WorldWideScience

Sample records for technology japan space

  1. JAPAN'S TECHNOLOGY TRADE

    OpenAIRE

    Hagiwara, Taiji

    1994-01-01

    Japan's technology balance of trade has improved over the last twenty years. The position of Japan is examined through (1) comparison with other OECD countries, (2) the historical change in Japan's technology trade at the industry level, (3) Toshiba's technology trade as a typical case. The conclusion is that Japan is still behind the frontier of innovation.

  2. Space communications in Japan

    Science.gov (United States)

    Mori, T.

    This paper outlines some of the planned satellite comunication projects in Japan over the next 5-7 years. In addition, Japanese space development policies are set out along with a historic review of the development of artificial satellites.

  3. Technology Education in Japan.

    Science.gov (United States)

    Murata, Shoji; Stern, Sam

    1993-01-01

    Describes the history, current status, and future direction of technology education in Japan, including the process of curriculum transition, secondary and postsecondary structure, and lack of resources. (SK)

  4. Educational Technology in Japan.

    Science.gov (United States)

    Sakamoto, Takashi

    1987-01-01

    This overview of the current state of educational technology in Japan includes discussions of professional associations; academic and popular journals; diffusion of media and the budget in elementary and secondary schools; recent trends in government policies; educational technology research; a literature review; and suggestions of future trends.…

  5. Japan's electronic packaging technologies

    Science.gov (United States)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  6. Japan's electronic packaging technologies

    Science.gov (United States)

    Tummala, Rao R.; Pecht, Michael

    1995-02-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  7. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-10-05

    This is Japan Report with Science and Technology. It contains the issues with different topics on biotecnology , defense industry, nuclear engineering, Marine technology, science and technology policy.

  8. NASDA and the Space Industry in Japan

    Science.gov (United States)

    Takamatsu, Hideo

    2002-01-01

    With over 30 years of history in space activities, Japan is now recognized as one of space powers in the world. Compared to other countries though, the features of Japanese space development are unique in several aspects. At first, its efforts are directed solely toward peaceful purposes and strictly separated from military uses. Secondly, there are many space related governmental agencies and institutes which are under supervision of different ministries. Thirdly, although the government budget is moderate and sales revenue of space industries is not so large, many large companies in aerospace or electronics industries see the importance of this business and compete each other mainly in the domestic market. NASDA, founded in 1969, is the largest governmental space organization and has played an important role in realizing practical applications of space activities. It has rapidly caught up the technology gap behind leading countries and has achieved remarkable successes with its own launch vehicles and satellites. Space industries, under the guidance of NASDA, have learned much from the U.S. companies and improved their technology levels and enjoyed steady growth during the early stage of Japanese space development. But before they became competitive enough in the world space business, the trade conflict between Japan and the U.S. made the procurement of Japanese non-R&D satellites open to the foreign satellite companies. Furthermore, interruptions of space activities due to recent successive failures of launch vehicles as well as Japanese economic slump have made space industries face hard situations. Under these circumstances, M&A of launch vehicle companies as well as satellite makers took place for the first time in Japanese aero-space history. Also at the government level, reorganization of space agencies is now under process. It is expected as a natural consequence of the merge of the Ministry of Education and the Science an Technology Agency, three space

  9. Japan's technology and manufacturing infrastructure

    Science.gov (United States)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  10. Japan's technology and manufacturing infrastructure

    Science.gov (United States)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  11. Recent space debris related topics in Japan

    Science.gov (United States)

    Kibe, S.; Kawamoto, S.; Gilardi, G.

    This paper introduces recent space debris related activities in Japan. As for the ground based observation, the progress of the 1 m optical telescope construction at the Bisei Space Guard Center is to be reported as well as technology development such as the automated debris detection and attitude estimation techniques from optical image data. Next, activities on the hypervelocity acceleration technology are to be mentioned. Tokyo Institute of Technology team succeeded to launch a projectile of 0.6 g at 8.2 km/s using their Two-/Three- Stage Light Gas Gun, which is believed to be the world record for TSLGGs. In addition, National Aerospace Laboratory has been continuing their efforts to develop the Inhibited Conical Shaped Charge Launcher and is currently investigating the effects of high internal energy and irregular shape of the projectile. Based on the projectile density measurement method newly proposed by them, comparison with the other CSC system than NAL's one is to be shown. Finally, introduced is the progress of research activities on the active removal system for post mission spacecraft. Based on the technological foundation acquired in the ETS-VII experiment, NAL and NASDA are pursuing the possibility of active removal of system level large objects from the densely populated orbit, which contains a lot of technological challenges such as angular motion estimation using only image data, angular momentum dissipation, electro-dynamic tether as a highly efficient thruster and remote and autonomous robot operation. Also shortly introduced is domestic dis cussion on implementation of debris related activities in Japan's new space development organization to be founded in January 2004.

  12. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI

  13. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.

  14. Utilization of Educational Technology in Japan.

    Science.gov (United States)

    Sakamoto, Takashi

    1980-01-01

    Gives an overview of the development of educational technology in Japan evident in the increase of publications, the diffusion of technological innovations, and the organization of research pertaining to the field. (Author/MER)

  15. Nuclear Forensics Technologies in Japan

    International Nuclear Information System (INIS)

    Shinohara, N.; Kimura, Y.; Okubo, A.; Tomikawa, H.

    2015-01-01

    Nuclear forensics is the analysis of intercepted illicit nuclear or radioactive material and any associated material to provide evidence for nuclear attribution by determining origin, history, transit routes and purpose involving such material. Nuclear forensics activities include sampling of the illicit material, analysis of the samples and evaluation of the attribution by comparing the analysed data with database or numerical simulation. Because the nuclear forensics methodologies provide hints of the origin of the nuclear materials used in illegal dealings or nuclear terrorism, it contributes to identify and indict offenders, hence to enhance deterrent effect against such terrorism. Worldwide network on nuclear forensics can lead to strengthening global nuclear security regime. In the ESARDA Symposium 2015, the results of research and development of fundamental nuclear forensics technologies performed in Japan Atomic Energy Agency during the term of 2011-2013 were reported, namely (1) technique to analyse isotopic composition of nuclear material, (2) technique to identify the impurities contained in the material, (3) technique to determine the age of the purified material by measuring the isotopic ratio of daughter thorium to parent uranium, (4) technique to make image data by observing particle shapes with electron microscope, and (5) prototype nuclear forensics library for comparison of the analysed data with database in order to evaluate its evidence such as origin and history. Japan’s capability on nuclear forensics and effective international cooperation are also mentioned for contribution to the international nuclear forensics community.

  16. JPRS Report. Science & Technology: Japan.

    Science.gov (United States)

    1988-12-09

    Acoustic performance of buildings, research on environmental psychology -Research on refuge, safety in times of disaster -Research and development of...Assigning Environmental Psychology Sector to Independent Laboratory Also Planned " Environmental psychology , for instance, is not something originally...plan to develop this environmental psychology sector further into an independent laboratory. Only in Japan is there a construction company that has

  17. Current status of fiber optic gyro efforts for space applications in Japan

    Science.gov (United States)

    Mitani, Shinji; Mizutani, Tadahito; Sakai, Shin-ichiro

    2016-05-01

    In response to the maturation of Fiber Optic Gyro technologies, FOGs are being used in various applications. Also in Japan, the demand for FOG is high, and is used in some space applications. In this paper, we introduce examples of Japanese products that apply to space-use. It also describes some efforts for high-grade navigation use in Japan.

  18. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  19. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  20. FBIS report. Science and technology: Japan, December 10, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-10

    Contents (partial): Japan: Fabrication of Diamond Single Crystal Thin Film by Ion Beam Deposition; Japan: Hitachi Metal Develops New Semi Solid Metal Processing Technology; Japan: NTT Develops Fuel Cell System That Uses Both City Gas, LPG; Japan: Daihatsu Motor Completes Prototype EV; Japan: NIRIM Announces Success With Synthetic Bone Development; Japan: Sandoz Pharmaceuticals Plans Clinical Trials of Gene Therapy to Cerebral Tumor in Japan; Japan: MITI To Provide Aid for Residential Solar Power Generation Systems; Japan: MELCO To Provide Satellite Solar Cell Panel for SSL, USA; Japan: Japan Atomic Energy Research Institute Leads Nuclear Research; Japan: Kobe Steel`s Superconducting Magnet Ready to Go Fast; Japan: MPT To Begin Validation Test for Electric Money Implementation; and Japan: Defense Agency to Send ASDF`s Pilots to Russia for Training.

  1. Current Educational Technology Research Trends in Japan

    Science.gov (United States)

    Nakayama, Minoru; Ueno, Maomi

    2009-01-01

    To examine trends in educational practice research, this article conducted a survey and analysis of factors affecting the review of research papers in the field of the educational technology in Japan. Two factors, namely, practical orientation and theoretical orientation, were extracted from 63 survey responses, and scores from members of a…

  2. JTEC panel on display technologies in Japan

    Science.gov (United States)

    Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm

    1992-01-01

    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).

  3. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-03-03

    in space and recovery of the rock - et’s nose portion from the ocean. The overall shape of the rocket is shown in Figure 6. It is a two-stage rocket...Industrial Machinery Nippon Sharyo Seizo Kobe Steel, Ltd. Riken Kagaku Tosh in Toyo Seiki Seisa- kusho Nakatani Machines Function Furnaces

  4. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  5. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  6. Technology Enhanced Learning Spaces

    NARCIS (Netherlands)

    Specht, Marcus

    2016-01-01

    Today’s tools and learning environments are often not designed for supporting situated, social, and mobile learning experiences and linking them to real world experiences. The talk will discuss some of the approaches for linking information space and real world space with new technology. By linking

  7. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  8. Advanced space transportation technologies

    Science.gov (United States)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  9. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  10. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  11. Digital Technology at the National Science Museum of Japan

    Science.gov (United States)

    Lydens, Lois; Saito, Yasuji; Inoue, Tohru

    2007-01-01

    The National Science Museum (NSM) in Japan has recently completed a project using different types of visitor-oriented digital technologies. With sponsorship from the Japan Society for the Promotion of Science (JSPS), the NSM team carried out a four-year study to examine how digital technologies can be used to enhance as well as educationally…

  12. The Stanford University US-Japan Technology Management Center

    National Research Council Canada - National Science Library

    Dasher, Richard

    2002-01-01

    This grant established the U.S.-Japan Technology Management Center, Stanford University School of Engineering, as an ongoing center of excellence for the study of emerging trends and interrelationships between technology...

  13. Proceedings of the 6. Japan-Brazil Symposium on Science and Technology

    International Nuclear Information System (INIS)

    1988-01-01

    The most recent results of Brazil-Japan agreement for technological development on areas of space science and plasma, were presented. Problems related to: astrophysics, cosmic radiation interaction with earth atmosphere, plasma physics, and construction of rockets and satellites for space researches were discussed. (M.C.K.) [pt

  14. U.S., Japan Approach New Era in Science and Technology Relations.

    Science.gov (United States)

    Lepkowski, Wil

    1988-01-01

    Discusses the status of U.S.-Japan relations regarding science and technology. Describes Japan's science and technology structure. Outlines trends in cooperation and competition for the technology market between the U.S. and Japan. (CW)

  15. History of healthcare technology assessment in Japan.

    Science.gov (United States)

    Hisashige, Akinori

    2009-07-01

    There has been a rapid growth of healthcare technology assessment (HTA) activities among health service researchers and physicians in Japan in the younger generation since the mid-1980s. HTA has become visible since the Ministry of Health, Labor, and Welfare (MHLW) set up the several committees related to HTA in the late 1990s. The MHLW had to participate in regulatory and administrative reform, coping with the serious economic stagnation since 1991, following the economic recession in the 1980s. However, HTA has not been developed as expected. The most important failure is that the application of HTA to health policy has been neglected by the MHLW. Only application to clinical practice has been implemented by developing evidence-based clinical practice guidelines. The MHLW had the main aim of containing costs by reducing excess or useless healthcare services through guidelines, rather than to implement a radical reform. Without a central organization for HTA, several researchers have still continued to do HTA studies, but most researchers and physicians promoting HTA have been moved into diverse related areas. Ultimately, increasing efficiency may be the only way of reconciling rising demands for health care with public financing constraints. Therefore, the reconsideration and reorganization of HTA, which covers not only healthcare services but also the healthcare system as a whole, is becoming an urgent matter for healthcare reform.

  16. Technological Spaces: An Initial Appraisal

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, Jean; Aksit, Mehmet

    2002-01-01

    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with

  17. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  18. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  19. Treatment technology of laundry liquid waste in Japan

    International Nuclear Information System (INIS)

    Kijima, Takeshi

    1999-01-01

    The current status of laundry facilities, generation amount and characteristics of laundry drain, and treatment technologies, have been discussed in this paper. Though a number of technologies have been and applied for laundry treatment, the search for more economical and reliable technologies continues in Japan. 5 refs., 14 figs., 3 tabs

  20. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  1. Space technology developments in Malaysia:

    Science.gov (United States)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  2. Space construction technology needs

    Science.gov (United States)

    Jenkins, L. M.

    1981-01-01

    Space construction systems made feasible by an operational Space Shuttle are discussed with a view toward assembly, installation and construction support equipment. The level of construction capability will be reflected in the number of launches to accomplish a certain mission, either in terms of the mission time line or on the density of packaging in the Orbiter payload bay. It is noted that the development of construction support equipment in zero-gravity simulations should be the most productive initial activity. Crew EVAs, as well as the beam builder, cherrypicker and power distribution buses are covered in detail.

  3. The United Nations Human Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed

  4. Japan's Science and Technology Aim toward Globalization.

    Science.gov (United States)

    Lepkowski, Wil

    1989-01-01

    Investigates Japanese efforts to enter a new phase of its postwar technological period with a focus on internationalization of its economy and industry. Analyzes which technologies will dominate the early 21st century and their relationships to each other. (MVL)

  5. Research; BOSS Study Trip Japan '09 : Architecture, Urbanism, Real Estate & Housing and Technology in Japan

    NARCIS (Netherlands)

    Feenstra, R.; Van Beelen, C.; Wamelink, J.W.F.; Geraedts, R.P.

    2010-01-01

    Japan is a land of many faces as we discovered: from seasonal changes, and thereby heavy rainfall, high humidity, tropical cyclones; to a stunning 127,300,000 inhabitants; or what about the only 10% buildable surface of the continent; seismic activity; fast going technological developments like

  6. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  7. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  8. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  9. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  10. Japan society for software science and technology

    CERN Document Server

    Nakajima, Reiji; Hagino, Tatsuya

    1990-01-01

    Advances in Software Science and Technology, Volume 1 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into three parts encompassing 13 chapters, this volume begins with an overview of the phase structure grammar for Japanese called JPSG, and a parser based on this grammar. This text then explores the logic-based knowledge representation called Uranus, which uses a multiple world mechanism. Other chapters consider the optimal file segmentation techniques for multi-at

  11. New air cleaning technology in Japan

    International Nuclear Information System (INIS)

    Yoshida, Y.; Kitani, S.; Matsui, H.; Ikezawa, Y.

    1981-01-01

    Application of the new techniques and improvements in air cleaning systems have been made to reduce release of radioactive materials from nuclear facilities based on the ALARA concept. For example, the reduction of release of radioactive gaseous effluents has been made by installation of a charcoal gas hold-up system and a clean steam supply system for a turbine gland seal in a BWR and of a gas decay tank system in a PWR. In connection with the effort for reduction of releases in plants, research and development on air cleaning technology have also been made. Some activities mentioned in the present paper are: removal of particulates, airborne radioiodine, noble gases and tritium; penetration characteristics of submicron DOP aerosol for HEPA filters; radioiodine removal from air exhausts; and operational performance of the incineration plants using ceramic filters

  12. [Review of the health technology assessment on surgeries in Japan].

    Science.gov (United States)

    Nishigori, Tatsuto; Kawakami, Koji; Goto, Rei; Hida, Koya; Sakai, Yoshiharu

    2015-01-01

    Health Technology Assessment (HTA) is the systematic evaluation to measure the value of new health technologies. It improves the quality of choices on hand for cost-effective health technologies that are considered valuable. Japan has built a society of longevity consisted of the institution of the universal health care system, which is financially unsustainable. In Japan, no independent HTA organization has been publicly established but the government is contemplating implementation of such system. To advance the usage of HTA into surgery, we need to establish methods for evaluating new surgical technologies with steep learning curves. The promotion of clinical researches is also essential, especially by taking advantage of observational studies from medical big data such as the Japanese nationwide database which has more than four million surgical cases registered. In addition, we need more clinical information regarding each surgical patient's quality of life and socioeconomic status. The countries already introduced HTA into their health care system have measures to solve the problems that arose and have developed necessary evaluating methods. To introduce and promote HTA in Japan without taking away the benefit of our current healthcare, it is required that surgeons collaborate with other specialists such as methodologists and health economists.

  13. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  14. White paper on science and technology, 1995. Fifty years of postwar science and technology in Japan

    International Nuclear Information System (INIS)

    1995-07-01

    This August marks 50 years since the end of World War II. Japan emerged from the ruins to overcome the post-war devastation to achieve a high level of economic growth and become the second largest economy in the world. Science and technology have played major roles as a driving force behind this quest for prosperity. However, it seems as though true prosperity is not necessarily being enjoyed by citizens of Japan today. Japan is becoming an aging society. To realize a truly rich and prosperous society in which people can live comfortably, it is important to further raise the level of science and technology. It is also necessary to ensure this development by revitalizing the economy, and to continue to utilize science and technology as an endless resource to create assets for society as a whole which will be inherited by future generations. With this viewpoint in mind, this White Paper looks back on Japan's scientific and technological development over the last 50 years, and considers the future of science and technology with a view toward realizing the true prosperity for its people. It is our hope that this White Paper will be helpful for considering the scientific and technological activities needed to bring about a Japan whose people are truly prosperous, and we will, as a government, continually increase our efforts toward the promotion of science and technology. (J.P.N.)

  15. Strategic Options for International Participation in Space Exploration: Lessons from U.S.-Japan Defense Cooperation

    Science.gov (United States)

    Hudiburg, John J.; Chinworth, Michael W.

    2005-01-01

    The President's Commission on Implementation of United States Space Exploration Policy suggests that after NASA establishes the Space Exploration vision architecture, it should pursue international partnerships. Two possible approaches were suggested: multiple independently operated missions and an integrated mission with carefully selected international components. The U.S.-Japan defense sectors have learned key lessons from experience with both of these approaches. U.S.-Japan defense cooperation has evolved over forty years from simple military assistance programs to more complex joint development efforts. With the evolution of the political-military alliance and the complexity of defense programs, these cooperative efforts have engaged increasingly industrial resources and capabilities as well as more sophisticated forms of planning, technology transfers and program management. Some periods of this evolution have been marked by significant frictions. The U.S.Japan FS-X program, for example, provides a poor example for management of international cooperation. In November 1988, the United States and Japan signed a Memorandum of Understanding (MOU) to co-develop an aircraft, named FS-X and later renamed F -2, as a replacement to the aging Japan support fighter F-l. The program was marked by numerous political disputes. After over a decade of joint development and testing, F -2 production deliveries finally began in 1999. The production run was curtailed due to much higher than anticipated costs and less than desired aircraft performance. One universally agreed "lesson" from the FSX/F-2 case was that it did not represent the ideal approach to bilateral cooperation. More recent cooperative programs have involved targeted joint research and development, including component development for ballistic missile defense systems. These programs could lay the basis for more ambitious cooperative efforts. This study examines both less-than-stellar international cooperation

  16. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  17. Japan.

    Science.gov (United States)

    Geiger, Rita; And Others

    The document offers practical and motivating techniques for studying Japan. Dedicated to promoting global awareness, separate sections discuss Japan's geography, history, culture, education, government, economics, energy, transportation, and communication. Each section presents a topical overview; suggested classroom activities; and easily…

  18. Introduction to the Special Issue on "State-of-the-Art Sensor Technology in Japan 2015".

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2016-08-23

    This Special Issue, "State-of-the-Art Sensor Technology in Japan 2015", collected papers on different kinds of sensing technology: fundamental technology for intelligent sensors, information processing for monitoring humans, and information processing for adaptive and survivable sensor systems.[...].

  19. Space Radar Image of Sakura-Jima Volcano, Japan

    Science.gov (United States)

    1994-01-01

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.

  20. [Stem cell research and science and technology policy in Japan].

    Science.gov (United States)

    Yashiro, Yoshimi

    2011-12-01

    In this paper I review the present condition of the regeneration medicine research using pluripotency and a somatic stem cell, and I describe the subject of the science and technology policy in Japan towards realization of regeneration medicine. The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) supported research promotion by the prompt action in 2007 when establishment of the iPS cell was reported by Shinya Yamanaka. Although the hospitable support of the Japanese government to an iPS cell is continued still now, there are some problems in respect of the support to other stem cell researches, and industrialization of regeneration medicine. In order to win a place in highly competitive area of investigation, MEXT needs to change policy so that funds may be widely supplied also to stem cell researches other than iPS cell research.

  1. Japan.

    Science.gov (United States)

    1989-02-01

    Japan consists of 3900 islands and lies off the east coast of Asia. Even though Japan is one of the most densely populated nations in the world, its growth rate has stabilized at .5%. 94% of all children go to senior high school and almost 90% finish. Responsibility for the sick, aged, and infirmed is changing from the family and private sector to government. Japan was founded in 600 BC and its 1st capital was in Nara (710-1867). The Portuguese, the 1st Westerners to make contact with Japan in 1542, opened trade which lasted until the mid 17th century. US Navy Commodore Matthew Perry forced Japan to reopen in 1854. Following wars with China and Russia in the late 1800s and early 1900s respectively, Japan took part in World Wars I and II. In between these wars Japan invaded Manchuria and China. The US dropped an atomic bomb on Hiroshima and Nagasaki and the Japanese surrendered in September, 1945 ending World War II (WWII). Following, WWII, the Allied Powers guided Japan's establishment as a nonthreatening nation and a democratic parliamentary government (a constitutional monarchy) with a limited defense force. Japan remains one of the most politically stable of all postwar democracies. The Liberal Democratic Party's Noboru Takeshita became prime minister in 1987. Japan has limited natural resources and only 19% of the land is arable. Japanese ingenuity and skill combine to produce one of the highest per hectare crop yields in the world. Japan is a major economic power, and its and the US economies are becoming more interdependent. Its exports, making up only 13% of the gross national product, mainly go to Canada and the US. Many in the US are concerned, however, with the trade deficit with Japan and are seeking ways to make trade more equitable. Japan wishes to maintain good relations with its Asian neighbors and other nations. The US and Japan enjoy a strong, productive relationship.

  2. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  3. Space activities in the Soviet Union, Japan, and the People's Republic of China

    Science.gov (United States)

    Ezell, E. C.

    1985-01-01

    The space programs of the Soviet Union, Japan, and China are discussed. The types of launch vehicles they used and the classes of spacecraft they launched are examined. The political motivations of these nations are analyzed.

  4. IPS Space Weather Research: Korea-Japan-UCSD

    Science.gov (United States)

    2015-04-27

    measure the selected radio sources around the sky at 327 MHz which is same frequency for use in Japan during last 30 years to derive solar wind velocities...sources around the sky at 327 MHz which is same frequency for use in Japan during last 30 years to derive solar wind velocities and densities. UCSD...and densities. UCSD have developed IPS 3-D analysis model which determine the heliographic 3- D structure based on the data from Solar Terrestrial

  5. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  6. Department of Defense Space Technology Guide

    Science.gov (United States)

    2001-01-01

    image processing • Exploitation technologies for bistatic phenom- enology of targets and clutter characteristics – Bistatic space-time adaptive...optical sensors, processors, links, and host spacecraft integration technolo- gies • Exploitation technologies for bistatic phenom- enology of

  7. Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    2013-01-01

    I 1500- og 1600-tallet dannedes tidligt moderne stater i Europa, men samtidig eksisterede der ligeså avancerede statsdannelser uden for Europa, bl.a. i Kina, Indien og Japan. I det følgende ser vi nærmere på dannelsen af den moderne stat i Japan. Hvorfor blev Japan aldrig en europæisk koloni......? Hvordan havde japanske magthavere igennem 300 år forberedt Japan og de mennesker, der boede på de japanske øer, til at kunne udvikle en nation, der skulle blive den stærkeste og rigeste i Asien i mere end 100 år? Hvem bestemte i Japan? Kejseren eller shogunen?...

  8. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y. [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  9. Cooperating internationally. US/Japan Civil Industrial Technologies (CIT) Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Civil Industrial Technologies (CIT) Arrangement was signed in July 1994 between governments of the US and Japan. Areas of research range from scientific and technical databases and bioprocessing to precompetitive processing of functionally-gradient materials and ceramics. Papers presented in this symposium include studies on thin polymer films generated by vapor deposition polymerization, development of manufacturing technique of fusing 3D C/C composite materials, measurement and analysis for high performance computing systems, low-cost fabrication of ceramic components, bioprocessing, data exchange for mass spectral databases, development of high performance aluminum nitride ceramics, precompetitive processing of functionally-gradient materials, purity determination of organic reference materials, definitive methods traceable to SI unit, development of biocompatible artificial hard tissue materials, development of photoassisted catalysis technologies, surface analysis for catalysts by electron spectroscopy, development of ultra-solid lubricant with cluster diamond, precise determination of impurities in high-purity rare-earth metals, and highly accurate acceleration measurement system. 22 refs., 86 figs., 3 tabs.

  10. Canadian Activities in Space Debris Mitigation Technologies

    Science.gov (United States)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  11. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  12. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  13. Ubiquitous Technology for Language Learning: The U-Japan Movement in Higher Education

    Science.gov (United States)

    Zhang, Ke

    2008-01-01

    This paper reviews the u-Japan movement and recent reforms in the higher educational system in Japan, examines the needs as well as readiness for ubiquitous learning in Japanese universities, and reports on a selection of mobile-assisted language learning projects (MALL). It analyzes the current status of ubiquitous technology applications in…

  14. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  15. Advancing Radar Technologies for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing technologies remain the primary means by which scientific knowledge about the surrounding universe is gathered in lieu of human exploration. Radar...

  16. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  17. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  18. Office of Space Science: Integrated technology strategy

    Science.gov (United States)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  19. Nuclear Technologies for Space Exploration Conference

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.; Alger, D.

    1992-08-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC

  20. Medical technology in Japan the politics of regulation

    CERN Document Server

    Altenstetter, Christa

    2014-01-01

    Compared to its American and European counterparts, Japan lags in adopting innovative medical devices and making new treatments and procedures available. Christa Altenstetter examines the contextual conditions of Japan's medical profession and its regulatory framework. Altenstetter looks into how physicians and device companies connect to the government and bureaucracy, the relationships connecting Japanese patients to their medical system and governmental bureaucracy, and how relationships between policymakers and the medical profession are changing.

  1. Connecting Learning Spaces Using Mobile Technology

    Science.gov (United States)

    Chen, Wenli; Seow, Peter; So, Hyo-Jeong; Toh, Yancy; Looi, Chee-Kit

    2010-01-01

    The use of mobile technology can help extend children's learning spaces and enrich the learning experiences in their everyday lives where they move from one context to another, switching locations, social groups, technologies, and topics. When students have ubiquitous access to mobile devices with full connectivity, the in-situ use of the mobile…

  2. JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 2

    Science.gov (United States)

    1989-03-16

    Containing Skid a.2 System causing overturn A biped mobile robot needs equilibrium control to prevent it from overturning due to external disturbances...8217 « II I, I » 111 I» Uli —’■» !’■’ Science & Technology Japan 19980530 091 ATH INTELLIGENT ROBOTS ...SCIENCE & TECHNOLOGY JAPAN 4th INTELLIGENT ROBOTS SYMPOSIUM VOLUME II 43064062 Tokyo 4TH INTELLIGENT ROBOTS SYMPOSIUM PAPERS in Japanese 13-14 Jun

  3. In-Space Propulsion (ISP) Aerocapture Technology

    Science.gov (United States)

    Munk, Michelle M.; James, Bonnie F.; Moon, Steve

    2005-01-01

    A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.

  4. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  5. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  6. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  7. Johnson Space Center Research and Technology Report

    Science.gov (United States)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  8. ESA Technologies for Space Debris Remediation

    Science.gov (United States)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  9. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  10. Prospects for new technology of meat processing in Japan.

    Science.gov (United States)

    Sakata, Ryoichi

    2010-09-01

    This review starts by introducing the history and underlying culture of meat production and consumption in Japan since early times, and the effects of social change on these parameters. Meat processing in Japan is described, and certain other related papers are also introduced. Automatic machines for meat cutting have been developed by the Japanese food industry and are currently being used throughout the world, particularly in Europe. Soft meat products specially produced for the elderly, along with diet meat products low in salt and calorie content for middle aged persons have recently gone into production. The intensification of color formation of meat using naturally occurring materials, and tenderization of sausage casing are discussed.

  11. Time and space variations of trophosherive carbon dioxide over Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.; Nakazawa, T.; Aoki, S.

    Aircraft measurements of atmospheric CO/sub 2/ concentration over Japan, initiated in January 1979, have been continued to the present. The average seasonal variation of atmospheric CO/sub 2/ showed maximum concentration early in April and early in May, and minimum concentration in mid-August and mid-September for the lower-most and the upper-most layers of the troposphere, respectively. The peak-to-peak amplitudes of the seasonal variation were 14.5, 9.0 and 7.8 ppmv for the lower, middle and upper tropospheres, respectively. The average rate of annual increase of the CO/sub 2/ concentration over the last 6 years was about 1.3 ppmv yr/sup -1/ with considerable variation with time. The vertical profile of the annual mean value of the CO/sub 2/ concentration was almost the same from year to year; the CO/sub 2/ concentrations decreased gradually with height and the concentration difference between the lowest and highest layers of the troposphere was about 2 ppmv. (authors).

  12. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  13. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  14. A technology roadmap of assistive technologies for dementia care in Japan.

    Science.gov (United States)

    Sugihara, Taro; Fujinami, Tsutomu; Phaal, Robert; Ikawa, Yasuo

    2015-01-01

    The number of elderly people in Japan is growing, which raises the issue of dementia, as the probability of becoming cognitively impaired increases with age. There is an increasing need for caregivers, who are well-trained, experienced and can pay special attention to the needs of people with dementia. Technology can play an important role in helping such people and their caregivers. A lack of mutual understanding between caregivers and researchers regarding the appropriate uses of assistive technologies is another problem. A vision of person-centred care based on the use of information and communication technology to maintain residents' autonomy and continuity in their lives is presented. Based on this vision, a roadmap and a list of challenges to realizing assistive technologies have been developed. The roadmap facilitates mutual understanding between caregivers and researchers, resulting in appropriate technologies to enhance the quality of life of people with dementia. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  16. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  17. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  18. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  19. Self-regulation of recombinant DNA technology in Japan in the 1970s.

    Science.gov (United States)

    Nagai, Hiroyuki; Nukaga, Yoshio; Saeki, Koji; Akabayashi, Akira

    2009-07-01

    Recombinant DNA technology was developed in the United States in the early 1970s. Leading scientists held an international Asilomar Conference in 1975 to examine the self regulation of recombinant DNA technology, followed by the U.S. National Institutes of Health drafting the Recombinant DNA Research Guidelines in 1976. The result of this conference significantly affected many nations, including Japan. However, there have been few historical studies on the self-regulation of recombinant technologies conducted by scientists and government officials in Japan. The purpose of this paper is to analyze how the Science Council of Japan, the Ministry of Education, Science adn Culture, and the Science and Technology Agency developed self-regulation policies for recombinant DNA technology in Japan in the 1970s. Groups of molecular biologist and geneticists played a key role in establishing guidelines in cooperation with government officials. Our findings suggest that self-regulation policies on recombinant DNA technology have influenced safety management for the life sciences and establishment of institutions for review in Japan.

  20. In-Space Inspection Technologies Vision

    Science.gov (United States)

    Studor, George

    2012-01-01

    Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors

  1. Nonproliferation Challenges in Space Defense Technology - PANEL

    Science.gov (United States)

    Houts, Michael G.

    2016-01-01

    The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?

  2. Japan turns pro-life: recent change in reproductive health policy and challenges by new technologies

    OpenAIRE

    Okamoto, Etsuji

    2014-01-01

    Japan, known as a pro-choice country in terms of abortion, is currently facing the increase of “selective abortions” thanks to new prenatal screening. Efforts to restrict proliferation of new technology has not been successful and it is likely that Japan will turn pro-life by strictly enforcing the Maternity Protection Act (MPA), which prohibits abortions due to “fetal cause”.

  3. Analysis of the BEV Technology Progress of America, Europe, Japan and Korea Based on Patent Map

    Science.gov (United States)

    Yurong, Huang; Yuanyuan, Hou; Jingyan, Zhou; Ru, Liu

    2018-02-01

    The paper analyzed the Battery Electric Vehicle patent application trend, major country distribution, main technology layout and patentee of America, Europe, Japan and Korea based on patent information from 2006 to 2016 by using patent map method, and visualized the Battery Electric Vehicle technology progress conditions of the four countries and regions in the last decade.

  4. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  5. Research on key technology of space laser communication network

    Science.gov (United States)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  6. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  7. The Space Technology 5 Avionics System

    Science.gov (United States)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  8. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  9. Current Requirements of the Society to the Professional Training of Specialists in Information Technology Industry in Japan

    Directory of Open Access Journals (Sweden)

    Pododimenko Inna

    2014-06-01

    Full Text Available The problem of professional training of skilled human personnel in the industry of information communication technology, the urgency of which is recognized at the state level of Ukraine and the world, has been considered. It has been traced that constantly growing requirements of the labour market, swift scientific progress require the use of innovative approaches to the training of future ІТ specialists with the aim to increase their professional level. The content of standards of professional training and development of information technologies specialists in foreign countries, particularly in Japan, has been analyzed and generalized. On the basis of analysis of educational and professional standards of Japan, basic requirements to the engineer in industry of information communication technology in the conditions of competitive environment at the labour market have been comprehensively characterized. The competencies that graduate students of educational qualification level of bachelor in the conditions of new state policy concerning upgrading the quality of higher education have been considered. The constituents of professional competence in the structure of an engineer-programmer’s personality, necessary on different levels of professional improvement of a specialist for the development of community of highly skilled ІТ specialists, have been summarized. Positive features of foreign experience and the possibility of their implementation into the native educational space have been distinguished. Directions for modernization and upgrading of the quality of higher education in Ukraine and the prospects for further scientific research concerning the practice of specialists in information technologies training have been suggested

  10. Transforming healthcare with information technology in Japan: a review of policy, people, and progress.

    Science.gov (United States)

    Abraham, Chon; Nishihara, Eitaro; Akiyama, Miki

    2011-03-01

    Healthcare reform as part of the economic recovery plan in Japan is placing emphasis on the use of healthcare information technology (HIT). This research mainly focuses on the HIT efforts in Japan with reference to the US for context. The purpose is to: (a) provide detail on governmental policy impacting promotion of HIT adoption to provide services to the people of Japan, (b) describe the outcomes of past and present policy impacting progress based on a case study of HIT use in the Kyoto Yamashina area, and (c) discuss issues for refinement of current policy. The method is case study, and data collection techniques include: (a) interviews of people involved in policy making for HIT in Japan (Japanese healthcare professionals, government officials, and academics involved in HIT research in Japan) and use in the medical community of HIT in the Kyoto Yamashina area, (b) archived document analysis of reports regarding government policy for HIT policy and user assessment for HIT mainly in the case study site, and (c) the literature review about HIT progression and effectiveness assessments to explore and describe issues concerning the transformation with HIT in Japan. This study reveals the aspects of governmental policy that have been effective in promoting successful HIT initiatives as well as some that have been detriments in Japan to help solve pressing social issues regarding healthcare delivery. For example, Japan has stipulated some standardized protocols and formats for HIT but does not mandate exactly how to engage in inter-organizational or intra-organizational health information exchange. This provides some desired autonomy for healthcare organizations and or governments in medical communities and allows for more advanced organizations to leverage current resources while providing a basis for lesser equipped organizations to use in planning the initiative. The insights gained from the Kyoto Yamashina area initiative reflect the success of past governmental

  11. Contesting the natural in Japan: moral dilemmas and technologies of dying.

    Science.gov (United States)

    Lock, M

    1995-03-01

    The paper opens with a discussion about the recognition of "whole-brain death" as the end of life in North America in order to perform solid organ transplants. This situation is contrasted with Japan, where, despite no financial or technological restrictions, brain death is not recognized, and transplants from brain-dead bodies cannot be performed. The Japanese cultural debate over the past twenty-five years about the "brain-death problem" is presented, followed by an analysis of Japanese attitudes towards technological intervention into what is taken to be the "natural" domain, together with a discussion of current Japanese attitudes towards death. This debate is interpreted as one aspect of a search for moral order in contemporary Japan, revealing ambivalence about self and other, Japan and the West, and tradition and modernity.

  12. Innovative technologies in urban mapping built space and mental space

    CERN Document Server

    Paolini, Paolo; Salerno, Rossella

    2014-01-01

    The book presents a comprehensive vision of the impact of ICT on the contemporary city, heritage, public spaces and meta-cities on both urban and metropolitan scales, not only in producing innovative perspectives but also related to newly discovered scientific methods, which can be used to stimulate the emerging reciprocal relations between cities and information technologies. Using the principles established by multi-disciplinary interventions as examples and then expanding on them, this book demonstrates how by using ICT and new devices, metropolises can be organized for a future that preserves the historic nucleus of the city and the environment while preparing the necessary expansion of transportation, housing and industrial facilities.

  13. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  14. A report from the second US/Japan workshop on global change research: Environmental response technologies (mitigation and adaptation). United States-Japan Science and Technology Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Edgerton, S. [comp.] [National Science Foundation, Washington, DC (United States). Committee on Earth and Environmental Sciences; Mizuno, Tateki [comp.] [National Inst. for Resources and Environment, MITI (Japan)

    1993-12-31

    The Second US - Japan Workshop on Global Change: Environmental Response Technologies for Global Change was hosted by the Program on Resources at the East-West Center, in Honolulu, Hawaii on February 1--3, 1993, on behalf of the United States Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET). This workshop brought together over fifty leading scientists from the two countries to review existing technologies and to identify needed research on the development of new technologies for mitigation and adaptation of global change. The Workshop was organized around three areas of research: (1) capture, fixation/utilization, and disposal of CO{sub 2} (e.g. CO{sub 2}, separation and capture technologies, ocean and land disposal of CO{sub 2}; (2) energy production and conservation technologies to reduce greenhouse gas emissions (e.g. combustion efficiency, non-carbon based energy technologies, energy conservation technologies); and (3) adaptation technologies and practices related to global climate change (e.g., adaptation responses of crops to climate change, adapting urban infrastructure for climate change). Priorities for joint research in each of these areas were discussed. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  16. The Science & Technology Resources of Japan: A Comparison with the United States. An SRS Special Report.

    Science.gov (United States)

    National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

    This report provides comparisons of U.S. and Japanese science resources and some initial evidence that Japan is expanding the human and financial resources for science while improving the environment for basic research. The data cover science and technology trends in research and development from 1975 to 1994, as well as more recent changes in…

  17. Japan's post-Fukushima reconstruction: A case study for implementation of sustainable energy technologies

    International Nuclear Information System (INIS)

    Nesheiwat, Julia; Cross, Jeffrey S.

    2013-01-01

    Following World War II, Japan miraculously developed into an economic powerhouse and a model of energy efficiency among developed countries. This lasted more than 65 years until the Northeastern Japan earthquake and tsunami induced nuclear crisis of March 2011 brought Japan to an existential crossroads. Instead of implementing its plans to increase nuclear power generation capacity from thirty percent to fifty percent, Japan shut-down all fifty-four nuclear reactors for safety checks and stress-checks (two have since been restarted), resulting in reduced power generation during the summer of 2012. The reconstruction of Northeastern Japan approaches at a time when the world is grappling with a transition to sustainable energy technologies—one that will require substantial investment but one that would result in fundamental changes in infrastructure and energy efficiency. Certain reconstruction methods can be inappropriate in the social, cultural and climatic context of disaster affected areas. Thus, how can practitioners employ sustainable reconstructions which better respond to local housing needs and availability of natural energy resources without a framework in place? This paper aims at sensitizing policy-makers and stakeholders involved in post disaster reconstruction by recognizing advantages of deploying sustainable energy technologies, to reduce dependence of vulnerable communities on external markets. - Highlights: • We examine the energy challenges faced by Japan in the aftermath of Fukushima. • We identify policy measures for the use of energy technologies applicable to disaster prone nations. • We evaluate the potential for renewable energy to support reduced reliance on nuclear energy in Japan. • We model scenarios for eco-towns and smart-cities in post-disaster reconstruction. • We assess the role of culture in formulating energy policy in post-disaster reconstruction

  18. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  19. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  20. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  1. Human resource development in the beginning phase of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Japan Research Reactor No.1 (JRR-1) was constructed as the first nuclear reactor in Japan and reached the first criticality in 1957. The construction of both the first BWR and the first PWR were started in the same year 1967 and they started power operation in the same year 1970. Engineers of electrical utilities and vendors gave efforts to have knowledge for reactor engineering mainly on the job training with high self-motivation to contribute for nuclear technology development. A part of them participated in the reactor engineering training course of the JAERI. (author)

  2. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    Science.gov (United States)

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  3. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  4. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  5. Space technology and robotics in school projects

    Science.gov (United States)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  6. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  7. Sustainable In-Space Manufacturing through Rapid Prototyping Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — In space manufacturing is crucial to humanity’s continued exploration and habitation of space. While new spacecraft and propulsion technologies promise higher...

  8. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  9. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  10. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  11. Cognition and learning in space technology

    Directory of Open Access Journals (Sweden)

    Kelber Ruhena Abrão

    2016-12-01

    Full Text Available This work analyzes the impact of new technologies in everyday teaching situations. This is a qualitative research, one study of descriptive case, based on observations of the spaces of the classrooms, the same group of children between June 2013 and April 2015, the 1st, 2nd and 3rd years of Primary Education a Catholic private school, as well as interviews with the regents’ teachers of these classes. We seek to establish links between the acquisition of written language in conventional texts and those in hypertext, as well as understand how to structure the scientific and digital literacy in these areas. In that sense, it was found that these experiences are possible to happen in designed spaces antagonistically to traditional spaces as often, it is less rigid, more flexible, a fact that makes the pleasant atmosphere and at the same time, more accessible, providing an environment sometimes hybrid, in which the dimensions of notebook and tablet coexist and fusion of these opposed pairs of written language acquisition occurs.

  12. Development of remote handling technology for nuclear fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Sakai, Akira; Miura, Noriaki; Kozaka, Tetsuo; Hamada, Takashi

    2015-01-01

    Remote handling technology has been systematically developed for nuclear fuel cycle facilities in Japan since 1970s, primarily in parallel with the development of reprocessing and HLLW (High Level Liquid Waste) vitrification process. In case of reprocessing and vitrification process to handle highly radioactive and hazardous materials, the most of components are installed in the radiation shielded hot cells and operators are not allowed to enter the work area in the cells for operation and maintenance. Therefore, a completely remote handling system is adopted for the cells to reduce radiation doses of operators and increase the availability of the facility. The hot cells are generally designed considering the scale of components (laboratory, demonstration, or full-scale), the function of the systems (chemical process, material handling, dismantling, decontamination, or chemical analysis), and the environmental conditions (radiation dose rate, airborne concentration, surface contamination, or fume/mist/dust). Throughout our domestic development work for remote handling technology, the concept of the large scale integrated cell has been adopted rather than a number of small scale separated cells, for the reasons to reduce the total installation space and the number of remote handling equipment required for the each cell as much as possible. In our domestic remote maintenance design, several new concepts have been developed, tested, and demonstrated in the Tokai Virtrification Facility (TVF) and the Rokkasho HLLW Vitrification and Storage Facility (K-facility). Layout in the hot cells, the performance of remote handling equipment, and the structure of the in-cell components are important factors for remote maintenance design. In case of TVF (hot tests started in 1995), piping and vessels are prefabricated in the rack modules and installed in two lines on both sides of the cell. These modules are designed to be remotely replaced in the whole rack. Two overhead cranes

  13. Review of R and D status on beryllium technology for fusion in Japan reported at the fifth IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    2002-06-01

    In this paper, the R and D status on beryllium technology for fusion reactor in Japan were reviewed with the reports at the Fifth IEA International Workshop on Beryllium Technology for Fusion. This international workshop was held on October 10-12, 2001, at the Congress Center of the Financial Academy with about 60 participants who attended from ten countries (Germany, the Russian Federation, Kazakhstan, the United States, Japan, etc.). There were 39 presentations in this workshop including 13 presentations from Japan. From the review of the latest results of R and D status on beryllium technology for fusion reactor in Japan, the recent trend in beryllium technology was made clear. As neutron multiplier technology development, the studies are being concentrated into the beryllide (Be 12 Ti, etc.) by most Japanese researchers. As ITER first wall material technology, the Hot Isostatic Pressing (HIP) bonding technology with copper alloys attracts attentions. (author)

  14. Questionnaire for the contents of cancer professional training plan by Ministry of Education, Culture, Sports, Science, and Technology Japan

    International Nuclear Information System (INIS)

    Sasaki, Ryohei; Numasaki, Hodaka; Teshima, Teruki; Nishio, Teiji; Fukuda, Haruyuki; Ashino, Yasuo; Onishi, Hiroshi; Nakamura, Katsumasa; Nagata, Yasushi

    2009-01-01

    Questionnaire for the contents of cancer professional training plan by Ministry of Education, Culture, Sports, Science, and Technology Japan were widely assessed and introduced in the 4th Japanese Society for Therapeutic Radiology and Oncology (JASTRO) Future Planning Seminar held on March 8, 2008 in Tokyo, Japan. From the assessment, small number of instructors for medical physicists was elucidated as the most important problem for the future of fields of radiation oncology in Japan. (author)

  15. [Education of medical technology and graduate school in Japan].

    Science.gov (United States)

    Mimura, Kunihiro

    2011-06-01

    Now the education of medical technologists has reached the fourth turning point. The first turning point was the start of the two year education in 1958 and the second was the start of the three year education of medical Technologists in 1971 and the third was the start of the full-fledged university education in 2004 and, this time, the fourth turning point is the start of graduate school education of medical technology. From this situation, for education of graduate school, mind education that polishes personality practically is may be demanded, Therefore, human resource development with not only knowledge and technique as medical technologists but also with humanly nurtured sentiment is expected in the future.

  16. Research and development of the geological disposal technology for high level radioactive waste in Japan

    International Nuclear Information System (INIS)

    Sun Xuezhi

    2012-01-01

    Safe disposal of high level radioactive waste (HLRW) has become a hot issue around the world and the people are generally concerned about it. The countries that have their own nuclear facilities regard safe disposal of HLRW as a strategic task, which can ensure sustainable industrial development and protect human health and natural environment. At present, deep geological disposal technology for HLRW is only executed and generally accepted in the world. China chose a geological disposal as the main direction for HLRW in 1985, the goal is to set up a national geological repository during 2030-2040. There are still a range of issues and challenges for safe disposal of HLRW in science, technology and engineering because the complexity of the geological disposal system and long-term potential hazards of HLRW. The United States, Finland and Japan have carried out a great deal of research and practice on geological disposal, it is worth to learn from them. This paper introduces Japan geological disposal plan, organization and implementation, fields and topics of research and development on the geological disposal in order to know experience and technology of Japan in the geological disposal, continuously improve our HLRW geologic disposal programs and technology. (authors)

  17. Proceedings of the Japan - U.S. Seminar on HTGR Safety Technology - Seismic Research. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-09-15

    These volumes constitute the proceedings of the f i r s t Japan-United States HTGR Safety Technology Seminar sponsored by the U. S. Nuclear Regulatory Commission, which was held at Brookhaven National Laboratory, Upton, New York, on September 15 and 16, 1977. This Seminar was held within the framework of the technical information exchange agreement in the area of HTGR safety research between the United States Nuclear Regulatory Commission and the Japan Atomic Energy Bureau. The agreement covers many aspects of HTGR safety res'earch, including: accident delineation, fuel cycle safety, primary coolant impurities, seismic effects, 'material properties, fission product release and transport and graphite oxidation. This f i r s t Seminar covered the safety research being carried out i n the areas of seismic effects and helium technology. in Japan and the United States. The Seminar was divided into two parallel sessions, one for Seismic Research and the second for Helium Technology. The papers presented i n the Seismic Research.session constitute Volume I of the proceedings, and the papers of the Helium Technology session constitute Volume 11. I t is hoped that these papers will form the basis for future cooperation between the Japanese and American scientific and engineering community in 'HTGR safety research.

  18. Commercial space opportunities - Advanced concepts and technology overview

    Science.gov (United States)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  19. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  20. Extraction process technology for the new reprocessing plants in France and Japan

    International Nuclear Information System (INIS)

    Boullis, B.; Drain, F.; Hugelman, D.

    1991-01-01

    The new reprocessing plants UP3 and UP2-800 in France and Rokkasho in Japan use or will use an improved technology for their extraction cycles. The equipment selected are pulse columns (cylindrical and annular) and mixer-settlers (normal type and extra-flat type). This paper presents the equipment selected for each plant and the extensive R and D performed especially for pulsed columns by CEA and also the results of first active runs in UP3

  1. The Cultivation of New Technology-Based Firms and Roles of Venture Capital Firms in Japan

    OpenAIRE

    Kirihata, Tetsuya

    2007-01-01

    In this paper, I analyze post-investment activities of venture capital firms (VCFs) based on a questionnaire survey and discuss the issues and challenges of post-investment activities of VCFs with new technology based firms (NTBFs) in Japan. The questionnaire survey reveals that business supports desired by NTBFs can be classified into four groups."business strategies adjustment and motivation", "business advice and networking", "finance and crisis management", and "recruitment assistance". T...

  2. US hospital payment adjustments for innovative technology lag behind those in Germany, France, and Japan.

    Science.gov (United States)

    Hernandez, John; Machacz, Susanne F; Robinson, James C

    2015-02-01

    Medicare pioneered add-on payments to facilitate the adoption of innovative technologies under its hospital prospective payment system. US policy makers are now experimenting with broader value-based payment initiatives, but these have not been adjusted for innovation. This article examines the structure, processes, and experience with Medicare's hospital new technology add-on payment program since its inception in 2001 and compares it with analogous payment systems in Germany, France, and Japan. Between 2001 and 2015 CMS approved nineteen of fifty-three applications for the new technology add-on payment program. We found that the program resulted in $201.7 million in Medicare payments in fiscal years 2002-13-less than half the level anticipated by Congress and only 34 percent of the amount projected by CMS. The US program approved considerably fewer innovative technologies, compared to analogous technology payment mechanisms in Germany, France and Japan. We conclude that it is important to adjust payments for new medical innovations within prospective and value-based payment systems explicitly as well as implicitly. The most straightforward method to use in adjusting value-based payments is for the insurer to retrospectively adjust spending targets to account for the cost of new technologies. If CMS made such retrospective adjustments, it would not financially penalize hospitals for adopting beneficial innovations. Project HOPE—The People-to-People Health Foundation, Inc.

  3. The Application of Intelligent Building Technologies to Space Hotels

    Science.gov (United States)

    Fawkes, S.

    This paper reports that over the last few years Intelligent Building technologies have matured and standardised. It compares the functions of command and control systems in future large space facilities such as space hotels to those commonly found in Intelligent Buildings and looks at how Intelligent Building technologies may be applied to space hotels. Many of the functions required in space hotels are the same as those needed in terrestrial buildings. The adaptation of standardised, low cost, Intelligent Building technologies would reduce capital costs and ease development of future space hotels. Other aspects of Intelligent Buildings may also provide useful models for the development and operation of space hotels.

  4. Historical achievements of self-monitoring of blood glucose technology development in Japan.

    Science.gov (United States)

    Yamada, Shigeki

    2011-09-01

    Japanese companies were the first in the world to achieve a colorimetric glucose measurement meter back in 1973. Over the following 40 or so years, they succeeded in achieving a much greater level of user-friendliness and performance and in so doing, have contributed to the spread of self-monitoring of blood glucose. This article aims to unravel the history of blood glucose measurement's technological developments; to look at the direction and features of the development path Japan is taking; as well as to introduce some Japanese products that are on the market. © 2011 Diabetes Technology Society.

  5. Progress of radiation curing technology and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Takashi Ukachi

    2007-01-01

    The Japanese industry has grown with annual growth rate 108%. Electric parts and devices industry strongly promoted Japanese economy. UV/EB curing market in Japan enjoyed its steady growth with an annual growth rate 107%. By realizing the advantages of good performance and high functionality, the UV/EB curing technology has expanded its application field especially in leading edge industries, such as electric parts and devices, FPDs, Optical fibers and cables, optical recording media, and their fabrication and manufacturing. This paper summarizes the Japanese UV/EB market situation and overviews the latest progress of UV/EB technology. (Author)

  6. Using digital technologies to engage with medical research: views of myotonic dystrophy patients in Japan.

    Science.gov (United States)

    Coathup, Victoria; Teare, Harriet J A; Minari, Jusaku; Yoshizawa, Go; Kaye, Jane; Takahashi, Masanori P; Kato, Kazuto

    2016-08-24

    As in other countries, the traditional doctor-patient relationship in the Japanese healthcare system has often been characterised as being of a paternalistic nature. However, in recent years there has been a gradual shift towards a more participatory-patient model in Japan. With advances in technology, the possibility to use digital technologies to improve patient interactions is growing and is in line with changing attitudes in the medical profession and society within Japan and elsewhere. The implementation of an online patient engagement platform is being considered by the Myotonic Dystrophy Registry of Japan. The aim of this exploratory study was to understand patients' views and attitudes to using digital tools in patient registries and engagement with medical research in Japan, prior to implementation of the digital platform. We conducted an exploratory, cross-sectional, self-completed questionnaire with a sample of myotonic dystrophy (MD) patients attending an Open Day at Osaka University, Japan. Patients were eligible for inclusion if they were 18 years or older, and were diagnosed with MD. A total of 68 patients and family members attended the Open Day and were invited to participate in the survey. Of those, 59 % submitted a completed questionnaire (n = 40). The survey showed that the majority of patients felt that they were not receiving the information they wanted from their clinicians, which included recent medical research findings and opportunities to participate in clinical trials, and 88 % of patients indicated they would be willing to engage with digital technologies to receive relevant medical information. Patients also expressed an interest in having control over when and how they received this information, as well as being informed of how their data is used and shared with other researchers. Overall, the findings from this study suggest that there is scope to develop a digital platform to engage with patients so that they can receive

  7. Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1989-01-01

    The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape.

  8. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  9. Space Missions and Information Technology: Some Thoughts and Highlights

    Science.gov (United States)

    Doyle, Richard J.

    2006-01-01

    A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

  10. Lidar In-Space Technology Experiment (LITE) L1

    Data.gov (United States)

    National Aeronautics and Space Administration — LITE_L1 data are LIDAR Vertical profile data along the orbital flight path of STS-64.Lidar In-Space Technology Experiment (LITE) used a three-wavelength (355 nm, 532...

  11. A comparative analysis of Photovoltaic Technological Innovation Systems including international dimensions: the cases of Japan and The Netherlands

    NARCIS (Netherlands)

    Vasseur, V.; Kamp, L.M.; Negro, S.O.

    2013-01-01

    This paper investigates the development and diffusion of photovoltaic (PV) technology in Japan and The Netherlands. Both cases are analysed with the Technological Innovation Systems (TIS) framework, which focuses on a particular technology and includes all those factors that influence the

  12. Proceedings of the Twelfth International Symposium on Space Terahertz Technology

    Science.gov (United States)

    Mehdi, Imran (Editor)

    2001-01-01

    The Twelfth International Symposium on Space Terahertz Technology was held February 14-16, 2001 in San Diego, California, USA. This symposium was jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory, California Institute of Technology. The symposium featured sixty nine presentations covering a wide variety of technical topics relevant to Terahertz Technology. The presentations can be divided into five broad technology areas: Hot Electron Bolometers, superconductor insulator superconductor (SIS) technology, local oscillator (LO) technology, Antennas and Measurements, and Direct Detectors. The symposium provides scientists, engineers, and researchers working in the terahertz technology and science fields to engineers their work and exchange ideas with colleagues.

  13. Hypersonic Reusable Technologies for Access to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The central objective of the proposal is to implement a robust multi-physics optimization on a hypersonic space-plane concept. Optimization evaluates changes to the...

  14. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  15. Bodies, technologies, and aging in Japan: thinking about old people and their silver products.

    Science.gov (United States)

    Long, Susan O

    2012-06-01

    Contemporary Japan is known both for its high tech culture and its rapidly aging population, with 22 % of people currently 65 years and older. Yet there has been little attention to the material culture of the elderly. This paper explores the way aging bodies, official ideology, and consumption of what are called "assistive devices" and "life technologies" come together in the experience of frail old people who depend not only on human caregivers but on "things" such as walkers, kidney dialysis machines, and electric massage chairs. It begins to consider the questions: What technology to aid failing bodies is available, and to whom? How does the advocacy of independence create new forms of consumption? How do "things" mediate ideological change regarding elder care and help to create new understandings of self and one's relation to others? Data come from interviews conducted in 2003-2007 as part of a study of elder care in Japan under the public long term care insurance system that began in 2000. These interviews point both to acceptance of the technology as a way to avoid over-dependence on caregivers, and to resistance to the limitations of aging and to its 21st century definition by the state.

  16. Everyday technology use among older adults in Sweden and Japan: A comparative study.

    Science.gov (United States)

    Malinowsky, Camilla; Nygård, Louise; Tanemura, Rumi; Nagao, Toru; Noda, Kazue; Nakata, Osamu; Sagara, Jiro; Rosenberg, Lena; Asaba, Eric; Kottorp, Anders

    2017-04-27

    As context may impact everyday technology (ET) use it is relevant to study this within different contexts. To examine the usefulness of the Everyday Technology Use Questionnaire (ETUQ) in different contexts by investigating and comparing (1) the level of challenge of ETs in the ETUQ and (2) the relevance of and perceived ability to use ET in samples of Swedish and Japanese older adults. The Swedish and the Japanese samples (n = 86/86) were interviewed using the ETUQ about relevance of and perceived ability to use ET. Data were analyzed using Rasch analysis, chi square and a general linear model. Moreover, Differential Item Functioning (DIF) was investigated. The hierarchy of ETs' level of challenge was generally stable in the two contexts. On group-level, the relevance was somewhat higher and the perceived ability to use ET significantly higher in the Swedish sample than in the Japanese. The similarities and differences between the technological landscapes of Sweden and Japan could be detected by ETUQ, demonstrating its usefulness in both countries. The potential causes to the differences in relevance of and perceived ability to use ET between older adults in Sweden and Japan need further exploration.

  17. Database use and technology in Japan: JTEC panel report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhold, G.; Beech, D.; Bourne, C.; Farmer, N.; Jajodia, Sushil; Kahaner, D.; Minoura, Toshi; Smith, D.; Smith, J.M.

    1992-04-01

    This report presents the findings of a group of database experts, sponsored by the Japanese Technology Evaluation Center (JTEC), based on an intensive study trip to Japan during March 1991. Academic, industrial, and governmental sites were visited. The primary findings are that Japan is supporting its academic research establishment poorly, that industry is making progress in key areas, and that both academic and industrial researchers are well aware of current domestic and foreign technology. Information sharing between industry and academia is effectively supported by governmental sponsorship of joint planning and review activities, and enhances technology transfer. In two key areas, multimedia and object-oriented databases, the authors can expect to see future export of Japanese database products, typically integrated into larger systems. Support for academic research is relatively modest. Nevertheless, the senior faculty are well-known and respected, and communicate frequently and in depth with each other, with government agencies, and with industry. In 1988 there were a total of 1,717 Ph.D.`s in engineering and 881 in science. It appears that only about 30 of these were academic Ph.D.`s in the basic computer sciences.

  18. Head-end process technology for the new reprocessing plants in France and Japan

    International Nuclear Information System (INIS)

    Saudray, D.; Hugelmann, D.; Cho, A.

    1991-01-01

    Major technological innovations brought to the new UP3 and UP2-800 reprocessing plants of COGEMA LA HAGUE and also to the JNFS ROKKASHO plant concern the head-end process. The continuous process designed allows for high throughputs whilst meeting stringent safety requirements. The head-end of each plant includes two lines for each operation in order to guarantee availability. This paper presents the T1 head-end facility of the UP3 plant as well as the few adaptations implemented in the ROKKASHO Reprocessing Plant to fulfill the particular design requirements in Japan

  19. Gender differences in information technology usage: a U.S.-Japan comparison

    OpenAIRE

    Hiroshi Ono; Madeline Zavodny

    2004-01-01

    This study examines whether there are differences in men’s and women’s use of computers and the Internet in the United States and Japan and how any such gender gaps have changed over time. The authors focus on these two countries because information technology is widely used in both, but there are substantial differences in institutions and social organizations. They use microdata from several surveys during the 1997–2001 period to examine differences and trends in computer and Internet usage...

  20. The progress and trends in the nucleonic gauge technology: Experience and contribution of Japan

    International Nuclear Information System (INIS)

    Tominaga, H.

    2000-01-01

    Most of major nucleonic gauges in Japan have already passed the period of saturation in number of use in big industries. On the other hand, however, small gauges with low activity sources are expected to increasingly diffuse into smaller industries. There have been so far more unique gauges and more interesting applications in small gauges using low activity sources, which are free from legal regulation. Still at present new applications with advanced technology are being developed using such small sources. Description is given on the current status of nucleonic gauges with emphasis on development of new techniques and applications. (author)

  1. Japan-USSR Trade, Technology Transfer, Implications for U.S.

    Science.gov (United States)

    1988-06-01

    PROGRAM PROJECT TASK WORK JNIT ELEMENT NO NO NO ACCESSION NO . %, I T;TLE (include Security Clasification ) ~ JAPAN-USSR: TRADE, TECHNOLOGY TRANSFER, AND...Pacific and a wall protecting the Soviet Far East. The Soviet perception of the island chain as a "screen of steel " and a ŕ,000-kilometer cossack sabre...concession which would have limited impact on the Soviet strategic concerns. The key islands in the Northern Territories (for continuity in the "chain of steel

  2. International cooperation of Japan in Asia for nuclear technology and application

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    The FNCA launched by the Ministerial Meeting in Bangkok in 2000, where following vision statement was adapted: 'The FNCA is to be recognized as an effective mechanism for enhancing socio economic development through active regional partnership in the peaceful and safe utilization of nuclear technology'. The FNCA has now 10 participating countries (Australia, Bangladesh, China, Indonesia, Japan, Korea, Malaysia, the Philippines, Thailand and Vietnam) implementing 11 projects and one panel in the fields of agriculture, health care, industry, energy, human resource development, safety and environment. (author)

  3. SpaceCube Technology Brief Hybrid Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2016-01-01

    The intent of this presentation is to give status to multiple audience types on the SpaceCube data processing technology at GSFC. SpaceCube has grown to support multiple missions inside and outside of NASA, and we are being requested to give technology overviews in various forums.

  4. Media Spaces, Places and Palpable Technologies

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten

    2006-01-01

    of these prototypes form what can be termed as media spaces - but rise questions to the traditional understanding of the media space concept - since the emergency response media spaces are not ‘set up' in predefined physical settings, do allow use of a range of (not necessarily predefined) media, and the people...... in the media space cannot be defined as a limited group of users. We also rise questions to the formality of communication, where we see the communication going on in emergency response, as a mix of formal and informal communication....

  5. Research and Technology 1996: Innovation in Time and Space

    Science.gov (United States)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  6. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  7. Survey of advanced radiation technologies used at designated cancer care hospitals in Japan

    International Nuclear Information System (INIS)

    Shikama, Naoto; Tsujino, Kayoko; Nakamura, Katsumasa; Ishikura, Satoshi

    2014-01-01

    Our survey assessed the use of advanced radiotherapy technologies at the designated cancer care hospitals in Japan, and we identified several issues to be addressed. We collected the data of 397 designated cancer care hospitals, including information on staffing in the department of radiation oncology (e.g. radiation oncologists, medical physicists and radiation therapists), the number of linear accelerators and the implementation of advanced radiotherapy technologies from the Center for Cancer Control and Information Services of the National Cancer Center, Japan. Only 53% prefectural designated cancer care hospitals and 16% regional designated cancer care hospitals have implemented intensity-modulated radiotherapy for head and neck cancers, and 62% prefectural designated cancer care hospitals and 23% regional designated cancer care hospitals use intensity-modulated radiotherapy for prostate cancer. Seventy-four percent prefectural designated cancer care hospitals and 40% regional designated cancer care hospitals employ stereotactic body radiotherapy for lung cancer. Our multivariate analysis of prefectural designated cancer care hospitals which satisfy the institute's qualifications for advanced technologies revealed the number of radiation oncologists (P=0.01) and that of radiation therapists (P=0.003) were significantly correlated with the implementation of intensity-modulated radiotherapy for prostate cancer, and the number of radiation oncologists (P=0.02) was correlated with the implementation of stereotactic body radiotherapy. There was a trend to correlate the number of medical physicists with the implementation of stereotactic body radiotherapy (P=0.07). Only 175 (51%) regional designated cancer care hospitals satisfy the institute's qualification of stereotactic body radiotherapy and 76 (22%) satisfy that of intensity-modulated radiotherapy. Seventeen percent prefectural designated cancer care hospitals and 13% regional designated cancer care hospitals

  8. Healthcare Databases in Thailand and Japan: Potential Sources for Health Technology Assessment Research.

    Science.gov (United States)

    Saokaew, Surasak; Sugimoto, Takashi; Kamae, Isao; Pratoomsoot, Chayanin; Chaiyakunapruk, Nathorn

    2015-01-01

    Health technology assessment (HTA) has been continuously used for value-based healthcare decisions over the last decade. Healthcare databases represent an important source of information for HTA, which has seen a surge in use in Western countries. Although HTA agencies have been established in Asia-Pacific region, application and understanding of healthcare databases for HTA is rather limited. Thus, we reviewed existing databases to assess their potential for HTA in Thailand where HTA has been used officially and Japan where HTA is going to be officially introduced. Existing healthcare databases in Thailand and Japan were compiled and reviewed. Databases' characteristics e.g. name of database, host, scope/objective, time/sample size, design, data collection method, population/sample, and variables were described. Databases were assessed for its potential HTA use in terms of safety/efficacy/effectiveness, social/ethical, organization/professional, economic, and epidemiological domains. Request route for each database was also provided. Forty databases- 20 from Thailand and 20 from Japan-were included. These comprised of national censuses, surveys, registries, administrative data, and claimed databases. All databases were potentially used for epidemiological studies. In addition, data on mortality, morbidity, disability, adverse events, quality of life, service/technology utilization, length of stay, and economics were also found in some databases. However, access to patient-level data was limited since information about the databases was not available on public sources. Our findings have shown that existing databases provided valuable information for HTA research with limitation on accessibility. Mutual dialogue on healthcare database development and usage for HTA among Asia-Pacific region is needed.

  9. University Satellite Consortium and Space Education in Japan Centered on Micro-Nano Satellites

    Science.gov (United States)

    Nakasuka, S.; Kawashima, R.

    2002-01-01

    in Japan especially centered on micro or nano class satellites. Hands-on training using micro-nano satellites provide unique opportunity of space education to university level students, by giving them a chance to experience the whole space project cycle from mission creation, satellite design, fabrication, test, launch, operation through analysis of the results. Project management and team working are other important skills that can be trained in these projects. include 1) low cost, which allows one laboratory in university to carry out a project, 2) short development period such as one or two year, which enables students to obtain the results of their projects before they graduate, and 3) small size and weight, which enables fabrication and test within usually very narrow university laboratory areas. In Japan, several projects such as CanSat, CubeSat or Whale Observation Satellite have been carried out, proving that micro-nano satellites provide very unique and valuable educational opportunity. with the objective to make a university student and staff community of these micro-nano satellite related activities in Japan. This consortium aims for many activities including facilitating information and skills exchange and collaborations between member universities, helping students to use ground test facilities of national laboratories, consulting them on political or law related matters, coordinating joint development of equipments or projects, and bridging between these university activities and the needs or interests of the people in general. This kind of outreach activity is essential because how to create missions of micro-nano satellites should be pursued in order for this field to grow larger than a merely educational enterprise. The final objectives of the consortium is to make a huge community of the users, mission creators, investors and manufactures(i.e., university students) of micro-nano satellites, and provide a unique contribution to the activation of

  10. Proceedings of the 2nd JAERI symposium on HTGR technologies October 21 ∼ 23, 1992, Oarai, Japan

    International Nuclear Information System (INIS)

    1993-01-01

    The Japan Atomic Energy Research Institute (JAERI) held the 2nd JAERI Symposium on HTGR Technologies on October 21 to 23, 1992, at Oarai Park Hotel at Oarai-machi, Ibaraki-ken, Japan, with support of International Atomic Energy Agency (IAEA), Science and Technology Agency of Japan and the Atomic Energy Society of Japan on the occasion that the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, is now being proceeded smoothly. In this symposium, the worldwide present status of research and development (R and D) of the HTGRs and the future perspectives of the HTGR development were discussed with 47 papers including 3 invited lectures, focusing on the present status of HTGR projects and perspectives of HTGR Development, Safety, Operation Experience, Fuel and Heat Utilization. A panel discussion was also organized on how the HTGRs can contribute to the preservation of global environment. About 280 participants attended the symposium from Japan, Bangladesh, Germany, France, Indonesia, People's Republic of China, Poland, Russia, Switzerland, United Kingdom, United States of America, Venezuela and the IAEA. This paper was edited as the proceedings of the 2nd JAERI Symposium on HTGR Technologies, collecting the 47 papers presented in the oral and poster sessions along with 11 panel exhibitions on the results of research and development associated to the HTTR. (author)

  11. Transfer of space technology to industry

    Science.gov (United States)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  12. Space Technology Mission Directorate: Game Changing Development

    Science.gov (United States)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  13. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    Science.gov (United States)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  14. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Science.gov (United States)

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  15. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  16. Informal urban green-space: comparison of quantity and characteristics in Brisbane, Australia and Sapporo, Japan.

    Directory of Open Access Journals (Sweden)

    Christoph D D Rupprecht

    Full Text Available Informal urban green-space (IGS such as vacant lots, brownfields and street or railway verges is receiving growing attention from urban scholars. Research has shown IGS can provide recreational space for residents and habitat for flora and fauna, yet we know little about the quantity, spatial distribution, vegetation structure or accessibility of IGS. We also lack a commonly accepted definition of IGS and a method that can be used for its rapid quantitative assessment. This paper advances a definition and typology of IGS that has potential for global application. Based on this definition, IGS land use percentage in central Brisbane, Australia and Sapporo, Japan was systematically surveyed in a 10×10 km grid containing 121 sampling sites of 2,500 m2 per city, drawing on data recorded in the field and aerial photography. Spatial distribution, vegetation structure and accessibility of IGS were also analyzed. We found approximately 6.3% of the surveyed urban area in Brisbane and 4.8% in Sapporo consisted of IGS, a non-significant difference. The street verge IGS type (80.4% of all IGS dominated in Brisbane, while lots (42.2% and gaps (19.2% were the two largest IGS types in Sapporo. IGS was widely distributed throughout both survey areas. Vegetation structure showed higher tree cover in Brisbane, but higher herb cover in Sapporo. In both cities over 80% of IGS was accessible or partly accessible. The amount of IGS we found suggests it could play a more important role than previously assumed for residents' recreation and nature experience as well as for fauna and flora, because it substantially increased the amount of potentially available greenspace in addition to parks and conservation greenspace. We argue that IGS has potential for recreation and conservation, but poses some challenges to urban planning. To address these challenges, we propose some directions for future research.

  17. Informal urban green-space: comparison of quantity and characteristics in Brisbane, Australia and Sapporo, Japan.

    Science.gov (United States)

    Rupprecht, Christoph D D; Byrne, Jason A

    2014-01-01

    Informal urban green-space (IGS) such as vacant lots, brownfields and street or railway verges is receiving growing attention from urban scholars. Research has shown IGS can provide recreational space for residents and habitat for flora and fauna, yet we know little about the quantity, spatial distribution, vegetation structure or accessibility of IGS. We also lack a commonly accepted definition of IGS and a method that can be used for its rapid quantitative assessment. This paper advances a definition and typology of IGS that has potential for global application. Based on this definition, IGS land use percentage in central Brisbane, Australia and Sapporo, Japan was systematically surveyed in a 10×10 km grid containing 121 sampling sites of 2,500 m2 per city, drawing on data recorded in the field and aerial photography. Spatial distribution, vegetation structure and accessibility of IGS were also analyzed. We found approximately 6.3% of the surveyed urban area in Brisbane and 4.8% in Sapporo consisted of IGS, a non-significant difference. The street verge IGS type (80.4% of all IGS) dominated in Brisbane, while lots (42.2%) and gaps (19.2%) were the two largest IGS types in Sapporo. IGS was widely distributed throughout both survey areas. Vegetation structure showed higher tree cover in Brisbane, but higher herb cover in Sapporo. In both cities over 80% of IGS was accessible or partly accessible. The amount of IGS we found suggests it could play a more important role than previously assumed for residents' recreation and nature experience as well as for fauna and flora, because it substantially increased the amount of potentially available greenspace in addition to parks and conservation greenspace. We argue that IGS has potential for recreation and conservation, but poses some challenges to urban planning. To address these challenges, we propose some directions for future research.

  18. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  19. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  20. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  1. JSFR: Japan's challenge towards the competitive SFR design concept with innovative technologies

    International Nuclear Information System (INIS)

    Mihara, T.; Kotake, S.

    2006-01-01

    JSFR is a sodium-cooled, MOX(or metal) fuelled, advanced loop type fast reactor design concept conducting by Japan Atomic Energy Agency(JAEA) through the Feasibility Study on commercialized Fast Reactor(FR) Cycle Systems with participation of all parties concerned in Japan since 1999. The economic competitiveness is one of the crucial points and has been emphasized in the design study of JSFR. One of the ways for less construction cost is the compact NSSS design by introducing the following innovative technologies; Shortening the piping length, simplified configuration with the inverse L-shaped-pipes and a two-loop system even for a l,500MWe power plant, by adopting high chromium steel with lower thermal expansion and higher strength, Upgrading of the structural design standards at elevated temperature for sodium-cooled FR system, and Development of an integrated intermediate heat exchanger (IHX) with a mechanical pump. The other way is introducing passive decay heat removal system with natural circulation. The elimination of active components such as pony motors and blowers leads to reduction of the capacity of the BOP system such as electricity supply system, emergency DGs, HVAC system and component cooling water system. In order to attain lower power generation cost, not only less construction cost but also less operational cost including fuel cycle cost is crucial. Therefore higher burn-up of the averaged core, more than 150GWd/t, has been applied by introducing ODS steel cladding material. As a result, it is confirmed that the JSFR design concept is well suited to the development target equivalent to l,000USD/kWe (as NOAK, overnight cost), while ensuring safety. The most of the cost reduction comes from the innovative technologies. The R and D plan of these technologies was summarized as a roadmap and the R and D efforts are on going for establishing a technical scheme of FR cycle systems by around 2015

  2. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  3. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  4. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  5. Technology readiness of partitioning and transmutation toward closed fuel cycle in Japan

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kurata, Masaki; Morita, Yasuji; Tsujimoto, Kazufumi; Minato, Kazuo; Koyama, Shin-ichi

    2011-01-01

    This paper treats technology readiness level (TRL) assessment of Partitioning and Transmutation (P-T) toward closed fuel cycle in JAPAN. The purpose is providing clarified information related to the current maturity of the partitioning and transmutation technologies by applying the methodology of TRL, parallel to attempting to establish common indications among relating technology area. The methodology should be one of useful communication tools between specialists and management level, and also among countries interested in the P-T technologies. The generic TRL in this study is based on the GNEP (Global Nuclear Energy Partnership)'s definition: TRL 3 shows the status that critical function is proved and elemental technologies are identified, TRL 4 represents that relating technologies are validated at bench scale in laboratory environment, and TRL 5 achieves the completion of development related to the subsystem and elemental technologies. Detailed indications are established through discussion of the relating specialists. Reviewed technological area includes P-T and minor actinide (MA) cycle: Fast Breeder Reactor (FBR) and Accelerator driven system (ADS) for MA transmutation, partitioning processes, and MA-bearing fuels. The assessments reveal that TRL spreads around TRL 3 to TRL 4 because each system requires more the development of elemental technologies. Transmutation core of FBR is assessed to be TRL 4 in that MA bearing integral test is required additionally, and ADS becomes TRL 3 because the elemental technologies were identified and the requirements were specified. Consequently, the common key issue is how the nuclear calculation methodology will be validated for MA-bearing-fuelled core, since several percentages of MA changes the void reactivity and the Doppler Effect significantly, which are inherently important in reactor safety. It should be that critical experiments with several kg of americium or more are difficult in the existing experimental

  6. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  7. BiocapsuleTechnology for Delivery of Protein Therapeutics in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — This project concerns NASA Biocapsule technology, which involves the develoment of buckypaper containers for living cells, to be used for delivery of medical...

  8. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  9. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  10. Target validation for FCV technology development in Japan from energy competition point of view

    International Nuclear Information System (INIS)

    ENDO Eiichi

    2006-01-01

    The objective of this work is to validate the technical targets in the governmental hydrogen energy road-map of Japan by analyzing market penetration of fuel cell vehicle(FCV)s and effects of fuel price and carbon tax on it from technology competition point of view. In this analysis, an energy system model of Japan based on MARKAL is used. The results of the analysis show that hydrogen FCVs could not have cost-competitiveness until 2030 without carbon tax, including the governmental actual plan of carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including gasoline hybrid electric vehicle, hydrogen FCVs penetrate to the market earlier and more. By assuming higher fuel price and severer carbon tax rate, market share of hydrogen FCVs approaches to the governmental goal. This suggests that cheaper vehicle cost and/or hydrogen price than those targeted in the road-map is required. At the same time, achievement of the technical targets in the road-map also allows to attain the market penetration target of hydrogen FCVs in some possible conditions. (authors)

  11. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  12. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  13. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber.......Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  14. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  15. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  16. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    Science.gov (United States)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  17. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    Science.gov (United States)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  18. Space power technology into the 21st century

    International Nuclear Information System (INIS)

    Faymon, K.A.; Fordyce, J.S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel-hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions. 18 references

  19. Japan's participation in space station design: Feasibility study of GaAs solar cells for space station applications

    Science.gov (United States)

    1986-01-01

    The report gives the results of feasibility studies and a cost analysis done on GaAs solar battery cells for space stations. The studies and their results are as follows: (1) Cell size - The 2 x 4 cm cell size was found superior to the 4 x 4 cm cell; (2) Manufacturing technology - Overall, LPE crystal growth was found more suitable than MO-CVD. Current technology for post-growth processes and applying large-area cover glass can be used with few or no modifications; (3) Cell assemblies - Tests for mechanical and thermal stresses encountered from assembly through operation are recommended; (4) Procuring materials - Steps should be taken to avoid sharp price increases due to a speculative gallium market. There are no problems with arsenic materials; (5) Production facilities - The capital investment needed remains to be determined, but a working area of 4000 m2 will be required; (6) Cell costs to be determined; (7) Cell development-supply plan - Two-year lead time will be needed to develop the necessary technology and prepare for production.

  20. Building Fluid Spaces: The Impact of the Technology in the Contemporary Space Conception

    Directory of Open Access Journals (Sweden)

    Priscila Arantes

    2008-08-01

    Full Text Available In this article, we are going to debate the new space-time configurations from the technological- informacional impact, taking the contemporary art as study object. Taking as object of study the contemporaty artistic practices, we will analyse the displacement of a vision of fixed space, homogeneous, given, at first, to a vision of mobile space, which occurs from the flow of constant communication and connection; a space built from a liquid cartography, produced in phenomenological and relational way.

  1. Space systems computer-aided design technology

    Science.gov (United States)

    Garrett, L. B.

    1984-01-01

    The interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system is described, together with planned capability increases in the IDEAS system. The system's disciplines consist of interactive graphics and interactive computing. A single user at an interactive terminal can create, design, analyze, and conduct parametric studies of earth-orbiting satellites, which represents a timely and cost-effective method during the conceptual design phase where various missions and spacecraft options require evaluation. Spacecraft concepts evaluated include microwave radiometer satellites, communication satellite systems, solar-powered lasers, power platforms, and orbiting space stations.

  2. Proceedings of the Twentieth International Symposium on Space Technology and Science. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th International Symposium on Space Technology and Science was held in Japan on May 19-25, 1996, and a lot of papers were made public. This proceedings has 252 papers of all the papers read in the symposium including the following: Computational fluid dynamics in the design of M-V rocket motors in the propulsion field; Joint structures of carbon-carbon composites in the field of materials and structures; On-orbit attitude control experiment of ETS-VI in the field of astrodynamics, navigation, guidance and control; Magnetic transport of bubbles in liquid in microgravity; The outline and development status of JEM-EF in the field of on-orbit and ground support systems. The proceedings also includes the papers titled Conceptual study of H-IIA rocket in the space transportation field; Microgravity research in the microgravity science field; `Project Genesys` in the field of satellite communications and broadcasting.

  3. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  4. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  5. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  6. Technology Development Risk Assessment for Space Transportation Systems

    Science.gov (United States)

    Mathias, Donovan L.; Godsell, Aga M.; Go, Susie

    2006-01-01

    A new approach for assessing development risk associated with technology development projects is presented. The method represents technology evolution in terms of sector-specific discrete development stages. A Monte Carlo simulation is used to generate development probability distributions based on statistical models of the discrete transitions. Development risk is derived from the resulting probability distributions and specific program requirements. Two sample cases are discussed to illustrate the approach, a single rocket engine development and a three-technology space transportation portfolio.

  7. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  8. Human Resources and Corporate Strategy. Technological Change in Banks and Insurance Companies: France, Germany, Japan, Sweden, United States.

    Science.gov (United States)

    Bertrand, Olivier; Noyelle, Thierry

    Twelve financial institutions (nine banks and three insurance companies) from five countries (France, West Germany, Japan, Sweden, and the United States) were studied to determine the directions in which financial service markets and firms are moving as a result of increasing competition and technological change. Data were collected from…

  9. Knowledge and Innovation: A Comparative Study of the USA, the UK and Japan. Routledge Studies in Innovation, Organizations and Technology

    Science.gov (United States)

    Brown, Helen

    2012-01-01

    This new book presents case studies from the US, the UK and Japan. Packed full of vignettes from cases studies and subscribing to a socio-cultural approach rather than the often tacit assumption that knowledge and "technology transfer" is a logistical problem, this excellent volume illuminates the often misunderstood process of knowledge…

  10. Assisted reproductive technology in Japan: a summary report for 2015 by The Ethics Committee of The Japan Society of Obstetrics and Gynecology.

    Science.gov (United States)

    Saito, Hidekazu; Jwa, Seung Chik; Kuwahara, Akira; Saito, Kazuki; Ishikawa, Tomonori; Ishihara, Osamu; Kugu, Koji; Sawa, Rintaro; Banno, Kouji; Irahara, Minoru

    2018-01-01

    The Japan Society of Obstetrics and Gynecology (JSOG) implemented an assisted reproductive technology (ART) registry system in 1986. Here are reported the characteristics and treatment outcomes of ART cycles that were registered in 2015. JSOG has requested all participating ART facilities to register cycle-specific information for all ART cycles since 2007. A descriptive analysis was performed by using the registry database for 2015. In total, 424 151 cycles and 51 001 neonates (1 in 19.7 neonates born in Japan) were registered in 2015. The patients' mean age was 38.2 years (standard deviation = 4.5). Among the fresh cycles, 94 158 of 244 718 (38.5%) egg retrieval cycles were cycles with freeze-all embryos or oocytes, while fresh embryo transfer (ET) was performed in 70 254 cycles, signaling a decrease from 2014. There were 169 898 frozen-thawed ET cycles, resulting in 56 355 pregnancies and 40 599 neonates. Single ET was performed at a rate of 79.7% for fresh and 81.8% for frozen cycles and the singleton pregnancy/live birth rates were 96.9%/96.5% and 96.8%/96.4% for the respective cycles. The total ART cycles and live births resulting from ART has been increasing in Japan. Single ET was performed at a rate of almost 80% and ET cycles have shifted from fresh to frozen cycles.

  11. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  12. Laser space communication experiment: Modulator technology

    Science.gov (United States)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  13. Planetary plasma and atmospheres explored by space missions in Japan: Hisaki, Akatsuki, and beyond

    Science.gov (United States)

    Kasaba, Y.; Imamura, T.; Tsuchiya, F.; Terada, N.; Miyoshi, Y.; Kasai, Y.; Saito, Y.

    2017-06-01

    Planetary plasma and atmospheres have been challenged by space missions of Japanese science community from 1990s, with ISAS and JAXA. The first trial, a Martian orbiter Nozomi, was launched in July 1998. At the departure from Earth in Dec. 1998, she met an engine trouble but we struggled and found a narrow and long path connecting to the Dec 2003 arrival, which is the simultaneous arrival with ESA Mars Express. Unfortunately, we had an additional power trouble in Apr. 2002 associated with a solar flare event, and we gave up the trial at the gate of Mars in Dec. 2003. In parallel to the Kaguya Lunar orbiter in 2007-2009, a next trial to planets, the Akatsuki orbiter to Venus, was prepared. She departed from Earth in May 2010. However, she got an engine trouble at the arrival to Venus in Dec. 2010, and we again endured another long path, but this road was at last ended by a success of the orbit entry in Dec. 2015. We also created the UV/EUV space telescope, Hisaki, using the sensor and optics technologies extracted from Nozomi. It is going well after the launch in 2013 and actively looking planetary thin atmospheres collaborating with other space missions. This paper summarizes the Hisaki and Akatsuki missions which are now on orbit, with the next missions, Arase (ERG), BepiColombo, JUICE, and beyond.

  14. Planetary plasma and atmospheres explored by space missions in Japan: Hisaki, Akatsuki, and beyond

    International Nuclear Information System (INIS)

    Kasaba, Y; Tsuchiya, F; Terada, N; Imamura, T; Miyoshi, Y; Kasai, Y; Saito, Y

    2017-01-01

    Planetary plasma and atmospheres have been challenged by space missions of Japanese science community from 1990s, with ISAS and JAXA. The first trial, a Martian orbiter Nozomi, was launched in July 1998. At the departure from Earth in Dec. 1998, she met an engine trouble but we struggled and found a narrow and long path connecting to the Dec 2003 arrival, which is the simultaneous arrival with ESA Mars Express. Unfortunately, we had an additional power trouble in Apr. 2002 associated with a solar flare event, and we gave up the trial at the gate of Mars in Dec. 2003. In parallel to the Kaguya Lunar orbiter in 2007-2009, a next trial to planets, the Akatsuki orbiter to Venus, was prepared. She departed from Earth in May 2010. However, she got an engine trouble at the arrival to Venus in Dec. 2010, and we again endured another long path, but this road was at last ended by a success of the orbit entry in Dec. 2015. We also created the UV/EUV space telescope, Hisaki, using the sensor and optics technologies extracted from Nozomi. It is going well after the launch in 2013 and actively looking planetary thin atmospheres collaborating with other space missions. This paper summarizes the Hisaki and Akatsuki missions which are now on orbit, with the next missions, Arase (ERG), BepiColombo, JUICE, and beyond. (paper)

  15. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  16. Submicron CMOS technologies for high energy physics and space applications

    CERN Document Server

    Anelli, G; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    2001-01-01

    The radiation environment present in some of today's High-Energy Physics (HEP) experiments and in space has a detrimental influence on the integrated circuits working in these environments. Special technologies, called radiation hardened, have been used in the past to prevent the radiation-induced degradation. In the last decades, the market of these special technologies has undergone a considerable shrinkage, rendering them less reliably available and far more expensive than today's mainstream technologies. An alternative approach is to use a deep submicron CMOS technology. The most sensitive part to radiation effects in a MOS transistor is the gate oxide. One way to reduce the effects of ionizing radiation in the gate oxide is to reduce its thickness, which is a natural trend in modern technologies. Submicron CMOS technologies seem therefore a good candidate for implementing radiation-hardened integrated circuits using a commercial, inexpensive technology. Nevertheless, a certain number of radiation-induced...

  17. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    Science.gov (United States)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  18. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    International Nuclear Information System (INIS)

    Miyahara, A.

    1989-01-01

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  19. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  20. Implementing Space Technology into Sustainable Development and Resilience Theory

    Directory of Open Access Journals (Sweden)

    Ciro Arévalo Yepes

    2013-11-01

    Full Text Available The paper explores potential and actual applications of space technology, particularly satellites in the context of sustainable development. The introduction explores the concept of sustainable development from a multilateral perspective and the framework of Rio+20 and the post-2015 development agenda. The paper then introduces space technology and its uses in economic growth, energy, food security, environmental surveillance, including coastal regions, with special emphasis on environmental disasters and the concept of resilience, and the social and welfare uses of humanitarian tele-medicine and tele-education and ways to overcome the digital divide. The conclusion gives recommendations to improve satellite capacity and an analysis of the systemic synergies between space technologies and “green industries” that may lead to tandem growth.

  1. Space Communication and Navigation Testbed Communications Technology for Exploration

    Science.gov (United States)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  2. Adopted technologies and basis for selection at municipal solid waste landfill facilities constructed in recent years in Japan.

    Science.gov (United States)

    Asakura, Hiroshi; Matsuto, Toshihiko; Inoue, Yuzo

    2010-08-01

    In Japan, as the construction of new landfill facilities has become extremely difficult and the number of sites procured for landfill construction has decreased due to the 'not in my back yard' (NIMBY) syndrome, it has been assumed that the adoption of new technologies has increased. As the performance of new technologies exceeds that of conventional technologies, it is also assumed that residents would prefer the use of these new technologies and therefore any construction plans should be devised to ensure their use to ensure residents' satisfaction. In the present study, the technologies adopted for municipal solid waste landfill facilities constructed in recent years (2000 to 2004) in Japan and the bases for their adoption were investigated by means of a questionnaire survey. One of the main bases for the adoption of new technologies was the request by residents for new technology for roofing, rather than the other for new technologies for barrier systems, leachate treatment, and monitoring. In addition, it is possible that the municipalities did not recognize the difference between conventional and new technologies as defined in this study. The roof-type landfill that isolates waste from the surrounding environment was one of the requirements for the construction of new landfill facilities identified in the present investigation, and in this regard waste isolation should be required in all circumstances.

  3. Large space systems technology electronics: Data and power distribution

    Science.gov (United States)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  4. Transformational Technologies to Expedite Space Access and Development

    International Nuclear Information System (INIS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  5. The Social Shaping of Technology: A New Space for Politics?

    DEFF Research Database (Denmark)

    Yoshinaka, Yutaka; Clausen, Christian; Hansen, Anne Grethe

    2003-01-01

    effects, which are non-neutral and distributed, as the processes of shaping themselves have been. The chapter develops the notion of SST through socio-technical spaces. Here a heterogeneous set of elements, comprising of techniques, social actors, attribution of meanings, and problem definitions, etc...... on the socio-technical processes entailed in technology development and change. Our perspective is based on the understanding that technological development unfolds through processes with political implications, involving actors, their occasions and strategies that help bring about transitions in technological...... change. We identify a new perspective on political processes, with a broader focus on the political dimensions of technological decision-making, and a broader treatment of socio-technical space, maintaining a focus on inclusion and exclusion of actors, salient issues and how they are dealt...

  6. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  7. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  8. Assisted reproductive technology in Japan: a summary report of 1992-2014 by the Ethics Committee, Japan Society of Obstetrics and Gynecology.

    Science.gov (United States)

    Irahara, Minoru; Kuwahara, Akira; Iwasa, Takeshi; Ishikawa, Tomonori; Ishihara, Osamu; Kugu, Koji; Sawa, Rintaro; Banno, Kouji; Saito, Hidekazu

    2017-04-01

    The Japan Society of Obstetrics and Gynecology implemented a registry report system for the clinical practice of assisted reproductive technology in 1986. The aggregated results from 1992 to 2014 are reported herein. The total number of registered treatments was 393 745 cycles, of which 66 550 were pregnancy cycles and 46 008 were cycles with a live birth. Compared to the number of registered treatments in 2008, when the cycle-based registry was newly introduced, there was a 2.07-fold increase in the total number of treatments and a 2.25-fold increase in the number of cycles with a live birth. As the average age of patients who receive assisted reproductive technology has become markedly higher year by year, the most common age of those patients who received assisted reproductive technology in 2014 was 40 years. The total numbers of both assisted reproductive technology treatments and assisted reproductive technology live births are likely to be higher in the future. In addition, the trend toward aging patients seems to be continuing into the future.

  9. Technology issues associated with using densified hydrogen for space vehicles

    Science.gov (United States)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  10. Progress in composite structure and space construction systems technology

    Science.gov (United States)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  11. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  12. Transformational System Concepts and Technologies for Our Future in Space

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2004-01-01

    Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process

  13. Characteristics of the life habits of obese students at one of Japan's National Colleges of Technology.

    Science.gov (United States)

    Nagasawa, Yoshinori; Demura, Shin-Ichi; Shimada, Shigeru

    2017-05-17

    Aim This study clarified the characteristics of life habits of obese Japanese male students at the National Colleges of Technology, Japan. Materials and methods Healthy students aged 15-19 years answered a questionnaire containing 21 items on the following five categories of life habits: general exercise, meals, sleeping, leisure activity and illness or injury history. The subjects were divided into three groups based on the criteria of body mass index (BMI) and body fat percentage (%BF): non-obese (%BF time, bedtime and amount of time spent walking, sleeping and watching TV per day were examined using one-way analysis of variance (ANOVA) and chi-square tests for each item. Results The overweight obese and hidden obese groups engaged in less exercise time, were more likely to eat until they were full at meals and were less likely to eat between meals or late at night than the non-obese group. In addition, the non-obese group had significantly later waking times and significantly less TV-watching time than the overweight obese group. There were no significant differences with respect to leisure activity and illness or injury history among the three groups. Many students in all groups had regular waking times and were not performing any leisure activities. Conclusion The findings suggest that obese students may need further guidance to help them maintain a healthy life and appropriate weight.

  14. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  15. Space-reactor electric systems: subsystem technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  16. Damages at Japanese assisted reproductive technology clinics by the Great Eastern Japan Earthquake of 2011.

    Science.gov (United States)

    Ishihara, Osamu; Yoshimura, Yasunori

    2011-06-30

    The Great Eastern Japan Earthquake of 2011 and consequent tsunami affected many IVF clinics in northeastern Japan. Twelve clinics lost at least one embryo, but all the frozen embryos stored in liquid nitrogen tanks were safe. Emergency power supply is the first priority issue in an unpredictable natural disaster. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  18. Space Station Freedom technology payload user operations facility concept

    Science.gov (United States)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  19. Plant cell technologies in space: Background, strategies and prospects

    Science.gov (United States)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  20. Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

    CERN Document Server

    Claudia Marcelloni

    2007-01-01

    Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

  1. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  2. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  3. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  4. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  5. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  6. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  7. Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

    OpenAIRE

    Le, Guan; Moore, Thomas; Slavin, James

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned...

  8. Current developments and clinical applications of bubble technology in Japan: a report from 85th Annual Scientific Meeting of The Japan Society of Ultrasonic in Medicine, Tokyo, 25-27 May, 2012.

    Science.gov (United States)

    Achmad, Arifudin; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2013-06-01

    The potentials of bubble technology in ultrasound has been investigated thoroughly in the last decade. Japan has entered as one of the leaders in bubble technology in ultrasound since Sonazoid (Daiichi Sankyo & GE Healthcare) was marketed in 2007. The 85th Annual Scientific Meeting of The Japan Society of Ultrasonics in Medicine held in Tokyo from May 25 to 27, 2012 is where researchers and clinicians from all over Japan presented recent advances and new developments in ultrasound in both the medical and the engineering aspects of this science. Even though bubble technology was originally developed simply to improve the conventional ultrasound imaging, recent discoveries have opened up powerful emerging applications. Bubble technology is the particular topic to be reviewed in this report, including its mechanical advances for molecular imaging, drug/gene delivery device and sonoporation up to its current clinical application for liver cancers and other liver, gastrointestinal, kidney and breast diseases.

  9. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  10. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  11. Applications of Space-Age Technology in Anthropology

    Science.gov (United States)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  12. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  13. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  14. Prototype Space Technology Hall of Fame exhibit at Technology 2003: Analysis of data from computer-based questionaire

    Science.gov (United States)

    Ewell, Robert N.

    1994-01-01

    The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.

  15. Wicked problems in space technology development at NASA

    Science.gov (United States)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  16. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  17. Space Life Support Technology Applications to Terrestrial Environmental Problems

    Science.gov (United States)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  18. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  19. Progress on thin-film sensors for space propulsion technology

    Science.gov (United States)

    Kim, Walter S.

    1987-01-01

    The objective is to develop thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades to 1800 F. The technology established for aircraft gas turbine engines will be adapted to the materials and environment encountered in the SSME. Specific goals are to expand the existing in-house thin-film sensor technology and to test the survivability and durability of thin-film sensors in the SSME environment.

  20. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  1. Hydrogen-oxygen Space Shuttle ACPS thruster technology review.

    Science.gov (United States)

    Gregory, J. W.; Herr, P. N.

    1972-01-01

    A comprehensive program has provided the technology groundwork for the use of hydrogen-oxygen propellants in the Space Shuttle Attitude Control Propulsion System (ACPS) thrustors. This work has concentrated on generation of technology for injectors, cooled thrust chambers, valves, and ignition systems. The thrustors are designed to meet a unique and stringent set of requirements, including: long life for 100 mission reuses, high performance, light weight, ability to provide long duration firings as well as small impulse bits, ability to operate over wide ranges of propellant inlet conditions and to withstand reentry heating. The program has included evaluation of thrustors designed for ambient temperature and cold gaseous propellants at the vehicle interface.

  2. Novel Design Aspects of the Space Technology 5 Mechanical Subsystem

    Science.gov (United States)

    Rossoni, Peter; McGill, William

    2003-01-01

    This paper describes several novel design elements of the Space Technology 5 (ST5) spacecraft mechanical subsystem. The spacecraft structure itself takes a significant step in integrating electronics into the primary structure. The deployment system restrains the spacecraft during launch and imparts a predetermined spin rate upon release from its secondary payload accommodations. The deployable instrument boom incorporates some traditional as well as new techniques for lightweight and stiffness. Analysis and test techniques used to validate these technologies are described. Numerous design choices were necessitated due to the compact spacecraft size and strict mechanical subsystem requirements.

  3. Bauman Moscow State Technical University Youth Space Centre: Student's Way in Space Technologies

    Science.gov (United States)

    Mayorova, Victoria; Zelentsov, Victor

    2002-01-01

    The Youth Space Center (YSC) was established in Bauman Moscow State Technical University (BMSTU) in 1989 to provide primary aerospace education for young people, stimulate youth creative research thinking, promote space science and technology achievements and develop cooperation with other youth organizations in the international aerospace community. The center is staffed by the Dr. Victoria Mayorova, BMSTU Associate Professor, the YSC director, Dr. Boris Kovalev, BMSTU Associate Professor, the YSC scientific director, 5 student consultants and many volunteers. Informally YSC is a community of space enthusiasts, an open club for BMSTU students interested in space science and technology and faculty teaching in this field. YSC educational activities are based on the concept of uninterrupted aerospace education, developed and implemented by the center. The concept includes working with young space interested people both in school and university and then assisting them in getting interesting job in Russian Space Industry. The school level educational activities of the center has got different forms, such as lecturing, summer scientific camps and even Classes from Space given by Mir space station flight crew in Mission Control Center - Moscow and done in cooperation with All- Russian Aerospace Society Soyuz (VAKO Soyuz). This helps to stimulate the young people interest to the fundamental sciences ( physics, mathematics, computer science, etc.) exploiting and developing their interest to space and thus increase the overall educational level in the country. YSC hosts annual Cosmonautics conference for high school students that provides the University with capability to select well-prepared and motivated students for its' rocket and space related departments. For the conference participants it's a good opportunity to be enrolled to the University without entrance examinations. BMSTU students can participate in such YSC activities as annual international workshop for space

  4. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  5. Multicriterial comparative analysis of rocket and space technology

    Science.gov (United States)

    Gusynin, V. P.; Goldshtein, Yu. M.; Doroshkevich, V. K.; Kuznetsov, V. I.; Kuchugurny, Yu. P.

    The problem of a comparative analysis of objects of rocket and space technology is formulated in terms of one of fundamental problems of the system analysis, namely, comparisons of objects on set of diverse criteria. A procedure for a comparative estimation based on the method of the analytic hierarchy process is offered as an algorithm. We give an example, namely, a comparison of launcher-carriers, derived with the use of our software.

  6. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  7. Technology assessment for Spaceship Two, space tourism, and private spaceflight

    Science.gov (United States)

    Hancock, Randy

    A seven-step technology assessment was conducted to address questions regarding the significance and likely consequences associated with the introduction of Spaceship Two, space tourism, and private spaceflight. Impacts were assessed across four categories: the Role and Functions of Government, Private Industry Factors, Cultural and Societal Impacts, and the Time Frame in which these impacts were anticipated to occur. The technology assessment findings were compared to the results of expert interviews that addressed the sane four categories. The researcher noted that, while there was overwhelming agreement between the technology assessment's primary impacts and the expert interview responses, there were several differences. The technology assessment and interviewees agreed that the federal government would likely be both a regulator and user of private spaceflight. Both agreed that business partnerships would be key in pursuing private spaceflight. There was also consensus that, as market forces come to bear, ticket prices would drop and a larger market and broader passenger demographic would emerge. The technology assessment and experts agreed that an accident, especially one early in the industry's evolution, could be disastrous. Both agreed that private spaceflight can serve as a inspiration to students and be a positive influence in society, and both agreed that the start of passenger flights should take place in the 2010 - 2012 timeframe. Due to the potentially disastrous consequences of an accident, there was agreement between the technology assessment and experts on the value of flight and ground crew training, driven by insurance carriers and federal mandate. Most differences between the technology assessment's findings and the expert interview responses were due to omission, rather than direct disagreement. However, this was not the case in every instance. The most significant difference between the technology assessment and the experts involved the

  8. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  9. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    Science.gov (United States)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  10. Overcoming Learning Time And Space Constraints Through Technological Tool

    Directory of Open Access Journals (Sweden)

    Nafiseh Zarei

    2015-08-01

    Full Text Available Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigate how the Learning Management Blog (LMB overcomes the learning time and space constraints that contribute to students’ language learning and language acquisition processes. The participants were 30 ESL students at National University of Malaysia. A qualitative approach comprising an open-ended questionnaire and a semi-structured interview was used to collect data. The results of the study revealed that the students’ language learning and acquisition processes were enhanced. The students did not face any learning time and space limitations while being engaged in the learning process via the LMB. They learned and acquired knowledge using the language learning materials and forum at anytime and anywhere. Keywords: learning time, learning space, learning management blog

  11. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  12. Space experiments on basic technologies for a space elevator using microsatellites

    Science.gov (United States)

    Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito

    2017-09-01

    We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.

  13. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  14. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  15. AIR Technology: A Step Towards ARINC 653 in Space

    Science.gov (United States)

    Rufino, J.; Craveiro, J.; Schoofs, T.; Tatibana, C.; Windsor, J.

    2009-05-01

    The Integrated Modular Avionics and the ARINC 653 specifications are assuming a key role in the provision of a standard operating system interface for safety-critical applications in both the aeronautic and space markets. The AIR Technology, designed within the scope of an ESA initiative to develop a proof of concept, implements the notion of robust temporal and spatial partitioning. A different operating system kernel may be used per partition, furnishing the bare services to build the ARINC 653 application programming interface. This paper describes the advances done during AIR-II, an initiative to evolve the AIR Technology proof of concept towards an industrial product. Current prototype activities are based on RTEMS and on the SPARC V8 LEON3 processor and work is being done on the integration of Linux in the AIR Technology.

  16. The NASA program in Space Energy Conversion Research and Technology

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  17. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  18. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  19. CeSiCò - a new technology for lightweight and cost effective space instruments structures and mirrors

    Science.gov (United States)

    Devilliers, Christophe; Krödel, Matthias

    2017-11-01

    Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.

  20. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    Science.gov (United States)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  1. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  2. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  3. Extreme Environment Technologies for Space and Terrestrial Applications

    Science.gov (United States)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-01-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.

  4. Historical overview of the synchrotron radiation research in Japan. From the view point of creative works in the development of light sources and related technology

    International Nuclear Information System (INIS)

    Kamitsubo, Hiromichi

    2007-01-01

    Synchrotron radiation research in Japan started in early 1960's when the first electron synchrotron was commissioned at the Institute of Nuclear Study (INS), University of Tokyo (UT). This review covers the parasite use of the INS electron synchrotron and research works done at the light sources in Japan such as SOR-RING, Photon Factory (KEK-PF) Accumulator Ring (KEK-AR), and SPring-8. History of synchrotron radiation research in Japan was overviewed by paying attention to the creative works in the development of light sources and related technology, as well as the pioneering works on the development of experimental techniques and methods. At present there are more than ten synchrotron radiation sources are in operation and the number of their users, especially users from industries in Japan is increasing very rapidly and the research fields of users are also developing. Accordingly the synchrotron radiation facility becomes more and more indispensable facility in the society in Japan. (author)

  5. Capitalizing on Knowledge from Public Research Institutions: Indications from New Technology-Based Firms in Japan

    Science.gov (United States)

    Lynskey, Michael J.

    2010-01-01

    Knowledge spillovers from universities and other public research institutions (PRIs) are viewed as essential for innovation. Previous studies examining the impact of such spillovers have been confined to the West, and there are no comparable studies using empirical data from Japan that explore the relationship between spillovers from PRIs and…

  6. Technology in Japan: Advancing the Frontiers. Part 2: Research and Development.

    Science.gov (United States)

    Grayson, Lawrence P.

    1987-01-01

    Addresses the relatively recent increase in Japan in expenditures for research and development (R&D) and the education of a large pool of doctorate-level engineers capable of performing more fundamental research. Compares the differences in Japanese and American R&D funding, university research budgets, and university-industry linkages.…

  7. Performance of PWR study in the technology supplier countries: south korea and japan case

    International Nuclear Information System (INIS)

    Sriyana

    2007-01-01

    Electricity is needed as an infrastructure to support the national economic growth. For economic development sustainability, energy alternatives should be provided. Nuclear Power Plant (NPP) become the alternative of electricity generation for optimum energy mix in Indonesia and planned to operate in the 2016. Several studies have already done to prepare the NPP construction. This study focused on NPP performance especially PWR type in Asia, namely Japan and South Korea. Methodology used in this is literature tracing and a small calculation. The energy availability per unit per year is used as a parameter for evaluating the NPP performance. This conclusion are 1) the amount of NPP - PWR type in Japan is 22 units with total operational experiences 526 reactor-years and the average energy availability factor about 70.7% per unit per year. Meanwhile for the same type South Korea has 16 unit with total operational experience 222 reactor-years and average availability factor per unit per year is about 86.9%. 2) the 1000 class of PWR type both South Korea and Japan have 14 units. The operational experiences for thi class is 170 reactor-year for South Korean and 307 reactor-year for Japan. Meanwhile the average availability factor per unit per year is about 87.0% for South Korea and 69.6% for Japan. 3) the average availability factor is closed to capacity factor, so is important for real figure in assuming the techno-economic parameters, because it will influence the result o economic calculation. (author)

  8. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  9. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  10. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  11. Space power distribution system technology. Volume 1: Reference EPS design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

    1983-01-01

    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

  12. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  13. Seismic Observation in Deep Boreholes and Its Applications - Workshop Proceedings, Niigata Institute of Technology, Kashiwazaki, Japan

    International Nuclear Information System (INIS)

    2014-01-01

    The Kashiwazaki WS was held to develop the recommendations made at the Tsukuba WS entitled 'Seismic Input Motions Incorporating Recent Geological Studies' which was held in November 2004 in Tsukuba City in Japan (hereinafter, the 'Tsukuba WS'). At the Tsukuba WS, the state of the art in defining realistic seismic input for the design and re-evaluation of nuclear facilities as well as advances in seismic source characterization of fault zones using data from deep geological investigations and their possible contribution to improving seismic input definitions were reviewed. Further, the importance and necessity of cooperation between seismology and geology in order to decrease uncertainty in seismic input definition were emphasized. After the Tsukuba WS, the Niigata-ken Chuetsu-oki Earthquake (NCOE, M=6.8) occurred near the Kashiwazaki-Kariwa NPP site. In this earthquake, a focusing effect of ground motion was observed at the Kashiwazaki-Kariwa NPP site, which caused locally amplified ground motion. Units 1 and 2 showed significantly higher responses of more than 50 percent compared to Units 3 to 7. This was thought to be caused by the fact that seismic waves were focused on Units 1 and 2 due to the irregular structure under the site. A similar effect was observed at the Hamaoka site in the earthquake that occurred in Suruga Bay in 2009. Only Unit 5 showed a double or larger response to this earthquake, and similar phenomena were found only for events with hypocenter in the narrow direction from the site. This was also thought to be caused by the irregular geological structure under the site. In the 2011 off the Pacific Coast of Tohoku Earthquake, the peak ground accelerations (PGA) of the Dai-ichi NPP site were about twice as large as those of the Dai-ni NPP site, although the distance between these sites is only slightly more than 10 km. Further, large differences in the PGAs were found among each of the units of the Dai-ichi NPP site. For example, the PGA of Unit

  14. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  15. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  16. Astronomy and Space Technologies, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physics and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JE...

  17. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  18. Community Geothermal Technology Program: Cloth dyeing by geothermal steam. An experiment in technology transfer from Japan to Hawaii, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A.S.

    1987-12-31

    This was an experiment to test whether cloth dyeing using geothermal steam (already proven in Japan) would be feasible in Hawaii. Results: Using a fabricated steam vat, cotton, silk, and synthetic can be dyed; the resulting material received high grades for steadfastness and permanency under dye testing. Techniques that were successful in Matsukawa, were replicated in Puna. However, attempts to embed leaf patterns on cloth using natural leaves and to extract natural dyes from Hawaiian plants were unsuccessful; the color of natural dyes deteriorated in hours. But chemical dyes gave brilliant hues or shades, in contrast to those in Japan where the steam there gave subdued tones. It is concluded that geothermal dyeing can be a viable cottage industry in Puna, Hawaii.

  19. Application of dexterous space robotics technology to myoelectric prostheses

    Science.gov (United States)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  20. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  1. How Beliefs of English-Language Professors in Japan Influence Their Pedagogy and Teaching Strategies Related to the Use of Technology

    Science.gov (United States)

    Hasan, Zahir T.

    2016-01-01

    This research study examines teaching beliefs of English-language professors in Japan, how professors make sense of their beliefs, and how the beliefs influence their pedagogical strategies related to using technology and teaching with technology. An Interpretative Phenomenological Analysis (IPA) research design was used. Six English-language…

  2. Comparative study of linkage between environmental policy instruments and technological innovation: Case study on end-of-life vehicles technologies in Japan and EU.

    Science.gov (United States)

    Singh, Rajeev Kumar; Yabar, Helmut; Nozaki, Noriko; Niraula, Baburam; Mizunoya, Takeshi

    2017-08-01

    A growing population and urbanization is a challenge for finite natural resources. Without strict regulation to recycle, recover and reuse resources, waste is discarded with no value. Every year throughout the world, more than twenty-five million vehicles turn into end-of-life vehicles (ELV) and most of their valuable resources end up in landfill sites. This research analyses the effect of regulation on ELV innovation for additional recovery of resources in Japan and EU nations using patent data as a proxy. The analysis determines the statistical difference in patent activity before and after regulations were enacted in the case studies. The relevant data on ELV technologies was gathered for the period 1985-2013. The study suggests that in general environmental regulation in Japan drove innovation and reveals that environmental policy in Japan was more effective in enabling innovation compared to EU nations. Specifically, the results from these developed countries can be used by the rapidly growing developing countries in automobile manufacturing like China for amendment of their ELV regulation accordingly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. NASA's Space Environments and Effects (SEE) Program: The Pursuit of Tomorrow's Space Technology

    Science.gov (United States)

    Pearson, Steven D.; Hardage, Donna M.

    1998-01-01

    A hazard to all spacecraft orbiting the earth and exploring the unknown in deep space is the existence of a harsh and ever changing environment with its subsequent effects. Some of these environmental hazards, such as plasma, extreme thermal excursions, meteoroids, and ionizing radiation result from natural sources, whereas others, such as orbital debris and neutral contamination are induced by the presence of spacecraft themselves. The subsequent effects can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and advocates technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will provide an overview of the Program's purpose, goals, database management and technical activities. In particular, the SEE Program has been very active in developing improved ionizing radiation models and developing related flight experiments which should aid in determining the effect of the radiation environment on modern electronics.

  4. The Science and Technology of Future Space Missions

    Science.gov (United States)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  5. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  6. Changes in Mothers' Psychosocial Perceptions of Technology-dependent Children and Adolescents at Home in Japan: Acknowledgement of Children's Autonomy.

    Science.gov (United States)

    Nishigaki, Kaori; Kanamori, Yutaka; Ikeda, Mari; Sugiyama, Masahiko; Minowa, Hideko; Kamibeppu, Kiyoko

    2016-06-01

    This research was conducted to reveal Japanese mothers' changing perceptions towards their technology-dependent children in the home care setting. Fourteen Japanese mothers participated in semi-structured interviews, which were analyzed using a grounded theory approach. "Degree of preoccupation with the child" emerged as the category representing the mothers' perceptions towards their child. Three categories emerged that represented the progression of maternal perceptions over time: "accepting the child's conditions", "mastering the management of care in various conditions", and "considering social participation for the child". First, mothers gradually accepted the conditions of their child after his/her disease and disability were known. Second, others managed technology-required care and concurrently considered the social participation of their child through daily care at home. Third, the level of preoccupation with the child was affected by the mothers' management of care and their attitude towards the social participation of their child in home care. In this study, as is widely alleged in historical recognition of Japan, mothers provided daily care almost without help from other family members. Additionally, they thought it natural and good for their children. Above all, especially in Japan, professional support for mothers are necessary so that they can take breaks from care. Copyright © 2016. Published by Elsevier B.V.

  7. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  8. VZLUSAT-1: verification of new materials and technologies for space

    Science.gov (United States)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  9. Solar concentrator technology development for space based applications, volume 1

    Science.gov (United States)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  10. Solar concentrator technology development for space based applications, volume 2

    Science.gov (United States)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  11. Technology and Standardization Strategies Related to The Diffusion of Smart Houses: The Case of ECHONET in Japan

    Directory of Open Access Journals (Sweden)

    Kumiko Miyazaki

    2016-07-01

    Full Text Available In this paper, an analysis is made of the technology and standardization strategies regarding ECHONET and KNX, which are the de jure standards for smart houses in Japan and Europe. Eleven interviews with the main actors related to the ECHONET Consortium and KNX were conducted. Three research questions were set. What are the technology strategy related concerns of the main actors related to ECHONET? What are the issues related to the diffusion of smart houses? What are the underlying strengths and weaknesses of ECHONET when compared with KNX? The analyses showed that the strategies of the various actors towards the diffusion of smart houses were different, based on their different perspectives, visions and competences. A comparison between Japanese and European case highlighted the different standardization strategies and areas of focus. The main bottlenecks towards the diffusion of smart houses were identified.

  12. Augmenting Space Technology Program Management with Secure Cloud & Mobile Services

    Science.gov (United States)

    Hodson, Robert F.; Munk, Christopher; Helble, Adelle; Press, Martin T.; George, Cory; Johnson, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Game Changing Development (GCD) program manages technology projects across all NASA centers and reports to NASA headquarters regularly on progress. Program stakeholders expect an up-to-date, accurate status and often have questions about the program's portfolio that requires a timely response. Historically, reporting, data collection, and analysis were done with manual processes that were inefficient and prone to error. To address these issues, GCD set out to develop a new business automation solution. In doing this, the program wanted to leverage the latest information technology platforms and decided to utilize traditional systems along with new cloud-based web services and gaming technology for a novel and interactive user environment. The team also set out to develop a mobile solution for anytime information access. This paper discusses a solution to these challenging goals and how the GCD team succeeded in developing and deploying such a system. The architecture and approach taken has proven to be effective and robust and can serve as a model for others looking to develop secure interactive mobile business solutions for government or enterprise business automation.

  13. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  14. The deployment of projects of hydrogen-related innovative technologies in Japan and some topics in the project

    International Nuclear Information System (INIS)

    Sakata, K.; Mizutani, E.; Fukuda, K.

    2004-01-01

    The deployment of innovative technologies, which have the potentiality to make breakthroughs in the future but have been kept remained at early stages of development because of their uncertain technological values, is important in the course of introduction and dissemination of hydrogen energy into our society. In Japan, in the consecutive projects of 'World Energy Network' (WE-NET) and 'Development of Safe Utilization Technology and an Infrastructure for Hydrogen Use', both supported by New Energy and Industrial Technology Development Organization (NEDO), significant results have been achieved in the project of 'Research on Innovative Technologies'. The framework and characteristics of this project are outlined with several research topics. In the exploratory research on the alternative catalytic materials to Platinum group metals for fuel cells and hydrogen production, a series of Tantalum oxynitrides were found potentially applicable as new electrodes catalysts the development of magnetic refrigeration of hydrogen is under way with the finding of materials with feasible properties; in search of innovative hydrogen storage systems, a new process of decalin dehydrogenation / naphthalene hydrogenation based on superheated liquid-film-type catalysis was developed. (author)

  15. HI-STAR. Health Improvements Through Space Technologies and Resources: Final Report

    Science.gov (United States)

    Finarelli, Margaret G.

    2002-01-01

    The purpose of this document is to describe a global strategy to integrate the use of space technology in the fight against malaria. Given the well-documented relationship between the vector and its environment, and the ability of existing space technologies to monitor environmental factors, malaria is a strong candidate for the application of space technology. The concept of a malaria early warning system has been proposed in the past' and pilot studies have been conducted. The HI-STAR project (Health Improvement through Space Technologies and Resources) seeks to build on this concept and enhance the space elements of the suggested framework. As such, the mission statement for this International Space University design project has been defined as follows: "Our mission is to develop and promote a global strategy to help combat malaria using space technology". A general overview of malaria, aspects of how space technology can be useful, and an outline of the HI-STAR strategy is presented.

  16. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  17. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  18. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  19. Transformational Concepts and Technologies For the Exploration and Development of Space

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2003-01-01

    The performance and cost of available systems and technologies limit the programmatic prospects for the U.S. and the international community to achieve ambitious goals and objectives in future human and robotic exploration and development of space. Innovative applications of emerging technologies and new systems concepts are vital to enabling future space systems and architectures. This paper will discuss new technologies and their application to transformational systems concepts in space utilities and power, space infrastructure, transportation and exploration.

  20. Reduction Potato s hydric soil erosion using space technology

    Science.gov (United States)

    Guyot, E.; Rios, V.; Zelaya, D.; Rios, E.; Lepen, F.; Padilla, P.; Soria, F.

    The potato's crop has an econ omic importance in Tucuman's agricultural PBI (Gross Product Income) because its rank is fourth(4°). Production's potato area is a breakable agro system; its geographic location is in Pedemonte's agro-ecological region so is essential to handle hydric erosion. Therefore, the aim of this work is improve crop's potato irrigation management through satellite information merge with farm's practices. The space technology consented to obtain Digital Model Soil using both unique differential and dual frequency GPS signals and total station. The irrigation practices were carried out due to irrigation management (FAO) and satellite imagine software (ENVI). Preliminary results of this experience allowed to follow the crop's growing through multitemporal study; reprogramming farm's irrigation practices intended for manage reduction hydric erosion and heighten economically its productivity for the next period

  1. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  2. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications

    Science.gov (United States)

    Mason, Lee S.; Schreiber, Jeffrey G.

    2007-01-01

    Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.

  3. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  4. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  5. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    Science.gov (United States)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  6. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Science.gov (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  7. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  8. Okinawa, Japan

    Science.gov (United States)

    1991-01-01

    The southern half of the island of Okinawa, Japan (26.5N, 128.0E) can be seen in this nearly cloud free view. Okinawa is part of the Ryuku Islands which extend from Taiwan northeastward to Kyushu, southernmost of the Japanese Home Islands. The large military base at Kadena, with large runways, is visible near the center of the scene. Kadena is one of several emergency landing sites around the world for the space shuttle.

  9. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font

    2012-09-01

    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  10. Localization of epidural space: A review of available technologies.

    Science.gov (United States)

    Elsharkawy, Hesham; Sonny, Abraham; Chin, Ki Jinn

    2017-01-01

    Although epidural analgesia is widely used for pain relief, it is associated with a significant failure rate. Loss of resistance technique, tactile feedback from the needle, and surface landmarks are traditionally used to guide the epidural needle tip into the epidural space (EDS). The aim of this narrative review is to critically appraise new and emerging technologies for identification of EDS and their potential role in the future. The PubMed, Cochrane Central Register of Controlled Clinical Studies, and Web of Science databases were searched using predecided search strategies, yielding 1048 results. After careful review of abstracts and full texts, 42 articles were selected to be included. Newer techniques for localization of EDS can be broadly classified into techniques that (1) guide the needle to the EDS, (2) identify needle entry into the EDS, and (3) confirm catheter location in EDS. An ideal method should be easy to learn and perform, easily reproducible with high sensitivity and specificity, identifies inadvertent intrathecal and intravascular catheter placements with ease, feasible in perioperative setting and have a cost-benefit advantage. Though none of them in their current stages of development qualify as an ideal method, many show tremendous potential. Some techniques are useful in patients with difficult spinal anatomy and infants, and thus are complementary to traditional methods. In addition to improving the existing technology, future research should aim at proving the superiority of these techniques over traditional methods, specifically regarding successful EDS localization, better safety profile, and a favorable cost-benefit ratio.

  11. Scientific and educational center "space systems and technology"

    Science.gov (United States)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  12. Space technology for directly imaging and characterizing exo-Earths

    Science.gov (United States)

    Crill, Brendan P.; Siegler, Nicholas

    2017-09-01

    The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 10-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We describe in this paper a roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. Two of these studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.

  13. Impacts of the 2011 Tohoku earthquake on electricity demand in Japan. State space approach

    International Nuclear Information System (INIS)

    Honjo, Keita; Ashina, Shuichi

    2017-01-01

    Some papers report that consumers' electricity saving behavior (Setsuden) after the 2011 Tohoku Earthquake resulted in the reduction of the domestic electricity demand. However, time variation of the electricity saving effect (ESE) has not yet been sufficiently investigated. In this study, we develop a state space model of monthly electricity demand using long-term data, and estimate time variation of the ESE. We also estimate time variation of CO 2 emissions caused by Setsuden. Our result clearly indicates that Setsuden after the earthquake was not temporary but became established as a habit. Between March 2011 and October 2015, the ESE on power demand ranged from 2.9% to 6.9%, and the ESE on light demand ranged from 2.6% to 9.0%. The ESE on the total electricity demand was 3.2%-7.5%. Setsuden also contributed to the reduction of CO 2 emissions, but it could not offset the emissions increase caused by the shutdown of nuclear power plants. (author)

  14. NASA space station automation: AI-based technology review. Executive summary

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  15. JPRS Report (Erratum), Science & Technology, Japan, Selections from MITI White Paper on Industrial Technology Trends and Issues

    Science.gov (United States)

    1989-08-30

    microbiology 2. Biomembrane utilization technology EA: Structure, function elucidation 3. Development of biorelated analysis and evaluation systems EA...Max Planck Laboratory AT1T Boll Laboratorio « Source for B: Source for C: Paittur (Persona) inttitut« OECD Science and Technology Indicators

  16. The tea ceremony room in traditional Japan: a stylized organization of space and time?

    Directory of Open Access Journals (Sweden)

    Eric Decreux

    2015-12-01

    Full Text Available The paper has the purpose to present the organization of the tea room in the Japanese traditional tea ceremony and its interactions with Japanese imaginary. It suggests mainly that this space is organized in such a way that it eventually appears to become a stylized living place, taking into account two requirements. The first one is clearly to provide a place where both host and guests can have an harmonious exchange around a bowl of tea. The second is to provide a place in harmony with an idealized cosmos expressing both the presence of an ecumene and of time, as it is perceived in the Japanese traditional spirit. The paper thus investigates the presence of diverse Japanese crafts: tatami, calligraphy and poetry, pottery, flowers, metalwork, Japanese pastry, sometimes clothes etc., but also the relationship with outer gardens, outside weather, and the rules of behavior between people. All of these elements are not only considered in relation to one another, but also in relation to the season, to the guests or to other elements of the situation. We emphasize the valorization of different places at some moments, the role of frontiers of some tatami borders or of the fan of each participant. The mutual respect between people playing different roles is also highlighted, as well as the respect towards the chosen objects. Finally, the coordination of the movements and places during the meeting creates a specific and often really appreciated atmosphere. These rules contribute to building a living socialized and idealized place in accordance with two of the well-known watchwords of the tea ceremony: wa kei sei jaku – harmony, respect, purity, tranquility and ichiko ichie one time, one meeting.

  17. History of establishment of scientific technology law focused on exchanges of Korea, China and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Hui

    1990-10-15

    This book introduces science and technology promotion related law, industrial technology related law, resources and energy related law, nuclear energy related law, information and communication related law, intellectual property right related law, and environment related law. It explains process of development of 7 laws in threes countries and relations of three countries exchanges. It also covers special law for science and technology innovation, electric utility law, petroleum enterprise law, telecommunication related law, law of settlement of digital divide, and information-oriented law.

  18. History of establishment of scientific technology law focused on exchanges of Korea, China and Japan

    International Nuclear Information System (INIS)

    Lee, Gyeong Hui

    1990-10-01

    This book introduces science and technology promotion related law, industrial technology related law, resources and energy related law, nuclear energy related law, information and communication related law, intellectual property right related law, and environment related law. It explains process of development of 7 laws in threes countries and relations of three countries exchanges. It also covers special law for science and technology innovation, electric utility law, petroleum enterprise law, telecommunication related law, law of settlement of digital divide, and information-oriented law.

  19. Role development of nurses for technology-dependent children attending mainstream schools in Japan.

    Science.gov (United States)

    Shimizu, Fumie; Suzuki, Machiko

    2015-04-01

    To describe the role development of nurses caring for medical technology-dependent children attending Japanese mainstream schools. Semi-structured interviews with 21 nurses caring for technology-dependent children were conducted and analyzed using the modified grounded theory approach. Nurses developed roles centered on maintaining technology-dependent children's physical health to support children's learning with each other, through building relationships, learning how to interact with children, understanding the children and the school community, and realizing the meaning of supporting technology-dependent children. These findings support nurses to build relationships of mutual trust with teachers and children, and learn on the job in mainstream schools. © 2015, Wiley Periodicals, Inc.

  20. Research and Development of Technologies for Partitioning and Transmutation of Long-lived Nuclides in Japan - Status and Evaluation

    International Nuclear Information System (INIS)

    Sanae Aoki

    2003-01-01

    Japanese basic policy regarding disposal of high-level radioactive waste (HLW) is to solidify it into stabilized form, to store it for 30-50 years to be cooled, and to dispose of it deep to the underground (geological disposal). In Japan, reference to P and T technology for long-lived and other nuclides first appeared in the Long-term Programme for Nuclear Research, Development and Utilisation (or 'long-term nuclear programme') back in 1972. That programme noted the need for research and development in order to ensure effective processing of radioactive waste. The long-term nuclear programme issued in 1987 stated that P and T technology was very important from the viewpoint of recycling HLW and enhancing disposal efficiency. It also stated that systematic R and D would be carried out jointly by JAERI, the Power Reactor and Nuclear Fuel Development Corp. (PNC, now JNC) and others. The long-term nuclear programme issued in 1994 stated that each research institute would carry out basic studies on P and T technologies and evaluate each technology at some time in the mid- 1990's to determine how to proceed thereafter. Based on the evaluation schedule stated in this program, the AEC's Advisory Committee on Nuclear Fuel Cycle Back-end Policy investigated and considered matters concerning P and T technology for long-lived and other nuclides. In March 2000, the Committee issued a report entitled 'Research and Development of Technologies for Partitioning and Transmutation of Long-lived Nuclide Status and Evaluation Report'. A brief summary of this report is presented

  1. [Chapter 2. Transitions in drug-discovery technology and drug-development in Japan (1980-2010)].

    Science.gov (United States)

    Sakakibara, Noriko; Yoshioka, Ryuzo; Matsumoto, Kazuo

    2014-01-01

    In 1970s, the material patent system was introduced in Japan. Since then, many Japanese pharmaceutical companies have endeavored to create original in-house products. From 1980s, many of the innovative products were small molecular drugs and were developed using powerful medicinal-chemical technologies. Among them were antibiotics and effective remedies for the digestive organs and circulatory organs. During this period, Japanese companies were able to launch some blockbuster drugs. At the same time, the pharmaceutical market, which had grown rapidly for two decades, was beginning to level off. From the late 1990s, drug development was slowing down due to the lack of expertise in biotechnology such as genetic engineering. In response to the circumstances, the research and development on biotechnology-based drugs such as antibody drugs have become more dynamic and popular at companies than small molecule drugs. In this paper, the writers reviewed in detail the transitions in drug discovery and development between 1980 and 2010.

  2. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed.

    Science.gov (United States)

    Herbort, Carl P; Tugal-Tutkun, Ilknur

    2017-06-01

    Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.

  3. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  4. Proceedings of the 6. Japan-Brazil Symposium on Science and Technology

    International Nuclear Information System (INIS)

    1988-01-01

    Researches carried out on: applications of radiation and radioisotopes; ceramics; environment; metals and alloys; nuclear safety; radiation protection; plasma; and space science, are presented. (M.C.K.) [pt

  5. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    Science.gov (United States)

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  6. Managing the natural disasters from space technology inputs

    Science.gov (United States)

    Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.

    1997-01-01

    Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.

  7. Recent cryocooler progress in Japan

    Science.gov (United States)

    Matsubara, Y.

    1985-05-01

    The progress of cryocoolers and related devices in Japan is reviewed. The Japanese National Railways has developed the light weight 4 K on-board refrigerators since 1977 as part of the MAGLEV train program. Superconducting and cryogenic fundamental technology was examined which included high performance cryocooler, magnetic refrigerator and superfluid refrigeration. Space cryogenics such as the cooling systems of IR-detectors was studied. Cryocooler for special applications such as cryopump, NMR-CT and JJ devices was investigated. Compact heat exchangers, high performance regenerators and reliable compressors are investigated as a critical component technology.

  8. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  9. Industry/government seminar on Large Space systems technology: Executive summary

    Science.gov (United States)

    Scala, S. M.

    1978-01-01

    The critical technology developments which the participating experts recommend as being required to support the early generation large space systems envisioned as space missions during the years 1985-2000 are summarized.

  10. Support for Development of Electronics and Materials Technologies by the Governments of the United States, Japan, West Germany, France, and the United Kingdom.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    The governments of the United States, Japan, West Germany, France, and the United Kingdom each have large research and development efforts involving government agencies, universities and industry. This document provides a comparative overview of policies and programs which contribute to the development of technologies in the general area of…

  11. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  12. Neuroscience and nanotechnologies in Japan--beyond the hope and hype of converging technologies.

    Science.gov (United States)

    Mushiaki, Shigeru

    2011-01-01

    Nanotechnologies are often said to be "converging" with other technologies like biotechnology, information technology, and cognitive science. And so-called "NBIC convergence" is thought to enable "enhancement" of human performance. First, I classify various kinds of enhancement. Second, I focus on the "cybernetic enhancement," to which nanotechnologies are supposed to contribute, and analyze the connection and integration of humans with machines, which could lead to the cyborgization of human beings. Third, I examine the portrayal of robot/cyborg technology in Japanese popular media, point out the tendency to empathy or ensoulment concerning robots/cyborgs, and raise the question of "ethical issues of ethical enhancement." Fourth, I compare nanotechnologies with neurotechnology and criticize the hype of "converging technologies."

  13. A cooperative power trading system based on satisfaction space technology

    International Nuclear Information System (INIS)

    Matsumoto, K.; Maruo, T.; Mori, N.

    2006-01-01

    This paper proposed a new power trading system model designed to ensure customer cooperation with power suppliers. Designed as an Internet application, the cooperative power trading system modelled power markets using a satisfaction space technology A network model of electric power trading systems was developed to create a communication network system that consisted of suppliers, customers, and auctioneers. When demand exceeded supply, the auctioneer in the trading system requested power reductions from customers. Rewards were paid to maintain the degree of satisfaction of the customers. The supplier's evaluation function was defined as a function of market price and power supply. A power reducing method was developed using a combinatorial optimization technique. Suppliers and customers submitted bids for initial power trading quantities, while the auctioneer decided a market price based on bidding values. After receiving the market price, suppliers and customers submitted a second set of bids for expected power trading quantities. A power reduction plan was then developed by the auctioneer to balance the amount of power supply and demand. The system can be applied to customers whose evaluation functions cannot be estimated beforehand, as the auctioneer was able to choose the most efficient power reduction point selected by consumers using a maximum steep slope method. Simulations conducted to validate the trading system demonstrated that the system is capable of choosing efficient energy reduction plans. 6 refs., 4 tabs., 3 figs

  14. Alkali Metal Thermal to Electric Converter (AMTEC) Technology Development for Potential Deep Space Scientific Missions

    Science.gov (United States)

    Mondt, J.; Sievers, R.

    1998-01-01

    This paper describes the alkali metal thermal to electric converter (AMTEC) technology development effort over the past year. The vapor-vapor AMTEC cell technology is being developed for use with either a solar or nuclear heat sources for space.

  15. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  16. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    Science.gov (United States)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  17. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-15

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N{sub 2}), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N{sub 2}-packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization.

  18. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-01

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N 2 ), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N 2 -packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization

  19. Maternal age and birth defects after the use of assisted reproductive technology in Japan, 2004-2010.

    Science.gov (United States)

    Ooki, Syuichi

    2013-01-01

    Older mothers are becoming more common in Japan. One reason for this is the widespread use of assisted reproductive technology (ART). This study assesses the relationship between maternal age and the risk of birth defects after ART. Nationwide data on ART between 2004 and 2010 in Japan were analyzed. Diseases that were classified as code Q00-Q99 (ie, congenital malformations, deformations, and chromosomal abnormalities) in the International Classification of Diseases, tenth edition, were selected. There were 219,185 pregnancies and 153,791 live births in total ART. Of these, 1943 abortions, stillbirths, or live births with birth defects were recorded. Percentage of multiple birth defects in total birth defects, the prevalence, crude relative risk and 95% confidence interval per 10,000 pregnancies and per 10,000 live births were analyzed according to the maternal age class (ie, 25-29, 30-34 (reference), 35-39, and 40+ years). Multiple birth defects were observed among 14% of the 25-29 year old class, and 8% among other classes when chromosomal abnormalities were excluded. The prevalence of chromosomal abnormalities per pregnancy and per live birth became significantly and rapidly higher in mothers in the age classes of 30-35 and 40+ years. Nonchromosomal birth defects per pregnancy decreased linearly with advanced maternal age, while the number of nonchromosomal birth defects per live birth formed a gradual U-shaped distribution. The prevalence per pregnancy of congenital malformations of the nervous system was significantly lower with advanced maternal age. The relative risk per live birth was significant regarding congenital malformations of the circulatory system for a maternal age of 40+ years. Some other significant associations between maternal age and birth defects were observed. Maternal age is associated with several birth defects; however, older maternal age in itself does not produce noticeable extra risk for nonchromosomal birth defects overall.

  20. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  1. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  2. The impacts of U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost of China, EU, and Japan under the constraints of the global carbon emission space

    Directory of Open Access Journals (Sweden)

    Han-Cheng Dai

    2017-12-01

    Full Text Available Based on the Computable General Equilibrium (CGE model and scenario analysis, the impacts of the U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost in China, European Union (EU, and Japan are assessed under Nationally Determined Contributions (NDCs and 2 °C scenarios due to the changed emission pathway of the U.S. The results show that, under the condition of constant global cumulative carbon emissions and a fixed burden-sharing scheme among countries, the failure of the U.S. to honor its NDC commitment to different degrees will increase the U.S. carbon emission space and decrease its mitigation cost. However, the carbon emission space of other parties, including China, EU, and Japan, will be reduced and their mitigation costs will be increased. In 2030, under the 2 °C target, the carbon price will increase by 4.4–14.6 US$ t−1 in China, by 9.7–35.4 US$ t−1 in the EU, and by 16.0–53.5 US$ t−1 in Japan. In addition, China, EU, and Japan will incur additional Gross Domestic Production (GDP loss. Under the 2 °C target, the GDP loss of China would increase by US$22.0–71.1 billion (equivalent to 16.4–53.1 US$ per capita, the EU's GDP loss would increase by US$9.4–32.1 billion (equivalent to 20.7–71.1 US$ per capita, and Japan's GDP loss will increase by US$4.1–13.5 billion (equivalent to 34.3–111.6 US$ per capita.

  3. Japan’s Growing Technological Capability: Implications for the U.S. Economy

    Science.gov (United States)

    1992-01-01

    because of the great inequity between the two countries in easily available technical resources, and partly because Japanese companies are better (for...Important Case of Non- Globalisation ," Journal of International Business Studies. vol. 22, no. 1, 1991. 13L.L.G. Soete, "The Impact of Technological

  4. Swept-Source Optical Coherence Tomography Angio™ (Topcon Corp, Japan): Technology Review.

    Science.gov (United States)

    Stanga, Paulo E; Tsamis, Emmanouil; Papayannis, Alessandro; Stringa, Francesco; Cole, Tim; Jalil, Assad

    2016-01-01

    Optical coherence tomography (OCT) angiography (OCTA) is a novel, noninvasive, three-dimensional imaging technique that allows for the visualization of intravascular flow in the microvasculature. Swept-source OCT technology utilizes longer-wavelength infrared light than conventional spectral-domain OCT. This enables improved penetration into tissue and imaging through optical opacities and is invisible to the subject. Topcon has recently developed an innovative OCTA algorithm, OCTARA (OCTA Ratio Analysis), which benefits from being paired with swept-source OCT. OCTARA aims to provide improved detection sensitivity of low blood flow and reduced motion artifacts without compromising axial resolution. In this chapter, we describe the implementation of OCTARA with swept-source OCT technology, the technical specifications of acquisition (e.g. the number of scans, area of examination field, etc.) along with the algorithm's function and principles for analysis of B-scan data to achieve angiographic visualization. Examples of OCTA scans performed using the OCTARA algorithm and a comparison of these scans with images obtained using other technologies are also presented. © 2016 S. Karger AG, Basel.

  5. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  6. Validity for assisted hatching on pregnancy rate in assisted reproductive technology: analysis based on results of Japan Assisted Reproductive Technology Registry System 2010.

    Science.gov (United States)

    Nakasuji, Takashi; Saito, Hidekazu; Araki, Ryuichiro; Nakaza, Aritoshi; Kuwahara, Akira; Ishihara, Osamu; Irahara, Minoru; Kubota, Toshiro; Yoshimura, Yasunori; Sakumoto, Tetsuro

    2014-06-01

    The aim of this study was to assess the efficacy of assisted hatching (AH) in assisted reproductive technology (ART) treatment. In this retrospective observational study, the data of patients who were registered in the National ART Registry System of Japan between January and December 2010 were analyzed. The descriptive statistics and validity of AH in fresh embryo transfer (ET) and frozen-thawed ET were assessed by using multiple logistic regression analyses. From a total of 105,450 single ET, 46,029 (43.7%) cycles underwent AH. A total of 9737 (21.3%) and 36,292 (60.9%) cycles underwent AH from 45,818 fresh single ET and 59,632 frozen-thawed single ET, respectively. In the fresh ET patients that underwent AH, the clinical pregnancy and live birth rate were significantly decreased in patients of all ages compared with that of the non-AH group. In the frozen-thawed ET patients, there was no significant difference in pregnancy and live birth rate between the AH group and the non-AH group. AH treatment was more frequently performed in frozen-thawed ET patients than in fresh ET patients, and in the blastocyst stage than in the early cleavage stage. A significantly decreased pregnancy and live birth rate was observed in the fresh ET patients who underwent AH. In the frozen-thawed ET patients who underwent AH, improvement in the clinical pregnancy and live birth rate was not observed. Further studies on the indication and application of AH in ART treatment are required. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  7. Thunderstorm Effects in Space: Technology Nanosatellite (TEST) Program

    National Research Council Canada - National Science Library

    Voss, Hank; Bennett, Adam

    2005-01-01

    Science Objections: Understand source/propagation of Acoustic Gravity Waves into space environment, investigate lightning-induced electron precipitation and coupling into the radiation belt, investigate thunderstorm...

  8. Overview of European and other non-US/USSR/Japan launch vehicle and propulsion technology programs

    Science.gov (United States)

    Rice, Eric E.

    1991-01-01

    The following subject areas are covered: majority of propulsion technology development work is directly related to the ESA's Ariane 5 program and heavily involves SEP (Societe Europeenne de Propulsion) in all areas; Hermes; advanced work on magnetic bearings for turbomachinery; electric propulsion using Cs and Xe propellants done by SEP in France, MBB ERNO in West Germany, and by Culham Lab in UK; successfully tested fired H/O composite nozzle exit cone on 3rd stage of Ariane; turbine blades made of composites to allow increase in gas temperature and improvement in efficiency; combined cycle (turboramjet-rocket) engine analysis work done by Hyperspace; and ESA advanced program studies.

  9. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  10. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  11. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  12. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  13. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  14. MightySat I: Technology in Space for About a Nickel ($M)

    OpenAIRE

    Davis, R.J.; Monahan, Capt J.F.; Itchkawich, T.J.

    1996-01-01

    MightySat is a United States Air Force (USAF) Phillips Laboratory (PL) multi-mission, small satellite program dedicated to providing frequent, inexpensive, on-orbit demonstrations of high payoff space system technologies. PL is the USAF center for space technology research & development. MightySat platforms provide the on-orbit "lab bench" for responsively testing emerging technologies to ensure their readiness for operational Air Force missions. This paper focuses on the MightySat I vehicle,...

  15. Japan 2003

    DEFF Research Database (Denmark)

    Ørstrup, Finn Rude; Hvass, Sven

    2003-01-01

    Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10......Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10...

  16. A NEW HEALTH TECHNOLOGY ASSESSMENT SYSTEM FOR JAPAN? SIMULATING THE POTENTIAL IMPACT ON THE PRICE OF SIMEPREVIR.

    Science.gov (United States)

    Mahlich, Jörg; Kamae, Isao; Rossi, Bruno

    2017-01-01

    Japanese authorities have announced a plan to introduce a health technology assessment (HTA) system in 2016. This study assessed the potential impact of such a policy on the price of the antivirologic drug simeprevir. Taking the antivirologic drug simeprevir as an example, we compared the current Japanese price with hypothetical prices that might result if a U.K. (cost-utility) or German (efficiency frontier) style HTA assessment was in place. The simeprevir unit price under the current Japanese pricing scheme is 13,122 Japanese yen (equivalent to 109.35 U.S. dollars as of April 2015). Depending on the selection of comparators and the pricing method, and assuming that HTA will be used as a basis for price setting, the estimated prices of simeprevir vary up to four times higher than under the current Japanese pricing scheme. Although the analysis is based on only one drug, it cannot be taken for granted that a new HTA system would reduce public healthcare expenditure in Japan.

  17. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  18. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, Koichiro, E-mail: ezato.koichiro@jaea.go.jp [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji [Department of ITER Project, Naka Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Escourbiac, Frederic; Hirai, Takeshi [ITER Organization, route de vinon sur Verdon, 13067 St Paul lez Durance (France)

    2016-11-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2} for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  19. Progress of ITER full tungsten divertor technology qualification in Japan: Manufacturing full-scale plasma-facing unit prototypes

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Seki, Yohji; Yamada, Hirokazu; Hirayama, Tomoyuki; Yokoyama, Kenji; Escourbiac, Frederic; Hirai, Takeshi

    2016-01-01

    Highlights: • JADA has demonstrated the feasibility of manufacturing the full-W plasma-facing units (W-PFU). • The surface profiles of the W monoblocks of the W-PFU prototypes on the test frame to mimic the support structure of the ITER OVT were examined by using an optical three-dimensional measurement system. The results show the most W monoblock surface in the target part locates within + 0.25 mm from the CAD data. • The strict profile control with the profile tolerance of ±0.3 mm is imposed on the OVT to prevent the leading edges of the W monoblocks from over-heating. • The present full-scale prototyping demonstrates to satisfy this requirement on the surface profile. • It can be concluded that the technical maturities of JADA and its suppliers are as high as to start series manufacturing the ITER divertor components. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology demonstration toward Full-tungsten (W) ITER divertor outer vertical target (OVT), especially, W monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m 2 for 10 s. Under the framework of the W divertor qualification program developed ITER organization, JAEA as Japanese Domestic Agency (JADA) manufactured seven full-scale plasma-facing unit (PFU) prototypes with the Japanese industries. Four prototypes that have 146 W monoblock joint with casted copper (Cu) interlayer passed successfully the ultrasonic testing. In the other three prototypes that have the different W/Cu interlayer joint, joint defects were found. The dimension measurements reveal the requirements of the gap between W monoblocks and the surface profile of PFU are feasible.

  20. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    Science.gov (United States)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  1. Department of Defense Space Science and Technology Strategy 2015

    Science.gov (United States)

    2015-01-01

    Nanosatellite Effort (SMDC-ONE) placed five 3U cubesats into orbit. These five satellites represented the first Army- developed spacecraft to be...enabled tactical communications in contested environments and diverse terrains Comms/data exfiltration nanosatellite SMDC Nanosatellite ...Acoustic Suppression (HiPAcS) Technology Development NASA FY 15 Test Orbital transport for nanosatellites Nanolauncher Technologies Initiative

  2. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  3. Fast GC for Space Applications Based on PIES Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a novel analytical instrument which combines the advantages of fast GC and a detector capable of identifying species is proposed. Experiments in the...

  4. Advanced Gas Sensing Technology for Space Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on...

  5. Space power distribution system technology. Volume 3: Test facility design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  6. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  7. Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Current material technologies limit space exploration and vehicle performance due to often unnecessary mass increase from copper wiring or heavy structural...

  8. Application of the Medipix2 technology to space radiation dosimetry and hadron therapy beam monitoring

    International Nuclear Information System (INIS)

    Pinsky, Lawrence; Stoffle, Nicholas; Empl, Anton; Jakubek, Jan; Pospisil, Stanislav; Leroy, Claude; Kitamura, Hisashi; Yasuda, Nakahiro; Uchihori, Yukio

    2011-01-01

    The Medipix2 Collaboration, based at CERN, has developed the TimePix version of the Medipix pixel readout chip, which has the ability to provide either an ADC or TDC capability separately in each of its 256 × 256 pixels. When coupled to a Si detector layer, the device is an excellent candidate for application as an active dosimeter for use in Space Radiation Environments. In order to facilitate such a development, data have been taken with Heavy Ions at the HIMAC facility in Chiba, Japan. In particular, the problem of determining the resolution of such a detector system with respect to heavy ions of differing charges and energies, but with similar dE/dx values has been explored for several ions. The ultimate problem is to parse the information in the pixel “footprint” images from the drift of the charge-cloud produced in the detector layer. In addition, with the use of convertor materials, the detector can be used as a neutron detector, and it has been used both as a charged particle and neutron detector to evaluate the detailed properties of the radiation fields produced by hadron therapy beams. The first space flight of a Medipix-based detector is currently planned for the first quarter of 2012 onboard the UK TechDemoSat-1 satellite as part of the LUCID project. The instrument to be flown is currently planned to have 5 TimePix versions of the Medipix2 detector deployed on 5 of the 6 faces of a cube with ∼3 cm on each side and enclosed by a 0.7 mm thick Al cylindrical cover. The planned orbit will have an altitude of 660 km and will be sun-synchronous with an inclination of 98°Current plans are for the instrument to be located on a vertical side of the satellite with one face upward, one downward, two opposed laterally and one facing in the forward direction with respect to the satellite’s velocity vector. As such, the instrument should be exposed to the outer belt electrons during polar passes as well as the South Atlantic Anomaly and ambient Galactic

  9. Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.

    2000-01-01

    As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.

  10. Discussion on Application of Space Materials and Technological Innovation in Dynamic Fashion Show

    Science.gov (United States)

    Huo, Meilin; Kim, Chul Soo; Zhao, Wenhan

    2018-03-01

    In modern dynamic fashion show, designers often use the latest ideas and technology, and spend their energy in stage effect and overall environment to make audience’s watching a fashion show like an audio-visual feast. With rapid development of China’s science and technology, it has become a design trend to strengthen the relationship between new ideas, new trends and technology in modern art. With emergence of new technology, new methods and new materials, designers for dynamic fashion show stage art can choose the materials with an increasingly large scope. Generation of new technology has also made designers constantly innovate the stage space design means, and made the stage space design innovated constantly on the original basis of experiences. The dynamic clothing display space is on design of clothing display space, layout, platform decoration style, platform models, performing colors, light arrangement, platform background, etc.

  11. Development of Countermeasure and Application technologies to Space Radiation

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-01

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  12. Development of Countermeasure and Application technologies to Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-15

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  13. Microelectronics in Japan

    Science.gov (United States)

    Boulton, William R.

    1995-02-01

    The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.

  14. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  16. Space power needs and forecasted technologies for the 1990s and beyond

    International Nuclear Information System (INIS)

    Buden, D.; Albert, T.

    1987-01-01

    A new generation of reactors for electric power will be available for space missions to satisfy military and civilian needs in the 1990s and beyond. To ensure a useful product, nuclear power plant development must be cognizant of other space power technologies. Major advances in solar and chemical technologies need to be considered in establishing the goals of future nuclear power plants. In addition, the mission needs are evolving into new regimes. Civilian and military power needs are forecasted to exceed anything used in space to date. Technology trend forecasts have been mapped as a function of time for solar, nuclear, chemical, and storage systems to illustrate areas where each technology provides minimum mass. Other system characteristics may dominate the usefulness of a technology on a given mission. This paper will discuss some of these factors, as well as forecast future military and civilian power needs and the status of technologies for the 1990s and 2000s. 6 references

  17. Outline in 1997 Japan compound material academic meeting technological prize winning technology; Kenchiku, doboku kozobutsu no hoshu{center_dot}hokyo yo forukatousito no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Iba, Yoshitomo.; Uemura, Masahiko.; Murakami, Shinkichi.; Saito, Makoto.; Kobayashi, Akira. [Nittetsu Composite Corp., Tokyo (Japan)

    1999-03-15

    That function declines in the sutra time target, and it is finally destroyed, or a construction structure thing bears putting off that life by managing efficient maintenance it is possible. The factor of the function decline of the structure thing, the degree of the decline, and so on are grasped quantitatively, and efficient repair reinforcement time and a method of construction are chosen, and you must carry it out for that. It is paying attention to the development of the method of construction to reinforce the maintenance repair of the construction structure thing by using the tip compound factor from such a viewpoint. In the beginning, a material cost was very expensive, and the recognition not to use it was very general in such a construction field. In such recognition, in Tonen Corp. incorporated company, it has paid attention to the use possibility in the construction field of the tip compound factor since early, research and development have been done continuously from 1980, that It succeeds in, and it is the method of construction that a repair reinforces a concrete structure thing by the tip material that the method of construction which got the technological prize of the Japan compound material academic meeting in 1997 moved carbon fiber to the center. (NEDO)

  18. Outline in 1997 Japan compound material academic meeting technological prize winning technology. Kenchiku, doboku kozobutsu no hoshu[center dot]hokyo yo forukatousito no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Iba, Yoshitomo.; Uemura, Masahiko.; Murakami, Shinkichi.; Saito, Makoto.; Kobayashi, Akira. (Nittetsu Composite Corp., Tokyo (Japan))

    1999-03-15

    That function declines in the sutra time target, and it is finally destroyed, or a construction structure thing bears putting off that life by managing efficient maintenance it is possible. The factor of the function decline of the structure thing, the degree of the decline, and so on are grasped quantitatively, and efficient repair reinforcement time and a method of construction are chosen, and you must carry it out for that. It is paying attention to the development of the method of construction to reinforce the maintenance repair of the construction structure thing by using the tip compound factor from such a viewpoint. In the beginning, a material cost was very expensive, and the recognition not to use it was very general in such a construction field. In such recognition, in Tonen Corp. incorporated company, it has paid attention to the use possibility in the construction field of the tip compound factor since early, research and development have been done continuously from 1980, that It succeeds in, and it is the method of construction that a repair reinforces a concrete structure thing by the tip material that the method of construction which got the technological prize of the Japan compound material academic meeting in 1997 moved carbon fiber to the center. (NEDO)

  19. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  20. Large space system: Charged particle environment interaction technology

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  1. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  2. Space Technology Game Changing Development Astrobee: ISS Robotic Free Flyer

    Science.gov (United States)

    Bualat, Maria Gabriele

    2015-01-01

    Astrobee will be a free-flying robot that can be remotely operated by astronauts in space or by mission controllers on the ground. NASA is developing Astrobee to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station. These IVA tasks include interior environmental surveys (e.g., sound level measurement), inventory and mobile camera work. Astrobee will also serve as a platform for robotics research in microgravity. Here we describe the Astrobee project objectives, concept of operations, development approach, key challenges, and initial design.

  3. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  4. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  5. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  6. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  7. Fully Reusable Access to Space Technology (FAST) Methane Rocket

    Science.gov (United States)

    2007-03-16

    baseline design – NASA Ames partnered for aerothermal and TPS – Reusable Merlin engine option by SpaceX – Conceptual Research Corp design Key impacts......FAST) 5b. GRANT NUMBER Methane Rocket 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lt Cole Doupe, Jess Sponable, Jeffrey Zweber (AFRL/VA); Richard

  8. Radioisotope Power: A Key Technology for Deep Space Explorations

    Science.gov (United States)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  9. Birth defects after assisted reproductive technology according to the method of treatment in Japan: nationwide data between 2004 and 2012.

    Science.gov (United States)

    Ooki, Syuichi

    2015-11-01

    The purpose of the present study was to analyze birth defects (congenital anomalies) after assisted reproductive technology (ART) according to the method of treatment, namely in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and frozen-thawed embryo transfer (FET). Individual lists of all ART pregnancies resulting in birth defects from birth year 2004 to 2012 presented in the annual reports by the Japan Society of Obstetrics and Gynecology were used as the initial sources of information. Relative risks (RRs) with the corresponding 95 % confidence intervals (CIs) were calculated with IVF as the reference group when calculating RR of ICSI for IVF, and with FET as the reference group when calculating the RR of fresh embryo transfer for FET. In total, 2725 stillbirths or live births with birth defects were analyzed. The prevalence of birth defects was slightly yet significantly higher in ICSI compared with IVF throughout the study period (RR = 1.15, 95 % CI 1.02-1.29) and in the 2004-2006 period (RR = 1.26, 95 % CI 1.00-1.58). The prevalence of birth defects was significantly higher for fresh embryo transfer compared with FET in the 2004-2006 period (RR = 1.39, 95 % CI 1.12-1.72). The prevalence of birth defects in multiple births was significantly lower in fresh embryo transfer compared with FET (RR = 0.70, 95 % CI 0.55-0.90, live births of 2007-2012). The present descriptive epidemiological study suggests that the impacts of different ART methods on birth defects might differ.

  10. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  11. Brushless dc motors. [applications in non-space technology

    Science.gov (United States)

    1975-01-01

    Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.

  12. Overcoming Learning Time and Space Constraints through Technological Tool

    Science.gov (United States)

    Zarei, Nafiseh; Hussin, Supyan; Rashid, Taufik

    2015-01-01

    Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigates how the Learning Management Blog (LMB) overcomes…

  13. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  14. Space power technology for the twenty-first century (SPT21)

    International Nuclear Information System (INIS)

    Borger, W.U.; Massie, L.D.

    1988-01-01

    During the spring and summer months of 1987, the Aero Propulsion Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio in cooperation with the Air Force Space Technology Center at Kirtland AFB, New Mexico, undertook an initiative to develop a Strategic Plan for Space Power Technology Development. The initiative was called SPT21, Space Power Technology for the Twenty-First Century. The planning process involved the participation of other Government organizations (U.S. Army, Navy, DOE and NASA) along with major aerospace companies and universities. Following an SPT21 kickoff meeting on 28 May 1987, detailed strategic planning was accomplished through seven (7) Space Power Technology Discipline Workshops commencing in June 1987 and concluding in August 1987. Technology Discipline Workshops were conducted in the following areas: (1) Solar Thermal Dynamic Power Systems (2) Solar Photovoltaic Cells and Arrays (3) Thermal Management Technology (4) Energy Storage Technology (5) Nuclear Power Systems Technology (6) Power Conditioning, Distribution and Control and (7) Systems Technology/Advanced Concepts. This technical paper summarizes the planning process and describes the salient findings and conclusions of the workshops

  15. Future role and significance of space activities in reflection of global social, technological and economic trends

    Science.gov (United States)

    Diekmann, Andreas; Richarz, Hans.-Peter

    The paper describes the interrelation of space activities and global socio-economic trends like "globalisation of markets" and "renaissance of fine arts". The interrelation reveals the economic strategic, technological and scientific dimension of space activities and their benefits to mankind. Then, the significance and perspectives of space activities in these dimensions are examined in more detail. The paper calls (1) for a more visible initiative to employ space activities to tackle urgent questions of global change and development, and (2) for a stronger impetus to secure European economic position in space sector as a key industry of the 21st century.

  16. Contagious architecture: computation, aesthetics, and space (technologies of lived abstraction)

    CERN Document Server

    Parisi, Luciana

    2013-01-01

    In Contagious Architecture, Luciana Parisi offers a philosophical inquiry into the status of the algorithm in architectural and interaction design. Her thesis is that algorithmic computation is not simply an abstract mathematical tool but constitutes a mode of thought in its own right, in that its operation extends into forms of abstraction that lie beyond direct human cognition and control. These include modes of infinity, contingency, and indeterminacy, as well as incomputable quantities underlying the iterative process of algorithmic processing. The main philosophical source for the project is Alfred North Whitehead, whose process philosophy is specifically designed to provide a vocabulary for "modes of thought" exhibiting various degrees of autonomy from human agency even as they are mobilized by it. Because algorithmic processing lies at the heart of the design practices now reshaping our world -- from the physical spaces of our built environment to the networked spaces of digital culture -- the nature o...

  17. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  18. Making Breakthroughs in the Turbulent Decade: China's Space Technology During the Cultural Revolution.

    Science.gov (United States)

    Li, Chengzhi; Zhang, Dehui; Hu, Danian

    2017-09-01

    This article discusses why Chinese space programs were able to develop to the extent they did during the turbulent decade of the Cultural Revolution (1966-1976). It first introduces briefly what China had accomplished in rocket and missile technology before the Cultural Revolution, including the establishment of a system for research and manufacturing, breakthroughs in rocket technology, and programs for future development. It then analyzes the harmful impacts of the Cultural Revolution on Chinese space programs by examining activities of contemporary mass factions in the Seventh Ministry of Machinery Industry. In the third section, this article presents the important developments of Chinese space programs during the Cultural Revolution and explores briefly the significance of these developments for the future and overall progress in space technology. Finally, it discusses the reasons for the series of developments of Chinese space technology during the Cultural Revolution. This article concludes that, although the Cultural Revolution generated certain harmful impacts on the development of Chinese space technology, the Chinese essentially accomplished their scheduled objectives in their space program, both because of the great support of top Chinese leaders, including the officially disgraced Lin Biao and the Gang of Four, and due to the implementation of many effective special measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  20. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  1. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  2. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  3. "A Really Nice Spot": Evaluating Place, Space, and Technology in Academic Libraries

    Science.gov (United States)

    Khoo, Michael J.; Rozaklis, Lily; Hall, Catherine; Kusunoki, Diana

    2016-01-01

    This article describes a qualitative mixed-method study of students' perceptions of place and space in an academic library. The approach is informed by Scott Bennett's model of library design, which posits a shift from a "book-centered" to a technology supported "learning centered" paradigm of library space. Two surveys…

  4. The Cube and the Poppy Flower: Participatory Approaches for Designing Technology-Enhanced Learning Spaces

    Science.gov (United States)

    Casanova, Diogo; Mitchell, Paul

    2017-01-01

    This paper presents an alternative method for learning space design that is driven by user input. An exploratory study was undertaken at an English university with the aim of redesigning technology-enhanced learning spaces. Two provocative concepts were presented through participatory design workshops during which students and teachers reflected…

  5. The impact of space research on semiconductor crystal growth technology

    Science.gov (United States)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  6. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  7. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    Science.gov (United States)

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  8. Industrial benefits and future expectations in materials and processes resulting from space technology

    Science.gov (United States)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  9. The role of Spaces and Occasions in the Transformation of Information Technologies

    DEFF Research Database (Denmark)

    Clausen, Christian; Koch, Christian

    1999-01-01

    The article adopts the view that technological change is a social process involving negotiations of a network of players. It aims at informing management of technology by identifying occasions and spaces where IT can be adressed and changed. the focus is on Enterprise Resource Planning systems....

  10. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  11. Status of Mirror Technology for the Next Generation Space Telescope

    Science.gov (United States)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight

  12. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  13. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  14. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  15. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  16. Technology Challenges and Opportunities for Very Large In-Space Structural Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2009-01-01

    Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.

  17. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  18. Solid rocket technology advancements for space tug and IUS applications

    Science.gov (United States)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  19. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    Science.gov (United States)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  20. Applying Space Technology to Enhance Control of an Artificial Arm

    Science.gov (United States)

    Atkins, Diane; Donovan, William H.; Novy, Mara; Abramczyk, Robert

    1997-01-01

    At the present time, myoelectric prostheses perform only one function of the hand: open and close with the thumb, index and middle finger coming together to grasp various shaped objects. To better understand the limitations of the current single-function prostheses and the needs of the individuals who use them, The Institute for Rehabilitation and Research (TIRR), sponsored by the National Institutes of Health (August 1992 - November 1994), surveyed approximately 2500 individuals with upper limb loss. When asked to identify specific features of their current electric prosthesis that needed improvement, the survey respondents overwhelmingly identified the lack of wrist and finger movement as well as poor control capability. Simply building a mechanism with individual finger and wrist motion is not enough. Individuals with upper limb loss tend to reject prostheses that require continuous visual monitoring and concentration to control. Robotics researchers at NASA's Johnson Space Center (JSC) and Rice University have made substantial progress in myoelectric teleoperation. A myoelectric teleoperation system translates signals generated by an able-bodied robot operator's muscles during hand motions into commands that drive a robot's hand through identical motions. Farry's early work in myoelectric teleoperation used variations over time in the myoelectric spectrum as inputs to neural networks to discriminate grasp types and thumb motions. The resulting schemes yielded up to 93% correct classification on thumb motions. More recently, Fernandez achieved 100% correct non-realtime classification of thumb abduction, extension, and flexion on the same myoelectric data. Fernandez used genetic programming to develop functions that discriminate between thumb motions using myoelectric signal parameters. Genetic programming (GP) is an evolutionary programming method where the computer can modify the discriminating functions' form to improve its performance, not just adjust

  1. Large space system - Charged particle environment interaction technology. [effects on high voltage solar array performance

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large high-voltage space power systems proposed for future applications in both low earth orbit and geosynchronous altitudes must operate in the space charged-particle environment with possible interactions between this environment and the high-voltage surfaces. The paper reviews the ground experimental work to provide indicators for the interactions that could exist in the space power system. A preliminary analytical model of a large space power system is constructed using the existing NASA Charging Analyzer Program, and its performance in geosynchronous orbit is evaluated. The analytical results are used to illustrate the regions where detrimental interactions could exist and to establish areas where future technology is required.

  2. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  3. Space Technology: Game Changing Development Deep Space Engine (DSE) 100 lbf and 5 lbf Thruster Development and Qualification

    Science.gov (United States)

    Barnett, Gregory

    2017-01-01

    Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.

  4. In vitro fertilization in Japan - early days of in vitro fertilization and embryo transfer and future prospects for assisted reproductive technology.

    Science.gov (United States)

    Suzuki, Masakuni

    2014-01-01

    Assisted reproductive technology (ART) such as in vitro fertilization (IVF) and embryo transfer (ET) has been essential in the treatment of infertility. The world's first IVF-ET baby was born in 1978 based on the technique developed by Dr. Robert Edwards and Dr. Patrick Steptoe. In Japan, the first IVF-ET birth was reported in 1983 by Prof. Masakuni Suzuki at Tohoku University School of Medicine. IVF-ET is a procedure used to achieve pregnancy that consists of extracting oocytes from an infertile woman, fertilizing them in vitro, and transferring fertilized eggs into the patient's uterine cavity (Fig. 1). Since the first report of successful IVF-ET, numerous techniques related to ART, such as cryopreservation of oocytes and embryos, gamete intrafallopian transfer (GIFT), and microinsemination, have been developed and refined (Table 1). Herein we describe the history of basic research in IVF-ET that led to human applications, how the birth of the first IVF-ET baby was achieved in Japan, the current status of ART in Japan, issues related to ART, and future prospects for ART.

  5. Efficacy, safety, and trends in assisted reproductive technology in Japan-analysis of four-year data from the national registry system.

    Science.gov (United States)

    Takeshima, Kazumi; Saito, Hidekazu; Nakaza, Aritoshi; Kuwahara, Akira; Ishihara, Osamu; Irahara, Minoru; Hirahara, Humiki; Yoshimura, Yasunori; Sakumoto, Tetsuro

    2014-04-01

    This study aimed to evaluate the efficacy, safety, and trends in assisted reproductive technology (ART) in Japan. Data pertaining to treatment cycles, pregnancy rate, live birth rate, age distribution, single embryo transfer rate, and multiple pregnancy rate were analyzed for patients registered in the national ART registry system of Japan from 2007 to 2010. The total number of treatment cycles was 161,164, 190,613, 213,800, and 242,161 in 2007, 2008, 2009, and 2010, respectively. The number of ART treatments administered to patients aged ≥40 years was 31.2 %, 32.1 %, 33.4 %, and 35.7 %, respectively, showing an increasing trend from 2007 to 2010. In each of these years, the total pregnancy rate per embryo transfer was 24.4 %, 21.9 %, 22.3 %, and 21.9 % for fresh cycles, respectively, and 32.0 %, 32.1 %, 32.5 %, and 33.7 % for frozen cycles, respectively. The single embryo transfer rate was 49.9 %, 63.6 %, 70.6 %, and 73.0 %, respectively, showing an increasing trend, while the multiple pregnancy rate was 11.5 %, 6.8 %, 5.3 %, and 4.8 %, respectively, showing a decreasing trend. From 2007 to 2010 in Japan, the number of ART treatment cycles, number of elderly patients treated, and the single embryo transfer rate increased, while the multiple pregnancy rate decreased. However, the overall pregnancy rate remained stable during the study period.

  6. Genetic Assessment of the Space Environment using MEMS Technologies

    Science.gov (United States)

    Jana, Dilip; Saint Jean, Dileon; Abdurakhimov, Siyovush; Kopparthy, Varun; Nestorova, Gergana; Pal, Nabamita; Nguyen, Nam; Derosa, Pedro; Sawyer, Lee; Crews, Niel; Decoster, Mark; Louisiana Tech University Team

    For decades, researchers have studied the damage to DNA by high-energy radiation. Radiation induced damage include DNA strand breaks, base damage and base substitution. Currently, though, scientists are discovering that it is, in fact, the non-irradiated cells adjacent to the irradiated cells are the primary source of carcinogenesis. To address these ``bystander effects'', we developed a radiation detector using multi-clad scintillating fibers and silicon pixel arrays to study the effect of radiation on gene expression changes using Microelectromechanical systems (MEMS) technology. The efficiency of proton energy deposition on each of the different layers of the radiation tracking detector has been simulated using GEANT4 toolkit and tested experimentally using the detector. The position of the proton beam was determined from the intensity of the output signal from orthogonal planes of the tracking detector. We have developed and tested an instrument that automates the extraction and quantification of RNA from living cells that automates the collection, purification, and reverse transcription (RT) of RNA from a precisely-defined area of the biological sample. NASA EPSCOR GRANT 13-EPSCoR-0027.

  7. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    Science.gov (United States)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  8. Technology Required to Image and Characterize an exo-Earth from Space

    Science.gov (United States)

    Crill, Brendan

    2018-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of Sun-like stars with future space observatories. Here we present the 2018 ExEP Technology Gap List, an annual update to ExEP's list of technologies, to be advanced in the next 1-5 years. Key technology gaps are starlight suppression with a coronagraph (internal occulters) or a starshade (external occulters), enabling imaging at extreme contrast (more than 10 billion) by blocking on-axis starlight, while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast coronagraph in space. A starshade has never been used in a space mission and requires new capabilities in precision deployment of large structures, starlight suppression, and in formation sensing and control. We review the current state-of-the-art in coronagraph and starshade technology and the performance level that must be achieved to discover and characterize Earth analogs.

  9. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  10. An assessment of space reactor technology needs and recommendations for development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C. [Sandia National Labs., Albuquerque, NM (United States); Wiley, R.L. [Consultant, Columbia, MD (United States)

    1995-11-01

    In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. a systematic approach was used to explore needs at several levels that are increasingly specific. Level 0 -- general trends and issues; Level 1 -- generic space capabilities to address trends; Level 2 -- requirements to support capabilities; Level 3 -- system types capable of meeting requirements; Level 4 --generic reactor system types; and Level 5 -- specific baseline systems. Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper.

  11. UNIESPAÇO A Space Technology and Science Program for Brazillian Universities

    Science.gov (United States)

    Ferreira, Jose Leonardo; Gurgel, Carlos

    This work describes the activioties of The UNIESPAÇO Program of the Brazillian Space Agency AEB. This program was stablished in 1997, just three years after the official announcement of the Brazillian Space Agency. Its objective is to integrate the university sector to the goals of the Brazillian National Space Activities Program - PNAE in order to attend the requirements of the Brazillian space sector by developing processes, products, analysis and studies relevants to PNAE development. Its main goal is to form a solid base for space research and development composed by specialized groups capable to execute projects for the space sector. In summary the main tasks for the UNIESPAÇO program are: - Stimulate and amplify the participation of universities and others related research institutionsd in the PNAE. - To promote research projects on selected topics to generate products, processes, analysis and studies that can be applied on the brazillian space program with emphasis on possible prototype instruments development as a result of the research projects. - To improve research and development groups on space science and technology in order to give and increase capacities to execute projects with higher complexity. The guidelines of the UNIESPAÇO program are determined by represetants from AEB, Brazillian Universities, Brazillian Academy of Sciences (ABC), INPE (Brazillian Space Institute) and IAE(Institute of Space and Aeronautics from DCTA).

  12. Regional Centres for Space Science and Technology Education Affiliated to the United Nations

    Science.gov (United States)

    Aquino, A. J. A.; Haubold, H. J.

    2010-05-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for space science and technology education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief report on the status of the operation of the Regional Centres and draws attention to their educational activities.

  13. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    Science.gov (United States)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  14. Prospective areas in the production technology of scientific equipment for space research

    Science.gov (United States)

    Breslavets, A. V.

    1974-01-01

    The average labor of individual types of operations in the percentage ratio of the total labor consumption of manufacturing scientific instruments and apparatus for space research is presented. The prospective areas in the production technology of billet, machining, mechanical assembly, installation and assembly, adjustment and regulation and testing and control operations are noted. Basic recommendations are made with respect to further reduction of labor consumption and an increase in the productivity of labor when manufacturing scientific equipment for space research.

  15. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  16. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  17. The applicability of DOE solar cell and array technology to space power

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    Current trends in terrestrial photovoltaics that might benefit future space power needs are reviewed. Emphasis is placed on the Low-Cost Solar Array Project with attention given to the materials task, the silicon sheet task, the production processes and equipment task, and encapsulation. The Photovoltaic Concentrator Technology Development Project is also discussed. It is concluded that terrestrial photovoltaic technology that has either been developed to date or is currently under development will not have any significant effect on the performance or cost of solar cells and panels for space over the near term (1980-1990).

  18. Electron Emitter for small-size Electrodynamic Space Tether using MEMS Technology

    DEFF Research Database (Denmark)

    Fleron, René A. W.; Blanke, Mogens

    2004-01-01

    system with focus on electron emitter design and manufacture using micro-electro-mechanical- system (MEMS) technology. The paper addresses the system concepts of a small size electrodynamic tether mission and shows a novel electron emitter for the 1-2 mA range where altitude can be effectively affected...... and the current flowing in the electrodynamic space tether. Applications to small spacecraft, or space debris in the 1–10 kg range, possess difficulties with electron emission technology, as low power emitting devices are needed. This paper addresses the system concepts of a small spacecraft electrodynamic tether...

  19. NASA advanced space photovoltaic technology-status, potential and future mission applications

    Science.gov (United States)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  20. Infrared and submillimeter space missions in the coming decade programmes, programmatics, and technology

    CERN Document Server

    Sauvage, Marc; Gallais, Pascal; Vigroux, Laurent

    1996-01-01

    A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.

  1. Trade and Technology: Maintaining the U.S.-Japan Security Relationship in the Post-Cold War Era

    Science.gov (United States)

    1992-12-01

    United States and Japan must seek to resolve any differences which might alienate their relationship. This requires that both countries seriously seek... parents instilled in their children (and strongly enforced) disciplines such as conformity and respect. As the individual grew older he was...in his book TokuQawa Religion, "The basic psychological pressure was the threat of rejection symbolized most pointedly, perhaps, by disinheritance . To

  2. FY 2000 report on the survey of energy conservation technology in Japan; 2000 nendo chosa hokoku. Nihon kokunai no sho energy gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of supporting self-help efforts to deal with energy environmental problems in developing countries in the Asian region, etc. and making the transfer of the energy conservation technology and petroleum substituting energy technology that are at a practical stage and are owned by Japan, evaluation of each technology was conducted in terms mainly of applicability for a model project. The existing survey data were supplemented/deleted. As the model project supposing the application to developing countries in Asia, types of industry for survey were selected as follows: iron/steel, nonferrous metal, chemical industry, oil refining, ceramics/earthware, paper/pulp, foodstuffs, textile/spinning, electricity (power generation)/gas, technologies common to all industry types. Technologies for survey were energy saving production facilities and energy saving equipment at plant with a regular scale to which the applicability as the model project was supposed. The energy saving effect was all calculated in TOE, and the method to calculate the effect was also described. The paper further described possibilities of introduction/spread of the said technologies to developing countries in Asia, introduction limitation/preconditions, cost vs. effect, etc. (NEDO)

  3. NASA's Space Environments and Effects Program: Technology for the New Millennium

    Science.gov (United States)

    Hardage, Donna M.; Pearson, Steven D.

    2000-01-01

    Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.

  4. Industrial lasers in Japan

    Science.gov (United States)

    Karube, Norio

    1991-03-01

    I am to report on some aspects of industrial lasers in Japan. Mostly centering on the market. In Japan, the history of laser developnent is rather profound. And long. Ever since the first invention of the laser in this country in 1960. This is partly because of the fact that in Japan the spectroscopic studies of the ruby was very popular in the late 1950's. Ever since niost of the work has been done in the research laboratories of the industry, not in the universities or not in the governmental laboratories. And since that time our first activity was mainly centering on the basic research, but after that time we have the evolution of the technology. One of the features in Japan is that the activity of developement and research of laser technology from the very basic phase up to the present commercialization has been done by the same group of people, including ine. We had a national project which ended about six years ago which was sponsored by MITI. MITI is Ministry of International Trade and Industry in Japan. And because of this national project, the effect of this project had a very enlightening effect in Japan. And after that our Japanese laser market became very flourishing.

  5. How to recover credibility of nuclear technologies in Japan where people wish to have 'Anshin'

    International Nuclear Information System (INIS)

    Yasui, Itaru

    2014-01-01

    Although it is inevitable to recover credibility of utilities, there are no clear ways to realize a final target yet. Credibility issue is a very difficult especially in Japan, where the word of 'Anshin' has special importance in the mind of people. In this paper, the word of 'Anshin' in Japan was discussed in order to find out differences in other countries by comparison of culture and customs, especially ways to prepare food, i.e. agriculture and hunting and gathering and so on. The meanings of 'Anshin' were decomposed into several elements, and each element was discussed and clarified. Human factor is important in both operation of plants and risk communication. The philosophy and attitude of COE of utilities are those of very important factors to regain credibility. The utilities' responsibilities are important, but not enough by themselves. In order to assure transparency of information used in risk communication, improvement of people's scientific literacy and their attitude to elect their representatives are absolutely necessary. Especially, risk information related to Level 3 RPA to be opened to public have to be fully transparent. Risk is one of most difficult concept for Japanese people to handle. The reoperation issue of nuclear power plants will involve several difficulties, but challenges to overcome this issue will be a good chance to change a way of decision making in Japan. (author)

  6. Internet Technologies for Space-based Communications: State of the Art and Challenges

    Science.gov (United States)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to

  7. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  8. The internationalization of Japan

    International Nuclear Information System (INIS)

    Kuroki, T.E.

    1989-01-01

    There are growing tensions and frictions between the U.S. and Japan. Among them are science and technology issues that relate to the development of superconductor technology, as well as economic, trade and agricultural issues. The structure of this friction is very complex. There are many interconnected issues that cannot be resolved one by one. This article focuses on the relationship between the U.S. and Japan. Some of the complexities behind the issues are discussed by defining different notions of internationalization and by presenting the positive and negative aspects of the Japanese approach that affects the future cooperation and competition between our nations in the area of superconductivity

  9. REU Site: CUNY/GISS CGCR - Increasing Diversity in Earth and Space Science and Space Technology Research

    Science.gov (United States)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.

    2016-12-01

    This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).

  10. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  11. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  12. The use of a cubesat to validate technological bricks in space

    Science.gov (United States)

    Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.

    2017-11-01

    In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.

  13. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    Science.gov (United States)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  14. Space technology, sustainable development and community applications: Internet as a facilitator

    Science.gov (United States)

    Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed

    2006-07-01

    Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.

  15. Introducing School Children in Nigeria to SPACE Technology As a Tool for Mitigation of National Catastrophes

    Science.gov (United States)

    Alabi, O.

    2014-12-01

    The zonal workshops organized by the space education outreach unit of the African Regional Centre for Space Science and Technology Education utilized recent catastrophic events in Nigeria to attract pre-collegiate youths to space science and technology (SST). About 200 school children, aged between 10 and 18 years participated in the program which was coordinated at 2 different geopolitical zones in Nigeria in 2014. The 2-day event was packed with a lot of fun-filled, hands-on educational activities demonstrating the use of outer space to address prevailing socio-economic problems in the nation. The students were introduced to the Nigerian Earth Observation Satellites, and learned why these satellites cannot be used to track the school girls kidnapped by the terrorist group in the northern part of the country. They were also introduced to other types of satellites and participated in activities on the applications of TRMM satellite data to monitor flood events in Nigeria. The Global Positioning System (GPS) technology was introduced as a navigational tool to curb criminal activities in the country and participants used the hand-held GPS unit for geocaching. The program culminated in the launching of space clubs in all the participating schools and a teacher from each school received resource materials on DVD to nurture the space club. To assess the impact of the workshop on the knowledge level of the participants in space science, quiz competitions were administered and the average score of the students was above 70%. The enthusiasm displayed by the students, coupled with the brilliant performance in the evaluation tests, indicated that this method of informal education, that linked science to the alleviation of national disasters is viable, not only for stimulating the interest of Nigerian pre-collegiate youths in SST, but also to inspire the young learners and develop their interest in the Sciences, Technology, Engineering and Mathematics (STEM).

  16. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  17. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  18. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    Science.gov (United States)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  19. Technology advancements for the U.S. manned Space Station - An overview

    Science.gov (United States)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  20. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  1. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  2. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  3. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  4. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  5. A survey of beam-combining technologies for laser space power transmission

    Science.gov (United States)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  6. An assessment of advanced displays and controls technology applicable to future space transportation systems

    Science.gov (United States)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  7. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Science.gov (United States)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  8. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and

  9. LEACHATE CONTROL TECHNOLOGY USING JOINT INTERIOR SPACE OF SPSP CUTOFF WALLS AT LANDFILL SITES

    Science.gov (United States)

    Inazumi, Shinya; Kimura, Makoto; Kakuda, Toshimitsu

    This paper proposes leachate control technology usin g H-H joint interior space as a part of steel pile sheet pipe cutoff walls in coastal landfill site from a long-term perspective. In addition, the containment and remediation performance of the H-H joint in landfill site was evaluated by seepage and advection/dispersion analysis. The H-H joint was able to perform the containment and the remediation functions by keeping the low water-level at H-H joints interior space. Moreover, th e leachate control technology using H-H joint interior space demonstrates it's pos sible to contain water-solub le toxic substances in landfill sites and remediate them.

  10. Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    Science.gov (United States)

    Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao

    2017-11-01

    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.

  11. Johnson Space Center Research and Technology Annual Report 1998-1999

    Science.gov (United States)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  12. A dual use case study of space technologies for terrestrial medical applications (Conference Presentation)

    Science.gov (United States)

    Cozmuta, Ioana

    2017-05-01

    Many challenges exist in understanding the human body as a whole, its adaptability, its resilience, its immunological response, its healing and regeneration power. New knowledge is usually obtained by exploring unique conditions and environments and space is one such variable. Primarily, these attributes have been studied in space for the purpose of understanding the effect of the space environment on long duration space travel. However a myriad of lessons learned have emerged that are important for terrestrial medicine problems such as cardiovascular changes, intracranial pressure changes, vision changes, reduced immunity, etc. For medical study purposes, the changes induced by the space environment on the human body are in general fast and predictable; they persist while in the space environment but also revert to the initial pre-flight healthy state upon return to Earth. This provides a unique cycle to study wellness and disease prediction as well as to develop more effective countermeasures for the benefit of people on earth. At a scientific level, the environment of space can be used to develop new lines of investigations and new knowledge to push the terrestrial state of the art (i.e. study of phase diagrams, identification of new system's states, etc). Moreover, the specialized requirements for space medicine have driven advances in terrestrial medical technologies in areas such as monitoring, diagnostic, prevention and treatment. This talk will provide an overview of compelling examples in key areas of interest for terrestrial medical applications.

  13. Government/industry response to questionnaire on space mechanisms/tribology technology needs

    Science.gov (United States)

    Fusaro, Robert L.

    1991-01-01

    President Bush has proposed that the U.S. undertake an ambitious mission of manned and robotic exploration of the solar system. This mission will require advanced mechanical moving components, such as bearings, gears, seals, lubricants, etc. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of such a mission. To attempt to answer this, NASA-Lewis has sent out a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Missions needs and goals. If they deemed that the technology base inadequate, they were asked to specify the areas of greatest need. The unedited remarks of those who responded to the survey are presented.

  14. Networking Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    and activities in Japan. One concrete example was the earthquake relief Japan received from alumni in 2011. The exchanges have also already inspired an explicit focus on private sector and middle income countries in the Japanese Development Cooperation Charter announced in February 2015.......Human Resource Development was the first and remains an important pillar in Japanese foreign aid. I will argue that Japan has access to a global network of alumni who will co-define Japanese foreign aid in the future, because Japan has encouraged alumni societies and networking since 1965. A total...... of more than a million people in more than 100 countries have attended courses in Japan funded fully or partly by Japanese ODA since the inception of the technical assistance programs in 1954 through the Colombo Plan and since 1959 through the Association of Overseas Technical Scholarships (AOTS from 2009...

  15. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    Science.gov (United States)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  16. Technological implications of SNAP reactor power system development on future space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, R.V.

    1982-01-01

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development

  17. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  18. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  19. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  20. The impact of western science and technology on 'ukiyo-e' prints and book illustrations in late eighteenth and nineteenth century Japan.

    Science.gov (United States)

    Low, Morris

    2011-01-01

    In the Edo period (c. 1600-1868), exposure to Western art, science and technology encouraged Japanese 'ukiyo-e' (pictures of the floating world) artists to experiment with Western perspective in woodblock prints and book illustrations. We can see its early influence in the work of Utagawa Hiroshige (1787-1858), as well as Utagawa Kuniyoshi (1797-1861). Unlike Hiroshige, Kuniyoshi lived to see the opening of the port of Yokohama to trade with the West in 1859. A whole genre of Yokohama prints emerged and one of the key artists was Utagawa Sadahide (1807-1873). In his illustrated books entitled 'Yokohama kaikō kenbunshi' (A Record of Things Seen and Heard in the Open Port of Yokohama) (1862), Sadahide plays with perspective in an effort to represent the dynamic changes that Japan was undergoing in its encounter with the West at the time. In the work of later artists such as Hiroshige III (1843-1894), Kobayashi Kiyochika (1847-1915) and Inoue Yasuji (1864-1889), we can see growing efforts to depict light, shadow and depth, and a continuing fascination with the steam locomotive and the changes occurring in the Tokyo-Yokohama region as Japan entered the Meiji period (1868-1912).