidated or intact spent fuel in inert gas atmospheres. The casks, weighing nearly 90,718 kg (100 tons), are fabricated using nodular cast iron or forged carbon steel and contain basket assemblies which provide criticality control and spacing of fuel assemblies in individual cells. Small-scale rod consolidation systems are also being developed

  10. Arid-site SLB technology development at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The program goal for shallow land burial (SLB) Technology Development at the Los Alamos National Laboratory is to field test new disposal concepts and strategies for all aspects of arid SLB on an accelerated basis and on a reasonable scale. The major accomplishments during FY-1981 were the development of the Los Alamos Experimental Engineered Test Facility, the emplacement of the biointrusion barrier testing experiments, the design and emplacement of the moisture cycling experiments, the design and construction of the experiment clusters, and the planning for the experiments to be emplaced in these units. This paper will describe the site development work, the design and construction of the experiment clusters, and the experiments planned for these units. The experimental Engineered Test Facility was brought from idea to reality and two experiments were emplaced (biointrusion barrier and moisture cycling). The experiment clusters were designed and constructed, and are now available for experimentation. These units are reusable. After an experiment is complete it can be removed and another experiment put in its place. Several of the experiments were planned and designed while some of the other experiments are still in the planning stage. Based on the work done in FY-1981, significant progress toward Milestones, C, D, and E should be made in FY-1982

  11. Perceptions of a mobile technology on learning strategies in the anatomy laboratory.

    Science.gov (United States)

    Mayfield, Chandler H; Ohara, Peter T; O'Sullivan, Patricia S

    2013-01-01

    Mobile technologies offer new opportunities to improve dissection learning. This study examined the effect of using an iPad-based multimedia dissection manual during anatomy laboratory instruction on learner's perception of anatomy dissection activities and use of time. Three experimental dissection tables used iPads and three tables served as a control for two identical sessions. Trained, non-medical school anatomy faculty observers recorded use of resources at two-minute intervals for 20 observations per table. Students completed pre- and post-perception questionnaires. We used descriptive and inferential analyses. Twenty-one control and 22 experimental students participated. Compared with controls, experimental students reported significantly (P learning anatomy. Experimental students indicated that the iPad helped them in dissection. We observed experimental students more on task (93% vs. 83% of the time) and less likely to be seeking an instructor (2% vs. 32%). The groups received similar attention from instructors (33% vs. 37%). Fifty-nine percent of the time at least one student was looking at the iPad. Groups clustered around the iPad a third of their time. We conclude that the iPad-manual aided learner engagement, achieved instructional objectives, and enhanced the effectiveness and efficiency of dissection education. Copyright © 2012 American Association of Anatomists.

  12. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  13. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-01-01

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  14. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  15. Use of High-Definition Audiovisual Technology in a Gross Anatomy Laboratory: Effect on Dental Students' Learning Outcomes and Satisfaction.

    Science.gov (United States)

    Ahmad, Maha; Sleiman, Naama H; Thomas, Maureen; Kashani, Nahid; Ditmyer, Marcia M

    2016-02-01

    Laboratory cadaver dissection is essential for three-dimensional understanding of anatomical structures and variability, but there are many challenges to teaching gross anatomy in medical and dental schools, including a lack of available space and qualified anatomy faculty. The aim of this study was to determine the efficacy of high-definition audiovisual educational technology in the gross anatomy laboratory in improving dental students' learning outcomes and satisfaction. Exam scores were compared for two classes of first-year students at one U.S. dental school: 2012-13 (no audiovisual technology) and 2013-14 (audiovisual technology), and section exams were used to compare differences between semesters. Additionally, an online survey was used to assess the satisfaction of students who used the technology. All 284 first-year students in the two years (2012-13 N=144; 2013-14 N=140) participated in the exams. Of the 140 students in the 2013-14 class, 63 completed the survey (45% response rate). The results showed that those students who used the technology had higher scores on the laboratory exams than those who did not use it, and students in the winter semester scored higher (90.17±0.56) than in the fall semester (82.10±0.68). More than 87% of those surveyed strongly agreed or agreed that the audiovisual devices represented anatomical structures clearly in the gross anatomy laboratory. These students reported an improved experience in learning and understanding anatomical structures, found the laboratory to be less overwhelming, and said they were better able to follow dissection instructions and understand details of anatomical structures with the new technology. Based on these results, the study concluded that the ability to provide the students a clear view of anatomical structures and high-quality imaging had improved their learning experience.

  16. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  17. Laboratory practical work according to the mathematical analysis with application information technologies

    Directory of Open Access Journals (Sweden)

    Рамиз Муталлимович Асланов

    2014-12-01

    Full Text Available In this article the structure and contents of the manual “Laboratory Workshop on the Mathematical Analysis with Application of Information Technologies” which Authors are R.M. Aslanov and O.V. Li is considered. The grant can be used when carrying out a practical training in internal, as well as in remote forms of education.

  18. Automatic Vacuum Flushing Technology for Combined Sewer Solids: Laboratory Testing and Proposed Improvements (WERF Report INFR7SG09)

    Science.gov (United States)

    This research study included an extensive literature review on existing sewer sediment flushing technologies. An innovative vacuum flush system previously developed by the U.S. EPA was tested under laboratory conditions. The tests revealed a strong correlation between the strengt...

  19. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  20. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  1. Department of Energy multiprogram laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel recommends the following major roles and missions for the laboratories: perform the Department's national trust fundamental research missions in the physical sciences, including high energy and nuclear physics, and the radiobiological sciences including nuclear medicine; sustain scientific staff core capabilities and specialized research facilities for laboratory research purposes and for use by other Federal agencies and the private sector; perform independent scientific and technical assessment or verification studies required by the Department; and perform generic research and development where it is judged to be in the public interest or where for economic or technical reasons industry does not choose to support it. Organizational efficiencies if implemented by the Department could contribute toward optimal performance of the laboratories. The Panel recommends that a high level official, such as a Deputy Under Secretary, be appointed to serve as Chief Laboratory Executive with authority to help determine and defend the research and development budget, to allocate resources, to decide where work is to be done, and to assess periodically laboratory performance. Laboratory directors should be given substantially more flexibility to deploy resources and to initiate or adapt programs within broad guidelines provided by the Department. The panel recommends the following actions to increase the usefulness of the laboratories and to promote technology transfer to the private sector: establish user groups for all major mission programs and facilities to ensure greater relevance for Department and laboratory efforts; allow the laboratories to do more reimbursable work for others (other Federal agencies, state and local governments, and industry) by relaxing constraints on such work; implement vigorously the recently liberalized patent policy; permit and encourage joint ventures with industry

  2. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  3. KfK Laboratory for Aerosol Physics and Filter Technology. Progress report and development activities in 1990

    International Nuclear Information System (INIS)

    1991-03-01

    The activities undertaken by the laboratory for aerosol physics and filter technology (LAF) in 1990 under the following projects are described: (1) nuclear safety research (safety and material problems of fast breeders, IWR-oriented safety research); (2) pollutant control in the environment (communal waste management, emission-reducing processes, climate research - pollutants' behaviour in the atmosphere), and (3) radioactive waste management (basic work on reprocessing technologies). The annex lists the publications by the LAF staff. (BBR) [de

  4. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  5. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  6. San Juan District Laboratory (SJN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesSJN-DO Pharmaceutical Laboratory is an A2LA/ISO/IEC 17025 accredited National Servicing Laboratory specialized in Drug Analysis, is a member of...

  7. World of Forensic Laboratory Testing

    Science.gov (United States)

    ... forensic pathologist to perform the actual examination. Unlike clinical laboratories that are certified under specific standards of the federal Clinical Laboratory Improvements Act (CLIA), forensic laboratories prove their competence ...

  8. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  9. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  10. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  11. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  12. Laboratory Diagnostics for Histoplasmosis.

    Science.gov (United States)

    Azar, Marwan M; Hage, Chadi A

    2017-06-01

    The diagnosis of histoplasmosis is based on a multifaceted approach that includes clinical, radiographic, and laboratory evidence of disease. The gold standards for laboratory diagnosis include demonstration of yeast on pathological examination of tissue and isolation of the mold in the culture of clinical specimens; however, antigen detection has provided a rapid, noninvasive, and highly sensitive method for diagnosis and is a useful marker of treatment response. Molecular methods with improved sensitivity on clinical specimens are being developed but are not yet ready for widespread clinical use. This review synthesizes currently available laboratory diagnostics for histoplasmosis, with an emphasis on complexities of testing and performance in various clinical contexts. Copyright © 2017 American Society for Microbiology.

  13. The laboratory and patient safety.

    Science.gov (United States)

    Wagar, Elizabeth A; Yuan, Shan

    2007-12-01

    Laboratory data are used extensively in patient care; consequently, laboratory errors have a tremendous impact on patient safety. Clinical laboratories were early leaders in efforts to minimize medical errors and improve patient safety. These efforts continue in many areas, including patient and specimen identification, laboratory result notification, and assistance in laboratory data interpretation. Emerging ideas on identifying and reducing laboratory errors, as well as specific strategies are reviewed and discussed with examples.

  14. Analytical laboratory quality audits

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  15. Laboratory cross training needs assessment.

    Science.gov (United States)

    Boisvert, W H; Shaikh, A H

    1998-01-01

    To define the continuing education topics and methods in the area of chemistry and hematology, that if developed, would best support the cross-training needs of hospital based laboratories in the State of Georgia. A cross sectional study of hospital based laboratories in Georgia was completed using surveys sent to 181 hospital laboratory managers and administrators. Descriptive statistics were used to evaluate the survey results. Department of Medical Technology, Medical College of Georgia, Augusta GA. Laboratory managers and administrators. Not applicable. Four descriptive outcome measurements were requested from each participant: 1) demographic questions, 2) cross-training topics desired, 3) training material desired, and 4) computer literacy and equipment assessment. Sixty-six surveys were completed and returned in a usable form (36% return rate). Demographically, the respondent group is a representative sample of hospital based laboratories in the State of Georgia with 46% of the respondents from facilities of 100 hospital beds or less. Respondents desired that case study training topics be developed using paper and computer assisted instruction mediums. Additionally, respondents desired that Professional Acknowledgement for Continuing Education (P.A.C.E.) be associated with the training material. They were willing to pay for this administrative service. This cross sectional study assessed the cross-training needs of hospital based laboratories in Georgia. Findings will allow educators to focus and develop continuing education packages that best meet the needs of the laboratorian workforce.

  16. Underground laboratories in Asia

    Science.gov (United States)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  17. The isotope laboratory

    International Nuclear Information System (INIS)

    Anon.

    The various research projects and investigations carried out at the laboratory are briefly described. These include:- hormone investigations (thyroxine and triiodothyronine) by radioimmunology in cattle and swine; the synthesis of fatty acids in sheep digestive juices; vitamin E in pigs; the uptake of phosphorus in cloudberries; the uptake and breaking down of glyphosate in spruce and wild oats; transport and assimilation of MCPA; ground water pollution from sewage; process investigations in fish oil production; cleaning process in dairy piping; soil humidity radiometric gage calibration; mass spectroscopy. The courses held by the laboratory for students and the consumption of radioisotope tracers are summarised. (JIW)

  18. USGS Scientific Visualization Laboratory

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) Scientific Visualization Laboratory at the National Center in Reston, Va., provides a central facility where USGS employees can use state-of-the-art equipment for projects ranging from presentation graphics preparation to complex visual representations of scientific data. Equipment including color printers, black-and-white and color scanners, film recorders, video equipment, and DOS, Apple Macintosh, and UNIX platforms with software are available for both technical and nontechnical users. The laboratory staff provides assistance and demonstrations in the use of the hardware and software products.

  19. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  20. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  1. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  2. Monitoring language laboratory work

    Directory of Open Access Journals (Sweden)

    C. van der Walt

    1985-05-01

    Full Text Available Barely six years after the establishment of the first language laboratory at the University of Utah and five years after a similar language lab had been introduced at Ohio State University, E.H. Schneck complained that students who were supposed to stamp time-slips as evidence of their attendance "(got someone else to stamp a time-slip; or a student might stamp one when entering, leave the laboratory, and come back to stamp it several hours later" (1930:31.

  3. SENSORY AND CONSUMER TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — These laboratories conduct a wide range of studies to characterize the sensory properties of and consumer responses to foods, beverages, and other consumer products....

  4. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  5. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  6. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  7. Integrated Support Environment (ISE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...

  8. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  9. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  10. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  11. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such

  12. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R andD) operations, support operations, and facilities. ISM directives were released on management processes

  13. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  14. Antibiotics in laboratory medicine

    National Research Council Canada - National Science Library

    Lorian, Victor

    2005-01-01

    ... in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. Printed in the USA Library of Congress Cataloging-in-Publication Data Antibiotics in laboratory medicine / [edited by] Victor Lorian. - 5th ed...

  15. Korogwe Research Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob

    2012-01-01

    . It is a large vaccine trial programme simultaneously conducted in several countries in Africa funded by the Bill and Melinda Gates Foundation. The laboratory is an extension to a district hospital placed quite isolated and rural in the north-eastern part of Tanzania. It’s close to the equator and the climate...

  16. Laboratories: Integrating Services

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast highlights the importance of integrating laboratory services to maximize service delivery to patients.  Created: 4/4/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 4/7/2011.

  17. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  18. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  19. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  20. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  1. Microprocessors in laboratory automation

    NARCIS (Netherlands)

    Bos, M.

    1981-01-01

    A description is given of the construction and operation of microcomputer systems, the types and functions of their various components, their programming and the peripherals and interfaces that are required to use microcomputers in a laboratory environment. The particulars of the use of

  2. Aquatic Microbiology Laboratory Manual.

    Science.gov (United States)

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  3. Effect of Cooperative Learning and Traditional Methods on Students' Achievements and Identifications of Laboratory Equipments in Science-Technology Laboratory Course

    Science.gov (United States)

    Aydin, Suleyman

    2011-01-01

    Science lessons taught via experiments motivate the students, and make them more insistent on learning science. This study aims to examine the effects of cooperative learning on students' academic achievements and their skills in identifying laboratory equipments. The sample for the study consisted of a total of 43 sophomore students in primary…

  4. Remote laboratory with Raspberry Pi

    OpenAIRE

    Dvorščak, Mihael

    2016-01-01

    The thesis is intended for teachers in junior high school and students of technology education in planning innovational and different learning lessons using information and communication technologies and inductive methods. In thesis is represented an indicative layout of the remote laboratory for educational purposes on the basis of the Raspberry Pi computer. Thesis features used hardware components for this theme, Raspberry Pi computer, its development and commonly used peripheral device...

  5. Laboratory quality improvement in Thailand's northernmost provinces.

    Science.gov (United States)

    Kanitvittaya, S; Suksai, U; Suksripanich, O; Pobkeeree, V

    2010-01-01

    In Thailand nearly 1000 public health laboratories serve 65 million people. A qualified indicator of a good quality laboratory is Thailand Medical Technology Council certification. Consequently, Chiang Rai Regional Medical Sciences Center established a development program for laboratory certification for 29 laboratories in the province. This paper seeks to examine this issue. The goal was to improve laboratory service quality by voluntary participation, peer review, training and compliance with standards. The program consisted of specific activities. Training and workshops to update laboratory staffs' quality management knowledge were organized. Staff in each laboratory performed a self-assessment using a standard check-list to evaluate ten laboratory management areas. Chiang Rai Regional Medical Sciences Center staff supported the distribution of quality materials and documents. They provided calibration services for laboratory equipment. Peer groups performed an internal audit and successful laboratories received Thailand Medical Technology Council certification. By December 2007, eight of the 29 laboratories had improved quality sufficiently to be certified. Factors that influenced laboratories' readiness for quality improvement included the number of staff, their knowledge, budget and staff commitment to the process. Moreover, the support of each hospital's laboratory working group or network was essential for success. There was no clear policy for supporting the program. Laboratories voluntarily conducted quality management using existing resources. A bottom-up approach to this kind of project can be difficult to accomplish. Laboratory professionals can work together to illustrate and highlight outcomes for top-level health officials. A top-down, practical approach would be much less difficult to implement. Quality certification is a critical step for laboratory staff, which also encourages them to aspire to international quality standards like ISO. The

  6. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  7. Request for Information from entities interested in commercializing Laboratory-developed advanced in vitro assessment technology

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Miranda Huang [Los Alamos National Laboratory

    2016-03-30

    Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter of Interest.

  8. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Claggett

    1999-12-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  9. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Claggett, S.L.

    1999-01-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years

  10. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  11. Analyzing the effect of technology-based intervention in language laboratory to improve listening skills of first year engineering students

    OpenAIRE

    Pasupathi, Madhumathi

    2012-01-01

    First year students pursuing engineering education face problems with their listening skills. Most of the Indian schools use a bilingual method for teaching subjects from primary school through high school. Nonetheless, students entering university education develop anxiety in listening to classroomlectures in English. This article reports an exploratory study that aimed to find out whether the listening competences of students improved when technology was deployed in language laboratory. It ...

  12. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  13. Safety in Laboratories: Indian Scenario

    OpenAIRE

    Mustafa, Ajaz; Farooq, A. Jan; Qadri, GJ; S. A., Tabish

    2008-01-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. ...

  14. Optoelectronics laboratory annual report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The research projects completed or being pursued in 1994 at Optoelectronics Laboratory are described in the detailed research reports, which consist the major part of this annual report. A large amount of this work is financed, in part at least, from sources outside the University. The three-year research contract signed by the Helsinki University of Technology, its Optoelectronics Laboratory and the Academy of Finland ended in 1994. It aimed at developing advanced technologies for optoelectronic components and new semiconductor heterostructures. The research programme was divided into three subprojects: MOVPE (metalorganic vapor phase epitaxy) and materials characterisation, surface emitting lasers having vertical cavity, and cold trapping of atoms with semiconductor laser beams. The research was carried out jointly with the Photonics Division of the Electronic Materials and Components VTT Electronics and the Metrology Research Institute of the Helsinki University of Technology.

  15. An investigative laboratory course in human physiology using computer technology and collaborative writing.

    Science.gov (United States)

    FitzPatrick, Kathleen A

    2004-12-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65 second-year students in sports medicine and biology at a small private comprehensive college. The course builds on skills and abilities first introduced in an introductory investigations course and introduces additional higher-level skills and more complex human experimental models. In four multiweek experimental modules, involving neuromuscular, reflex, and cardiovascular physiology, by use of computerized hardware/software with a variety of transducers, students carry out self-designed experiments with human subjects and perform data collection and analysis, collaborative writing, and peer editing. In assessments, including standard course evaluations and the Salgains Web-based evaluation, student responses to this approach are enthusiastic, and gains in their skills and abilities are evident in their comments and in improved performance.

  16. The Case for Laboratory Developed Procedures

    Science.gov (United States)

    Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.

    2017-01-01

    An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200

  17. The Case for Laboratory Developed Procedures

    Directory of Open Access Journals (Sweden)

    Karen L. Kaul MD, PhD

    2017-07-01

    Full Text Available An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories.

  18. Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    Rutherford Appleton Laboratory (RAL), described in this document, supports a wide variety of projects. Each year more than 1000 scientists and engineers visit RAL to use its world-class laser and neutron-scattering facilities. RAL staff design and build instruments which circle the Earth in satellites, increasing our understanding of ozone depletion and global warming, of the life cycles of stars and galaxies and, indeed, of the origin of the Universe itself. They work with their academic colleagues at international laboratories such as European Organization for Nuclear Research (CERN), Geneva, where massive underground machines probe the microstructure of the atomic nucleus. Vastly complex calculations are carried out on the design of anti-cancer drugs, for example, using supercomputers at RAL. (author)

  19. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  20. Radiation carcinogenesis, laboratory studies

    International Nuclear Information System (INIS)

    Shellabarger, C.J.

    1974-01-01

    Laboratory studies on radioinduced carcinogenesis are reviewed. Some topics discussed are: radioinduced neoplasia in relation to life shortening; dose-response relationships; induction of skin tumors in rats by alpha particles and electrons; effects of hormones on tumor response; effects of low LET radiations delivered at low dose-rates; effects of fractionated neutron radiation; interaction of RBE and dose rate effects; and estimates of risks for humans from animal data. (U.S.)

  1. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  2. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  3. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  4. Remote Laboratory in Photovoltaics

    Directory of Open Access Journals (Sweden)

    Cornel Samoila

    2009-08-01

    Full Text Available This paper presents a new concept of studying, understanding and teaching the performance of solar cells. Using NI ELVIS allows the realization of eight laboratory experiments which study all the important parameters of the solar cells. The model used for the equivalent circuit of the solar cell was the “one diode” model. For the realization of control, data acquisition and processing, a complex program was created, with a friendly interface, using the graphical programming language LabVIEW.

  5. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  6. Laboratory instruction and subjectivity

    OpenAIRE

    Elisabeth Barolli; Alberto Villani

    1998-01-01

    The specific aspects which determined the way some groups of students conducted their work in a university laboratory, made us understand the articulation of these groups´s dynamics, from elements that were beyond the reach of cognition. In more specific terms the conduction and the maintenance of the groups student´s dynamics were explicited based on a intergame between the non conscious strategies, shared anonymously, and the efforts of the individuals in working based on their most objecti...

  7. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  8. Laboratory diagnosis of leptospirosis

    Directory of Open Access Journals (Sweden)

    Ahmad S

    2005-01-01

    Full Text Available Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira species, for which humans are accidental hosts. It is endemic in the tropical urban areas including our country, where seasonal epidemics are becoming increasingly common. Laboratory tests are necessary to confirm the diagnosis of clinically suspected leptospirosis due to its varied symptomatology. Moreover, leptospirosis must always be considered during the differential diagnosis of other tropical febrile illnesses .Laboratory analysis depends on the samples available and temporal stage of the illness. A confusing array of laboratory tests is described for the detection of this spirochete and antibodies. The conventional tests include direct microscopy, culture and the most widely used reference standard method -the microscopic agglutination test. In addition a variety of newer serological tests and those based on molecular techniques have been described.This review has attempted to describe the basis of these techniques and discussed the relative advantages and drawbacks of these assays with special emphasis on the selection of the most appropriate specimen and test, and the correct interpretation of the test result

  9. The Postwar Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    Recent discussion of project policy has met with a widespread feeling that important alternatives were not being properly considered. These alternatives will be discussed here from the point of view of research personnel concerned with formulation a laboratory policy based on the wartime experience of Los Alamos. This policy is discussed on the primary assumption that the national investment here in facilities, in tradition, and in the existence of an going research and development laboratory organization ought not to be lightly discarded, but also ought not to be wholly continued without reexamination under the new conditions of peace. Others will discuss this policy more broadly, and others will make the decision of continuation; but the purpose of the present document is to suggest a policy which might help answer the question of what to do with Los Alamos.It is the thesis of this document that fundamental research in fields underlying the military utilization of atomic energy ought to be separated from all development testing and production. It still remains to argue which of these separate functions this mesa should carry out. In the next sections it is proposed to describe what this laboratory can do and what it should stop trying to do, and on this detailed basis a general program is proposed.

  10. Laboratory microfusion capability study

    International Nuclear Information System (INIS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report

  11. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  12. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  13. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  14. Virtual petrological microscopy: web 2.0 technology for learning microscopy skills outside the laboratory

    Science.gov (United States)

    Kelley, S. P.; Whalley, P.; Tindle, A.

    2009-12-01

    Learning to use microscopes for geoscience or life science applications is a crucial part of the practical training offered in many science degrees, but the opportunities to study are often constrained by available laboratory space and time, and sometimes constrained by the number of high quality microscopes available. We will demonstrate a new based virtual petrological microscope which offers the opportunity for enhancement and enrichment of laboratory experience in geoscience. The focus of petrological microscope study is not primarily related to learning facts but is concerned with learning how to discriminate and classify within the paradigms of the discipline. In this case, the recognition and measurement of key features in rock samples in hand specimen and thin section. Whilst undertaking the practical exercise of recognition and naming of rock samples students are really being required to develop an understanding of the rock cycle as a model representing the relationship between rock categories and the process of their formation. The problems of teaching with complex visual materials, in effect of teaching learners 'how to see' from the scientific perspective of a particular discipline, are quite general. It could reasonably be expected that lessons learnt from the implementation and detailed evaluation of the proposed web-based system will generalise to many other topics in science education. Thus we focussed on the thin section images rather than reproducing a system that resembled a physical microscope. The virtual petrological microscope developed for a course at the Open University UK enables student acquisition of skills such as mineral and rock recognition using a browser window to explore thin sections of rocks as if they were using a laboratory microscope. The microscope allows students to pan around the thin sections (held as 1GB files on a remote server); zoom in and out, change from plane polarised light to cross polarised light conditions, and

  15. Potential Electrokinetic Remediation Technologies of Laboratory Scale into Field Application- Methodology Overview

    Science.gov (United States)

    Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman

    2018-04-01

    Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.

  16. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  17. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  18. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  19. Laboratory for Extraterrestrial Physics

    Science.gov (United States)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  20. Gait Analysis Laboratory

    Science.gov (United States)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  1. 78 FR 6330 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2013-01-30

    ... related to improvement in clinical laboratory quality and laboratory medicine practice and specific... laboratory services; revisions to the standards under which clinical laboratories are regulated; the impact... clinical laboratory test results; and assuring the quality of new DNA sequencing technologies in the...

  2. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    Science.gov (United States)

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  3. The impact of technology on chemistry students' construction of meaning from a laboratory investigation of Boyle's law

    Science.gov (United States)

    Rigeman, Sally Ann

    2000-10-01

    In the rush to implement technology in the science classroom, rarely does the classroom teacher have time to question whether a new methodology is better than the one it replaces. The purpose of this experimental study (N = 187) was to determine the effect that substituting a data-collecting sensor in a chemistry investigation had on students' construction of meaning about the relationship between the pressure and volume of a fixed amount of gas at constant temperature and ambient conditions (Boyle's law). A pretest was administered to students before the beginning of the Chemistry I course at a large urban high school. The twelve chemistry sections were randomly assigned to three treatment groups. In one group, students generated and collected Boyle's law data using a glass syringe and lead weights. In the two experimental groups, students generated and collected Boyle's law data using one of two different technology systems---the Calculator-Based Laboratory (CBL) system by Texas Instruments or the Scientific Workshop system by PASCO. Each system used similar pressure sensors but different display devices. Posttest I was administered one week after the experiment to measure changes in student knowledge resulting from the Boyle's law laboratory. Posttest II was administered three weeks later to measure retention and any changes in knowledge resulting from a formal gas laws lecture. A multiple regression analysis of student scores on the test instruments and their grade-equivalent scores from the Iowa Tests of Educational Development (TTED) Science, Quantitative Thinking, and Reading-Vocabulary subtests showed consistent correlation. A repeated-measures analysis of variance indicated that no significant differences existed between the Traditional and Technology groups in their representation of the pressure-volume relationship from their laboratory experience, F (2, 184) = .44, p < .05. Time, however, was a factor in student performance on the Posttest I instrument

  4. Laboratory Diagnosis of Pertussis

    Science.gov (United States)

    Schellekens, Joop F. P.; Mooi, Frits R.

    2015-01-01

    SUMMARY The introduction of vaccination in the 1950s significantly reduced the morbidity and mortality of pertussis. However, since the 1990s, a resurgence of pertussis has been observed in vaccinated populations, and a number of causes have been proposed for this phenomenon, including improved diagnostics, increased awareness, waning immunity, and pathogen adaptation. The resurgence of pertussis highlights the importance of standardized, sensitive, and specific laboratory diagnoses, the lack of which is responsible for the large differences in pertussis notifications between countries. Accurate laboratory diagnosis is also important for distinguishing between the several etiologic agents of pertussis-like diseases, which involve both viruses and bacteria. If pertussis is diagnosed in a timely manner, antibiotic treatment of the patient can mitigate the symptoms and prevent transmission. During an outbreak, timely diagnosis of pertussis allows prophylactic treatment of infants too young to be (fully) vaccinated, for whom pertussis is a severe, sometimes fatal disease. Finally, reliable diagnosis of pertussis is required to reveal trends in the (age-specific) disease incidence, which may point to changes in vaccine efficacy, waning immunity, and the emergence of vaccine-adapted strains. Here we review current approaches to the diagnosis of pertussis and discuss their limitations and strengths. In particular, we emphasize that the optimal diagnostic procedure depends on the stage of the disease, the age of the patient, and the vaccination status of the patient. PMID:26354823

  5. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  6. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  7. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  8. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  9. Visual Landing Aids (VLA) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Visual Landing Aids (VLA) Laboratory serves to support fleet VLA systems by maintaining the latest service change configuration of currently deployed VLA...

  10. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  11. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  12. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  13. How safe are Indian laboratories?

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    ow safe are the laboratories provided by the schools, colleges, Universities and research organizations (government and private) in India? One should not be surprised if the laboratories are located in dilapidated buildings, with paints peeling off...

  14. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  15. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  16. San Francisco District Laboratory (SAN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesFood Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  17. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  18. Application of nondestructive assay technology in Oak Ridge National Laboratory's waste management program

    International Nuclear Information System (INIS)

    Schultz, F.J.; Smith, M.A.; Brandenburg, R.W.; Caylor, B.A.; Coffey, D.E.; Hensley, D.C.; Phoenix, L.B.

    1990-01-01

    Waste characterization is the process whereby physical properties and chemical composition of waste are determined. Waste characterization is an important element of a waste certification program in that it provides information which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Order 5820.2A and WIPP-DOE-069 list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content, fissile material content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual(s) who generate the waste. The generator must be able to document the type and estimate the quantity of various materials which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which the major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 10 refs., 1 fig., 1 tab

  19. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies.

    Science.gov (United States)

    Horinouchi, Takaaki; Sakai, Aki; Kotani, Hazuki; Tanabe, Kumi; Furusawa, Chikara

    2017-08-10

    Isopropanol (IPA) is the secondary alcohol that can be dehydrated to yield propylene. To produce IPA using microorganisms, a significant issue is that the toxicity of IPA causes retardation or inhibition of cell growth, decreasing the yield. One possible strategy to overcome this problem is to improve IPA tolerance of production organisms. For the understanding of tolerance to IPA, we performed parallel adaptive laboratory evolution (ALE) of Escherichia coli under IPA stress. To identify the genotypic change during ALE, we performed genome re-sequencing analyses of obtained tolerant strains. To verify which mutations were contributed to IPA tolerance, we constructed the mutant strains and quantify the IPA tolerance of the constructed mutants. From these analyses, we found that five mutations (relA, marC, proQ, yfgO, and rraA) provided the increase of IPA tolerance. To understand the phenotypic change during ALE, we performed transcriptome analysis of tolerant strains. From transcriptome analysis, we found that expression levels of genes related to biosynthetic pathways of amino acids, iron ion homeostasis, and energy metabolisms were changed in the tolerant strains. Results from these experiments provide fundamental bases for designing IPA tolerant strains for industrial purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Annual technology assessment and progress report for the Buried Transuranic Waste Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    An improved-confinement technology as applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste is being investigated. An improved-confinement technology, in situ grouting, is being demonstrated in a 2-year engineering feasibility test at the INEL. Grout formulation and development were completed by Oak Ridge National Laboratory in Tennessee to support the in situ grouting test. Three grout formulations have been adapted to the arid, unsaturated soil conditions at the INEL: ordinary particulate grout; microfine penetration grout; soil grout. Three test trenches were constructed north of the INEL's Subsurface Disposal Area (SDA). Nonradioactive waste forms closely resembling TRU waste buried at the INEL have been fabricated and are ready for emplacement into these test trenches. A literature search for a simulated (analog) TRU tracer was completed as well as a chemical characterization of the INEL soil. Data developed from the chemistry characterization and literature search have been inputed into the selection and laboratory testing of the TRU analog tracers. Simulated TRU tracers will be loaded into waste forms prior to emplacement into the test trenches. Test trench data acquisition instrumentation will be installed during waste form emplacement. Instrumentation will monitor for moisture movement and tracer detection. Plans for test completion in FY-1986 are also shown. Various buried waste improved-confinement technologies performed by other Department of Energy sites were assessed for applicability to the INEL buried TRU waste. Primary demonstrations were performed at the Hanford site in Washington and at ORNL. This report also includes information on accomplishments of related activities at the INEL such as the program for Environmental Surveillance of the Radioactive Waste Management complex as well as the Subsurface Migration Studies. 18 refs., 11 figs., 12 tabs

  1. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  2. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  3. Journal of Medical Laboratory Science

    African Journals Online (AJOL)

    The Journal of Medical Laboratory Science is a Quarterly Publication of the Association of Medical Laboratory Scientists of Nigeria. It Publishes Original Research and Review Articles in All Fields of Biomedical Sciences and Laboratory Medicine, Covering Medical Microbiology, Medical Parasitology, Clinical Chemistry, ...

  4. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  5. [Tips to activate your laboratory technologists].

    Science.gov (United States)

    Kimura, Satoshi

    2009-01-01

    For about two decades, Japanese clinical laboratories have been suffering depression because of the government policy to reduce medical expenditure. Here are my proposals to re-vitalize laboratory science in Japan. (1) Do not keep laboratory technologists stay inside laboratories. Take them out to bedside to show what is going on. Show your technologists' face to medical professionals to experience clinical demand. (2) Invite doctors who cared severely ill patients to your laboratory. Every month my laboratory holds case study meetings using electronic medical records (EMR). Doctors and residents present how laboratory data saved the patient's life. Attending the meeting, laboratory technologists realize how they contributed to improve the patients' destiny. This "case study meeting" with EMR stimulates laboratory technologists to understand they are really one of major players in dramatic story of clinical medicine. (3) Establish a sophisticated industry of biotechnology. Populations of senior citizens are growing in all the developed nations in the world. The healthcare demand is very likely to increase. Because Japan is experiencing "aging society" most drastically, the Japanese could get the first major chance to develop new technologies to improve senior citizens' quality of life. The more government reduce medical expenditure, the less healthcare industry grows up. Without major biotechnology industry, the Japanese have to import expensive technologies from overseas. In conclusion, Japanese society of laboratory medicine, together with related industries should get united to appeal how they can contribute to the nation, in order to obtain appropriate fee, as an investment for future people's health.

  6. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  7. Laboratory Impact Experiments

    Science.gov (United States)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  8. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    High Temperature Superconducting (HTS) electrical machines have the potential to offer outstanding technical performance with regards to efficiency and power density. However, the industry needs to address a large number of challenges in the attempt to harvest the full potential of HTS machines....... Among others a few stand out, e.g. reliability and efficiency of thermal insulation and cooling systems; optimized torque transfer elements and current leads; commercial availability and competitiveness of HTS material etc. Also, HTS conductors lack standardization due to their rapid development where...... many of HTS properties are not known and need to be tested with a specific purpose in mind not just for different types of HTS conductors but also for the same type of HTS conductors made by different manufactures. To address some of these challenges, we have constructed a laboratory prototype HTS...

  9. Process innovation laboratory

    DEFF Research Database (Denmark)

    Møller, Charles

    2007-01-01

    will increasingly be driven by business process models. Consequently business process modelling and improvement is becoming a serious challenge. The aim of this paper is to establish a conceptual framework for business process innovation (BPI) in the supply chain based on advanced EIS. The challenge is thus....... The process innovation laboratory facilitates innovation by using an integrated action learning approach to process modelling in a controlled environment. The study is based on design science and the paper also discusses the implications to EIS research and practice......Most organizations today are required not only to operate effective business processes but also to allow for changing business conditions at an increasing rate. Today nearly every business relies on their enterprise information systems (EIS) for process integration and future generations of EIS...

  10. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  11. Informatics and the clinical laboratory.

    Science.gov (United States)

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  12. Point of care technology or standard laboratory service in an emergency department: is there a difference in time to action? A randomised trial

    DEFF Research Database (Denmark)

    Backer Mogensen, Christian; Borch, Anders; Brandslund, Ivan

    2011-01-01

    services. However, the question is if the time to clinical action is also reduced if a decisive laboratory answer is available during the first contact between the patient and doctor. The present study addresses this question: Does a laboratory answer, provided by POCT to the doctor who first attends...... the patient on admission, change the time to clinical decision in commonly occurring diseases in an ED compared with the traditional service from a central laboratory?......Emergency Departments (ED) have a high flow of patients and time is often crucial. New technologies for laboratory analysis have been developed, including Point of Care Technologies (POCT), which can reduce the transport time and time of analysis significantly compared with central laboratory...

  13. Active shield technology for space craft protection revisited in new laboratory results and analysis

    Science.gov (United States)

    Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.

    2009-04-01

    Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025

  14. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  15. Tendências em medicina laboratorial Trends in laboratory medicine

    Directory of Open Access Journals (Sweden)

    Gustavo Aguiar Campana

    2011-08-01

    drivers. The major trends that will cause substantial impact on laboratory medicine are: management tools, inclusion of new tests and procedures, service quality, operational models, automation, consolidation and integration, information technology, personalized and genetic medicine. Laboratory medicine occupies a pivotal role in 70% of all clinical decisions with minimal healthcare costs of approximately 10%. All trends discussed herein sustain an increase in the use of laboratory tests as well as its importance in health care. Both this new model and the expectation of optimal solutions have led the market to search for changes and new management strategies.

  16. [Safety in the Microbiology laboratory].

    Science.gov (United States)

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Linking field and laboratory studies to investigate nitrate removal using permeable reactive barrier technology during managed recharge

    Science.gov (United States)

    Gorski, G.; Beganskas, S.; Weir, W. B.; Redford, K.; Saltikov, C.; Fisher, A. T.

    2017-12-01

    We present data from a series of field and laboratory studies investigating mechanisms for the enhanced removal of nitrate during infiltration as a part of managed recharge. These studies combine physical, geochemical, and microbiological data collected during controlled infiltration experiments at both a plot and a laboratory scale using permeable reactive barrier (PRB) technology. The presence of a PRB, made of wood chips or biochar, enhances nitrate removal by stimulating the growth and productivity of native soil microbes to process nitrate via denitrification. Earlier work has shown that unamended soil can remove up to 50% of nitrate during infiltration at rates population changes below the PRB where most of the cycling occurs. Coupled with isotopic analyses, these results suggest that a PRB expands the range of infiltration rates at which significant nitrate can be removed by microbial activity. Further, nitrate removal occurs at different depths below the biochar and redwood chips, suggesting different mechanisms of nitrate removal in the presence of different PRB materials. In laboratory studies we flowed artificial groundwater through intact sediment cores collected at the same field site where we also ran infiltration tests. These experiments show that the fluid flow rate and the presence of a PRB exhibit primary control on nitrate removal during infiltration, and that the relationship between flow rate and nitrate removal is fundamentally different in the presence of a PRB. These data from multiple scales and flow regimes are combined to offer a deeper understanding how the use of PRB technology during infiltration can help address a significant non-point source issue at the surface-subsurface interface.

  18. Artificial Intelligence Research at GTE Laboratories (Research in Progress)

    OpenAIRE

    Frawley, William; Goyal, Shri

    1984-01-01

    GTE Laboratories is the central corporate research and development facility for the sixty subsidiaries of the worldwide GTE corporation. Located in the Massachusetts Route 128 high technology area, the five laboratories that comprise GTE Laboratories generate the ideas, products, systems, and services that provide technical leadership for GTE. The two laboratories which conduct artificial intelligence research are the Computer Science Laboratory (CSL) and the Fundamental Research Laboratory (...

  19. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  20. Laboratory instruction and subjectivity

    Directory of Open Access Journals (Sweden)

    Elisabeth Barolli

    1998-09-01

    Full Text Available The specific aspects which determined the way some groups of students conducted their work in a university laboratory, made us understand the articulation of these groups´s dynamics, from elements that were beyond the reach of cognition. In more specific terms the conduction and the maintenance of the groups student´s dynamics were explicited based on a intergame between the non conscious strategies, shared anonymously, and the efforts of the individuals in working based on their most objective task. The results and issues we have reached so far, using a reference the work developed by W.R.Bion, with therapeutical groups, gave us the possibility for understanding the dynamics of the student´s experimental work through a new approach that approximates the fields of cognition and subjectivity. This approximation led us to a deeper reflection about the issues which may be involved in the teaching process, particularly in situations which the teacher deals with the class, organised in groups.

  1. Evaluation of the Radar Stage Sensor manufactured by Forest Technology Systems—Results of laboratory and field testing

    Science.gov (United States)

    Kunkle, Gerald A.

    2018-01-31

    Two identical Radar Stage Sensors from Forest Technology Systems were evaluated to determine if they are suitable for U.S. Geological Survey (USGS) hydrologic data collection. The sensors were evaluated in laboratory conditions to evaluate the distance accuracy of the sensor over the manufacturer’s specified operating temperatures and distance to water ranges. Laboratory results were compared to the manufacturer’s accuracy specification of ±0.007 foot (ft) and the USGS Office of Surface Water (OSW) policy requirement that water-level sensors have a measurement uncertainty of no more than 0.01 ft or 0.20 percent of the indicated reading. Both of the sensors tested were within the OSW policy requirement in both laboratory tests and within the manufacturer’s specification in the distance to water test over tested distances from 3 to 15 ft. In the temperature chamber test, both sensors were within the manufacturer’s specification for more than 90 percent of the data points collected over a temperature range of –40 to +60 degrees Celsius at a fixed distance of 8 ft. One sensor was subjected to an SDI-12 communication test, which it passed. A field test was conducted on one sensor at a USGS field site near Landon, Mississippi, from February 5 to March 29, 2016. Water-level measurements made by the radar during the field test were in agreement with those made by the Sutron Accubar Constant Flow Bubble Gauge.Upon the manufacturer’s release of updated firmware version 1.09, additional SDI-12 and temperature testing was performed to evaluate added SDI-12 functions and verify that performance was unaffected by the update. At this time, an Axiom data logger is required to perform a firmware update on this sensor. The data confirmed the results of the original test. Based on the test results, the Radar Stage Sensor is a suitable choice for USGS hydrologic data collection.

  2. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  3. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  4. Hanford Laboratories monthly activities report, September 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-10-15

    The monthly report for the Hanford Laboratories Operation, September 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  5. Hanford Laboratories monthly activities report, November 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-12-16

    This is the monthly report for the Hanford Laboratories Operation, November 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  6. Hanford Laboratories monthly activities report, October 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-11-16

    The monthly report for the Hanford Laboratories Operation, October 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  7. Fuels and Petroleum, Oil & Lubricants (POL) Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuels and Lubricants Technology Team operates and maintains the Fuels and POL Labs at TARDEC. Lab experts adhere to standardized American Society for Testing and...

  8. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  9. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  10. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  11. Hanford Laboratories monthly activities report, June 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-07-15

    This is the monthly report for the Hanford Laboratories Operation, June 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  12. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  13. Hanford Laboratories monthly activities report, July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  14. Hanford Laboratories monthly activities report, August 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  15. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  16. Hanford Laboratories monthly activities report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  17. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  18. Hanford Laboratories monthly activities report, November 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research.

  19. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  20. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.