WorldWideScience

Sample records for technology ircset inspire

  1. Biologically Inspired Technology Using Electroactive Polymers (EAP)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution allowed nature to introduce highly effective biological mechanisms that are incredible inspiration for innovation. Humans have always made efforts to imitate nature's inventions and we are increasingly making advances that it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. This brought us to the ability to create technology that is far beyond the simple mimicking of nature. Having better tools to understand and to implement nature's principles we are now equipped like never before to be inspired by nature and to employ our tools in far superior ways. Effectively, by bio-inspiration we can have a better view and value of nature capability while studying its models to learn what can be extracted, copied or adapted. Using electroactive polymers (EAP) as artificial muscles is adding an important element to the development of biologically inspired technologies.

  2. Creative design inspired by biological knowledge: Technologies and methods

    Science.gov (United States)

    Tan, Runhua; Liu, Wei; Cao, Guozhong; Shi, Yuan

    2018-05-01

    Biological knowledge is becoming an important source of inspiration for developing creative solutions to engineering design problems and even has a huge potential in formulating ideas that can help firms compete successfully in a dynamic market. To identify the technologies and methods that can facilitate the development of biologically inspired creative designs, this research briefly reviews the existing biological-knowledge-based theories and methods and examines the application of biological-knowledge-inspired designs in various fields. Afterward, this research thoroughly examines the four dimensions of key technologies that underlie the biologically inspired design (BID) process. This research then discusses the future development trends of the BID process before presenting the conclusions.

  3. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  4. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    International Nuclear Information System (INIS)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-01-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  5. Product and technology innovation: what can biomimicry inspire?

    Science.gov (United States)

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Media Pembelajaran Interaktif Lectora Inspire sebagai Inovasi Pembelajaran

    Directory of Open Access Journals (Sweden)

    Norma Dewi Shalikhah

    2017-06-01

    Full Text Available Abstract The utilization of information and communication technology in education sector is a tremendous output. Support of ICT is hoped to become an innovation in learning with many involving information technology components inside. Therefore, in globalization era, education sector can not pass from its extent, with involves the inherent technology can produce a system of education. This paper discusses the interactive learning media that involve education technology using lectora inspire application. Lectora inspire is designed specifically for the beginner with purpose user friendly to use to make learning media, and can make the material test or evaluation. The development of interactive learning media with lectora inspire is conducted with how to provide training to the teachers in the elementary school. The methods are done with phases, includes gathering information, planning tools, implementing, presenting and reflecting. The object of this training is MIM Jagalan and MIM Jumoyo Greeting sub Magelang regency. Keywords: Media Interactive Learning, Lectora Inspire, Learning Innovation

  7. Training mechanical engineering students to utilize biological inspiration during product development.

    Science.gov (United States)

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  8. Kinds of inspiration in interaction design

    DEFF Research Database (Denmark)

    Halskov, Kim

    2010-01-01

    In this paper, we explore the role of sources of inspiration in interaction design. We identify four strategies for relating sources of inspiration to emerging ideas: selection; adaptation; translation; and combination. As our starting point, we argue that sources of inspiration are a form...... of knowledge crucial to creativity. Our research is based on empirical findings arising from the use of Inspiration Card Workshops, which are collaborative design events in which domain and technology insight are combined to create design concepts. In addition to the systematically introduced sources...... of inspiration that form part of the workshop format, a number of spontaneous sources of inspiration emerged during these workshops....

  9. Water Treatment Technologies Inspire Healthy Beverages

    Science.gov (United States)

    2013-01-01

    Mike Johnson, a former technician at Johnson Space Center, drew on his expertise as a wastewater engineer to create a line of kombucha-based probiotic drinks. Unpeeled Inc., based in Minneapolis-St. Paul, Minnesota, employs 12 people and has sold more than 6 million units of its NASA-inspired beverage.

  10. Kids Inspire Kids for STEAM

    OpenAIRE

    Fenyvesi, Kristof; Houghton, Tony; Diego-Mantecón, José Manuel; Crilly, Elizabeth; Oldknow, Adrian; Lavicza, Zsolt; Blanco, Teresa F.

    2017-01-01

    Abstract The goal of the Kids Inspiring Kids in STEAM (KIKS) project was to raise students' awareness towards the multi- and transdisciplinary connections between the STEAM subjects (Science, Technology, Engineering, Arts & Mathematics), and make the learning about topics and phenomena from these fields more enjoyable. In order to achieve these goals, KIKS project has popularized the STEAM-concept by projects based on the students inspiring other students-approach and by utilizing new tec...

  11. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  12. Supporting STEM Teachers to Inspire through Everyday Innovation

    Science.gov (United States)

    Bienkowski, Marie; Shechtman, Nicole; Remold, Julie; Knudsen, Jennifer

    2014-01-01

    Science teachers inspire in part by their constant adaptation to the learning needs of their students and to evolving content, curriculum, technology, and student populations. Innovation--bringing novel things to a situation to confer a benefit--is an integral part of teaching overall, and in especially inspired science teaching. While innovation…

  13. Biologically inspired toys using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  14. Biomimetics as a Model for Inspiring Human Innovation

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Electroactive polymers (EAP) are human made actuators that are the closest to mimic biological muscles. Technology was advanced to the level that biologically inspired robots are taking increasing roles in the world around us and making science fiction ideas a closer engineering reality. Artificial technologies (AI, AM, and others) are increasingly becoming practical tools for making biologically inspired devices and instruments with enormous potential for space applications. Polymer materials are used to produce figures that resemble human and animals. These materials are widely employed by the movie industry for making acting figures and by the orthopedic industry to construct cyborg components. There are still many challenges ahead that are critical to making such possibilities practical. The annual armwrestling contest is providing an exciting measure of how well advances in EAP are implemented to address the field challenges. There is a need to document natures inventions in an engineering form to possibly inspire new capabilities.

  15. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  16. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  17. Inspired Responses

    Science.gov (United States)

    Steele, Carol Frederick

    2011-01-01

    In terms of teacher quality, Steele believes the best teachers have reached a stage she terms inspired, and that teachers move progressively through the stages of unaware, aware, and capable until the most reflective teachers finally reach the inspired level. Inspired teachers have a wide repertoire of teaching and class management techniques and…

  18. Fifth International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2014, the 5th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2014 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing remains to be one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference was to further explore the intriguing potential of Bio-inspired Computing. IBICA 2014 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  19. NASA Missions Inspire Online Video Games

    Science.gov (United States)

    2012-01-01

    Fast forward to 2035. Imagine being part of a community of astronauts living and working on the Moon. Suddenly, in the middle of just another day in space, a meteorite crashes into the surface of the Moon, threatening life as you know it. The support equipment that provides oxygen for the entire community has been compromised. What would you do? While this situation is one that most people will never encounter, NASA hopes to place students in such situations - virtually - to inspire, engage, and educate about NASA technologies, job opportunities, and the future of space exploration. Specifically, NASA s Learning Technologies program, part of the Agency s Office of Education, aims to inspire and motivate students to pursue careers in the science, technology, engineering, and math (STEM) disciplines through interactive technologies. The ultimate goal of these educational programs is to support the growth of a pool of qualified scientific and technical candidates for future careers at places like NASA. STEM education has been an area of concern in the United States; according to the results of the 2009 Program for International Student Assessment, 23 countries had higher average scores in mathematics literacy than the United States. On the science literacy scale, 18 countries had higher average scores. "This is part of a much bigger picture of trying to grow skilled graduates for places like NASA that will want that technical expertise," says Daniel Laughlin, the Learning Technologies project manager at Goddard Space Flight Center. "NASA is trying to increase the number of students going into those fields, and so are other government agencies."

  20. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  1. The co-creation of a video to inspire humanitarianism: How an Educational Entrepreneurial approach inspired humanitarian workers to be mindfully innovative whilst working with technology.

    Directory of Open Access Journals (Sweden)

    Crotty Yvonne

    2015-08-01

    Full Text Available This paper demonstrates the value of embracing digital technology in order to effect positive change in a non-governmental (NGO charity organisation, in this case the Irish Charity Crosscause. The outcome of the research was the creation of a charity video, Crosscause: Making a Difference, to showcase humanitarian work in Ireland and Romania with a view to inspiring others to contribute in some capacity to this cause. Video is an important medium to provide connections with a wider audience, as it gives humanitarian workers and marginalised communities an opportunity to tell their story by making a compelling and evocative case to others. Visual media not only makes connections with an audience, but can also positively challenge people to consider what is happening in the world around them.

  2. VI International Workshop on Nature Inspired Cooperative Strategies for Optimization

    CERN Document Server

    Otero, Fernando; Masegosa, Antonio

    2014-01-01

    Biological and other natural processes have always been a source of inspiration for computer science and information technology. Many emerging problem solving techniques integrate advanced evolution and cooperation strategies, encompassing a range of spatio-temporal scales for visionary conceptualization of evolutionary computation. This book is a collection of research works presented in the VI International Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO) held in Canterbury, UK. Previous editions of NICSO were held in Granada, Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-Napoca, Romania (2011). NICSO 2013 and this book provides a place where state-of-the-art research, latest ideas and emerging areas of nature inspired cooperative strategies for problem solving are vigorously discussed and exchanged among the scientific community. The breadth and variety of articles in this book report on nature inspired methods and applications such as Swarm In...

  3. INSPIRE: Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Franzen, K. A.; Garcia, L. N.; Webb, P. A.; Green, J. L.

    2007-12-01

    The INSPIRE Project is a non-profit scientific and educational corporation whose objective is to bring the excitement of observing very low frequency (VLF) natural radio waves to high school students. Underlying this objective is the conviction that science and technology are the underpinnings of our modern society, and that only with an understanding of these disciplines can people make correct decisions in their lives. Since 1989, the INSPIRE Project has provided specially designed radio receiver kits to over 2,500 students and other groups to make observations of signals in the VLF frequency range. These kits provide an innovative and unique opportunity for students to actively gather data that can be used in a basic research project. Natural VLF emissions that can be studied with the INSPIRE receiver kits include sferics, tweeks, whistlers, and chorus, which originate from phenomena such as lightning. These emissions can either come from the local atmospheric environment within a few tens of kilometers of the receiver or from outer space thousands of kilometers from the Earth. VLF emissions are at such low frequencies that they can be received, amplified and turned into sound that we can hear, with each emission producing in a distinctive sound. In 2006 INSPIRE was re-branded and its mission has expanded to developing new partnerships with multiple science projects. Links to magnetospheric physics, astronomy, and meteorology are being identified. This presentation will introduce the INSPIRE project, display the INSPIRE receiver kits, show examples of the types of VLF emissions that can be collected and provide information on scholarship programs being offered.

  4. 4th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2013, the 4th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2013 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing is currently one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference is to further explore the intriguing potential of Bio-inspired Computing. IBICA 2013 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  5. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  6. Using Space to Inspire and Engage Children

    Science.gov (United States)

    Clements, Allan

    2015-01-01

    The European Space Education Resources Office (ESERO-UK) is a project of the European Space Agency (ESA) and national partners including the Department for Education (DfE), The UK Space Agency (UKSA) and the Science and Technology Facilities Council (STFC). The key objective of the project is to promote space as an exciting inspirational context…

  7. Engineering Gecko-Inspired Adhesives for Robotic Mobility and Manipulation in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed research is to customize gecko-inspired adhesive technologies for space applications in manipulation and mobility, primarily addressing...

  8. Recent developments in bio-inspired sensors fabricated by additive manufacturing technologies

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Sanders, Remco G.P.

    2017-01-01

    In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger

  9. Autonomic networking-on-chip bio-inspired specification, development, and verification

    CERN Document Server

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  10. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  11. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  13. Spontaneous water filtration of bio-inspired membrane

    Science.gov (United States)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  14. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    Science.gov (United States)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  15. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions

    International Nuclear Information System (INIS)

    Mazzolai, B; Margheri, L; Cianchetti, M; Dario, P; Laschi, C

    2012-01-01

    Soft robotics is a current focus in robotics research because of the expected capability of soft robots to better interact with real-world environments. As a point of inspiration in the development of innovative technologies in soft robotics, octopuses are particularly interesting ‘animal models’. Octopus arms have unique biomechanical capabilities that combine significant pliability with the ability to exert a great deal of force, because they lack rigid structures but can change and control their degree of stiffness. The octopus arm motor capability is a result of the peculiar arrangement of its muscles and the properties of its tissues. These special abilities have been investigated by the authors in a specific study dedicated to identifying the key principles underlying these biological functions and deriving engineering requirements for robotics solutions. This paper, which is the second in a two-part series, presents how the identified requirements can be used to create innovative technological solutions, such as soft materials, mechanisms and actuators. Experiments indicate the ability of these proposed solutions to ensure the same performance as in the biological model in terms of compliance, elongation and force. These results represent useful and relevant components of innovative soft-robotic systems and suggest their potential use to create a new generation of highly dexterous, soft-bodied robots. (paper)

  16. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

      The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...... scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...... presented, along with discussions of the future of development of these educational spaces....

  17. Biological Inspiration for Agile Autonomous Air Vehicles

    Science.gov (United States)

    2007-11-01

    half of one wing, bees with legs packed with pollen , butterflies or moths with torn and frayed wings likewise are capable of apparently normal flight...technologies. To appreciate this, consider a not unreasonable extension of a wide area autonomous search (WAAS) munition operational scenario. Here...detect and destroy missile launchers that are operating in the back alleys of an urban areas or search Evers, J.H. (2007) Biological Inspiration for Agile

  18. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  19. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  20. Innovation Inspired by Nature: Capabilities, Potentials and Challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2012-01-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.

  1. Inspiration from britain?

    DEFF Research Database (Denmark)

    Vagnby, Bo

    2008-01-01

    Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November......Danish housing policy needs a dose of renewed social concern - and could find new inspiration in Britain's housing and urban planning policies, says Bo Vagnby. Udgivelsesdato: November...

  2. Handbook of nature-inspired and innovative computing integrating classical models with emerging technologies

    CERN Document Server

    2006-01-01

    As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena.

  3. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  4. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  5. Neuro-Inspired Computing with Stochastic Electronics

    KAUST Repository

    Naous, Rawan

    2016-01-06

    The extensive scaling and integration within electronic systems have set the standards for what is addressed to as stochastic electronics. The individual components are increasingly diverting away from their reliable behavior and producing un-deterministic outputs. This stochastic operation highly mimics the biological medium within the brain. Hence, building on the inherent variability, particularly within novel non-volatile memory technologies, paves the way for unconventional neuromorphic designs. Neuro-inspired networks with brain-like structures of neurons and synapses allow for computations and levels of learning for diverse recognition tasks and applications.

  6. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  7. A Tony Thomas-Inspired Guide to INSPIRE

    International Nuclear Information System (INIS)

    O'Connell, Heath B.

    2010-01-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  8. Six aspects to inspirational green roof design

    Energy Technology Data Exchange (ETDEWEB)

    Kiers, H. [SWA Group, Sausalito, CA (United States)

    2004-07-01

    Green roofs have been categorized as a technology that is not initially faster, better or cheaper, and may even under perform established products. However, green roofs have features and values that early adopters are ready to experiment with in small markets, thereby creating awareness of the technology. Termed as disruptive technologies, green roofs can become competitive within the mainstream market against established products. The challenge in green roof construction is to find the correct balance between idealistic principles and leading edge design. This paper presented case studies to examine the following 6 aspects of design fundamentals to the creation of inspirational green roofs: the use of colour; experimentation with materials and technology; incorporation of texture, form, and pattern; definition of space; engagement of vistas; and, principles of bio-regionalism. It was concluded that good design is not enough to lead to widespread green roof implementation. It was emphasized that change will occur primarily because of the benefits acquired through implementation. 11 refs., 7 figs.

  9. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  10. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  11. Superstring-inspired SO(10) GUT model with intermediate scale

    Science.gov (United States)

    Sasaki, Ken

    1987-12-01

    A new mechanism is proposed for the mixing of Weinberg-Salam Higgs fields in superstring-inspired SO(10) models with no SO(10) singlet fields. The higher-dimensional terms in the superpotential can generate both Higgs field mixing and a small mass for the physical neutrino. I would like to thank Professor C. Iso for hospitality extended to me at the Tokyo Institute of Technology.

  12. Adaptive infrared-reflecting systems inspired by cephalopods

    Science.gov (United States)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  13. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  14. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  15. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  16. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  17. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCEDurante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  18. INSPIRE 2012 da Istanbul a Firenze

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2012-09-01

    Full Text Available DURING THE CONFERENCE HELD IN  ISTANBUL IN  2012 INSPIRE  THE  NEWS  THAT  MOST  IMPRESSED ITALIANS PRESENT,  EVEN THOSE IN THE PUBLIC ADMINISTRATION , WAS THAT THE NEXT  INSPIRE CONFERENCE WILL TAKE PLACE IN  FLORENCE Durante la conferenza INSPIRE 2012 svoltasi ad Istanbul la notizia che ha maggiormente colpito gli italiani presenti, anche quelli della pubblica amministrazione , è stata che la prossima Conferenza INSPIRE si svolgerà a Firenze dal 23 al 27 giugno 2013.

  19. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  20. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  1. Nostalgia-Evoked Inspiration: Mediating Mechanisms and Motivational Implications.

    Science.gov (United States)

    Stephan, Elena; Sedikides, Constantine; Wildschut, Tim; Cheung, Wing-Yee; Routledge, Clay; Arndt, Jamie

    2015-10-01

    Six studies examined the nostalgia-inspiration link and its motivational implications. In Study 1, nostalgia proneness was positively associated with inspiration frequency and intensity. In Studies 2 and 3, the recollection of nostalgic (vs. ordinary) experiences increased both general inspiration and specific inspiration to engage in exploratory activities. In Study 4, serial mediational analyses supported a model in which nostalgia increases social connectedness, which subsequently fosters self-esteem, which then boosts inspiration. In Study 5, a rigorous evaluation of this serial mediational model (with a novel nostalgia induction controlling for positive affect) reinforced the idea that nostalgia-elicited social connectedness increases self-esteem, which then heightens inspiration. Study 6 extended the serial mediational model by demonstrating that nostalgia-evoked inspiration predicts goal pursuit (intentions to pursue an important goal). Nostalgia spawns inspiration via social connectedness and attendant self-esteem. In turn, nostalgia-evoked inspiration bolsters motivation. © 2015 by the Society for Personality and Social Psychology, Inc.

  2. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    DEFF Research Database (Denmark)

    Petersen, Jens; Wille, Mathilde M.W.; Raket, Lars Lau

    2014-01-01

    . Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict......OBJECTIVES: To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. METHODS: 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT...... • The effect of inspiration is greater in higher-generation (more peripheral) airways • Airways of generation 5 and beyond are as distensible as lung parenchyma • Airway dimensions measured from CT should be adjusted for inspiration level....

  3. Using Technology in Reggio Emilia-Inspired Programs

    Science.gov (United States)

    Mitchell, Linda M.

    2007-01-01

    All young children need to interact with their environments to achieve maximum development and learning. Technology has great potential for supporting the learning needs of all young children in early childhood programs supported by the Reggio Emilia philosophy. This article discusses possible uses of technologies that are appropriate for young…

  4. DNA-Inspired Online Behavioral Modeling and Its Application to Spambot Detection

    DEFF Research Database (Denmark)

    Cresci, Stefano; Di Pietro, Roberto; Petrocchi, Marinella

    2016-01-01

    A novel, simple, and effective approach to modeling online user behavior extracts and analyzes digital DNA sequences from user online actions and uses Twitter as a benchmark to test the proposal. Specifically, the model obtains an incisive and compact DNA-inspired characterization of user actions...... methodology is platform and technology agnostic, paving the way for diverse behavioral characterization tasks....

  5. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  6. La maturità di INSPIRE

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2010-03-01

    Full Text Available INPIRE's maturityThe INSPIRE Conference 2010 took place from 23 to 25 June 2010 in Kraków, Poland. On 22 June pre-conference workshops have been organized. The theme of this year’s edition has been "INSPIRE as a Framework for Cooperation".The INSPIRE Conference has been organised through a series of plenary sessions addressing common policy issues, and parallel sessions focusing in particular on applications and implementations of SDIs, research issues and new and evolvingtechnologies and applications and poster presentations.

  7. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  8. Geo-inspired model: Agents vectors naturals inspired by the environmental management (AVNG of water tributaries

    Directory of Open Access Journals (Sweden)

    Edwin Eduardo Millán Rojas

    2018-02-01

    Full Text Available Context: Management to care for the environment and the Earth (geo can be source of inspiration for developing models that allow addressing complexity issues; the objective of this research was to develop an additional aspect of the inspired models. The geoinspired model has two features, the first covering aspects related to environmental management and the behavior of natural resources, and the second has a component of spatial location associated with existing objects on the Earth's surface. Method: The approach developed in the research is descriptive and its main objective is the representation or characterization of a case study within a particular context. Results: The result was the design of a model to emulate the natural behavior of the water tributaries of the Amazon foothills, in order to extend the application of the inspired models and allow the use of elements such as geo-referencing and environmental management. The proposed geoinspired model is called “natural vectors agents inspired in environmental management”. Conclusions: The agents vectors naturals inspired by the environmental are polyform elements that can assume the behavior of environmental entities, which makes it possible to achieve progress in other fields of environmental management (use of soil, climate, flora, fauna, and link environmental issues with the structure of the proposed model.

  9. Norsk inspiration til uddannelse og job

    DEFF Research Database (Denmark)

    Skovhus, Randi Boelskifte; Thomsen, Rie; Buhl, Rita

    2017-01-01

    Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job......Anmeldelse af bog om det norske fag Utdanningsvalg - inspiration til arbejde med uddannelse og job...

  10. Feeling Is Believing: Inspiration Encourages Belief in God.

    Science.gov (United States)

    Critcher, Clayton R; Lee, Chan Jean

    2018-05-01

    Even without direct evidence of God's existence, about half of the world's population believes in God. Although previous research has found that people arrive at such beliefs intuitively instead of analytically, relatively little research has aimed to understand what experiences encourage or legitimate theistic belief systems. Using cross-cultural correlational and experimental methods, we investigated whether the experience of inspiration encourages a belief in God. Participants who dispositionally experience more inspiration, were randomly assigned to relive or have an inspirational experience, or reported such experiences to be more inspirational all showed stronger belief in God. These effects were specific to inspiration (instead of adjacent affective experiences) and a belief in God (instead of other empirically unverifiable claims). Being inspired by someone or something (but not inspired to do something) offers a spiritually transcendent experience that elevates belief in God, in part because it makes people feel connected to something beyond themselves.

  11. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  12. Bio-Inspired Sustainability Assessment for Building Product Development—Concept and Case Study

    Directory of Open Access Journals (Sweden)

    Rafael Horn

    2018-01-01

    Full Text Available Technological advancement culminating in a globalized economy has brought tremendous improvements for mankind in manifold respects but comes at the cost of alienation from nature. Human activities nowadays are unsustainable and cause severe damage especially in terms of global depletion and destabilization of natural systems but also harm its own social resources. In this paper, a sustainability assessment method is developed based on a bio-inspired sustainability framework that has been developed in the project TRR 141-C01 “The biomimetic promise.” It is aims at regaining the advantages of societal embeddedness in its environment through biological inspiration. The method is developed using a structured approach including requirement specification, description of the inventory models on bio-inspiration and sustainability assessment, creation of a bio-inspired sustainability assessment model and its validation. It is defined as an accompanying assessment for decision support, using a six-fold two-dimensional structure of social, economic and environmental functions and burdens. The method is applied and validated in 6 projects of TRR 141 and its applicability is exemplarily shown by the assessment of “Bio-flexi”, a biobased and biodegradable natural fiber reinforced plastic composite for indoor cladding applications. Based on the findings of the application the assessment method itself is proposed to be advanced towards an adaptive structure and a consequent outlook is provided.

  13. Paradigms for biologically inspired design

    DEFF Research Database (Denmark)

    Lenau, T. A.; Metzea, A.-L.; Hesselberg, T.

    2018-01-01

    engineering, medical engineering, nanotechnology, photonics,environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design isthe knowledge barrier that exist between the application engineers that have insight into how to design suitable productsand......Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of wellproven design principles that can be used for developing new and innovative products. Biological phenomena can inspireproduct innovation in as diverse areas as mechanical...... the biologists with detailed knowledge and experience in understanding how biological organisms function in theirenvironment. The biologically inspired design process can therefore be approached using different design paradigmsdepending on the dominant opportunities, challenges and knowledge characteristics...

  14. Seeding-inspired chemotaxis genetic algorithm for the inference of biological systems.

    Science.gov (United States)

    Wu, Shinq-Jen; Wu, Cheng-Tao

    2014-09-18

    A large challenge in the post-genomic era is to obtain the quantitatively dynamic interactive information of the important constitutes of underlying systems. The S-system is a dynamic and structurally rich model that determines the net strength of interactions between genes and/or proteins. Good generation characteristics without the need for prior information have allowed S-systems to become one of the most promising canonical models. Various evolutionary computation technologies have recently been developed for the identification of system parameters and skeletal-network structures. However, the gaps between the truncated and preserved terms remain too small. Additionally, current research methods fail to identify the structures of high dimensional systems (e.g., 30 genes with 1800 connections). Optimization technologies should converge fast and have the ability to adaptively adjust the search. In this study, we propose a seeding-inspired chemotaxis genetic algorithm (SCGA) that can force evolution to adjust the population movement to identify a favorable location. The seeding-inspired training strategy is a method to achieve optimal results with limited resources. SCGA introduces seeding-inspired genetic operations to allow a population to possess competitive power (exploitation and exploration) and a winner-chemotaxis-induced population migration to force a population to repeatedly tumble away from an attractor and swim toward another attractor. SCGA was tested on several canonical biological systems. SCGA not only learned the correct structure within only one to three pruning steps but also ensures pruning safety. The values of the truncated terms were all smaller than 10 -14 , even for a thirty-gene system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  16. Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Jens; Raket, Lars Lau; Nielsen, Mads [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Wille, Mathilde M.W.; Dirksen, Asger [University of Copenhagen, Department of Respiratory Medicine, Gentofte Hospital, Hellerup (Denmark); Feragen, Aasa [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, Tuebingen (Germany); Pedersen, Jesper H. [Rigshospitalet, University Hospital of Copenhagen, Department of Cardio-Thoracic Surgery RT, Copenhagen (Denmark); Bruijne, Marleen de [University of Copenhagen, Department of Computer Science, Copenhagen (Denmark); Erasmus MC Rotterdam, Departments of Medical Informatics and Radiology, Rotterdam (Netherlands)

    2014-09-15

    To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3-7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7 %). Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. (orig.)

  17. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  18. Inspiration fra NY-times

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye

    2015-01-01

    NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever.......NY-times har en ugentlig klumme med gode råd. For nogle uger siden var ugens inspiration henvendt til lærere/undervisere og drejede sig om, hvordan man skaber taletid til alle uden at have favoritter og overse de mere stille elever....

  19. Inspiration til undervisning på museer

    DEFF Research Database (Denmark)

    Hyllested, Trine Elisabeth

    2015-01-01

    collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark......collection and arrangement of knowledge meant to give a general view of, to inspire and to develop teaching at museums in Denmark...

  20. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

    Directory of Open Access Journals (Sweden)

    Ishaq Ahmad

    2016-11-01

    Full Text Available Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young’s equation, and Wenzel and Cassie–Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles.

  1. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

    Science.gov (United States)

    Ahmad, Ishaq; Kan, Chi-wai

    2016-01-01

    Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young’s equation, and Wenzel and Cassie–Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles. PMID:28774012

  2. Data specifications for INSPIRE

    Science.gov (United States)

    Portele, Clemens; Woolf, Andrew; Cox, Simon

    2010-05-01

    In Europe a major recent development has been the entering in force of the INSPIRE Directive in May 2007, establishing an infrastructure for spatial information in Europe to support Community environmental policies, and policies or activities which may have an impact on the environment. INSPIRE is based on the infrastructures for spatial information established and operated by the 27 Member States of the European Union. The Directive addresses 34 spatial data themes needed for environmental applications, with key components specified through technical implementing rules. This makes INSPIRE a unique example of a legislative "regional" approach. One of the requirements of the INSPIRE Directive is to make existing spatial data sets with relevance for one of the spatial data themes available in an interoperable way, i.e. where the spatial data from different sources in Europe can be combined to a coherent result. Since INSPIRE covers a wide range of spatial data themes, the first step has been the development of a modelling framework that provides a common foundation for all themes. This framework is largely based on the ISO 19100 series of standards. The use of common generic spatial modelling concepts across all themes is an important enabler for interoperability. As a second step, data specifications for the first set of themes has been developed based on the modelling framework. The themes include addresses, transport networks, protected sites, hydrography, administrative areas and others. The data specifications were developed by selected experts nominated by stakeholders from all over Europe. For each theme a working group was established in early 2008 working on their specific theme and collaborating with the other working groups on cross-theme issues. After a public review of the draft specifications starting in December 2008, an open testing process and thorough comment resolution process, the draft technical implementing rules for these themes have been

  3. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  4. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  5. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...

  6. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    Science.gov (United States)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  7. Virus-Inspired Nanogenes Free from Man-Made Materials for Host-Specific Transfection and Bio-Aided MR Imaging.

    Science.gov (United States)

    Zhu, Jing-Yi; Zhang, Ming-Kang; Ding, Xian-Guang; Qiu, Wen-Xiu; Yu, Wu-Yang; Feng, Jun; Zhang, Xian-Zheng

    2018-05-01

    Many viruses have a lipid envelope derived from the host cell membrane that contributes much to the host specificity and the cellular invasion. This study puts forward a virus-inspired technology that allows targeted genetic delivery free from man-made materials. Genetic therapeutics, metal ions, and biologically derived cell membranes are nanointegrated. Vulnerable genetic therapeutics contained in the formed "nanogene" can be well protected from unwanted attacks by blood components and enzymes. The surface envelope composed of cancer cell membrane fragments enables host-specific targeting of the nanogene to the source cancer cells and homologous tumors while effectively inhibiting recognition by macrophages. High transfection efficiency highlights the potential of this technology for practical applications. Another unique merit of this technology arises from the facile combination of special biofunction of metal ions with genetic therapy. Typically, Gd(III)-involved nanogene generates a much higher T 1 relaxation rate than the clinically used Gd magnetic resonance imaging agent and harvests the enhanced MRI contrast at tumors. This virus-inspired technology points out a distinctive new avenue for the disease-specific transport of genetic therapeutics and other biomacromolecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. INSPIRE: A new scientific information system for HEP

    International Nuclear Information System (INIS)

    Ivanov, R; Raae, L

    2010-01-01

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project - a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate current acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will introduce the 'Web 2.0' paradigm of user-enriched content in the domain of sciences, with community-based approaches to scientific publishing. INSPIRE represents a natural evolution of scholarly communication built on successful community-based information systems, and it provides a vision for information management in other fields of science. Inspired by the needs of HEP, we hope that the INSPIRE project will be inspiring for other communities.

  9. Ships - inspiring objects in architecture

    Science.gov (United States)

    Marczak, Elzbieta

    2017-10-01

    Sea-going vessels have for centuries fascinated people, not only those who happen to work at sea, but first and foremost, those who have never set foot aboard a ship. The environment in which ships operate is reminiscent of freedom and countless adventures, but also of hard and interesting maritime working life. The famous words of Pompey: “Navigare necesseest, vivere non estnecesse” (sailing is necessary, living - is not necessary), which he pronounced on a stormy sea voyage, arouse curiosity and excitement, inviting one to test the truth of this saying personally. It is often the case, however, that sea-faring remains within the realm of dreams, while the fascination with ships demonstrates itself through a transposition of naval features onto land constructions. In such cases, ship-inspired motifs bring alive dreams and yearnings as well as reflect tastes. Tourism is one of the indicators of people’s standard of living and a measure of a society’s civilisation. Maritime tourism has been developing rapidly in recent decades. A sea cruise offers an insight into life at sea. Still, most people derive their knowledge of passenger vessels and their furnishings from the mass media. Passenger vessels, also known as “floating cities,” are described as majestic and grand, while their on-board facilities as luxurious, comfortable, exclusive and inaccessible to common people on land. Freight vessels, on the other hand, are described as enormous objects which dwarf the human being into insignificance. This article presents the results of research intended to answer the following questions: what makes ships a source of inspiration for land architecture? To what extent and by what means do architects draw on ships in their design work? In what places can we find structures inspired by ships? What ships inspire architects? This article presents examples of buildings, whose design was inspired by the architecture and structural details of sea vessels. An analysis of

  10. Bio-inspiring cyber security and cloud services trends and innovations

    CERN Document Server

    Kim, Tai-Hoon; Kacprzyk, Janusz; Awad, Ali

    2014-01-01

    This volume presents recent research in cyber security, and reports how organizations can gain competitive advantages by applying the different security techniques in real-world scenarios. The volume provides reviews of cutting–edge technologies, algorithms, applications and insights for bio-inspiring cyber security-based systems. The book will be a valuable companion and comprehensive reference for both postgraduate and senior undergraduate students who are taking a course in cyber security. The volume is organized in self-contained chapters to provide greatest reading flexibility.  

  11. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  12. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    Science.gov (United States)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  13. Key pillars of data interoperability in Earth Sciences - INSPIRE and beyond

    Science.gov (United States)

    Tomas, Robert; Lutz, Michael

    2013-04-01

    encoding. However, since the conceptual models are independent of concrete encodings, it is also possible to derive other encodings (e.g. based on RDF). Registers provide unique and persistent identifiers for a number of different types of information items (e.g. terms from a controlled vocabulary or units of measure) and allow their consistent management and versioning. By using these identifiers in data, references to specific information items can be made unique and unambiguous. It is important that these interoperability solutions are not developed in isolation - for Europe only. This has been identified from the beginning, and therefore, international standards have been taken into account and been widely referred to in INSPIRE. This mutual cooperation with international standardisation activities needs to be maintained or even extended. For example, where INSPIRE has gone beyond existing standards, the INSPIRE interoperability solutions should be introduced to the international standardisation initiatives. However, in some cases, it is difficult to choose the appropriate international organization or standardisation body (e.g. where there are several organizations overlapping in scope) or to achieve international agreements that accept European specifics. Furthermore, the development of the INSPIRE specifications (to be legally adopted in 2013) is only a beginning of the effort to make environmental data interoperable. Their actual implementation by data providers across Europe, as well as the rapid development in the earth sciences (e.g. from new simulation models, scientific advances, etc.) and ICT technology will lead to requests for changes. It is therefore crucial to ensure the long-term sustainable maintenance and further development of the proposed infrastructure. This task cannot be achieved by the INSPIRE coordination team of the European Commission alone. It is therefore crucial to closely involve relevant (where possible, umbrella) organisations in the

  14. INSPIRE: Managing Metadata in a Global Digital Library for High-Energy Physics

    CERN Document Server

    Martin Montull, Javier

    2011-01-01

    Four leading laboratories in the High-Energy Physics (HEP) field are collaborating to roll-out the next-generation scientific information portal: INSPIRE. The goal of this project is to replace the popular 40 year-old SPIRES database. INSPIRE already provides access to about 1 million records and includes services such as fulltext search, automatic keyword assignment, ingestion and automatic display of LaTeX, citation analysis, automatic author disambiguation, metadata harvesting, extraction of figures from fulltext and search in figure captions. In order to achieve high quality metadata both automatic processing and manual curation are needed. The different tools available in the system use modern web technologies to provide the curators of the maximum efficiency, while dealing with the MARC standard format. The project is under heavy development in order to provide new features including semantic analysis, crowdsourcing of metadata curation, user tagging, recommender systems, integration of OAIS standards a...

  15. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    .), genetic and evolutionary strategies, artificial immune systems etc. Well-known examples of applications include: aircraft wing design, wind turbine design, bionic car, bullet train, optimal decisions related to traffic, appropriate strategies to survive under a well-adapted immune system etc. Based......During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms...

  16. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  17. Inspiring Careers in STEM and Healthcare Fields through Medical Simulation Embedded in High School Science Education

    Science.gov (United States)

    Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.

    2014-01-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…

  18. Health cyberinfrastructure for collaborative use-inspired research and practice.

    Science.gov (United States)

    Chismar, William; Horan, Thomas A; Hesse, Bradford W; Feldman, Sue S; Shaikh, Abdul R

    2011-05-01

    Rapid advances in information and networking technologies have greatly expanded the modes for conducting business and science. For the past two decades, the National Science Foundation (NSF) has been supporting efforts to develop a comprehensive cyberinfrastructure with the goal of transforming the nature of scientific investigations. More recently, the NIH began supporting efforts to develop a cyberinfrastructure of healthcare research and practice. However, the best structure and applications of cyberinfrastructure in health care have yet to be defined. To address these issues, the NIH and the Kay Center for E-Health Research at Claremont Graduate University sponsored a symposium on "Cyberinfrastructure for Public Health and Health Services: Research and Funding Directions." The symposium convened researchers, practitioners, and federal funders to discuss how to further cyberinfrastructure systems and research in the public health and health services sectors. This paper synthesizes findings of the symposium, the goals of which were to determine the dynamics necessary for executing and utilizing cyberinfrastructure in public health and health services; examine the requirements of transdisciplinary collaboration; and identify future research directions. A multi-faceted conception of use-inspired research for cyberinfrastructure is developed. Use-inspired research aims to further basic theory but is grounded, inspired, and informed by practical problems. A cyberinfrastructure framework is presented that incorporates three intersecting dimensions: research-practice, health services-public health, and social-technical dimensions. Within this framework, this paper discusses the ways in which cyberinfrastructure provides opportunities to integrate across these dimensions to develop research and actions that can improve both clinical outcomes and public health. Copyright © 2011 American Journal of Preventive Medicine. All rights reserved.

  19. "Kind and Grateful": A Context-Sensitive Smartphone App Utilizing Inspirational Content to Promote Gratitude.

    Science.gov (United States)

    Ghandeharioun, Asma; Azaria, Asaph; Taylor, Sara; Picard, Rosalind W

    Previous research has shown that gratitude positively influences psychological wellbeing and physical health. Grateful people are reported to feel more optimistic and happy, to better mitigate aversive experiences, and to have stronger interpersonal bonds. Gratitude interventions have been shown to result in improved sleep, more frequent exercise and stronger cardiovascular and immune systems. These findings call for the development of technologies that would inspire gratitude. This paper presents a novel system designed toward this end. We leverage pervasive technologies to naturally embed inspiration to express gratitude in everyday life. Novel to this work, mobile sensor data is utilized to infer optimal moments for stimulating contextually relevant thankfulness and appreciation. Sporadic mood measurements are inventively obtained through the smartphone lock screen, investigating their interplay with grateful expressions. Both momentary thankful emotion and dispositional gratitude are measured. To evaluate our system, we ran two rounds of randomized control trials (RCT), including a pilot study (N = 15, 2 weeks) and a main study (N = 27, 5 weeks). Studies' participants were provided with a newly developed smartphone app through which they were asked to express gratitude; the app displayed inspirational content to only the intervention group, while measuring contextual cues for all users. In both rounds of the RCT, the intervention was associated with improved thankful behavior. Significant increase was observed in multiple facets of practicing gratitude in the intervention groups. The average frequency of practicing thankfulness increased by more than 120 %, comparing the baseline weeks with the intervention weeks of the main study. In contrast, the control group of the same study exhibited a decrease of 90 % in the frequency of thankful expressions. In the course of the study's 5 weeks, increases in dispositional gratitude and in psychological wellbeing were

  20. Practices of Waldorf-Inspired Schools. Research Brief

    Science.gov (United States)

    Friedlaender, Diane; Beckham, Kyle; Zheng, Xinhua; Darling-Hammond, Linda

    2015-01-01

    "Growing a Waldorf-Inspired Approach in a Public School District" documents the practices and outcomes of Alice Birney, a Waldorf-Inspired School in Sacramento City Unified School District (SCUSD). This study highlights how such a school addresses students' academic, social, emotional, physical, and creative development. The study also…

  1. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  2. Biomimicry as an approach for bio-inspired structure with the aid of compu

    Directory of Open Access Journals (Sweden)

    Moheb Sabry Aziz

    2016-03-01

    Full Text Available Biomimicry is the study of emulating and mimicking nature, where it has been used by designers to help in solving human problems. From centuries ago designers and architects looked at nature as a huge source of inspiration. Biomimicry argues that nature is the best, most influencing and the guaranteed source of innovation for the designers as a result of nature’s 3.85 billion years of evolution, as it holds a gigantic experience of solving problems of the environment and its inhabitants. The biomimicry emerging field deals with new technologies honed from bio-inspired engineering at the micro and macro scale levels. Architects have been searching for answers from nature to their complex questions about different kinds of structures, and they have mimicked a lot of forms from nature to create better and more efficient structures for different architectural purposes. Without computers these complex ways and forms of structures couldn’t been mimicked and thus using computers had risen the way of mimicking and taking inspiration from nature because it is considered a very sophisticated and accurate tool for simulation and computing, as a result designers can imitate different nature’s models in spite of its complexity.

  3. Biologically inspired robots as artificial inspectors

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  4. Nature as inspiration for leisure education

    OpenAIRE

    ŠPIRHANZLOVÁ, Andrea

    2017-01-01

    The thesis deals with the organization of leisure activities where the main tool and inspiration is nature. The theoretical part defines basic concepts of pedagogy of free time and points to the possibility of using nature as an inspiration not only for creating content components of leisure activities, but also as the environment in which the pedagogical - educational process of activities takes place. The practical part contains specific pedagogical - educational activity whose essence is b...

  5. Bio-Inspired Cyber Security for Smart Grid Deployments

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  6. Inspiration and the Texts of the Bible

    Directory of Open Access Journals (Sweden)

    Dirk Buchner

    1997-12-01

    Full Text Available This article seeks to explore what the inspired text of the Old Testament was as it existed for the New Testament authors, particularly for the author of the book of Hebrews. A quick look at the facts makes. it clear that there was, at the time, more than one 'inspired' text, among these were the Septuagint and the Masoretic Text 'to name but two'. The latter eventually gained ascendancy which is why it forms the basis of our translated Old Testament today. Yet we have to ask: what do we make of that other text that was the inspired Bible to the early Church, especially to the writer of the book of Hebrews, who ignored the Masoretic text? This article will take a brief look at some suggestions for a doctrine of inspiration that keeps up with the facts of Scripture. Allied to this, the article is something of a bibliographical study of recent developments in textual research following the discovery of the Dead Sea scrolls.

  7. Nature-Inspired Design : Strategies for Sustainable Product Development

    NARCIS (Netherlands)

    De Pauw, I.C.

    2015-01-01

    Product designers can apply different strategies, methods, and tools for sustainable product development. Nature-Inspired Design Strategies (NIDS) offer designers a distinct class of strategies that use ‘nature’ as a guiding source of knowledge and inspiration for addressing sustainability.

  8. The scientific study of inspiration in the creative process: Challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Victoria C. Oleynick

    2014-06-01

    Full Text Available Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale, which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort, and we review empirical evidence that inspiration and effort both play important—but different—roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society.

  9. Role of Cultural Inspiration with Different Types in Cultural Product Design Activities

    Science.gov (United States)

    Luo, Shi-Jian; Dong, Ye-Nan

    2017-01-01

    Inspiration plays an important role in the design activities and design education. This paper describes "ancient cultural artefacts" as "cultural inspiration," consisting of two types called "cultural-pictorial inspiration" (CPI) and "cultural-textual inspiration" (CTI). This study aims to test the important…

  10. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Science.gov (United States)

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  11. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  12. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  13. Exploring Creativity in the Bio-Inspired Design Process

    DEFF Research Database (Denmark)

    Anggakara, K.; Aksdal, T.; Onarheim, Balder

    2015-01-01

    The growing interest in the of field bio-inspired design has been driven by the acknowledgement that inspiration from nature can serve as a valuable source of innovation. As an emerging approach, there has been a focus on building a principled methodology to address the challenges that arise...

  14. Disruptive technologies - widening the scope -

    OpenAIRE

    Ruhlig, Klaus; Wiemken, Uwe

    2006-01-01

    The term „disruptive technologies” was introduced 1997 by Clayton Christensen in the context of innovations in the business world based upon technological developments. It was meant to sharpen the view for new technologies which can „disrupt” the economic context of a business. Since then it inspired other communities like so many terms in English (or American) language. One of these is the domain of international Research & Technology (R&T) cooperation and technological forecasting for publi...

  15. Inspiration in the Act of Reading

    DEFF Research Database (Denmark)

    Zeller, Kinga

    2016-01-01

    In German-language theology, Professor Ulrich H. J. Körtner’s theory of inspiration, as it relates to the Bible reader’s perspective, is well known. His attempt to gain fruitful insights from contemporary literary hermeneutics while linking them to theological concerns makes his approach a valued...... yet not uncontroversial example of a reception-aesthetics twist on the Lutheran sola Scriptura. This article presents Körtner’s hermeneutical considerations with special regard to inspiration related to the Bible reader’s perspective and shows how this approach may be related to some aspects...

  16. Future Information Technology

    CERN Document Server

    Stojmenovic, Ivan; Choi, Min; Xhafa, Fatos; FutureTech 2013

    2014-01-01

    Future technology information technology stands for all of continuously evolving and converging information technologies, including digital convergence, multimedia convergence, intelligent applications, embedded systems, mobile and wireless communications, bio-inspired computing, grid and cloud computing, semantic web, user experience and HCI, security and trust computing and so on, for satisfying our ever-changing needs. In past twenty five years or so, Information Technology (IT) influenced and changed every aspect of our lives and our cultures. These proceedings foster the dissemination of state-of-the-art research in all future IT areas, including their models, services, and novel applications associated with their utilization.

  17. Technology Specialisation 1, 2 & 3 Compendium

    DEFF Research Database (Denmark)

    Tambo, Torben; Koch, Christian; Hansen, Hans Henrik

    2010-01-01

    and progressive move forward inspired by the spirit of engineering. This compendium gives broad information on many aspects of the Technology Specialisation project courses relating to aim, method, mentor company roles, individual versus group performance, scientific motivation and many other issues. The content......Within the Master of Science in Technology-based Business Development study program, Technology Specialisations are the recurring technological stronghold. The Technology Specialisations should hold the students focus on the technological platform of this program and ideally constitute a continuous...

  18. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  19. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  20. A survey of snake-inspired robot designs

    International Nuclear Information System (INIS)

    Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K

    2009-01-01

    Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice. (topical review)

  1. Drawing inspiration from biological optical systems

    Science.gov (United States)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  2. For the sake of technology?

    DEFF Research Database (Denmark)

    Olesen, Anne Rørbæk

    2016-01-01

    While digital technologies are becoming increasingly commonplace in museum practice, research that critically considers the processes in which they emerge is still scarce. This article demonstrates the role of technology views in these processes. Based on ethnographic data from two design processes...... of technology conceptualisations, constructed with inspiration from science and technology studies and information systems research. To bridge the gap, funding bodies and museum designers are encouraged to focus on processes rather than on product specifications when funding and designing digital museum...

  3. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  4. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.

    Science.gov (United States)

    Li, Yao; Bi, Jingran; Wang, Siqi; Zhang, Tan; Xu, Xiaomeng; Wang, Haitao; Cheng, Shasha; Zhu, Bei-Wei; Tan, Mingqian

    2018-03-07

    Significant wastage of residual liquid food, such as milk, yogurt, and honey, in food containers has attracted great attention. In this work, a bio-inspired edible superhydrophobic interface was fabricated using U.S. Food and Drug Administration-approved and edible honeycomb wax, arabic gum, and gelatin by a simple and low-cost method. The bio-inspired edible superhydrophobic interface showed multiscale structures, which were similar to that of a lotus leaf surface. This bio-inspired edible superhydrophobic interface displayed high contact angles for a variety of liquid foods, and the residue of liquid foods could be effectively reduced using the bio-inspired interface. To improve the adhesive force of the superhydrophobic interface, a flexible edible elastic film was fabricated between the interface and substrate material. After repeated folding and flushing for a long time, the interface still maintained excellent superhydrophobic property. The bio-inspired edible superhydrophobic interface showed good biocompatibility, which may have potential applications as a functional packaging interface material.

  5. InSpiRe - Intelligent Spine Rehabilitation

    DEFF Research Database (Denmark)

    Bøg, Kasper Hafstrøm; Helms, Niels Henrik; Kjær, Per

    Rapport on InSpiRe-projektet: InSpiRe er et nationalt netværk, der skal fremme mulighederne for intelligent genoptræning i forhold til ryglidelser. I netværket mødes forskere, virksomheder, kiropraktorer og fysioterapeuter for at udvikle nye genoptrænings og/eller behandlingsteknologier.......Rapport on InSpiRe-projektet: InSpiRe er et nationalt netværk, der skal fremme mulighederne for intelligent genoptræning i forhold til ryglidelser. I netværket mødes forskere, virksomheder, kiropraktorer og fysioterapeuter for at udvikle nye genoptrænings og/eller behandlingsteknologier....

  6. LEGO-inspired drug design

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Dao, Trong Tuan; Grifell Junyent, Marta

    2018-01-01

    The fungal plasma membrane H+-ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for design...

  7. Genealogies of Modern Technology

    DEFF Research Database (Denmark)

    Riis, Søren

    2008-01-01

    Does modern technology differ from ancient technology and does it have a unique essence? This twofold question opens one of Martin Heidegger's most influential philosophical inquiries, The Question Concerning Technology. The answer Heidegger offers has inspired various critiques and appraisals from...... a vast number of contemporary scholars of technology.1 Heidegger's answer is traditionally thought to suggest a great difference between ancient and modern technology. However, by re-examining Heidegger's text, it is possible to discover previously ignored or misunderstood lines of thoughts that affirm...... a multi-stable interpretation of the origin of modern technology. In what follows, we shall see how The Question Concerning Technology in fact supports three different genealogies of modern technology...

  8. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  9. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  10. Nature-inspired design of hybrid intelligent systems

    CERN Document Server

    Castillo, Oscar; Kacprzyk, Janusz

    2017-01-01

    This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as...

  11. Traceability investigation in Computed Tomography using industry-inspired workpieces

    DEFF Research Database (Denmark)

    Kraemer, Alexandra; Stolfi, Alessandro; Schneider, Timm

    2017-01-01

    This paper concerns an investigation of the accuracy of Computed Tomography (CT) measurements using four industry-inspired workpieces. A total of 16 measurands were selected and calibrated using CMMs. CT measurements on industry-inspired workpieces were carried out using two CTs having different...

  12. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  13. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  14. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  15. Colloidal-based additive manufacturing of bio-inspired composites

    Science.gov (United States)

    Studart, Andre R.

    Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.

  16. Crickets as bio-inspiration for MEMS-based flow-sensing

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Droogendijk, H.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, Jerome

    2014-01-01

    MEMS offers exciting possibilities for the fabrication of bio-inspired mechanosensors. Over the last few years, we have been working on cricket- inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e. flow camera) and source localisation. Whereas making flow-sensors as energy

  17. Mediating between the muse and the masses: inspiration and the actualization of creative ideas.

    Science.gov (United States)

    Thrash, Todd M; Maruskin, Laura A; Cassidy, Scott E; Fryer, James W; Ryan, Richard M

    2010-03-01

    Within the creativity domain, inspiration is a motivational state posited to energize the actualization of creative ideas. The authors examined the construct validity, predictive utility, and function of inspiration in the writing process. Study 1, a cross-lagged panel study, showed that getting creative ideas and being inspired are distinct and that the former precedes the latter. In Study 2, inspiration, at the between-person level, predicted the creativity of scientific writing, whereas effort predicted technical merit. Within persons, peaks in inspiration predicted peaks in creativity and troughs in technical merit. In Study 3, inspiration predicted the creativity of poetry. Consistent with its posited transmission function, inspiration mediated between creativity of the idea and creativity of the product, whereas effort, positive affect, and awe did not. Study 4 extended the Study 3 findings to fiction writing. Openness to aesthetics and positive affect predicted creativity of the idea, whereas approach temperament moderated the relation between creativity of the idea and inspiration. Inspiration predicted efficiency, productivity, and use of shorter words, indicating that inspiration not only transmits creativity but does so economically.

  18. Wireless power transfer inspired by the modern trends in electromagnetics

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-06-01

    Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.

  19. Multimedia database retrieval technology and applications

    CERN Document Server

    Muneesawang, Paisarn; Guan, Ling

    2014-01-01

    This book explores multimedia applications that emerged from computer vision and machine learning technologies. These state-of-the-art applications include MPEG-7, interactive multimedia retrieval, multimodal fusion, annotation, and database re-ranking. The application-oriented approach maximizes reader understanding of this complex field. Established researchers explain the latest developments in multimedia database technology and offer a glimpse of future technologies. The authors emphasize the crucial role of innovation, inspiring users to develop new applications in multimedia technologies

  20. Origami-Inspired Folding of Thick, Rigid Panels

    Science.gov (United States)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  1. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    Science.gov (United States)

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  2. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    Science.gov (United States)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  3. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    Science.gov (United States)

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  4. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    International Nuclear Information System (INIS)

    Yang, Henry T Y; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J; Hansma, Paul K

    2010-01-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force–displacement–velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators

  5. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    Science.gov (United States)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  6. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  7. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  8. NASA's Bio-Inspired Acoustic Absorber Concept

    Science.gov (United States)

    Koch, L. Danielle

    2017-01-01

    are encouraged to contact the NASA Glenn Technology Transfer Office, https:technology.grc.nasa.gov. The NASA Glenn Office of Education https:www.nasa.govcentersglenneducationindex.html and the NASA Glenn Virtual Interchange for Nature-Inspired Exploration https:www.grc.nasa.govvine are also helping to make research like this accessible to the public and students of all ages.

  9. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  10. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  11. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  12. Inspirations in medical genetics.

    Science.gov (United States)

    Asadollahi, Reza

    2016-02-01

    There are abundant instances in the history of genetics and medical genetics to illustrate how curiosity, charisma of mentors, nature, art, the saving of lives and many other matters have inspired great discoveries. These achievements from deciphering genetic concepts to characterizing genetic disorders have been crucial for management of the patients. There remains, however, a long pathway ahead. © The Author(s) 2014.

  13. Nature-inspired computing and optimization theory and applications

    CERN Document Server

    Yang, Xin-She; Nakamatsu, Kazumi

    2017-01-01

    The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based opti...

  14. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  15. A highly efficient sharp-interface immersed boundary method with adaptive mesh refinement for bio-inspired flow simulations

    Science.gov (United States)

    Deng, Xiaolong; Dong, Haibo

    2017-11-01

    Developing a high-fidelity, high-efficiency numerical method for bio-inspired flow problems with flow-structure interaction is important for understanding related physics and developing many bio-inspired technologies. To simulate a fast-swimming big fish with multiple finlets or fish schooling, we need fine grids and/or a big computational domain, which are big challenges for 3-D simulations. In current work, based on the 3-D finite-difference sharp-interface immersed boundary method for incompressible flows (Mittal et al., JCP 2008), we developed an octree-like Adaptive Mesh Refinement (AMR) technique to enhance the computational ability and increase the computational efficiency. The AMR is coupled with a multigrid acceleration technique and a MPI +OpenMP hybrid parallelization. In this work, different AMR layers are treated separately and the synchronization is performed in the buffer regions and iterations are performed for the convergence of solution. Each big region is calculated by a MPI process which then uses multiple OpenMP threads for further acceleration, so that the communication cost is reduced. With these acceleration techniques, various canonical and bio-inspired flow problems with complex boundaries can be simulated accurately and efficiently. This work is supported by the MURI Grant Number N00014-14-1-0533 and NSF Grant CBET-1605434.

  16. Using Wiki Technology in the Classroom

    DEFF Research Database (Denmark)

    Majgaard, Gunver

    2013-01-01

    as a collaborative learning tool for encyclopaedia articles on learning and technology. There were several potential dilemmas in the students’ collaborative work: Inspiration versus imitation of others’ ideas and solutions; academic achievements versus friendships; varying work ethics and academic levels...

  17. Trauma-Inspired Prosocial Leadership Development

    Science.gov (United States)

    Williams, Jenifer Wolf; Allen, Stuart

    2015-01-01

    Though trauma survivors sometimes emerge as leaders in prosocial causes related to their previous negative or traumatic experiences, little is known about this transition, and limited guidance is available for survivors who hope to make prosocial contributions. To understand what enables trauma-inspired prosocial leadership development, the…

  18. Inspiration til fremtidens naturfaglige uddannelser

    DEFF Research Database (Denmark)

    Busch, Henrik; Troelsen, Rie; Horst, Sebastian

    uddannelsesniveauer • at den naturfaglige uddannelseskultur styrkes • at lærerkompetencerne styrkes. Rapportens 2. bind - den selvstændige publikation Inspiration til fremtidens naturfaglige uddannelser • En antologi indeholder en række essays om væsentlige problemstillinger for naturfagene. Der er tidligere udsendt...

  19. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    Science.gov (United States)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  20. INSPIRE: a new scientific information system for HEP

    CERN Document Server

    Ivanov, R; CERN. Geneva. IT Department

    2010-01-01

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project – a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate current acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will ...

  1. INSPIRE: a new scientific information system for HEP

    CERN Multimedia

    Ivanov, R

    2009-01-01

    The status of high-energy physics (HEP) information systems has been jointly analyzed by the libraries of CERN, DESY, Fermilab and SLAC. As a result, the four laboratories have started the INSPIRE project – a new platform built by moving the successful SPIRES features and content, curated at DESY, Fermilab and SLAC, into the open-source CDS Invenio digital library software that was developed at CERN. INSPIRE will integrate present acquisition workflows and databases to host the entire body of the HEP literature (about one million records), aiming to become the reference HEP scientific information platform worldwide. It will provide users with fast access to full-text journal articles and preprints, but also material such as conference slides and multimedia. INSPIRE will empower scientists with new tools to discover and access the results most relevant to their research, enable novel text- and data-mining applications, and deploy new metrics to assess the impact of articles and authors. In addition, it will ...

  2. Towards Bio-Inspired Chromatic Behaviours in Surveillance Robots

    Directory of Open Access Journals (Sweden)

    Sampath Kumar Karutaa Gnaniar

    2016-09-01

    Full Text Available The field of Robotics is ever growing at the same time as posing enormous challenges. Numerous works has been done in biologically inspired robotics emulating models, systems and elements of nature for the purpose of solving traditional robotics problems. Chromatic behaviours are abundant in nature across a variety of living species to achieve camouflage, signaling, and temperature regulation. The ability of these creatures to successfully blend in with their environment and communicate by changing their colour is the fundamental inspiration for our research work. In this paper, we present dwarf chameleon inspired chromatic behaviour in the context of an autonomous surveillance robot, “PACHONDHI”. In our experiments, we successfully validated the ability of the robot to autonomously change its colour in relation to the terrain that it is traversing for maximizing detectability to friendly security agents and minimizing exposure to hostile agents, as well as to communicate with fellow cooperating robots.

  3. Theorizing the Organization of Technology Entrepreneurship

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    and empirically is emerging. Inspired by elements of the Grounded Theory research methods for data collection and data analysis we explore (i) the process of technology entrepreneurship at different levels: university, industry, and government, including the nature of tensions, obstacles and incentives, (ii...

  4. Technology for helping people

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    The first THE Port hackathon problem-solving workshop was held at CERN from 31 October to 2 November in the framework of the 60th anniversary celebrations. The aim of the event was to develop technological projects that can help to solve the day-to-day needs of people living in areas of the planet that experience conflicts or natural disasters.   Collage of shots from THE Port hackathon. Credit: THE Port association The event was dedicated to humanitarian and social topics inspired by members of non-governmental organisations‬. “There is plenty of room for technology to help in humanitarian fields. That’s why we came up with the idea of bringing people together to work on these topics,” explains Ines Knäpper, Project Manager of THE Port hackathon. “We started six months ago setting up THE Port association.* The success of the event was only possible because of the joint effort of a team of roughly twenty people. They were inspired by the aim...

  5. Kids as Airborne Mission Scientists: Designing PBL To Inspire Kids.

    Science.gov (United States)

    Koszalka, Tiffany A.; Grabowski, Barbara L.; Kim, Younghoon

    Problem-based learning (PBL) has great potential for inspiring K-12 learning. KaAMS, a NASA funded project and an example of PBL, was designed to help teachers inspire middle school students to learn science. The students participate as scientists investigating environmental problems using NASA airborne remote sensing data. Two PBL modules were…

  6. INSPIRED High School Computing Academies

    Science.gov (United States)

    Doerschuk, Peggy; Liu, Jiangjiang; Mann, Judith

    2011-01-01

    If we are to attract more women and minorities to computing we must engage students at an early age. As part of its mission to increase participation of women and underrepresented minorities in computing, the Increasing Student Participation in Research Development Program (INSPIRED) conducts computing academies for high school students. The…

  7. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  8. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    Science.gov (United States)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  9. Improved approximate inspirals of test bodies into Kerr black holes

    International Nuclear Information System (INIS)

    Gair, Jonathan R; Glampedakis, Kostas

    2006-01-01

    We present an improved version of the approximate scheme for generating inspirals of test bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original 'hybrid' scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle ι during the inspiral. Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First, we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing eccentricity and/or 90 deg. inclination. Second, we use higher order post-Newtonian formulas, adapted for generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of ι. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky-based calculations. As an application of our improved scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date, and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in the LISA data

  10. Reggio Emilia Inspired Learning Groups: Relationships, Communication, Cognition, and Play

    Science.gov (United States)

    Hong, Seong Bock; Shaffer, LaShorage; Han, Jisu

    2017-01-01

    A key aspect of the Reggio Emilia inspired curriculum is a learning group approach that fosters social and cognitive development. The purpose of this paper is to investigate how a Reggio Emilia inspired learning group approach works for children with and without disabilities. This study gives insight into how to form an appropriate learning group…

  11. Fiction and Religion : How Narratives About the Supernatural Inspire Religious Belief

    NARCIS (Netherlands)

    Davidsen, M.A.

    2016-01-01

    Thematic issue on 'Fiction and Religion: How Narratives About the Supernatural Inspire Religious Belief', volume 46(4) of Religion. The thematic issue inclues the following articles: Davidsen, Markus Altena, "Fiction and Religion: How Narratives About the Supernatural Inspire Religious Belief –

  12. Socio-technological imaginaries and human

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    . This study discusses how government agencies’, technology developers’ and affected stakeholders’ socio-technological imaginaries distribute agencies and what this means to implementation of this robotics. The ANT idea of ‘follow the actor’ inspired the study that took place as multi-sited ethnography......Political/managerial levels intend to re-perform Denmark through digitization. Feeding assistive robotics is a welfare technology, relevant to citizens with no or low function in their arms. Despite endorsement and national dissemination strategies, it proves difficult to recruit suitable citizens...... at different locations in Denmark and Sweden. The study contributes to science and technology studies by providing an empirical analysis where political imaginaries, the technology developers’ assumptions, and users and care providers hassles are all in focus. Keywords: Socio-technological imaginaries...

  13. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    insect brain, allow these animals to fly with damaged wings, order of body mass payloads (e.g., foraging bees with a load of pollen , blood satiated...The research focus addressed two broad, complementary research areas : autonomous systems concepts inspired by the behavior and neurobiology...UL 46 19b. TELEPHONE NUMBER (include area code) 850 883-1887 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii Table of

  14. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  15. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  16. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  17. Eesti õpetaja pälvis Inspiration Software'i stipendiumi / Ave Lauringson

    Index Scriptorium Estoniae

    Lauringson, Ave

    2007-01-01

    USA tarkvarafirma Inspiration Software tegi teatavaks 30 õpetaja nimed üle maailma, kes saavad 2007. aasta haridusstipendiumi (Inspired Teacher Scholarships for Visual Learning). Nende seas on ka Lasnamäe Lasteaia-Algkooli õpetaja, Tiigrihüppe SA ekspert ja koolitaja ning Tiigri Tegija 2007 auhinnasaaja Ingrid Maadvere

  18. An Approach for Calculating Land Valuation by Using Inspire Data Models

    Science.gov (United States)

    Aydinoglu, A. C.; Bovkir, R.

    2017-11-01

    Land valuation is a highly important concept for societies and governments have always emphasis on the process especially for taxation, expropriation, market capitalization and economic activity purposes. To success an interoperable and standardised land valuation, INSPIRE data models can be very practical and effective. If data used in land valuation process produced in compliance with INSPIRE specifications, a reliable and effective land valuation process can be performed. In this study, possibility of the performing land valuation process with using the INSPIRE data models was analysed and with the help of Geographic Information Systems (GIS) a case study in Pendik was implemented. For this purpose, firstly data analysis and gathering was performed. After, different data structures were transformed according to the INSPIRE data model requirements. For each data set necessary ETL (Extract-Transform-Load) tools were produced and all data transformed according to the target data requirements. With the availability and practicability of spatial analysis tools of GIS software, land valuation calculations were performed for study area.

  19. Growth plan for an inspirational test-bed of smart textile services

    NARCIS (Netherlands)

    Wensveen, S.A.G.; Tomico, O.; Bhomer, ten M.; Kuusk, K.

    2015-01-01

    In this pictorial we visualize the growth plan for an inspirational test-bed of smart textile product service systems. The goal of the test-bed is to inspire and inform the Dutch creative industries of textile, interaction and service design to combine their strengths and share opportunities. The

  20. Dry friction of microstructured polymer surfaces inspired by snake skin

    OpenAIRE

    Martina J. Baum; Lars Heepe; Elena Fadeeva; Stanislav N. Gorb

    2014-01-01

    Summary The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients ...

  1. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    Science.gov (United States)

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  2. Erosion resistance of pipe bends with bio-inspired internal surfaces

    Science.gov (United States)

    Zhang, Chengchun; Matar, Omar

    2013-11-01

    Guided by the structure of a shell surface, a bio-inspired surface is proposed to enhance the erosion resistance of pipe bends carrying crude-oil and sand in the turbulent flow regime. A comparison of the erosion rate between a smooth bend and the bio-inspired one is carried out using numerical simulations: large eddy simulations are used to simulate turbulence, and these are coupled to a discrete element method for the solid particles. The results indicate that the bio-inspired surface can control effectively the liquid-solid flow near the wall, and decrease the particle-wall force. This, then, leads to a reduction in the erosion rate brought about by the sand transported by the crude-oil in the pipe bend. The China Scholarship Council is gratefully acknowledged.

  3. In Search of Scientific Inspiration.

    Science.gov (United States)

    2017-01-12

    In the ever-expanding sea of scientific advances, how do you find inspiration for your own study? Cell editor Jiaying Tan talked with Mark Lemmon and Joseph (Yossi) Schlessinger about the importance of fueling your research creativity with the conceptual excitement and technical advance from the broad scientific field. An excerpt of the conversation appears below. Copyright © 2017. Published by Elsevier Inc.

  4. Technology strategy as macro-actor

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2003-01-01

    -human entities to the explanatory repertoire of strategy research, another line of inquiry is pursued. The performative perspective thus proposed, is inspired by the classical work of Von Clausewitz and the recent anthropology of science, technology and organizational identities. In the proposed perspective...... case account for how the strategic technology and the strategic collective emerge and co-produce each other as a macro-actor, only to become transformed in unexpected ways - as common technology and reflective human subjects.In the concluding section, it is argued that the humanity of the reflective...... outcomes, as providers of explanations and observations. The expression `technological strategy as macro-actor' summarizes these findings and the associated implications for research and practice....

  5. Woodpecker-inspired shock isolation by microgranular bed

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-Hee [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Roh, Jin-Eep; Kim, Ki Lyug, E-mail: shyoon@me.berkeley.ed [Agency for Defense Development, Yuseong PO Box 35, Daejeon 305-600 (Korea, Republic of)

    2009-02-07

    This paper presents a woodpecker-inspired shock isolation (SI) using a microgranular bed to protect micromachined electronic devices (MEDs) for high-g military applications where mechanical excitations reach up to tens of thousands of gs and several hundreds of kHz. The shock isolating phenomenon in the microgranular bed within a metal housing, biomimetically inspired from a spongy bone within a skull of the woodpecker, controls unwanted high-frequency mechanical excitations so that their adverse effects on the embedded MEDs are kept within acceptable limit. The microgranular bed composed of close-packed microglass beads reduces the mechanical excitations transmitted to the MEDs through kinetic energy absorption. Two kinds of tests, a laboratory test and a 60 mm air-gun test, have been made. The laboratory test using a vibration exciter up to 25 kHz has demonstrated that the cut-off frequency (2.2-15.8 kHz) and roll-off steepness (-155.0 to -78.7 dB decade{sup -1}) are inversely proportional to the diameter of the close-packed microglass beads (68-875 {mu}m), whereas the vibration absorptivity (0.23-0.87) is proportional. The 60 mm air-gun test under high-g environments of up to 60 000 g has verified that the woodpecker-inspired SI is superior in improving the shock survivability of the MEDs to the conventional one using hard resin.

  6. Teaching Responsibly with Technology-Mediated Communication

    Science.gov (United States)

    Veltsos, Jennifer R.; Veltsos, Christophe

    2010-01-01

    Technology-mediated communication, or "new media," such as blogs, Twitter, wikis, and social network sites, can be an endless source of ideas for activities or inspiration for classroom discussion. Many instructors ask students to monitor current events by following keywords and industry leaders on Twitter and reading both corporate and…

  7. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  8. Trends & Challenges in Neuroengineering: Towards ‘Intelligent’ Neuroprostheses through Brain-‘Brain Inspired Systems’ Communication

    Directory of Open Access Journals (Sweden)

    Stefano Vassanelli

    2016-09-01

    Full Text Available Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term ‘neurobiohybrids’ indicating all those systems where such interaction is established. We argue that achieving a ‘high-level’ communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include ‘living robots’ but will also embrace ‘intelligent’ neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and, more specifically, on how deeply it should be allowed that brain processing is affected by implanted ‘intelligent’ artificial systems.Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a ‘community building’ perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes.

  9. Developing Game Changing Technologies and Bringing Them Down to Earth

    Science.gov (United States)

    Morse, David

    2016-01-01

    Address to entrepreneurs as a thought leader at the next upcoming seminar on 10/25/2016 at the Cardel Theater in Calgary. The technologies developed by NASA over the 60's through to today, has shaped the world as we know it, driving plastics to nano-electronics. To inspire local entrepreneurs developing new technologies.

  10. Analysis of free geo-server software usability from the viewpoint of INSPIRE requirementsAnalysis of free geo-server software usability from the viewpoint of INSPIRE requirements

    Directory of Open Access Journals (Sweden)

    Tomasz  Grasza

    2014-06-01

    Full Text Available The paper presents selected server platforms based on free and open source license, coherent with the standards of the Open Geospatial Consortium. The presented programs are evaluated in the context of the INSPIRE Directive. The first part describes the requirements of the Directive, and afterwards presented are the pros and cons of each platform, to meet these demands. This article provides an answer to the question whether the use of free software can provide interoperable network services in accordance with the requirements of the INSPIRE Directive, on the occasion of presenting the application examples and practical tips on the use of particular programs.[b]Keywords[/b]: GIS, INSPIRE, free software, OGC, geoportal, network services, GeoServer, deegree, GeoNetwork

  11. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  12. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  13. Functional properties of bio-inspired surfaces: characterization and technological applications

    National Research Council Canada - National Science Library

    Favret, Eduardo A; Fuentes, Néstor O

    2009-01-01

    ... technological materials. It analyses how such surfaces can be described and characterized using microscopic techniques and thus reproduced, encompassing the important areas of current surface replication techniques and the associated acquisition of good master structures. It is well known that biological systems have the ability to sense, ...

  14. The Cosmology Gallery: Unity through diversity in a vast and awe-inspiring universe.

    Science.gov (United States)

    Goldsmith, John

    2011-06-01

    Scientists, artists, religious and cultural leaders have come together to create the Cosmology Gallery at the Gravity Discovery Centre (GDC) located 70 km north of Perth, Western Australia. The Cosmology Gallery exhibitions include the multicultural cosmology artworks, Celestial Visions astronomical photography exhibition and the Timeline of the Universe. The multicultural cosmology artworks are new artworks inspired by Australian Indigenous, Christian, Buddhist, Islamic, Hindu, scientific and technological perspectives of the universe. The Celestial Visions exhibition features astronomical events above famous landmarks, including Stonehenge and the Pyramids. The AUD 400,000+ project was funded by Lotterywest, Western Australia and the Cosmology Gallery was officially opened in July 2008 by the Premier of Western Australia.

  15. Heart rate asymmetry follows the inspiration/expiration ratio in healthy volunteers

    International Nuclear Information System (INIS)

    Klintworth, Anne; Ajtay, Zénó; Paljunite, Alina; Szabados, Sándor; Hejjel, László

    2012-01-01

    Heart rate asymmetry (HRA) quantifies the uneven distribution of points above and below the identity-line in a Poincaré plot of RR-intervals. The authors investigated if HRA could be influenced by the inspiration/expiration ratio. Healthy volunteers (n = 18) were studied in the supine position at 4.5 s metronome breathing. ECG and breathing signals were recorded for 360 s at each breathing pattern: inspiration controlled, inspiration/expiration controlled (1:2, 1:1, 2:1 ratio), inspiration controlled again. Time domain, frequency domain and Poincaré plot heart rate variability (HRV) analysis with Porta's and Guzik's indices were performed on 300 s tachograms. There were no statistically significant differences in time domain, frequency domain and standard Poincaré plot parameters during the various breathing patterns, whereas Porta's and Guzik's indices significantly rose at 1:1 and 2:1 compared to physiological 1:2 breathing. There were no significant differences in the HRA parameters between the first and the last runs. In our population the inspiration/expiration ratio significantly influenced HRA, but not standard HRV parameters. Positive correlation of Guzik's and Porta's index reflects reciprocal changes of the number of points and their dispersion in the accelerating and decelerating sets of RR-intervals. HRA-analysis can be a promising method for investigating cardiovascular regulation/health particularly with further spreading of wearable monitors. (paper)

  16. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Siyuan, L.; Satyanarayana, N.; Kustandi, T.S.; Sinha, Sujeet K.

    2011-01-01

    At micro/nano-scale, friction force dominates at the interface between bodies moving in relative motion and severely affects their smooth operation. This effect limits the performance of microsystem devices such as micro-electro-mechanical systems (MEMS). In addition, friction force also leads to material removal or wear and thereby reduces the durability i.e. the useful operating life of the devices. In this work, we fabricated bio-inspired polymeric patterns for tribological applications. Inspired by the surface features on lotus leaves namely, the protuberances and wax, SU-8 polymeric films spin-coated on silicon wafers were topographically and chemically modified. For topographical modification, micro-scale patterns were fabricated using nanoimprint lithography and for chemical modification, the micro-patterns were coated with perfluoropolyether nanolubricant. Tribological investigation of the bio-inspired patterns revealed that the friction coefficients reduced significantly and the wear durability increased by several orders. In order to enhance the wear durability much further, the micro-patterns were exposed to argon/oxygen plasma and were subsequently coated with the perfluoropolyether nanolubricant. Bio-inspired patterns with enhanced wear durability, such as the ones investigated in the current work, have potential tribological applications in MEMS/Bio-MEMS actuator-based devices. Highlights: →Bio-inspired polymeric patterns for tribological applications in microsystems. →Novel surface modification for the patterns to enhance tribological properties. →Patterns show low friction properties and extremely high wear durability.

  17. Biomimetics for architecture & design nature, analogies, technology

    CERN Document Server

    Pohl, Göran

    2015-01-01

    This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Göran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and “translated” in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for pro...

  18. Biomimetic Designs Inspired by Seashells-Seashells Helping ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Biomimetic Designs Inspired by Seashells - Seashells Helping Engineers Design Better Ceramics. Kiran Akella. General Article Volume 17 Issue 6 June 2012 pp 573-591 ...

  19. Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems

    Science.gov (United States)

    Sterritt, Roy; Hinchey, Mike

    2006-01-01

    Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.

  20. Skin-Inspired Hydrogel-Elastomer Composite with Application in a Moisture Permeable Prosthetic Limb Liner

    Science.gov (United States)

    Ruiz, Esteban

    Recent advances in fields such as 3D printing, and biomaterials, have enabled the development of a moisture permeable prosthetic liner. This project demonstrates the feasibility of the invention by addressing the three primary areas of risk including the mechanical strength, the permeability, and the ability to manufacture. The key enabling technology which allows the liner to operate is the skin inspired hydrogel elastomer composite. The skin inspiration is reflected in the molecular arrangement of the double network of polymers which mimics collagen-elastin toughening in the natural epidermis. A custom formulation for a novel tough double network nanocomposite reinforced hydrogel was developed to improve manufacturability of the liner. The liner features this double network nanocomposite reinforced hydrogel as a permeable membrane which is reinforced on either side by perforated silicone layers manufactured by 3d printing assisted casting. Uniaxial compression tests were conducted on the individual hydrogels, as well as a representative sample of off the shelf prosthetic liners for comparison. Permeability testing was also done on the same set of materials and compared to literature values for traditional hydrogels. This work led to the manufacture of three generations of liner prototypes, with the second and third liner prototype being tested with human participants.

  1. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis.

    Science.gov (United States)

    Pawlowski, Christa L; Li, Wei; Sun, Michael; Ravichandran, Kavya; Hickman, DaShawn; Kos, Clarissa; Kaur, Gurbani; Sen Gupta, Anirban

    2017-06-01

    Intravascular administration of plasminogen activators is a clinically important thrombolytic strategy to treat occlusive vascular conditions. A major issue with this strategy is the systemic off-target drug action, which affects hemostatic capabilities and causes substantial hemorrhagic risks. This issue can be potentially resolved by designing technologies that allow thrombus-targeted delivery and site-specific action of thrombolytic drugs. To this end, leveraging a liposomal platform, we have developed platelet microparticle (PMP)-inspired nanovesicles (PMINs), that can protect encapsulated thrombolytic drugs in circulation to prevent off-target uptake and action, anchor actively onto thrombus via PMP-relevant molecular mechanisms and allow drug release via thrombus-relevant enzymatic trigger. Specifically, the PMINs can anchor onto thrombus via heteromultivalent ligand-mediated binding to active platelet integrin GPIIb-IIIa and P-selectin, and release the thrombolytic payload due to vesicle destabilization triggered by clot-relevant enzyme phospholipase-A 2 . Here we report on the evaluation of clot-targeting efficacy, lipase-triggered drug release and resultant thrombolytic capability of the PMINs in vitro, and subsequently demonstrate that intravenous delivery of thrombolytic-loaded PMINs can render targeted fibrinolysis without affecting systemic hemostasis, in vivo, in a carotid artery thrombosis model in mice. Our studies establish significant promise of the PMIN technology for safe and site-targeted nanomedicine therapies in the vascular compartment. Copyright © 2017. Published by Elsevier Ltd.

  2. Taxonomic etymology – in search of inspiration

    Directory of Open Access Journals (Sweden)

    Piotr Jozwiak

    2015-07-01

    Full Text Available We present a review of the etymology of zoological taxonomic names with emphasis on the most unusual examples. The names were divided into several categories, starting from the most common – given after morphological features – through inspiration from mythology, legends, and classic literature but also from fictional and nonfictional pop-culture characters (e.g., music, movies or cartoons, science, and politics. A separate category includes zoological names created using word-play and figures of speech such as tautonyms, acronyms, anagrams, and palindromes. Our intention was to give an overview of possibilities of how and where taxonomists can find the inspirations that will be consistent with the ICZN rules and generate more detail afterthought about the naming process itself, the meaningful character of naming, as well as the recognition and understanding of names.

  3. Biologically inspired water purification through selective transport

    International Nuclear Information System (INIS)

    Freeman, E C; Soncini, R M; Weiland, L M

    2013-01-01

    Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)

  4. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)

  5. Coaching som inspiration til dialogbaseret lederskab

    DEFF Research Database (Denmark)

    Stelter, Reinhard

    2013-01-01

    , hvor mening og værdiskabende processer er i centrum. De centrale grunddimensioner for denne form for coachende dialog ligger i et fokus på værdier, i muligheder for meningsskabelse og i det narrativ-samskabende perspektiv. På dette grundlag kan tredje generations coaching være inspiration i forhold til...

  6. Supermassive black hole spin-flip during the inspiral

    International Nuclear Information System (INIS)

    Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  7. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  8. Shark skin-inspired designs that improve aerodynamic performance.

    Science.gov (United States)

    Domel, August G; Saadat, Mehdi; Weaver, James C; Haj-Hariri, Hossein; Bertoldi, Katia; Lauder, George V

    2018-02-01

    There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency. © 2018 The Author(s).

  9. Statistical constraints on binary black hole inspiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-12-21

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  10. SABRE: a bio-inspired fault-tolerant electronic architecture

    International Nuclear Information System (INIS)

    Bremner, P; Samie, M; Dragffy, G; Pipe, A G; Liu, Y; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-01-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. (paper)

  11. THE COMPLEX OF EMOTIONAL EXPERIENCES, RELEVANT MANIFESTATIONS OF INSPIRATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Starikov

    2015-01-01

    Full Text Available The aim of the study is to investigate structure of emotional experiences, relevant manifestations of inspiration creative activities of students.Methods. The proposed methods of mathematical statistics (correlation analysis, factor analysis, multidimensional scaling are applied.Results and scientific novelty. The use of factor analysis, multidimensional scaling allowed to reveal a consistent set of positive experiences of the students, the relevant experience of inspiration in creative activities. «Operational» rueful feelings dedicated by M. Chiksentmihaji («feeling of full involvement, and dilution in what you do», «feeling of concentration, perfect clarity of purpose, complete control and a feeling of total immersion in a job that does not require special efforts» and experiences of the «spiritual» nature, more appropriate to peaks experiences of A. Maslow («feeling of love for all existing, all life»; «a deep sense of self importance, the inner feeling of approval of self»; «feeling of unity with the whole world»; «acute perception of the beauty of the world of nature, “beautiful instant”»; «feeling of lightness, flowing» are included in this complex in accordance with the study results. The interrelation of degree of expressiveness of the given complex of experiences with inspiration experience is considered.Practical significance. The results of the study show structure of emotional experiences, relevant manifestations of inspiration. Research materials can be useful both to psychologists, and experts in the field of pedagogy of creative activity.

  12. Strengthening Communication and Scientific Reasoning Skills of Graduate Students Through the INSPIRE Program

    Science.gov (United States)

    Pierce, Donna M.; McNeal, K. S.; Radencic, S. P.; Schmitz, D. W.; Cartwright, J.; Hare, D.; Bruce, L. M.

    2012-10-01

    Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three nearby school districts. The primary goal of the program is to strengthen the communication and scientific reasoning skills of graduate students in geosciences, physics, chemistry, and engineering by placing them in area middle school and high school science and mathematics classrooms for ten hours a week for an entire academic year as they continue to conduct their thesis or dissertation research. Additional impacts include increased content knowledge for our partner teachers and improvement in the quality of classroom instruction using hands-on inquiry-based activities that incorporate ideas used in the research conducted by the graduate students. Current technologies, such as Google Earth, GIS, Celestia, benchtop SEM and GCMS, are incorporated into many of the lessons. Now in the third year of our program, we will present the results of our program to date, including an overview of documented graduate student, teacher, and secondary student achievements, the kinds of activities the graduate students and participating teachers have developed for classroom instruction, and the accomplishments resulting from our four international partnerships. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program (Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  13. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    Science.gov (United States)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  14. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  15. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  16. Lunabotics Mining Competition: Inspiration Through Accomplishment

    Science.gov (United States)

    Mueller, Robert P.

    2011-01-01

    NASA's Lunabotics Mining Competition is designed to promote the development of interest in space activities and STEM (Science, Technology, Engineering, and Mathematics) fields. The competition uses excavation, a necessary first step towards extracting resources from the regolith and building bases on the moon. The unique physical properties of lunar regolith and the reduced 1/6th gravity, vacuum environment make excavation a difficult technical challenge. Advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations. The competition is conducted annually by NASA at the Kennedy Space Center Visitor Complex. The teams that can use telerobotic or autonomous operation to excavate a lunar regolith geotechnical simulant, herein after referred to as Black Point-1 (or BP-1) and score the most points (calculated as an average of two separate 10-minute timed competition attempts) will eam points towards the Joe Kosmo Award for Excellence and the scores will reflect ranking in the on-site mining category of the competition. The minimum excavation requirement is 10.0 kg during each competition attempt and the robotic excavator, referred to as the "Lunabot", must meet all specifications. This paper will review the achievements of the Lunabotics Mining Competition in 2010 and 2011, and present the new rules for 2012. By providing a framework for robotic design and fabrication, which culminates in a live competition event, university students have been able to produce sophisticated lunabots which are tele-operated. Multi-disciplinary teams are encouraged and the extreme sense of accomplishment provides a unique source of inspiration to the participating students, which has been shown to translate into increased interest in STEM careers. Our industrial sponsors (Caterpillar, Newmont Mining, Harris, Honeybee Robotics) have all stated that there is a strong need for skills in the workforce related

  17. Inspiring Sustainable Behaviour 19 Ways to Ask for Change

    CERN Document Server

    Payne, Oliver

    2012-01-01

    What is the answer to inspiring sustainable behaviour? It starts with a question - or nineteen. With this simple and inspiring guide you'll learn how to ask for persistent, pervasive, and near-costless change by uncovering our hidden quirks, judgmental biases, and apparent irrationalities.  The only change you'll need to make is how you ask.Businesses, larger or small, will soon have to cut costs and cut carbon, irrespective of the products they sell, or the services they perform. National government has structural policy and legislative needs, and local government has implementation and docum

  18. Innovative Didactics in an International Internship - inspiration

    DEFF Research Database (Denmark)

    Lembcke, Steen; Skibsted, Else Bengaard; Mølgaard, Niels

    An inspiration handbook for the international team from the teacher education programme in VIA. Aimed to assist internship supervisors and students during international internships in regards to innovation, social entrepreneurship and development of the international teacher. Introduces why and how...

  19. Dynamic reciprocity in bio-inspired supramolecular materials

    NARCIS (Netherlands)

    Bastings, M.M.C.

    2012-01-01

    Dynamic reciprocity, the spatio-temporal bidirectional process between evolving partners in a functional system is not only found in nature, but also applies to supramolecularly assembling architectures. In this thesis, the focus was on the understanding of nature-inspired supramolecular

  20. Touchable Computing: Computing-Inspired Bio-Detection.

    Science.gov (United States)

    Chen, Yifan; Shi, Shaolong; Yao, Xin; Nakano, Tadashi

    2017-12-01

    We propose a new computing-inspired bio-detection framework called touchable computing (TouchComp). Under the rubric of TouchComp, the best solution is the cancer to be detected, the parameter space is the tissue region at high risk of malignancy, and the agents are the nanorobots loaded with contrast medium molecules for tracking purpose. Subsequently, the cancer detection procedure (CDP) can be interpreted from the computational optimization perspective: a population of externally steerable agents (i.e., nanorobots) locate the optimal solution (i.e., cancer) by moving through the parameter space (i.e., tissue under screening), whose landscape (i.e., a prescribed feature of tissue environment) may be altered by these agents but the location of the best solution remains unchanged. One can then infer the landscape by observing the movement of agents by applying the "seeing-is-sensing" principle. The term "touchable" emphasizes the framework's similarity to controlling by touching the screen with a finger, where the external field for controlling and tracking acts as the finger. Given this analogy, we aim to answer the following profound question: can we look to the fertile field of computational optimization algorithms for solutions to achieve effective cancer detection that are fast, accurate, and robust? Along this line of thought, we consider the classical particle swarm optimization (PSO) as an example and propose the PSO-inspired CDP, which differs from the standard PSO by taking into account realistic in vivo propagation and controlling of nanorobots. Finally, we present comprehensive numerical examples to demonstrate the effectiveness of the PSO-inspired CDP for different blood flow velocity profiles caused by tumor-induced angiogenesis. The proposed TouchComp bio-detection framework may be regarded as one form of natural computing that employs natural materials to compute.

  1. Fiction and Religion: How Narratives About the Supernatural Inspire Religious Belief

    OpenAIRE

    Davidsen, M.A.

    2016-01-01

    Thematic issue on 'Fiction and Religion: How Narratives About the Supernatural Inspire Religious Belief', volume 46(4) of Religion. The thematic issue inclues the following articles: Davidsen, Markus Altena, "Fiction and Religion: How Narratives About the Supernatural Inspire Religious Belief – Introducing the Thematic Issue". Petersen, Anders Klostergaard, "The Difference Between Religious Narratives and Fictional Literature: A Matter of Degree Only". Davidsen, Markus Altena, "The Religious ...

  2. Nature-Inspired Fluid Mechanics Results of the DFG Priority Programme 1207 ”Nature-inspired Fluid Mechanics” 2006-2012

    CERN Document Server

    Bleckmann, Horst

    2012-01-01

    This book is the closing report of the national priority program Nature-Inspired Fluid Mechanics (Schwerpunktprogramm SPP 1207: Strömungsbeeinflussung in der Natur und Technik). Nature-inspired fluid mechanics is one subset of biomimetics, a discipline which has received increased attention over the last decade, with numerous faculties and degree courses devoted solely to exploring ‘nature as a model’ for engineering applications. To save locomotion energy, evolution has optimized the design of animals such that friction loss is minimized. In addition to many morphological adaptations, animals that are often exposed to water or air currents have developed special behaviors that allow them to use the energy contained in air or water fluctuations for energy savings. Such flow manipulation and control is not only important for many animals, but also for many engineering applications. Since living beings have been optimized by several million years of evolution it is very likely that many engineering discipl...

  3. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, Jose Beltrán [Aix-Marseille Université, Université de Toulon, CNRS, CPT, Marseille (France); Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Olmo, Gonzalo J. [Depto. de Física Teórica and IFIC, Universidad de Valencia—CSIC, Calle Dr. Moliner 50, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, Diego, E-mail: jose.beltran@uam.es, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)

    2017-10-01

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.

  4. A bio-inspired hair- based acceleration sensor

    NARCIS (Netherlands)

    Droogendijk, H.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show

  5. Handwritten-word spotting using biologically inspired features

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Haak, Koen

    For quick access to new handwritten collections, current handwriting recognition methods are too cumbersome. They cannot deal with the lack of labeled data and would require extensive laboratory training for each individual script, style, language, and collection. We propose a biologically inspired

  6. High-performance mussel-inspired adhesives of reduced complexity.

    Science.gov (United States)

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  7. Inspiring a Life Full of Learning

    Science.gov (United States)

    Ludlam, John

    2012-01-01

    The Secrets and Words films had everything one would expect from a BBC drama--great writing, acting and directing allied with high production values. But the dramas were also powerful learning tools, co-commissioned by BBC Learning and aimed at inspiring people who have difficulty with reading and writing to seek help. The BBC's learning vision is…

  8. Formulating transgenerational technology critique as conflictual collaboration

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    2015-01-01

    In the fields of technology design studies and human-computer interaction (HCI), participatory technology design involving children has been on the rise. Particularly studies applying and developing the cooperative inquiry methodology or inspired by it are of growing interest to media technology...... designers. While the underlying impetus of actively involving the intended users in the design process and thereby taking the children as seriously as adult users is laudable, the overarching framing and directionality of the technology design process is rendered unquestionable for the children....... The presentation illustrates that the pristine intention of engaging in intergenerational technology design is potentially helpful for collectively formulating a productive and sustainable technology critique. On the downside the applied methodologies lack viable concepts for meaningfully analyzing its...

  9. Technology-enhanced human interaction in psychotherapy.

    Science.gov (United States)

    Imel, Zac E; Caperton, Derek D; Tanana, Michael; Atkins, David C

    2017-07-01

    Psychotherapy is on the verge of a technology-inspired revolution. The concurrent maturation of communication, signal processing, and machine learning technologies begs an earnest look at how these technologies may be used to improve the quality of psychotherapy. Here, we discuss 3 research domains where technology is likely to have a significant impact: (1) mechanism and process, (2) training and feedback, and (3) technology-mediated treatment modalities. For each domain, we describe current and forthcoming examples of how new technologies may change established applications. Moreover, for each domain we present research questions that touch on theoretical, systemic, and implementation issues. Ultimately, psychotherapy is a decidedly human endeavor, and thus the application of modern technology to therapy must capitalize on-and enhance-our human capacities as counselors, students, and supervisors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Transforming Pre-Service Teachers' Beliefs and Understandings about Design and Technologies

    Science.gov (United States)

    Best, Marnie

    2017-01-01

    Design and Technologies challenges students to think differently: to think critically and creatively. Yet, how, when and why students are exposed to Design and Technologies curriculum in school classrooms is at the prerogative of their teacher. For this reason, it is imperative that pre-service teachers are inspired by and engaged through…

  11. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  12. Low-cost autonomous perceptron neural network inspired by quantum computation

    Science.gov (United States)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  13. Skin-Inspired Electronics: An Emerging Paradigm.

    Science.gov (United States)

    Wang, Sihong; Oh, Jin Young; Xu, Jie; Tran, Helen; Bao, Zhenan

    2018-05-15

    Future electronics will take on more important roles in people's lives. They need to allow more intimate contact with human beings to enable advanced health monitoring, disease detection, medical therapies, and human-machine interfacing. However, current electronics are rigid, nondegradable and cannot self-repair, while the human body is soft, dynamic, stretchable, biodegradable, and self-healing. Therefore, it is critical to develop a new class of electronic materials that incorporate skinlike properties, including stretchability for conformable integration, minimal discomfort and suppressed invasive reactions; self-healing for long-term durability under harsh mechanical conditions; and biodegradability for reducing environmental impact and obviating the need for secondary device removal for medical implants. These demands have fueled the development of a new generation of electronic materials, primarily composed of polymers and polymer composites with both high electrical performance and skinlike properties, and consequently led to a new paradigm of electronics, termed "skin-inspired electronics". This Account covers recent important advances in skin-inspired electronics, from basic material developments to device components and proof-of-concept demonstrations for integrated bioelectronics applications. To date, stretchability has been the most prominent focus in this field. In contrast to strain-engineering approaches that extrinsically impart stretchability into inorganic electronics, intrinsically stretchable materials provide a direct route to achieve higher mechanical robustness, higher device density, and scalable fabrication. The key is the introduction of strain-dissipation mechanisms into the material design, which has been realized through molecular engineering (e.g., soft molecular segments, dynamic bonds) and physical engineering (e.g., nanoconfinement effect, geometric design). The material design concepts have led to the successful demonstrations of

  14. Brain-inspired algorithms for retinal image analysis

    NARCIS (Netherlands)

    ter Haar Romeny, B.M.; Bekkers, E.J.; Zhang, J.; Abbasi-Sureshjani, S.; Huang, F.; Duits, R.; Dasht Bozorg, Behdad; Berendschot, T.T.J.M.; Smit-Ockeloen, I.; Eppenhof, K.A.J.; Feng, J.; Hannink, J.; Schouten, J.; Tong, M.; Wu, H.; van Triest, J.W.; Zhu, S.; Chen, D.; He, W.; Xu, L.; Han, P.; Kang, Y.

    2016-01-01

    Retinal image analysis is a challenging problem due to the precise quantification required and the huge numbers of images produced in screening programs. This paper describes a series of innovative brain-inspired algorithms for automated retinal image analysis, recently developed for the RetinaCheck

  15. Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running.

    Science.gov (United States)

    Sinclair, Jonathan

    2014-04-01

    Recreational runners frequently suffer from chronic pathologies. The knee and ankle have been highlighted as common injury sites. Barefoot and barefoot inspired footwear have been cited as treatment modalities for running injuries as opposed to more conventional running shoes. This investigation examined knee and ankle loading in barefoot and barefoot inspired footwear in relation to conventional running shoes. Thirty recreational male runners underwent 3D running analysis at 4.0m·s(-1). Joint moments, patellofemoral contact force and pressure and Achilles tendon forces were compared between footwear. At the knee the results show that barefoot and barefoot inspired footwear were associated with significant reductions in patellofemoral kinetic parameters. The ankle kinetics indicate that barefoot and barefoot inspired footwear were associated with significant increases in Achilles tendon force compared to conventional shoes. Barefoot and barefoot inspired footwear may serve to reduce the incidence of knee injuries in runners although corresponding increases in Achilles tendon loading may induce an injury risk at this tendon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Classifier for gravitational-wave inspiral signals in nonideal single-detector data

    Science.gov (United States)

    Kapadia, S. J.; Dent, T.; Dal Canton, T.

    2017-11-01

    We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star-black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaussian noise transients. The standard signal-to-noise ratio (SNR) and chi-squared test for inspiral searches use only properties of a single matched filter at the time of an event; instead, we propose a classifier using features derived from a bank of inspiral templates around the time of each event, and also from a search using approximate sine-Gaussian templates. The classifier thus extracts additional information from strain data to discriminate inspiral signals from noise transients. We evaluate a random forest classifier on a set of single-detector events obtained from realistic simulated advanced LIGO data, using simulated NS-BH signals added to the data. The new classifier detects a factor of 1.5-2 more signals at low false positive rates as compared to the standard "reweighted SNR" statistic, and does not require the chi-squared test to be computed. Conversely, if only the SNR and chi-squared values of single-detector events are available, random forest classification performs nearly identically to the reweighted SNR.

  17. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  18. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2016-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... between the 3 areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  19. 7th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Singh, Pramod; Deep, Kusum; Pant, Millie; Nagar, Atulya

    2013-01-01

    The book is a collection of high quality peer reviewed research papers presented in Seventh International Conference on Bio-Inspired Computing (BIC-TA 2012) held at ABV-IIITM Gwalior, India. These research papers provide the latest developments in the broad area of "Computational Intelligence". The book discusses wide variety of industrial, engineering and scientific applications of nature/bio-inspired computing and presents invited papers from the inventors/originators of novel computational techniques.

  20. 3D Printing of Bio-inspired surfaces

    DEFF Research Database (Denmark)

    Méndez Ribó, Macarena; Islam, Aminul

    The ability of the gecko to scurry across smooth or rough surfaces, regardless of inclination (vertical or even upside down), has been traced to the multiscale hierarchical structures of the gecko toe [1 - 3]. Considering all the strategies to manufacture bio-inspired surfaces, the most common is...

  1. Founding a business inspired by close entrepreneurial ties: Does it matter for survival?

    NARCIS (Netherlands)

    de Jong, J.P.J.; Marsili, O.

    2015-01-01

    Founding a business may be inspired by close entrepreneurial ties, that is, business-owning relatives or friends. We analyze if and when such inspiration is associated with post-entry survival. Drawing on longitudinal data on 942 founders, we find a positive relationship only if founders start by

  2. Noncommutative geometry inspired black holes in Rastall gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Meng-Sen [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China)

    2017-09-15

    Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event horizon. After showing a finite maximal temperature, the black hole will leave behind a point-like massive remnant at zero temperature. Considering a more general metric ansatz and a special equation of state of the matter, we also find a regular NCBH in Rastall gravity, which has a similar geometric structure and temperature to that of NCSBH in GR. (orig.)

  3. Development and evaluation of the INSPIRE measure of staff support for personal recovery.

    Science.gov (United States)

    Williams, Julie; Leamy, Mary; Bird, Victoria; Le Boutillier, Clair; Norton, Sam; Pesola, Francesca; Slade, Mike

    2015-05-01

    No individualised standardised measure of staff support for mental health recovery exists. To develop and evaluate a measure of staff support for recovery. initial draft of measure based on systematic review of recovery processes; consultation (n = 61); and piloting (n = 20). Psychometric evaluation: three rounds of data collection from mental health service users (n = 92). INSPIRE has two sub-scales. The 20-item Support sub-scale has convergent validity (0.60) and adequate sensitivity to change. Exploratory factor analysis (variance 71.4-85.1 %, Kaiser-Meyer-Olkin 0.65-0.78) and internal consistency (range 0.82-0.85) indicate each recovery domain is adequately assessed. The 7-item Relationship sub-scale has convergent validity 0.69, test-retest reliability 0.75, internal consistency 0.89, a one-factor solution (variance 70.5 %, KMO 0.84) and adequate sensitivity to change. A 5-item Brief INSPIRE was also evaluated. INSPIRE and Brief INSPIRE demonstrate adequate psychometric properties, and can be recommended for research and clinical use.

  4. Gender and Technology in Free Play in Swedish Early Childhood Education

    Science.gov (United States)

    Hallström, Jonas; Elvstrand, Helene; Hellberg, Kristina

    2015-01-01

    In the new Swedish curriculum for the preschool (2010) technology education is emphasized as one of the most significant pedagogical areas to work with. The aim of this article is to investigate how girls and boys explore and learn technology as well as how their teachers frame this in free play in two Swedish preschools. The study is inspired by…

  5. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  6. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  7. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  8. Novel Approaches for Bio-inspired Mechano-Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    In this paper, we present novel approaches for building tactile- array sensors for use in robotic grippers inspired from biology. We start by describing the sense of touch for humans and we continue by propos- ing dierent methods to build sensors that mimic this behaviour. For the static tactile...

  9. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...

  10. Surfacing Authentic Leadership: Inspiration from "After Life"

    Science.gov (United States)

    Billsberry, Jon; North-Samardzic, Andrea

    2016-01-01

    This paper advocates an innovative approach to help leadership students analyze, capture, and remember the nature of their authentic leadership. This developmental activity was inspired by the Japanese film, "Wandâfuru raifu" ("After Life") (Kore-Eda, Sato, & Shigenobu, 1998), in which the recently deceased are asked to…

  11. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  12. Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage

    Directory of Open Access Journals (Sweden)

    Yan-long Chen

    2014-01-01

    Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.

  13. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2018-04-01

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  14. Nanomedicine photoluminescence crystal-inspired brain sensing approach

    Science.gov (United States)

    Fang, Yan; Wang, Fangzhen; Wu, Rong

    2018-02-01

    Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.

  15. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  16. Digital Storytelling as Arts-Inspired Inquiry for Engaging, Understanding, and Supporting Indigenous Youth

    Science.gov (United States)

    Eglinton, Kristen Ali; Gubrium, Aline; Wexler, Lisa

    2017-01-01

    In this paper we examine digital storytelling as a mode of arts-inspired inquiry: in particular we consider digital storytelling as a powerful arts-inspired approach that can help researchers, practitioners, and communities understand and support indigenous and marginalized youth. Our two-fold focus is on: (1) a digital storytelling initiative…

  17. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  18. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  19. Creating a Bio-Inspired Solution to Prevent Erosion

    Science.gov (United States)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  20. [How do first codes of medical ethics inspire contemporary physicians?].

    Science.gov (United States)

    Paprocka-Lipińska, Anna; Basińska, Krystyna

    2014-02-01

    First codes of medical ethics appeared between 18th and 19th century. Their formation was inspired by changes that happened in medicine, positive in general but with some negative setbacks. Those negative consequences revealed the need to codify all those ethical duties, which were formerly passed from generation to generation by the word of mouth and individual example by master physicians. 210 years has passed since the publication of "Medical Ethics" by Thomas Percival, yet essential ethical guidelines remain the same. Similarly, ethical codes published in Poland in 19 century can still be an inspiration to modem physicians.

  1. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  2. A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment

    International Nuclear Information System (INIS)

    Zhang, Zhiye; Philen, Michael; Neu, Wayne

    2010-01-01

    A bio-inspired prototype fish using the flexible matrix composite (FMC) muscle technology for fin and body actuation is developed. FMC actuators are pressure driven muscle-like actuators capable of large displacements as well as large blocking forces. An analytical model of the artificial fish using FMC actuators is developed and analysis results are presented. An experimental prototype of the artificial fish having FMC artificial muscles has been completed and tested. Constant mean thrusts have been achieved in the laboratory for a stationary fish for different undulation frequencies around 1 Hz. The experimental results demonstrate that a nearly constant thrust can be achieved through tuning of excitation frequency for given body stiffness. Free swimming results show that the prototype can swim at approximately 0.3 m s −1

  3. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  4. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  5. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  6. The Punishment of Tarpeia and Its Possible Iconographic Inspiration

    Directory of Open Access Journals (Sweden)

    Lenka Vacinová

    2017-10-01

    Full Text Available The motif of the Punishment of Tarpeia is surprisingly rare in Roman visual arts. However, the surviving examples show iconographical unity and imply their common primary visual source of inspiration. The article is exploring the possible models considering the less obvious iconographical similarities and resemblances in terms of content found in the Greek art. The cases of the infamous intriguer Dirce and traitor Dolon are discussed, as well as the remarkable resemblances found on some images of the Death of Caeneus. While the latter indicates the inspiration based on free associations and the similar circumstances of death of the both protagonists, Dolon and Dirce seem to influence the creator of the iconographic scheme of the Punishment of Tarpeia in a more straight way.

  7. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  8. 8th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Pan, Linqiang; Fang, Xianwen

    2013-01-01

    International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fiel...

  9. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients.

    Science.gov (United States)

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  10. Effects of gamma-aminobutyric acid on the Hering-Breuer inspiration-inhibiting reflex.

    Science.gov (United States)

    Aleksandrova, N P; Aleksandrov, V G; Ivanova, T G

    2010-02-01

    Acute experiments on rats were performed to study the effects of intraventricular microinjections of gamma-aminobutyric acid (GABA) on the volume-time parameters of external respiration and the inspiration-inhibiting Hering-Breuer reflex. The state of this reflex before and after GABA administration was assessed in terms of the extent of changes in the duration and amplitude of inspiratory oscillations in intrathoracic pressure in response to end-expiratory occlusion of the trachea. Administration of 20 microM GABA into the lateral ventricles of the brain decreased the minute ventilation (due to reductions in the respiratory frequency and respiratory volume), weakened respiratory muscle contractions, and decreased the peak airflow rate on inspiration and expiration. The response to end-expiratory occlusion decreased significantly after administration of GABA, demonstrating the involvement of GABAergic mechanisms in mediating the inspiration-inhibiting Hering-Breuer reflex.

  11. Modal Processor Effects Inspired by Hammond Tonewheel Organs

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-06-01

    Full Text Available In this design study, we introduce a novel class of digital audio effects that extend the recently introduced modal processor approach to artificial reverberation and effects processing. These pitch and distortion processing effects mimic the design and sonics of a classic additive-synthesis-based electromechanical musical instrument, the Hammond tonewheel organ. As a reverb effect, the modal processor simulates a room response as the sum of resonant filter responses. This architecture provides precise, interactive control over the frequency, damping, and complex amplitude of each mode. Into this framework, we introduce two types of processing effects: pitch effects inspired by the Hammond organ’s equal tempered “tonewheels”, “drawbar” tone controls, vibrato/chorus circuit, and distortion effects inspired by the pseudo-sinusoidal shape of its tonewheels and electromagnetic pickup distortion. The result is an effects processor that imprints the Hammond organ’s sonics onto any audio input.

  12. Energy-Efficient Train Operation Using Nature-Inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Kemal Keskin

    2017-01-01

    Full Text Available A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-inspired evolutionary algorithms. The optimization process results in switching points that initiate cruising and coasting phases of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic Simulated Annealing, Firefly, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and test track from a part of Eskisehir light rail network were modeled. Speed limitations, various track alignments, maximum allowable trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results have shown that all three evolutionary methods generated effective and consistent solutions. However, it has also been shown that each one has different accuracy and convergence characteristics.

  13. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    Science.gov (United States)

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  14. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  15. INSPIRE: Managing Metadata in a Global Digital Library for High-Energy Physics

    OpenAIRE

    Martin Montull, Javier

    2011-01-01

    Four leading laboratories in the High-Energy Physics (HEP) field are collaborating to roll-out the next-generation scientific information portal: INSPIRE. The goal of this project is to replace the popular 40 year-old SPIRES database. INSPIRE already provides access to about 1 million records and includes services such as fulltext search, automatic keyword assignment, ingestion and automatic display of LaTeX, citation analysis, automatic author disambiguation, metadata harvesting, extraction ...

  16. Strengthening technological capabilities: A challenge for the nineties. A review of ILO activities on technology. 3. ed.

    International Nuclear Information System (INIS)

    1992-01-01

    This report was inspired by the 11th Session (1991) of the Intergovernmental Committee on Science and Technology for Development (IGC) where ILO activities figured prominently in the documentation and discussions that took place on the trends in the programmes and activities of the UN system in science and technology for development. The report deals with ILO activities in the areas of endogenous capacity building, technology policy assessment, anticipation of employment effects of new technologies, assessment of the effects of new technologies on working conditions and working environment, training needs for the effective utilisation of new technologies, technological change and industrial relations and the dissemination of technological information. It also reports on the new ILO work launched on environment and employment, including the role of environmentally sound technologies. The concluding chapter of the report deals with interagency collaboration to which the ILO has always attached importance. ILO work evolving policies for occupational safety and health is described in the following distinct areas of new technologies: (i) man-made mineral fibres; (ii) biotechnology, (iii) robotisation; (iv) chemicals; and (v) dismantling of nuclear power plants

  17. Music Inspired by Astronomy: A Great Outreach Tool

    Science.gov (United States)

    Fraknoi, A.

    2015-11-01

    We discuss and explain a selection of musical pieces (both classical and popular) that were inspired by astronomical ideas or observations. While the ideas behind such musical pieces can sometimes be a bit abstract, they make for good discussion in many educational and outreach settings.

  18. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    Kohyama, Akira; Kishimoto, Hirotatsu

    2015-01-01

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  19. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  20. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  1. BioMAV : Bio-inspired intelligence for autonomous flight

    NARCIS (Netherlands)

    Gerke, P.K.; Langevoort, J.; Lagarde, S.; Bax, L.; Grootswagers, T.; Drenth, R.J.; Slieker, V.; Vuurpijl, L.; Haselager, P.; Sprinkhuizen-Kuyper, I.; Van Otterlo, M.; De Croon, G.C.H.E.

    2011-01-01

    This paper aims to contribute to research on biologically inspired micro air vehicles in two ways: (i) it explores a novel repertoire of behavioral modules which can be controlled through ?nite state machines (FSM) and (ii) elementary movement detectors (EMD) are combined with a center/surround edge

  2. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  3. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    Science.gov (United States)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  4. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    Directory of Open Access Journals (Sweden)

    Mengkui Cui

    2017-11-01

    Full Text Available Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  5. Pengembangan Media Pembelajaran Fisika Menggunakan Lectora Inspire pada Materi Usaha dan Energi SMA

    Directory of Open Access Journals (Sweden)

    Inggrid Ayu Putri

    2016-12-01

    Full Text Available Abstract The development of instructional media aims to help students to do independent learning outside the classroom but still under the supervision of teachers. This study uses Research and Development (R & D DDD-E type developed by Ivers and Barron. The steps of DDD-E developing method method consist of Decide, Design, Develop, and Evaluate. Decide is determination of the project objectives, design determines the structure of the media contents to be developed, develop step is developing a media that is already planned. The evaluation exist on DDD steps, so the instructional media can be controlled. The software used in this research is Lectora Inspire. Lectora Inspire used on this research because the software user friendly or easy to use. Keywords: Lectora Inspire, media, work, energy Abstrak Pengembangan media pembelajaran ini bertujuan untuk membantu siswa dalam melakukan pembelajaran mandiri diluar kelas tetapi masih dalam pengawasan guru. Penelitian ini menggunakan metode penelitian dan pengembangan atau Research and Development (R&D tipe DDD-E yang dikembangkan oleh Ivers dan Barron. Langkah – langkah metode pengembangan DDD-E terdiri dari tahap decide, yaitu penentuan tujuan proyek, design, yaitu menentukan struktur isi dari media yang akan dikembangkan, develop adalah tahap untuk mengembangkan media pembelajaran yang sudah direncanakan. Tahap Evaluate adalah tahap evaluasi pengembangan media, dimana langkah ini terdapat pada seluruh tahapan DDD. Perangkat lunak yang digunakan adalah Lectora Inspire. Software ini dipilih karena langkah penggunaan yang user friendly atau mudah digunakan. Kata-kata kunci:Lectora Inspire, media, usaha, energi

  6. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  7. Enhanced airway dilation by positive-pressure inflation of the lungs compared with active deep inspiration in patients with asthma

    NARCIS (Netherlands)

    Slats, Annelies M.; Janssen, Kirsten; de Jeu, Ronald C.; van der Plas, Dirk T.; Schot, Robert; van den Aardweg, Joost G.; Sterk, Peter J.

    2008-01-01

    Deep inspiration temporarily reduces induced airways obstruction in healthy subjects. This bronchodilatory effect of deep inspiration is impaired in asthma. Passive machine-assisted lung inflation may augment bronchodilation compared with an active deep inspiration in patients with asthma by either

  8. Efficient network-matrix architecture for general flow transport inspired by natural pinnate leaves.

    Science.gov (United States)

    Hu, Liguo; Zhou, Han; Zhu, Hanxing; Fan, Tongxiang; Zhang, Di

    2014-11-14

    Networks embedded in three dimensional matrices are beneficial to deliver physical flows to the matrices. Leaf architectures, pervasive natural network-matrix architectures, endow leaves with high transpiration rates and low water pressure drops, providing inspiration for efficient network-matrix architectures. In this study, the network-matrix model for general flow transport inspired by natural pinnate leaves is investigated analytically. The results indicate that the optimal network structure inspired by natural pinnate leaves can greatly reduce the maximum potential drop and the total potential drop caused by the flow through the network while maximizing the total flow rate through the matrix. These results can be used to design efficient networks in network-matrix architectures for a variety of practical applications, such as tissue engineering, cell culture, photovoltaic devices and heat transfer.

  9. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    OpenAIRE

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patient...

  10. Ethics and technology design

    DEFF Research Database (Denmark)

    Albrechtslund, Anders

    This article offers a discussion of the connection between technology and values and, specifically, I take a closer look at ethically sound design. In order to bring the discussion into a concrete context, the theory of Value Sensitive Design (VSD) will be the focus point. To illustrate my argument...... concerning design ethics, the discussion involves a case study of an augmented window, designed by the VSD Research Lab, which has turned out to be a potentially surveillanceenabling technology. I call attention to a “positivist problem” that has to do with the connection between the design context......, a design theory must accept that foresight is limited to anticipation rather than prediction. To overcome the positivist problem, I suggest a phenomenological approach to technology inspired by Don Ihde’s concept of multistability. This argument, which is general in nature and thus applies to any theory...

  11. Impact of Game-Inspired Infographics on User Engagement and Information Processing in an eHealth Program.

    Science.gov (United States)

    Comello, Maria Leonora G; Qian, Xiaokun; Deal, Allison M; Ribisl, Kurt M; Linnan, Laura A; Tate, Deborah F

    2016-09-22

    Online interventions providing individual health behavior assessment should deliver feedback in a way that is both understandable and engaging. This study focused on the potential for infographics inspired by the aesthetics of game design to contribute to these goals. We conducted formative research to test game-inspired infographics against more traditional displays (eg, text-only, column chart) for conveying a behavioral goal and an individual's behavior relative to the goal. We explored the extent to which the display type would influence levels of engagement and information processing. Between-participants experiments compared game-inspired infographics with traditional formats in terms of outcomes related to information processing (eg, comprehension, cognitive load) and engagement (eg, attitudes toward the information, emotional tone). We randomly assigned participants (N=1162) to an experiment in 1 of 6 modules (tobacco use, alcohol use, vegetable consumption, fruit consumption, physical activity, and weight management). In the tobacco module, a game-inspired format (scorecard) was compared with text-only; there were no differences in attitudes and emotional tone, but the scorecard outperformed text-only on comprehension (P=.004) and decreased cognitive load (P=.006). For the other behaviors, we tested 2 game-inspired formats (scorecard, progress bar) and a traditional column chart; there were no differences in comprehension, but the progress bar outperformed the other formats on attitudes and emotional tone (Pgame-inspired infographic showed potential to outperform a traditional format for some study outcomes while not underperforming on other outcomes. Overall, findings support the use of game-inspired infographics in behavioral assessment feedback to enhance comprehension and engagement, which may lead to greater behavior change.

  12. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  13. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  14. Artificial heartbeat: design and fabrication of a biologically inspired pump

    International Nuclear Information System (INIS)

    Walters, Peter; Stephenson, Robert; Lewis, Amy; Stinchcombe, Andrew; Ieropoulos, Ioannis

    2013-01-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the ‘artificial heartbeat’ actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots (‘EcoBots’) that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or ‘bio-automaton’ that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. (paper)

  15. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  16. S5: Information Technology for Science Missions

    Science.gov (United States)

    Coughlan, Joe

    2017-01-01

    NASA Missions and Programs create a wealth of science data and information that are essential to understanding our earth, our solar system and the universe. Advancements in information technology will allow many people within and beyond the Agency to more effectively analyze and apply these data and information to create knowledge. The desired end result is to see that NASA data and science information are used to generate the maximum possible impact to the nation: to advance scientific knowledge and technological capabilities, to inspire and motivate the nation's students and teachers, and to engage and educate the public.

  17. Søren Buus. Thirty years of psychoacoustic inspiration

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2005-01-01

    Søren Buus did his MSc at the Acoustics Laboratory, Technical University of Denmark (DTU), in 1975 on the topic headphone calibration. He showed the importance of reliable reference values for psychoacoustic research and Søren was a great inspiration for my work (Scand. Audiol. 20, 205–207 (1991...

  18. InSpiRe - Intelligent Spine Rehabilitation

    DEFF Research Database (Denmark)

    Bøg, Kasper Hafstrøm; Helms, Niels Henrik; Kjær, Per

    InSpiRe er et projekt, der har haft omdrejningspunkt i etableringen af et nyt netværk indenfor intelligent genoptræning med særligt fokus på rygsmerter. Projektet er gennemført i perioden 1/3 2011 2011-1/3 2012, med støtte fra Syddansk Vækstforum, og er blevet drevet af projektparterne Knowledge ...... Lab, Syddansk Universitet (SDU), Institut for Idræt og Biomekanik (IoB), SDU, samt University College Lillebælt....

  19. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    Science.gov (United States)

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  20. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  1. Education, Technology and Health Literacy.

    Science.gov (United States)

    Lindgren, Kurt; Koldkjær Sølling, Ina; Carøe, Per; Siggaard Mathiesen, Kirsten

    2015-01-01

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration creates natural interest and motivation for welfare technology. The aim of establishing an interaction between these three areas of expertise is to create an understanding of skills and cultural differences in each area. Futhermore, the aim is to enable future talents to gain knowledge and skills to improve health literacy among senior citizens. Based on a holistic view of welfare technology, a Student Academy was created as a theoretically- and practically-oriented learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management related to e-health and health literacy. The Student Academy inspires students, stakeholders, politicians, DanAge Association members, companies, and professionals to participate in training, projects, workshops, and company visits.

  2. Magic of Play: How It Inspires & Aids Early Development

    Science.gov (United States)

    ... creative writing, and help with critical thinking. The critical thinking that inspires kids to dig deeper for information and grasp more complex ideas is their next key skill. And it's the tool that will turn them into decision-makers and ...

  3. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    Science.gov (United States)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  4. Astrophysical constraints on unparticle-inspired models of gravity

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.; Santos, P.

    2009-01-01

    We use stellar dynamics arguments to constrain the relevant parameters of unparticle-inspired models of gravity. We show that resulting bounds do constrain the parameters of the theory of unparticles, as far as its energy scale satisfies the condition Λ U ≥1 TeV and d U is close to unity.

  5. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    Science.gov (United States)

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  7. Inspiral waveforms for spinning compact binaries in a new precessing convention

    International Nuclear Information System (INIS)

    Gupta, Anuradha; Gopakumar, Achamveedu

    2016-01-01

    It is customary to use a precessing convention, based on Newtonian orbital angular momentum L N , to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a postNewtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum L , to evolve the L N -based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use L to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual L N -based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between inspiral waveforms that employ L and L N -based precessing conventions. We found that the match estimates are smaller than the optimal value, namely 0.97, for a non-negligible fraction of unequal mass spinning compact binaries. (paper)

  8. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.

    Science.gov (United States)

    Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto

    2017-09-01

    3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  10. On Biblical Hebrew and Computer Science: Inspiration, Models, Tools, And Cross-fertilization

    DEFF Research Database (Denmark)

    Sandborg-Petersen, Ulrik

    2011-01-01

    Eep Talstra's work has been an inspiration to maby researchers, both within and outside of the field of Old Testament scholarship. Among others, Crist-Jan Doedens and the present author have been heavily influenced by Talstra in their own work within the field of computer science. The present...... of the present author. In addition, the tools surrounding Emdros, including SESB, Libronis, and the Emdros Query Tool, are described. Ecamples Biblical Hebrew scholar. Thus the inspiration of Talstra comes full-circle: from Biblical Hebrew databases to computer science and back into Biblical Hebrew scholarship....

  11. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    Science.gov (United States)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  12. Science and technology convergence: with emphasis for nanotechnology-inspired convergence

    Energy Technology Data Exchange (ETDEWEB)

    Bainbridge, William S.; Roco, Mihail C., E-mail: mroco@nsf.gov [National Science Foundation (United States)

    2016-07-15

    Convergence offers a new universe of discovery, innovation, and application opportunities through specific theories, principles, and methods to be implemented in research, education, production, and other societal activities. Using a holistic approach with shared goals, convergence seeks to transcend existing human limitations to achieve improved conditions for work, learning, aging, physical, and cognitive wellness. This paper outlines ten key theories that offer complementary perspectives on this complex dynamic. Principles and methods are proposed to facilitate and enhance science and technology convergence. Several convergence success stories in the first part of the 21st century—including nanotechnology and other emerging technologies—are discussed in parallel with case studies focused on the future. The formulation of relevant theories, principles, and methods aims at establishing the convergence science.

  13. Science and technology convergence: with emphasis for nanotechnology-inspired convergence

    International Nuclear Information System (INIS)

    Bainbridge, William S.; Roco, Mihail C.

    2016-01-01

    Convergence offers a new universe of discovery, innovation, and application opportunities through specific theories, principles, and methods to be implemented in research, education, production, and other societal activities. Using a holistic approach with shared goals, convergence seeks to transcend existing human limitations to achieve improved conditions for work, learning, aging, physical, and cognitive wellness. This paper outlines ten key theories that offer complementary perspectives on this complex dynamic. Principles and methods are proposed to facilitate and enhance science and technology convergence. Several convergence success stories in the first part of the 21st century—including nanotechnology and other emerging technologies—are discussed in parallel with case studies focused on the future. The formulation of relevant theories, principles, and methods aims at establishing the convergence science.

  14. What inspires South African student teachers for their future ...

    African Journals Online (AJOL)

    The aim in this paper is to report on a study into the sources of inspiration of student teachers in South Africa, ..... sport. • fellow students. • friends (outside of the teacher education institution). Ethical clearance .... (5 pt scale). Rank order. Source.

  15. Searching for inspiration during idea generation : Pictures or words?

    NARCIS (Netherlands)

    Coimbra Cardoso, C.M.; Guerreiro Goncalves, M.; Badke-Schaub, P.G.

    2012-01-01

    People from different professional arenas search for inspiration in a number of sources, be it in memories from past experiences or in the physical environment that surrounds them. Purposefully or unconsciously, scientists, artists, writers and different types of designers for instance, come across

  16. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  17. Evaluating the INSPIRE measure of staff support for personal recovery in a Swedish psychiatric context.

    Science.gov (United States)

    Schön, Ulla-Karin; Svedberg, Petra; Rosenberg, David

    2015-05-01

    Recovery is understood to be an individual process that cannot be controlled, but can be supported and facilitated at the individual, organizational and system levels. Standardized measures of recovery may play a critical role in contributing to the development of a recovery-oriented system. The INSPIRE measure is a 28-item service user-rated measure of recovery support. INSPIRE assesses both the individual preferences of the user in the recovery process and their experience of support from staff. The aim of this study was to evaluate the psychometric properties of the Swedish version of the INSPIRE measure, for potential use in Swedish mental health services and in order to promote recovery in mental illness. The sample consisted of 85 participants from six community mental health services targeting people with a diagnosis of psychosis in a municipality in Sweden. For the test-retest evaluation, 78 participants completed the questionnaire 2 weeks later. The results in the present study indicate that the Swedish version of the INSPIRE measure had good face and content validity, satisfactory internal consistency and some level of instability in test-retest reliability. While further studies that test the instrument in a larger and more diverse clinical context are needed, INSPIRE can be considered a relevant and feasible instrument to utilize in supporting the development of a recovery-oriented system in Sweden.

  18. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  19. Millipede-inspired locomotion through novel U-shaped piezoelectric motors

    International Nuclear Information System (INIS)

    Avirovik, Dragan; Butenhoff, Bryan; Priya, Shashank

    2014-01-01

    We report a novel piezoelectric motor that operates at a resonance frequency of 144 Hz, much lower than that of conventional ultrasonic motors, and meets the displacement and gait requirements for designing the locomotion mechanism of a millipede-inspired robot (millibot). The motor structure consists of two piezoelectric bimorphs arranged in a U-shaped configuration. Using the first bending mode for both the piezoelectric bimorphs an elliptical motion was obtained at the tip which led to the successful implementation of millipede inspired locomotion. At an input voltage of 70.7 V rms , the piezoelectric motor operating at resonance frequency was able to generate torque of 0.03 mN m, mechanical power of 0.84 mW and maximum velocity of 62 rad s −1 . Detailed discussion is provided about the principle of operation of the millibot. (technical note)

  20. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    International Nuclear Information System (INIS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-01-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6–11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm −2 . Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference. (paper)

  1. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  2. Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters

    International Nuclear Information System (INIS)

    Castagnetti, D

    2012-01-01

    An important issue in the field of energy harvesting through piezoelectric materials is the design of simple and efficient structures which are multi-frequency in the ambient vibration range. This paper deals with the experimental assessment of four fractal-inspired multi-frequency structures for piezoelectric energy harvesting. These structures, thin plates of square shape, were proposed in a previous work by the author and their modal response numerically analysed. The present work has two aims. First, to assess the modal response of these structures through an experimental investigation. Second, to evaluate, through computational simulation, the performance of a piezoelectric converter relying on one of these fractal-inspired structures. The four fractal-inspired structures are examined in the range between 0 and 100 Hz, with regard to both eigenfrequencies and eigenmodes. In the same frequency range, the modal response and power output of the piezoelectric converter are investigated. (paper)

  3. Invisible Success: Problems with the Grand Technological Innovation in Higher Education

    Science.gov (United States)

    Whitworth, Andrew

    2012-01-01

    This paper investigates a "grand" educational technology innovation through theoretical lenses inspired by Cervero and Wilson's (1994, 1998) work. Through taking this approach it is possible to show how ideas about the form of the innovation and perceptions of its ultimate "success" or "failure", varied between stakeholder groups. The project was…

  4. Bio Inspired Algorithms in Single and Multiobjective Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albeanu, Grigore; Burtschy, Bernard

    2014-01-01

    Non-traditional search and optimization methods based on natural phenomena have been proposed recently in order to avoid local or unstable behavior when run towards an optimum state. This paper describes the principles of bio inspired algorithms and reports on Migration Algorithms and Bees...

  5. Reducing Consequences of Car Collision using Inspiration from Nature

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Helten, Katharina; Hepperle, Clemens

    2011-01-01

    is a result of a project where researchers from two universities (Technical University of Denmark, DTU, and Technische Universität München, TUM) explored three different biomimetic design approaches namely the transfer checklist approach, the inspiration card approach and the interdisciplinary team approach...

  6. Noncommutative geometry-inspired rotating black hole in three ...

    Indian Academy of Sciences (India)

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...

  7. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  8. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    Science.gov (United States)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  9. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2014-01-01

    Full Text Available Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  10. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Science.gov (United States)

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  11. The team behind HALO, a large-scale art installation conceived at CERN and inspired by ATLAS data, exhibited at 2018 Art Basel.

    CERN Multimedia

    Marcelloni, Claudia

    2018-01-01

    Merging particle physics and art, a CERN-inspired artwork is being featured for the first time at Art Basel, the international art fair in Basel, Switzerland from 13 to 17 June. A large-scale immersive art installation entitled HALO is the artistic interpretation of the Large Hadron Collider’s ATLAS experiment and celebrates the links between art, science and technology. Inspired by raw data generated by ATLAS, the artwork has been conceived and executed by CERN’s former artists-in-residence, the “Semiconductor” duo Ruth Jarman and Joe Gerhardt, in collaboration with Mónica Bello, curator and head of Arts at CERN. During their three-month Arts at CERN residency in 2015, Semiconductor had the chance to explore particle-collision data in collaboration with scientists from the University of Sussex ATLAS group and work with them on the data later used in the artwork. HALO is a cylindrical structure, measuring ten metres in diameter and surrounded by 4-metre-long vertical piano wires. On the inside, an en...

  12. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  13. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    Science.gov (United States)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  14. How Agile Methods Inspire Project Management - The Half Double Initiative

    DEFF Research Database (Denmark)

    Heeager, Lise Tordrup; Svejvig, Per; Schlichter, Bjarne Rerup

    Increased complexity in projects has forced new project management initiatives. In software development several agile methods have emerged and are today highly implemented in practice. Observations of general project management practice show how it has been inspired by agile software development......, but very little research addresses the issue of agile project management. In order to understand and to provide suggestions for future practice on how agility can be incorporated in general project management, this paper provides an analysis which compares ten characteristics of agile software development...... (identified in theory) and the Half Double Methodology developed by the Danish Project Half Double initiative; a Methodology developed with practitioners and tested in seven Danish case companies. The analysis shows how the general project management to a great extent has been inspired by agile methods...

  15. Growing a professional network to over 3000 members in less than 4 years: evaluation of InspireNet, British Columbia's virtual nursing health services research network.

    Science.gov (United States)

    Frisch, Noreen; Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes

    2014-02-21

    Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals' use of a network designed to increase nurses' interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. "InspireNet", a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Network growth exceeded all expectations. Members engaged with varying aspects of the network's virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members' database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times each. At the time of writing, 21 research teams

  16. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2017-01-01

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.

  17. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); MacLeod, Morgan [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-09-01

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidal captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.

  18. Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot

    OpenAIRE

    Li, Zheng; Du, Ruxu

    2013-01-01

    This paper presents a bio-inspired wire-driven multi-section flexible robot. It is inspired by the snake skeleton and octopus arm muscle arrangements. The robot consists of three sections and each section is made up of several identical vertebras, which are articulated by both spherical joints and a flexible backbone. Each section is driven by two groups of wires, controlling the bending motion in X and Y directions. This design integrates the serpentine robots' structure and the continuum ro...

  19. Nature-Inspired and Energy Efficient Route Planning

    DEFF Research Database (Denmark)

    Schlichtkrull, Anders; Christensen, J. B. S.; Feld, T.

    2015-01-01

    Cars are responsible for substantial CO2 emission worldwide. Computers can help solve this problem by computing shortest routes on maps. A good example of this is the popular Google Maps service. However, such services often require the order of the stops on the route to be fixed. By not enforcing....... The app is aimed at private persons and small businesses. The app works by using a nature-inspired algorithm called Ant Colony Optimization....

  20. Humidification of inspired gases during mechanical ventilation.

    Science.gov (United States)

    Gross, J L; Park, G R

    2012-04-01

    Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.

  1. eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan

    2009-01-01

    This paper presents the concept of a biological inspired reconfigurable hardware cell architecture which supports self-organisation and self-healing. Two fundamental processes in biology, namely fertilization-to-birth and cell self-healing have inspired the development of this cell architecture...... to simulate our self-organisation and self-healing algorithms and the results obtained from this looks promising....

  2. Towards an Ancient Chinese-Inspired Theory of Music Education

    Science.gov (United States)

    Tan, Leonard

    2016-01-01

    In this philosophical paper, I propose a theory of music education inspired by ancient Chinese philosophy. In particular, I draw on five classical Chinese philosophical texts: the Analects (lunyu [Chinese characters omitted]), the Mencius (Mengzi [Chinese characters omitted]), the Zhuangzi ([Chinese characters omitted]), the Xunzi ([Chinese…

  3. A Virtual Reality Dance Training System Using Motion Capture Technology

    Science.gov (United States)

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  4. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination.

    Science.gov (United States)

    Wang, Wenyi; Wang, Binghe

    2017-09-12

    Sulfur dioxide (SO 2 ) is an endogenously produced gaseous molecule, and is emerging as a potential gasotransmitter. Herein, we describe the first series of esterase-sensitive prodrugs inspired by modified Julia olefination as SO 2 donors.

  5. Breath-hold times in patients undergoing radiological examinations. Comparison of expiration and inspiration with and without hyperventilation

    International Nuclear Information System (INIS)

    Groell, R.; Schaffler, G.J.; Schloffer, S.

    2001-01-01

    Background. Breath-holding is necessary for imaging studies of the thorax and abdomen using computed tomography, magnetic resonance imaging or ultrasound examinations. The purpose of this study was to compare the breath-hold times in expiration and inspiration and to evaluate the effects of hyperventilation. Patients and methods. Thirty patients and 19 healthy volunteers participated in this study after informed consent was obtained in all. The breath-hold times were measured in expiration and inspiration before and after hyperventilation. Results. The mean breath-hold times in expiration (patients: 24±9 sec, volunteers: 27±7 sec) were significantly shorter than those in inspiration (patients: 41±20 sec, p<0.001; volunteers: 62±18 sec, p<0.001). Additional hyperventilation resulted in a significant increase (range: 40-60%, p≤0.005) of the mean breathhold times either in expiration and in inspiration and for both patients and volunteers. Conclusions. Although breath-holding in expiration is recommended for various imaging studies particularly of the thorax and of the abdomen, suspending respiration in inspiration enables the patient a considerable longer breath-hold time. (author)

  6. Development of a bio-inspired UAV perching system

    Science.gov (United States)

    Xie, Pu

    Although technologies of unmanned aerial vehicles (UAVs) including micro air vehicles (MAVs) have been greatly advanced in the recent years, it is still very difficult for a UAV to perform some very challenging tasks such as perching to any desired spot reliably and agilely like a bird. Unlike the UAVs, the biological control mechanism of birds has been optimized through millions of year evolution and hence, they can perform many extremely maneuverability tasks, such as perching or grasping accurately and robustly. Therefore, we have good reason to learn from the nature in order to significantly improve the capabilities of UAVs. The development of a UAV perching system is becoming feasible, especially after a lot of research contributions in ornithology which involve the analysis of the bird's functionalities. Meanwhile, as technology advances in many engineering fields, such as airframes, propulsion, sensors, batteries, micro-electromechanical-system (MEMS), and UAV technology is also advancing rapidly. All of these research efforts in ornithology and the fast growing development technologies in UAV applications are motivating further interests and development in the area of UAV perching and grasping research. During the last decade, the research contributions about UAV perching and grasping were mainly based on fixed-wing, flapping-wing, and rotorcraft UAVs. However, most of the current researches in UAV systems with perching and grasping capability are focusing on either active (powered) grasping and perching or passive (unpowered) perching. Although birds do have both active and passive perching capabilities depending on their needs, there is no UAV perching system with both capabilities. In this project, we focused on filling this gap. Inspired by the anatomy analysis of bird legs and feet, a novel perching system has been developed to implement the bionics action for both active grasping and passive perching. In addition, for developing a robust and

  7. Direct numerical simulations of drag reduction in turbulent channel flow over bio-inspired herringbone riblet-texture

    NARCIS (Netherlands)

    Benschop, H.O.G.; Westerweel, J.; Breugem, W.P.

    2015-01-01

    The use of drag reducing surface textures is a promising passive method to reduce fuel consumption. Probably most wellknown is the utilisation of shark-skin inspired ridges or riblets parallel to the mean flow. They can reduce drag up to 10%. Recently another bio-inspired texture based on bird

  8. Voicing the Technological Body. Some Musicological Reflections on Combinations of Voice and Technology in Popular Music

    Directory of Open Access Journals (Sweden)

    Florian Heesch

    2016-05-01

    Full Text Available The article deals with interrelations of voice, body and technology in popular music from a musicological perspective. It is an attempt to outline a systematic approach to the history of music technology with regard to aesthetic aspects, taking the identity of the singing subject as a main point of departure for a hermeneutic reading of popular song. Although the argumentation is based largely on musicological research, it is also inspired by the notion of presentness as developed by theologian and media scholar Walter Ong. The variety of the relationships between voice, body, and technology with regard to musical representations of identity, in particular gender and race, is systematized alongside the following cagories: (1 the “absence of the body,” that starts with the establishment of phonography; (2 “amplified presence,” as a signifier for uses of the microphone to enhance low sounds in certain manners; and (3 “hybridity,” including vocal identities that blend human body sounds and technological processing, whereby special focus is laid on uses of the vocoder and similar technologies.

  9. The inspiration code secrets of unlocking your people's potential

    CERN Document Server

    Hill, Terry

    2016-01-01

    Motivation truths for today's workplace; the science of what drives us and the art of harnessing it; find the real reasons why your people work; be a truly inspirational leader; get the best out of each and every one of your staff; commit your team to a powerful cause.

  10. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  11. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  12. Effect of InspirEase on the deposition of metered-dose aerosols in the human respiratory tract

    International Nuclear Information System (INIS)

    Newman, S.P.; Woodman, G.; Clarke, S.W.; Sackner, M.A.

    1986-01-01

    A radiotracer technique has been used to assess the effects of a 700-ml collapsible holding chamber (InspirEase, Key Pharmaceuticals Inc.) on the deposition of metered-dose aerosols in ten patients with obstructive airways disease (mean forced expiratory volume in one second [FEV1], 64.5 percent of predicted). Patterns of deposition obtained by patients' usual techniques with the metered-dose inhaler (MDI) were compared with those by correct MDI technique (actuation coordinated with slow deep inhalation and followed by ten seconds of breath-holding) and with those by InspirEase. Deposition of aerosol was assessed by placing Teflon particles labelled with 99mTc inside placebo canisters, and inhaling maneuvers were monitored by respiratory inductive plethysmography (Respitrace). Nine of the ten patients had imperfect technique with the MDI, the most prevalent errors being rapid inhalation and failure to hold their breath adequately. With patients' usual MDI techniques, 6.5 +/- 1.2 percent (mean +/- SE) of the dose reached the lungs. This was increased to 11.2 +/- 1.3 percent (p less than 0.02) with correct technique and increased further to 14.8 +/- 1.4 percent (p less than 0.05) with InspirEase. Oropharyngeal deposition exceeded 80 percent of the dose for the MDI alone but was only 9.5 +/- 0.9 percent with InspirEase (p less than 0.01); 59.2 +/- 2.1 percent of the dose was retained within InspirEase itself. It is concluded that InspirEase gives whole lung deposition of metered-dose aerosols greater than that from a correctly used MDI, while oropharyngeal deposition is reduced approximately nine times

  13. Approximate Waveforms for Extreme-Mass-Ratio Inspirals: The Chimera Scheme

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F; Yunes, Nicolás

    2012-01-01

    We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid method that combines tools from different approximation techniques in General Relativity: (i) A multipolar, post-Minkowskian expansion for the far-zone metric perturbation (the gravitational waveforms) and for the local prescription of the self-force; (ii) a post-Newtonian expansion for the computation of the multipole moments in terms of the trajectories; and (iii) a BH perturbation theory expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesies. The EMRI trajectory is made out of Kerr geodesic fragments joined via the method of osculating elements as dictated by the multipolar post-Minkowskian radiation-reaction prescription. We implemented the proper coordinate mapping between Boyer-Lindquist coordinates, associated with the Kerr geodesies, and harmonic coordinates, associated with the multipolar post-Minkowskian decomposition. The Chimera scheme is thus a combination of approximations that can be used to model generic inspirals of systems with extreme to intermediate mass ratios, and hence, it can provide valuable information for future space-based gravitational-wave observatories, like LISA, and even for advanced ground detectors. The local character in time of our multipolar post-Minkowskian self-force makes this scheme amenable to study the possible appearance of transient resonances in generic inspirals.

  14. Bio-Inspired Design Approach Analysis: A Case Study of Antoni Gaudi and Santiago Calatrava

    OpenAIRE

    Marzieh Imani

    2017-01-01

    Antoni Gaudi and Santiago Calatrava have reputation for designing bio-inspired creative and technical buildings. Even though they have followed different independent approaches towards design, the source of bio-inspiration seems to be common. Taking a closer look at their projects reveals that Calatrava has been influenced by Gaudi in terms of interpreting nature and applying natural principles into the design process. This research firstly discusses the dialogue between Biomimicry and archit...

  15. Science Fiction at the Far Side of Technology

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum

    2017-01-01

    behind some of the major works of their genre; assessments that may in turn provide the inspiration for new stories based on an enhanced understanding of the dynamics of science and technology. Film critics and literary critics with a good working knowledge of science fiction may find fresh insight......This book explores what science fiction can tell us about the human condition in a technological world (with the dilemma's and consequences that this entails) and also engages with the genre at points where we apparently find it on the far side of science, technology or human existence. As such....... It is our hope that this interdisciplinary approach will set an example for those who, like us, have been busy assessing the ways in which fictional attempts to fathom the possibilities of science and technology speak to central concerns about what it means to be human in a contemporary world of technology...

  16. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    Science.gov (United States)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-05-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modelled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106 M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the electromagnetic counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  17. Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes

    Science.gov (United States)

    Ghosh, Sushant G.

    2018-04-01

    Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r ) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.

  18. Biomimetic and bio-inspired uses of mollusc shells.

    Science.gov (United States)

    Morris, J P; Wang, Y; Backeljau, T; Chapelle, G

    2016-06-01

    Climate change and ocean acidification are likely to have a profound effect on marine molluscs, which are of great ecological and economic importance. One process particularly sensitive to climate change is the formation of biominerals in mollusc shells. Fundamental research is broadening our understanding of the biomineralization process, as well as providing more informed predictions on the effects of climate change on marine molluscs. Such studies are important in their own right, but their value also extends to applied sciences. Biominerals, organic/inorganic hybrid materials with many remarkable physical and chemical properties, have been studied for decades, and the possibilities for future improved use of such materials for society are widely recognised. This article highlights the potential use of our understanding of the shell biomineralization process in novel bio-inspired and biomimetic applications. It also highlights the potential for the valorisation of shells produced as a by-product of the aquaculture industry. Studying shells and the formation of biominerals will inspire novel functional hybrid materials. It may also provide sustainable, ecologically- and economically-viable solutions to some of the problems created by current human resource exploitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  20. Flectofin: a hingeless flapping mechanism inspired by nature

    International Nuclear Information System (INIS)

    Lienhard, J; Schleicher, S; Knippers, J; Poppinga, S; Masselter, T; Milwich, M; Speck, T

    2011-01-01

    This paper presents a novel biomimetic approach to the kinematics of deployable systems for architectural purposes. Elastic deformation of the entire structure replaces the need for local hinges. This change becomes possible by using fibre-reinforced polymers (FRP) such as glass fibre reinforced polymer (GFRP) that can combine high tensile strength with low bending stiffness, thus offering a large range of calibrated elastic deformations. The employment of elasticity within a structure facilitates not only the generation of complex geometries, but also takes the design space a step further by creating elastic kinetic structures, here referred to as pliable structures. In this paper, the authors give an insight into the abstraction strategies used to derive elastic kinetics from plants, which show a clear interrelation of form, actuation and kinematics. Thereby, the focus will be on form-finding and simulation methods which have been adopted to generate a biomimetic principle which is patented under the name Flectofin®. This bio inspired hingeless flapping device is inspired by the valvular pollination mechanism that was derived and abstracted from the kinematics found in the Bird-Of-Paradise flower (Strelitzia reginae, Strelitziaceae).

  1. Flectofin: a hingeless flapping mechanism inspired by nature.

    Science.gov (United States)

    Lienhard, J; Schleicher, S; Poppinga, S; Masselter, T; Milwich, M; Speck, T; Knippers, J

    2011-12-01

    This paper presents a novel biomimetic approach to the kinematics of deployable systems for architectural purposes. Elastic deformation of the entire structure replaces the need for local hinges. This change becomes possible by using fibre-reinforced polymers (FRP) such as glass fibre reinforced polymer (GFRP) that can combine high tensile strength with low bending stiffness, thus offering a large range of calibrated elastic deformations. The employment of elasticity within a structure facilitates not only the generation of complex geometries, but also takes the design space a step further by creating elastic kinetic structures, here referred to as pliable structures. In this paper, the authors give an insight into the abstraction strategies used to derive elastic kinetics from plants, which show a clear interrelation of form, actuation and kinematics. Thereby, the focus will be on form-finding and simulation methods which have been adopted to generate a biomimetic principle which is patented under the name Flectofin®. This bio inspired hingeless flapping device is inspired by the valvular pollination mechanism that was derived and abstracted from the kinematics found in the Bird-Of-Paradise flower (Strelitzia reginae, Strelitziaceae).

  2. Inspiring the Next Generation through Real Time Access to Ocean Exploration

    Science.gov (United States)

    Bell, K. L.; Ballard, R. D.; Witten, A. B.; O'Neal, A.; Argenta, J.

    2011-12-01

    Using live-access exposure to actual shipboard research activities where exciting discoveries are made can be a key contributor to engaging students and their families in learning about earth science and STEM subjects. The number of bachelor's degrees awarded annually in the Earth sciences peaked at nearly 8000 in 1984, and has since declined more than 50%; for the last several years, the number of bachelor's degrees issued in U.S. schools in the geosciences has hovered around 2500 (AGI, 2009). In 2008, the last year for which the data are published, only 533 Ph.D.s were awarded in Earth, Atmospheric and Ocean sciences (NSF, 2009). By 2030, the supply of geoscientists for the petroleum industry is expected to fall short of the demand by 30,000 scientists (AGI, 2009). The National Science Foundation (NSF) reports that minority students earn approximately 15% of all bachelor's degrees in science and engineering, but only 4.6% of degrees in the geosciences. Both of these percentages are very low in comparison to national and state populations, where Hispanics and African-Americans make up 29% of the U.S. overall. The Ocean Exploration Trust (OET) is a non-profit organization whose mission is to explore the world's ocean, and to capture the excitement of that exploration for audiences of all ages, but primarily to inspire and motivate the next generation of explorers. The flagship of OET's exploratory programs is the Exploration Vessel Nautilus, on which annual expeditions are carried out to support our mission. The ship is equipped with state of the art satellite telecommunications "telepresence" technology that enables 24/7 world-wide real time access to the data being collected by the ships remotely operated vehicles. It is this "live" access that affords OET and its partners the opportunity to engage and inspire audiences across the United States and abroad. OET has formed partnerships with a wide-range of educational organizations that collectively offer life

  3. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  4. Risk of bacterial cross infection associated with inspiration through flow-based spirometers.

    Science.gov (United States)

    Bracci, Massimo; Strafella, Elisabetta; Croce, Nicola; Staffolani, Sara; Carducci, Annalaura; Verani, Marco; Valentino, Matteo; Santarelli, Lory

    2011-02-01

    Bacterial contamination of spirometers has been documented in water-sealed devices, mouthpieces, and connection tubes. Little information is available about bacterial contamination of flow-based apparatuses such as turbine-type spirometers and pneumotachographs. Inspiration through contaminated equipment is a potential source of cross infection. To investigate bacteria mobilization (ie, bacteria detachment and aerosolization from the instrument) during routine spirometric testing, 2 types of flow-based spirometers were used. Bacteria mobilization during artificial inspiration through in-line filters or cardboard mouthpieces was evaluated. Nine hundred workers undergoing periodic spirometric testing were enrolled at the occupational physician office in 30 sessions of 30 subjects each. The participants were asked to perform a forced vital capacity test in a turbine-type spirometer and in an unheated pneumotachograph fitted with disposable in-line filters or cardboard mouthpieces. To evaluate bacterial mobilization, an artificial inspiration was performed and bacterial growth determined. The bacterial growth analysis was assessed after the first and the thirtieth spirometric tests of each session without disinfecting the instruments between tests. In addition, instrument bacterial contamination was evaluated. No significant bacterial mobilization and instrument contamination were found in spirometric tests executed with in-line filters. Conversely, a significant bacterial mobilization and instrument contamination were observed in tests performed with cardboard mouthpieces. Differences between the 2 spirometers were not significant. In-line filters may effectively reduce the risk of bacterial cross infection. Inspiration through flow-based spirometers fitted with disposable cardboard mouthpieces is completely safe when combined with spirometer disinfection/sterilization between subjects. Copyright © 2011 Association for Professionals in Infection Control and

  5. Expanding The INSPIRED COPD Outreach ProgramTM to the emergency department: a feasibility assessment

    Directory of Open Access Journals (Sweden)

    Gillis D

    2017-05-01

    Full Text Available Darcy Gillis,1 Jillian Demmons,1 Graeme Rocker1,2 1Division of Respirology, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS, Canada; 2Division of Respirology, Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada Background: The Halifax-based INSPIRED COPD Outreach Program™ is a facility-to-community home-based novel clinical initiative that through improved care transitions, self-management, and engagement in advance care planning has demonstrated a significant (60%–80% reduction in health care utilization with substantial cost aversion. By assessing the feasibility of expanding INSPIRED into the emergency department (ED we anticipated extending reach and potential for positive impact of INSPIRED to those with acute exacerbation of chronic obstructive pulmonary disease (AECOPD who avoid hospital admission.Methods: Patients were eligible for the INSPIRED-ED study if >40 years of age, diagnosed with AECOPD and discharged from the ED, willing to be referred, community dwelling with at least one of: previous use of the ED services, admission to Intermediate Care Unit/Intensive Care Unit, or admission to hospital with AECOPD in the past year. We set feasibility objectives for referral rates, completion of action plans, advance care planning participation, and reduction in ED visit frequency.Results: Referral rates were 0.5/week. Among eligible patients (n=174 33 (19% were referred of whom 15 (M=4, F=11 enrolled in INSPIRED-ED. Mean (SD age was 68 (7 years, post-bronchdilator FEV1 44.2 (15.5 % predicted, and Medical Research Council (MRC dyspnea score 3.8 (0.41. We met feasibility objectives for action plan and advance care planning completion. Frequency of subsequent ED visits fell by 54%. Mean (SD Care Transition Measure (CTM-3 improved from 8.6 (2.0 to 11.3 (1.3, P=0.0004, and of 14 patients responding 12 (86% found the program very helpful. An additional 34

  6. Robust, Self-Contained and Bio-Inspired Shear Sensor Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  7. An Experimental Study on the aerodynamic and aeroacoustic performances of Maple-Seed-Inspired UAV Propellers

    Science.gov (United States)

    Hu, Hui; Ning, Zhe

    2016-11-01

    Due to the auto-rotating trait of maple seeds during falling down process, flow characteristics of rotating maple seeds have been studied by many researchers in recent years. In the present study, an experimental investigation was performed to explore maple-seed-inspired UAV propellers for improved aerodynamic and aeroacoustic performances. Inspired by the auto-rotating trait of maple seeds, the shape of a maple seed is leveraged for the planform design of UAV propellers. The aerodynamic and aeroacoustic performances of the maple-seed-inspired propellers are examined in great details, in comparison with a commercially available UAV propeller purchased on the market (i.e., a baseline propeller). During the experiments, in addition to measuring the aerodynamic forces generated by the maple-seed-inspired propellers and the baseline propeller, a high-resolution Particle Image Velocimetry (PIV) system was used to quantify the unsteady flow structures in the wakes of the propellers. The aeroacoustic characteristics of the propellers are also evaluated by leveraging an anechoic chamber available at the Aerospace Engineering Department of Iowa State University. The research work is supported by National Science Foundation under Award Numbers of OSIE-1064235.

  8. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    Directory of Open Access Journals (Sweden)

    Andrey Vyshedskiy

    2012-01-01

    Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  9. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    Science.gov (United States)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  10. Plant-inspired adaptive structures and materials for morphing and actuation: a review.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2016-12-20

    Plants exhibit a variety of reversible motions, from the slow opening of pine cones to the impulsive closing of Venus flytrap leaves. These motions are achieved without muscles and they have inspired a wide spectrum of engineered materials and structures. This review summarizes the recent developments of plant-inspired adaptive structures and materials for morphing and actuation. We begin with a brief overview of the actuation strategies and physiological features associated to these plant movements, showing that different combinations of these strategies and features can lead to motions with different deformation characteristics and response speeds. Then we offer a comprehensive survey of the plant-inspired morphing and actuation systems, including pressurized cellular structures, osmotic actuation, anisotropic hygroscopic materials, and bistable systems for rapid movements. Although these engineered systems are vastly different in terms of their size scales and intended applications, their working principles are all related to the actuation strategies and physiological features in plants. This review is to promote future cross-disciplinary studies between plant biology and engineering, which can foster new solutions for many applications such as morphing airframes, soft robotics and kinetic architectures.

  11. Music Pedagogy as an Aid to Integration? El Sistema-Inspired Music Activity in Two Swedish Preschools

    Science.gov (United States)

    Gustavsson, Hans-Olof; Ehrlin, Anna

    2018-01-01

    The study focuses on how preschool and musical school teachers experience working with El Sistema-inspired activity at two municipal preschools in a multicultural district in a medium-sized Swedish town. What, according to the educators,is the most significant aspect of working with El Sistema-inspired activities? The theoretical point of…

  12. School of Culinary Arts & Food Technology - Summer Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Summer Newsletter captured rfgw many events, research, awards, significant contributions ans special civic and community activities which the students and staff members of the school have successfully completed leading up to the summer period of 2017. These activities could not be completed without the on-going and active support of the schools 'INSPIRED' friends of Culinary Arts (sponsors).

  13. Fabiola Gianotti is one of The Guardian's "most inspirational women"

    CERN Document Server

    CERN Bulletin

    2011-01-01

    Fabiola Gianotti, spokesperson for the ATLAS experiment, was named one of the world’s 100 most inspirational women by The Guardian newspaper. The list was drawn up in celebration of the International Women’s Day on 8 March.    

  14. "Akeelah and the Bee": Inspirational Story of African-American Intellect and Triumph or Racist Rhetoric Served Up on Another Platter?

    Science.gov (United States)

    Pimentel, Charise; Sawyer, Cathleen

    2011-01-01

    In this article, the authors look into the inspirational movie, "Akeelah and the Bee," a film about an African-American who goes against all odds to achieve success in grand proportions. Described as an "inspirational family film" and a "successful feel-good movie" (Turan, 2006), "Akeelah and the Bee" proved inspirational to many viewers, as it…

  15. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  16. Arts-inspired students sync their assets to a nuts and bolts world: A career mentoring pilot progam

    Science.gov (United States)

    Hudson, Lynn

    This research examined how students who are arts-inspired feel about their futures in a STEM-based work climate. Science, Technology, Engineering, and Math are the nuts and bolts, and in education today, the only avenue touted for our country and our students' success in this 21st century economy. This can be disconcerting to those interested in other fields, like the arts. This study was guided by the following questions in an effort to understand if our artists and arts-inspired students realize their options and importance in this 21st century climate. The pilot study was designed to help improve the students' perception of their abilities or self-efficacy in the STEM areas by introducing STEM professionals as mentors who designed hands-on activities that simulate work in the STEM fields. Research Questions: 1. Do arts-inspired students have an interest in a STEM career area prior to participating in the career mentoring program? 2. Does participation in a STEM career mentoring program improve student's self-efficacy in STEM fields? 3. Does participation in STEM career mentoring program increase student's interest in pursuing STEM-related careers? Lent, Brown and Hackett's Social Cognitive Career Theory and Daniel Pink's, "A Whole New Mind: Why Left-Brainers Will Rule the Future" were used as the theoretical framework for this study. Seventeen African-American girls who were enrolled in the "I AM COMPLETE" summer program participated in the pilot study. Data was collected from the College Foundation of North Carolina Career Interest Explorer and the STEM Career Interest Survey, which served as a pre and post-test. This pilot offered limited support for the hypothesis, however, career mentoring and opportunities for young people to experience careers, especially in the STEM areas must continue to grow. The role that the arts play in this process is pivotal in galvanizing females and minorities to join these professions. It is the hope of this researcher that the

  17. Omnidirectional light absorption of disordered nano-hole structure inspired from Papilio ulysses.

    Science.gov (United States)

    Wang, Wanlin; Zhang, Wang; Fang, Xiaotian; Huang, Yiqiao; Liu, Qinglei; Bai, Mingwen; Zhang, Di

    2014-07-15

    Butterflies routinely produce nanostructured surfaces with useful properties. Here, we report a disordered nano-hole structure with ridges inspired by Papilio ulysses that produce omnidirectional light absorption compared with the common ordered structure. The result shows that the omnidirectional light absorption is affected by polarization, the incident angle, and the wavelength. Using the finite-difference time-domain (FDTD) method, the stable omnidirectional light absorption is achieved in the structure inspired from the Papilio ulysses over a wide incident angle range and with various wavelengths. This explains some of the mysteries of the structure of the Papilio ulysses butterfly. These conclusions can guide the design of omnidirectional absorption materials.

  18. Hierarchical and Size Dependent Mechanical Properties of Silica and Silicon Nanostructures Inspired by Diatom Algae

    Science.gov (United States)

    2010-09-01

    Chaniotakis. The physical and mechanical properties of composite cements manufactured with cal- careous and clayey greek diatomite mixtures. Cement and...Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae by Andre Phillipe Garcia B.S...dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  19. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  20. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  1. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  2. Values of rural landscapes in Europe: inspiration or by-product?

    NARCIS (Netherlands)

    Pedroli, G.B.M.; Elsen, van T.; Mansvelt, van J.D.

    2007-01-01

    European landscapes are facing a deep crisis. As a consequence of globalization and the economical change associated with it, traditional functions like production agriculture are becoming less important. After the self-evident but inspired landscapes of numerous generations of peasants, monks and

  3. A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm

    Science.gov (United States)

    Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.

    2016-10-01

    Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.

  4. A Mathematical Model of a Novel 3D Fractal-Inspired Piezoelectric Ultrasonic Transducer.

    Science.gov (United States)

    Canning, Sara; Walker, Alan J; Roach, Paul A

    2016-12-17

    Piezoelectric ultrasonic transducers have the potential to operate as both a sensor and as an actuator of ultrasonic waves. Currently, manufactured transducers operate effectively over narrow bandwidths as a result of their regular structures which incorporate a single length scale. To increase the operational bandwidth of these devices, consideration has been given in the literature to the implementation of designs which contain a range of length scales. In this paper, a mathematical model of a novel Sierpinski tetrix fractal-inspired transducer for sensor applications is presented. To accompany the growing body of research based on fractal-inspired transducers, this paper offers the first sensor design based on a three-dimensional fractal. The three-dimensional model reduces to an effective one-dimensional model by allowing for a number of assumptions of the propagating wave in the fractal lattice. The reception sensitivity of the sensor is investigated. Comparisons of reception force response (RFR) are performed between this novel design along with a previously investigated Sierpinski gasket-inspired device and standard Euclidean design. The results indicate that the proposed device surpasses traditional design sensors.

  5. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  6. Science Fiction at the Far Side of Technology

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum

    2017-01-01

    . Further, those with a concern for the future may find inspiration in what a study of the politics and ethics of science fiction can tell us about the moral and political dilemmas of our own time. Although this book is more likely to be picked up by someone who already has an interest in science fiction....... It is our hope that this interdisciplinary approach will set an example for those who, like us, have been busy assessing the ways in which fictional attempts to fathom the possibilities of science and technology speak to central concerns about what it means to be human in a contemporary world of technology...

  7. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  8. Excellent Educators: ISTE's Award Winners Inspire, Captivate, and Motivate!

    Science.gov (United States)

    Fingal, Diana

    2012-01-01

    In the impassioned debate about school reform, there is one point that all sides agree on: Classroom teachers have a huge impact on student success. Great teachers don't just teach. They inspire, they captivate, and they motivate their students to create, investigate, solve, and continue learning long after their school years are over. This…

  9. Dale Chihuly: An Inspiration in Art, Science, and Math!

    Science.gov (United States)

    Hubbert, Beth

    2009-01-01

    Connecting students to the arts in a concrete way can be an effective teaching tool. In this article, the author describes how Dale Chihuly's "Hart Window," which features hand-blown glass disks affixed to the framework of the window, can be an inspiration for interdisciplinary connections in art, science and math. (Contains 4 online resources.)

  10. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  11. A Novel Immune-Inspired Shellcode Detection Algorithm Based on Hyperellipsoid Detectors

    Directory of Open Access Journals (Sweden)

    Tianliang Lu

    2018-01-01

    Full Text Available Shellcodes are machine language codes injected into target programs in the form of network packets or malformed files. Shellcodes can trigger buffer overflow vulnerability and execute malicious instructions. Signature matching technology used by antivirus software or intrusion detection system has low detection rate for unknown or polymorphic shellcodes; to solve such problem, an immune-inspired shellcode detection algorithm was proposed, named ISDA. Static analysis and dynamic analysis were both applied. The shellcodes were disassembled to assembly instructions during static analysis and, for dynamic analysis, the API function sequences of shellcodes were obtained by simulation execution to get the behavioral features of polymorphic shellcodes. The extracted features of shellcodes were encoded to antigens based on n-gram model. Immature detectors become mature after immune tolerance based on negative selection algorithm. To improve nonself space coverage rate, the immune detectors were encoded to hyperellipsoids. To generate better antibody offspring, the detectors were optimized through clonal selection algorithm with genetic mutation. Finally, shellcode samples were collected and tested, and result shows that the proposed method has higher detection accuracy for both nonencoded and polymorphic shellcodes.

  12. (YIP 10) - Bio-Inspired Interfaces for Hybrid Structures

    Science.gov (United States)

    2013-07-01

    vertebrate bones and teeth, mollusk shells and arthropod exoskeletons [1, 2]. Two interesting examples of such biological systems are gecko’s footpad...range from non-wetting painting and smart adhesives [35-41] to intricate bioinspired designs such as nano- and micro- robotics with climbing abilities...smart adhesion. Advanced Materials, 2008. 20(4): p. 711-716. 42. Wood, R.J., The first takeoff of a biologically inspired at-scale robotic insect

  13. Inspiration and application in the evolution of biomaterials

    OpenAIRE

    Huebsch, Nathaniel; Mooney, David J.

    2009-01-01

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of ...

  14. Inspiration and application in the evolution of biomaterials.

    Science.gov (United States)

    Huebsch, Nathaniel; Mooney, David J

    2009-11-26

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.

  15. Hair-based flow-sensing inspired by the cricket cercal system

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Droogendijk, H.; Steinmann, T.; Dagamseh, A.M.K.; Jaganatharaja, R.K.; Casas, J.

    2014-01-01

    Micro Electro Mechanical Systems (MEMS) offer exciting possibilities for the fabri­cation of bioinspired mechanosensors. Over the last years we have been working on cricket inspired hair-sensor arrays for spatio-temporal flow-field observations (i.e., flow-cameras) and source localization. Whereas

  16. From Central Asia to South Africa: In Search of Inspiration in Rock Art Studies

    Directory of Open Access Journals (Sweden)

    Rozwadowski Andrzej

    2017-06-01

    Full Text Available The paper describes the story of discovering South African rock art as an inspiration for research in completely different part of the globe, namely in Central Asia and Siberia. It refers to those aspect of African research which proved to importantly develop the understanding of rock art in Asia. Several aspects are addressed. First, it points to importance of rethinking of relationship between art, myth and ethnography, which in South Africa additionally resulted in reconsidering the ontology of rock images and the very idea of reading of rock art. From the latter viewpoint particularly inspiring appeared the idea of three-dimensionality of rock art ‘text’. The second issue of South African ‘origin,’ which notably inspired research all over the world, concerns a new theorizing of shamanism. The paper then discusses how and to what extent this new theory add to the research on the rock art in Siberia and Central Asia.

  17. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  18. An electric-eel-inspired soft power source from stacked hydrogels.

    Science.gov (United States)

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  19. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    Science.gov (United States)

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    Science.gov (United States)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  1. A bio-inspired approach for the reduction of left ventricular workload.

    Directory of Open Access Journals (Sweden)

    Niema M Pahlevan

    Full Text Available Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.

  2. Kinetic theory of Jean instability in Eddington-inspired Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Ivan de [University of the Basque Country UPV/EHU, Department of Theoretical Physics and History of Science, Faculty of Science and Technology, Leioa (Spain); Capolupo, Antonio [Universita di Salerno, Dipartimento di Fisica E.R. Caianiello, Fisciano (Italy); INFN Gruppo Collegato di Salerno, Fisciano (Italy)

    2017-10-15

    We analyze the stability of self-gravitating systems which dynamics is investigated using the collisionless Boltzmann equation, and the modified Poisson equation of Eddington-inspired Born-Infield gravity. These equations provide a description of the Jeans paradigm used to determine the critical scale above which such systems collapse. At equilibrium, the systems are described using the time-independent Maxwell-Boltzmann distribution function f{sub 0}(v). Considering small perturbations to this equilibrium state, we obtain a modified dispersion relation, and we find a new characteristic scale length. Our results indicate that the dynamics of self-gravitating astrophysical systems can be fully addressed in the Eddington-inspired Born-Infeld gravity. The latter modifies the Jeans instability in high densities environments, while its effects become negligible in star formation regions. (orig.)

  3. Non-commutative geometry inspired charged black holes

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2007-01-01

    We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrom geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrom spacetime there is no curvature singularity in the origin neither 'naked' nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario

  4. Sources of Inspiration: The role of significant persons in young people's choice of science in higher education

    Science.gov (United States)

    Sjaastad, Jørgen

    2012-07-01

    The objectives of this article were to investigate to which extent and in what ways persons influence students' choice of science, technology, engineering, and mathematics (STEM) in tertiary education, and to assess the suitability of an analytical framework for describing this influence. In total, 5,007 Norwegian STEM students completed a questionnaire including multiple-choice as well as open-ended questions about sources of inspiration for their educational choice. Using the conceptualisation of significant persons suggested by Woelfel and Haller, the respondents' descriptions of parents and teachers are presented in order to elaborate on the different ways these significant persons influence a STEM-related educational choice. Parents engaged in STEM themselves are models, making the choice of STEM familiar, and they help youngsters define themselves through conversation and support, thus being definers. Teachers are models by displaying how STEM might bring fulfilment in someone's life and by giving pupils a positive experience with the subjects. They help young people discover their STEM abilities, thus being definers. Celebrities are reported to have minor influence on STEM-related educational choices. Both qualitative and quantitative analyses indicate that interpersonal relationships are key factors in order to inspire and motivate a choice of STEM education. Implications for recruitment issues and for research on interpersonal influence are discussed. It is suggested that initiatives to increase recruitment to STEM might be aimed at parents and other persons in interpersonal relationships with youth as a target group.

  5. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui

    2009-08-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  6. 6th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Krömer, Pavel; Pant, Millie; Muda, Azah

    2016-01-01

    This Volume contains the papers presented during the 6th International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2015 which was held in Kochi, India during December 16-18, 2015. The 51 papers presented in this Volume were carefully reviewed and selected. The 6th International Conference IBICA 2015 has been organized to discuss the state-of-the-art as well as to address various issues in the growing research field of Bio-inspired Computing which is currently one of the most exciting research areas, and is continuously demonstrating exceptional strength in solving complex real life problems. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  7. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  8. Bio-inspired nano tools for neuroscience.

    Science.gov (United States)

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. School of Culinary Arts & Food Technology - Spring Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Spring Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed leading up to the Spring period of 2017. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' friends of Culinary Arts (sponsors).

  10. School of Culinary Arts & Food Technology - Summer Newsletter 2018

    OpenAIRE

    Murphy, James Peter

    2018-01-01

    The School of Culinary Arts and Food Technology, Summer Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed up to the Summer period of 2018. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' friends of Culinary Arts (school sponsors).

  11. School of Culinary Arts & Food Technology - Winter Newsletter 2017

    OpenAIRE

    Murphy, James Peter

    2017-01-01

    The School of Culinary Arts and Food Technology, Winter Newsletter captured the many events, research, awards, significant contributions and special civic and community activities which the students and staff members of the school have successfully completed leading up to the Winter period of 2017. The successful completion of these activities would not be possible without the active and on-going support of the 'INSPIRED' Friends of Culinary Arts (sponsors).

  12. Concepts and contexts in engineering and technology education : An international and interdisciplinary Delphi study

    NARCIS (Netherlands)

    Rossouw, A.; Hacker, M.; De Vries, M.J.

    2010-01-01

    Inspired by a similar study by Osborne et al. we have conducted a Delphi study among experts to identify key concepts to be taught in engineering and technology education and relevant and meaningful contexts through which these concepts can be taught and learnt. By submitting the outcomes of the

  13. A neurally inspired musical instrument classification system based upon the sound onset.

    Science.gov (United States)

    Newton, Michael J; Smith, Leslie S

    2012-06-01

    Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.

  14. Social transformation of two students in an El Sistema-inspired orchestra program

    Directory of Open Access Journals (Sweden)

    Christine D’Alexander

    2016-07-01

    Full Text Available In recent years there has been a substantial increase in El Sistema-inspired programs for young musicians. An overwhelming majority of these programs across the USA are centered in underserved communities where access to instrumental music training would otherwise be sparse. Most often, this is due to budget cuts partially or completely being wiped off from school curricula, or the financial cost associated with instrumental lessons. These programs, often free of cost to families, consist of musical training several days a week in small and large group classes, and claim to promote social change amongst these children’s lives. It is of importance to carefully study if, and how, these young musicians believe their lives are transforming through participation in these El Sistema-inspired programs, and if in fact, social change is occurring. This article reports on a multiple case study which sought to dive deeper into the lives of two children taking part in one El Sistema-inspired orchestral program located in Los Angeles, California. The study focused on the influence and impact this program has had on the lives of students, the exploration and formation of their beliefs surrounding musical learning, as well as experiences they share both as individuals and members of the orchestra.

  15. The Tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology

    Science.gov (United States)

    2011-05-01

    Fish et al. at S IC B S ociety A ccess on July 5, 2011 icb.oxfordjournals.org D ow nloaded from Unsteady Reynolds-Averaged Navier- Strokes (RANS...advances of technology in marine systems: what does biomimetics have to offer to aquatic robots? Appl Bionics Biomech 3:49–60. Fish FE. 2009. Biomimetics...mechanisms of baleen whales. Amer Sci 67:432–440. Reidenberg JS, Laitman JT. 2007. Blowing bubbles: An aquatic adaptation that risks protection of the

  16. Bio-inspired fuel cells for miniaturized body-area-networks applications

    NARCIS (Netherlands)

    Xu, Wei; Gao, Lu; Danilov, Dmitri; Pop, V.; Notten, Peter

    2010-01-01

    The improvement in quality of modern health-care is closely related to the need for medical autonomous systems that enable people to ‘carry’ their personal wireless Body-Area-Network (BAN). Bio-inspired fuel cells (BFC) are a promising approach of energy harvesting to achieve autonomy and

  17. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  18. Using Game Development to Engage Students in Science and Technology

    Science.gov (United States)

    Wiacek, John

    2011-01-01

    Game design workshops, camps and activities engage K-12 students In STEM disciplines that use game engine and development tools. Game development will have students create games and simulations that Will inspire them to love technology while learning math, physics, and,logic. By using tools such as Gamemaker, Alice, Unity, Gamesalad and others, students will get a sense of confidence and accomplishment creating games and simulations.

  19. Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil.

    Science.gov (United States)

    Shang, Qianqian; Liu, Chengguo; Hu, Yun; Jia, Puyou; Hu, Lihong; Zhou, Yonghong

    2018-07-01

    This work presents an efficient and environmentally friendly approach to generate hydrophobic cellulose nanocrystals (CNC) using thiol-containing castor oil (CO-SH) as a renewable hydrophobe with the assist of bio-inspired dopamine at room temperature. The modification process included the formation of the polydopamine (PDA) buffer layer on CNC surfaces and the Michael addition reaction between the catechol moieties of PDA coating and thiol groups of CO-SH. The morphology, crystalline structure, surface chemistry, thermal stability and hydrophobicity of the modified CNC were charactered by TEM, XRD, FT-IR, solid-state 13 C NMR, XPS, TGA and contact angle analysis. The modified CNC preserved cellulose crystallinity, displayed higher thermal stability than unmodified CNC, and was highly hydrophobic with a water contact angle of 95.6°. The simplicity and versatility of the surface modification strategy inspired by adhesive protein of mussel may promote rapid development of hydrophobic bio-based nanomaterials for various applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  1. Biological inspiration used for robots motion synthesis.

    Science.gov (United States)

    Zielińska, Teresa

    2009-01-01

    This work presents a biologically inspired method of gait generation. Bipedal gait pattern (for hip and knee joints) was taken into account giving the reference trajectories in a learning task. The four coupled oscillators were taught to generate the outputs similar to those in a human gait. After applying the correction functions the obtained generation method was validated using ZMP criterion. The formula suitable for real-time motion generation taking into account the positioning errors was also formulated. The small real robot prototype was tested to be able walk successfully following the elaborated motion pattern.

  2. The frontiers of empirical science: A Thomist-inspired critique of ...

    African Journals Online (AJOL)

    The frontiers of empirical science: A Thomist-inspired critique of scientism. Callum Scott. Abstract. Scientistic conceptualisations hold to the positivistic positions that science is limitless in its potential representations of material phenomena and that it is the only sure path to knowledge. In recent popular scientific literature, ...

  3. Personal Agency Inspired by Hardship: Bilingual Latinas as Liberatory Educators

    Science.gov (United States)

    Morales, Amanda R.; Shroyer, M. Gail

    2016-01-01

    This qualitative multiple case study focused on eleven non-traditional, bilingual, Latinas within a teacher education program. The study explored various factors that influenced participants' desire to pursue and ability to persist as pre-service teachers. The overarching theme identified among participant discourse was personal agency inspired by…

  4. Growing a Waldorf-Inspired Approach in a Public School District

    Science.gov (United States)

    Friedlaender, Diane; Beckham, Kyle; Zheng, Xinhua; Darling-Hammond, Linda

    2015-01-01

    This report documents the practices and outcomes of Alice Birney, a public K-8 Waldorf-Inspired School in Sacramento City Unified School District (SCUSD). This study highlights how such a school addresses students' academic, social, emotional, physical, and creative development. Birney students outperform similar students in SCUSD on several…

  5. Understanding Natural Sciences Education in a Reggio Emilia-Inspired Preschool

    Science.gov (United States)

    Inan, Hatice Zeynep; Trundle, Kathy Cabe; Kantor, Rebecca

    2010-01-01

    This ethnographic study explored aspects of how the natural sciences were represented in a Reggio Emilia-inspired laboratory preschool. The natural sciences as a discipline--a latecomer to preschool curricula--and the internationally known approach, Reggio Emilia, interested educators and researchers, but there was little research about science in…

  6. A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

    Directory of Open Access Journals (Sweden)

    Gao Lin

    2012-06-01

    Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.

  7. Bio-Inspired Design and Kinematic Analysis of Dung Beetle-Like Legs

    DEFF Research Database (Denmark)

    Aditya, Sai Krishna Venkata; Ignasov, Jevgeni; Filonenko, Konstantin

    2017-01-01

    The African dung beetle Scarabaeus galenus can use its front legs to walk and manipulate or form a dung ball. The interesting multifunctional legs have not been fully investigated or even used as inspiration for robot leg design. Thus, in this paper, we present the development of real dung beetle......-like front legs based on biological investigation. As a result, each leg consists of three main segments which were built using 3D printing. The segments were combined with in total four active DOFs in order to mimic locomotion and object manipulation of the beetle. Kinematics analysis of the leg was also...... performed to identify its workspace as well as to design its trajectory. To this end, the study contributes not only novel multifunctional robotic legs but also the methodology of the bio-inspired leg design....

  8. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun; Pisano, Albert P.; Seo, Young Ho

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  9. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar\\'s hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  10. Austerity and On-The-Job Vocational Learning: Power, Technology and the "Knowledge Economy" Reconsidered

    Science.gov (United States)

    Sawchuk, Peter

    2013-01-01

    This article seeks to contribute to an understanding of questions regarding on-the-job vocational learning, power, and technological change in the context of dynamic notions of knowledge economy and contemporary public sector austerity in the West based on a "mind in political economy" approach inspired by the Cultural Historical…

  11. NASA technology investments: building America's future

    Science.gov (United States)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  12. Freeing up access to CERN technology

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    In line with CERN’s principle of maximising the dissemination of knowledge to society, the Knowledge Transfer (KT) Group has launched a new collaborative initiative to share the products of CERN’s scientific and technological labours: Easy Access IP, where IP stands for intellectual property.   CERN has a whole portfolio of dissemination channels designed and implemented by the KT Group, with Easy Access IP being the latest addition. “Inspired by the UK’s Easy Access Innovation initiative, our scheme involves making some of CERN's technologies available royalty-free and through a more agile licensing process,” explains Giovanni Anelli, head of the Group. “This approach seems to be an appropriate model for CERN, where the ultimate goal of technology transfer is not to generate income but to transfer knowledge to external partners.” The new scheme, as the name suggests, is designed to make it easier for industry and othe...

  13. User driven innovation in mobile technologies?

    DEFF Research Database (Denmark)

    Larsen, Casper Schultz; Koch, Christian

    2007-01-01

    by systems already in function. Stories of prior business successes can be an important tool to ensure further innovative investments since lack of enterprise strategies is often an obstacle for innovation, especially user driven. Both small and large software houses develops dedicated software for coupling...... technology systems relying on the concept of affordance. This paper examines how innovation processes mediate between user orientations and technology offers. There is a great potential for mobile handheld ICT-systems to support numerous work processes in the AEC-industry and this can be substantiated...... site practises, and headquarters - inspired by specific user needs for optimizing work processes. The most important mechanisms evoked for creating the mediating found in the paper are ‘hybrids’ where professionals from AEC establishes a software house, developing ICT-products for specific on...

  14. Re-orientating time in product design : a phenomenology-inspired perspective

    NARCIS (Netherlands)

    Stienstra, J.T.; Hengeveld, B.J.; Hummels, C.C.M.

    2015-01-01

    This paper presents a work in progress design case that is used to exemplify how a phenomenology-inspired perspective on time can impact the design of highly interactive systems and products. The design presents a calendar with a re-orientated layout that is based on a bodily relationship with time,

  15. How we are building a complex Angular 2 application at Inspire

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In this talk, at first we will talk about some basic and advanced Angular 2 concepts, then we will share our experiences with Angular 2 that we had so far while building a complex library and web applications at Inspire.

  16. EDITORIAL: Molecular Imaging Technology

    Science.gov (United States)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  17. Introducing new technology in the gas industry

    International Nuclear Information System (INIS)

    Szilard, S.; Powrie, D.

    1995-01-01

    The approach taken by Consumer's Gas in the introduction of new products was described. The company's role in technology development in the last decade was summarized in the context of other industries' practices. New product experiences and the key factors for success were also revealed. A professionally managed New Product Introduction (NPI) process launched by Consumer Gas in 1994 was outlined. Its objectives were stated as (1) providing strong leadership; (2) a widely held sense of urgency; (3) customer orientation; (4) doing the 'up front homework'; (5) the importance of teamwork; (6) a formal new product process; and (7) a simple management structure. The need for keeping up with technological changes and customer trends, while inspiring others in the gas distribution business to act similarly, was emphasized

  18. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  19. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  20. A tracked robot with novel bio-inspired passive "legs".

    Science.gov (United States)

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  1. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  2. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    Science.gov (United States)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  3. HALO, a large-scale art installation conceived at CERN and inspired by ATLAS data and exhibited during 2018 Art Basel

    CERN Document Server

    marcelloni, claudia

    2018-01-01

    Celebrating the ties between art, science and technology, HALO is an immersive art installation inspired by raw data generated by ATLAS in 2015. It has been conceived and executed by CERN’s former artists-in-residence, the “Semiconductor” duo of Ruth Jarman and Joe Gerhardt, in collaboration with Mónica Bello, curator and head of Arts at CERN. Using kaleidoscopic images of slowed-down particle collisions, which trigger piano wires to create sound, the experience takes you on a magical voyage into the subatomic world of particles. The artwork is the annual commission of the Swiss watchmaking company Audemar Piguet and a collaboration with CERN. The exhibition is free entry and suitable for all audiences.

  4. Reduced lung dose and improved inspiration level reproducibility in visually guided DIBH compared to audio coached EIG radiotherapy for breast cancer patients

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Aznar, Marianne Camille; Pedersen, Anders Navrsted

    2013-01-01

    Patients with left-sided breast cancer with lymph node involvement have routinely been treated with enhanced inspiration gating (EIG) for a decade at our institution. In a transition from EIG to deep inspiration breath hold (DIBH) we compared the two techniques with focus on target coverage, dose...... to organs at risk and reproducibility of the inspiration level (IL)....

  5. Convergence of knowledge, technology and society beyond convergence of nano-bio-info-cognitive technologies

    CERN Document Server

    Bainbridge, William; Tonn, Bruce; Whitesides, George

    2013-01-01

    Convergence of knowledge and technology for the benefit of society (CKTS) is the core opportunity for progress in the 21st century, based on five principles: (1) the interdependence of all components of nature and society, (2) enhancement of creativity and innovation through evolutionary processes of convergence that combine existing principles, and divergence that generates new ones, (3) decision analysis for research and development based on system-logic deduction, (4) higher-level cross-domain languages to generate new solutions and support transfer of new knowledge, and (5) vision-inspired basic research embodied in grand challenges. Solutions are outlined for key societal challenges, including creating new industries and jobs, improving lifelong wellness and human potential, achieving personalized and integrated healthcare and education, and securing a sustainable quality of life for all. This report provides a ten-year “NBIC2” vision within a longer-term framework for converging technology and human...

  6. Music Inspired by Astronomy: A Resource Guide Organized by Topic

    Science.gov (United States)

    Fraknoi, Andrew

    2012-01-01

    This annotated resource guide presents 133 pieces of music inspired by astronomical ideas, discoveries, or history, organized in 22 subject categories. Both classical and popular music are included, but only when a clear connection to astronomy could be established. Depending on your musical tastes, you are likely to find some pieces resonating…

  7. On "being inspired" by Husserl's Phenomenology: reflections on Omery's exposition of phenomenology as a method of nursing research.

    Science.gov (United States)

    Porter, E J

    1998-09-01

    The impact of Omery's article, "Phenomenology: A Method for Nursing Research," on nursing science is appraised. In particular, the influence of her emphasis on "being inspired" was compared with that of her detailed reviews of psychological phenomenologic methods. The author's experience of "being inspired" by Husserl's book, Ideas, is described. The author also discusses the tapping of this resource during three phases of her development as a researcher: (1) appraising methods derived from Husserl's phenomenology; (2) spelling out an approach, with help; and (3) "making clearer while glancing-toward." Omery's proposed linkage between philosophic inspiration and methodologic development is highlighted as a challenge to nurse researchers.

  8. Three-Dimensional-Printing of Bio-Inspired Composites

    Science.gov (United States)

    Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L.; Qin, Zhao; Buehler, Markus J.

    2016-01-01

    Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields. PMID:26747791

  9. Three-Dimensional-Printing of Bio-Inspired Composites.

    Science.gov (United States)

    Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L; Qin, Zhao; Buehler, Markus J

    2016-02-01

    Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields.

  10. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  11. Nature-inspired multifunctional membrane fabricated by adaptive hybridization of PNIPAm and PPy

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2017-11-01

    Specialized plant organs, such as guard cells of stomata, consist of soft materials with deformability and electrochemical properties in response to various environmental stimuli. Stimulus-responsive hydrogels with electrochemical properties are good candidates for imitating such functionalities having great potential in a wide range of applications. However, conductive hydrogels are usually mechanically rigid and the fabrication technology of structured hydrogels has low reproducibility. Here, inspired by stimulus-responsive functionalities of plants, a thermo-responsive multifunctional hybrid membrane (HM) is synthesized through the in situ hybridization of conductive poly(pyrrole)(PPy) on a photopolymerized poly(N-isopropylacrylamide)(PNIPAm) membrane. The various properties of the HM are investigated to characterize its multiple functions. In terms of morphology, the HM can be easily fabricated into various structures, and exhibits thermo-responsive deformability. In terms of functionality, it exhibits various electrical and charge responses to thermal stimuli. This simple and efficient fabrication method can be used as a promising platform for fabricating a variety of functional devices, such as actuators, biosensors, and filtration membranes. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2017R1A2B3005415).

  12. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    Science.gov (United States)

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. © 2011 American Physical Society

  13. Partnering with the Pinoleville Pomo Nation: Co-Design Methodology Case Study for Creating Sustainable, Culturally Inspired Renewable Energy Systems and Infrastructure

    Directory of Open Access Journals (Sweden)

    Alice Agogino

    2012-04-01

    Full Text Available This paper describes the co-design methodology created by the authors to partner with communities that have historical trauma associated with working with outsiders on projects that involved substantial use of engineering and science—renewable energy technologies, for example—that have not integrated their value system or has been historically denied to them. As a case study, we present the lessons learned from a partnership with the Pinoleville Pomo Nation (PPN of Ukiah, CA and UC Berkeley’s Community Assessment of Renewable Energy and Sustainability (CARES team to develop sustainable housing that utilizes sustainability best practices and renewable energy technology as well as reflect the long-standing culture and traditions of the PPN. We also present the Pomo-inspired housing design created by this partnership and illustrate how Native American nations can partner with universities and other academic organizations to utilize engineering expertise to co-design solutions that address the needs of the tribes.

  14. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  15. Wood as inspiration for new stimuli-responsive structures and materials

    Science.gov (United States)

    Joseph E. Jakes; Nayomi Plaza-Rodriguez; Samuel L. Zelinka; Donald S. Stone; Sophie-Charlotte Gleber; Stefan Vogt

    2014-01-01

    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities....

  16. Earth Science community support in the EGI-Inspire Project

    Science.gov (United States)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  17. Augmented Reality as a Technology Bringing Interactivity to Print Products

    DEFF Research Database (Denmark)

    Seisto, Anu; Aikala, Maiju; Vatrapu, Ravi

    2012-01-01

    Augmented Reality (AR) is the technique of superimposing virtual objects in the user's view of the real world, providing a novel visualization technology for a wide range of applications. Hence, it is a user interface technology that combines the perception of real environments with digital...... owner, Sinebrychoff) and technology experts (Undo and VTT). The whole process was carried out in close contact with the readers and their viewpoints were taken into account in several parts of the design process. Based on the results, more than the easiness of the application, the readers...... of the magazine studied valued the inspiration and connectedness that the use of the application offered. The overall rating of the application was positive and encouraging for the future use of the technology. It may also be concluded that the use of AR applications in conjunction with print products makes...

  18. Inference on inspiral signals using LISA MLDC data

    International Nuclear Information System (INIS)

    Roever, Christian; Stroeer, Alexander; Bloomer, Ed; Christensen, Nelson; Clark, James; Hendry, Martin; Messenger, Chris; Meyer, Renate; Pitkin, Matt; Toher, Jennifer; Umstaetter, Richard; Vecchio, Alberto; Veitch, John; Woan, Graham

    2007-01-01

    In this paper, we describe a Bayesian inference framework for the analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) algorithm to facilitate exploration and integration of the posterior distribution over the nine-dimensional parameter space. Here, we present intermediate results showing how, using this method, information about the nine parameters can be extracted from the data

  19. Dry friction of microstructured polymer surfaces inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-07-01

    Full Text Available The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae. Frictional properties of snake-inspired microstructured polymer surface (SIMPS made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i smooth ones, (ii rough ones, and (iii ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1 molecular interaction depending on real contact area and (2 the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  20. Dry friction of microstructured polymer surfaces inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  1. A Robot-Soccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Guarnizo, Jose Guillermo; Mellado, Martin

    2017-01-01

    of the energy storage systems, may ensure proper and reliable operation of the microgrid. This paper proposes a structured architecture based on tactics, roles and behaviors for a coordinated operation of islanded microgrids. The architecture is inspired on a robot soccer strategy with global perception...

  2. Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Covington, J A; Billson, D R; Hutchins, D A; Bowen, J

    2012-01-01

    The concept of biomimetics and bioinspiration has been used to enhance the function of materials and devices in fields ranging from healthcare to renewable energy. By developing advanced design and manufacturing processes, researchers are rapidly accelerating their ability to mimic natural systems. In this paper we show how micro-actuated forceps inspired by echinoderm pedicellarie have been produced using the rapid manufacturing technology of micro-stereolithography. The manufactured monolithic devices are composed of sets of jaws on the surface of thin polymer resin membranes, which serve as musculature for the jaws. The membranes are suspended above a pneumatic chamber with the jaws opened and closed through pneumatic pressure changes exerted by a simple syringe. The forceps can be used for tasks such as grasping of microparticles. Furthermore, when an object is placed in the centre of the membrane, the membrane flexes and the jaws of the device close and grasp the object in a responsive manner. When uncured liquid photopolymer is used to actuate the devices hydraulically instead of pneumatically, the devices exhibit self-healing behaviour, sealing the damaged regions and maintaining hydraulic integrity. The manufactured devices present exciting possibilities in fields such as micromanipulation and micro-robotics for healthcare. (communication)

  3. The neurotechnological revolution: unlocking the brain's secrets to develop innovative technologies as well as treatments for neurological diseases.

    Science.gov (United States)

    Banks, Jim

    2015-01-01

    The brain contains all that makes us human, but its complexity is the source of both inspiration and frailty. Aging population is increasingly in need of effective care and therapies for brain diseases, including stroke, Parkinson's disease and Alzheimer's disease. The world's scientific community working hard to unravel the secrets of the brain's computing power and to devise technologies that can heal it when it fails and restore critical functions to patients with neurological conditions. Neurotechnology is the emerging field that brings together the development of technologies to study the brain and devices that improve and repair brain function. What is certain is the momentum behind neurotechnological research is building, and whether through implants, BCIs, or innovative computational systems inspired by the human brain, more light will be shed on our most complex and most precious organ, which will no doubt lead to effective treatment for many neurological conditions.

  4. Impact of changes in inspired oxygen and carbon dioxide on respiratory instability in the lamb.

    Science.gov (United States)

    Wilkinson, Malcolm H; Sia, Kah-Ling; Skuza, Elizabeth M; Brodecky, Vojta; Berger, Philip J

    2005-02-01

    We examined the effect of hypoxia and hypercapnia administered during deliberately induced periodic breathing (PB) in seven lambs following posthyperventilation apnea. Based on our theoretical analysis, the sensitivity or loop gain (LG) of the respiratory control system of the lamb is directly proportional to the difference between alveolar PO2 and inspired PO2. This analysis indicates that during PB, when by necessity LG is >1, replacement of the inspired gas with one of reduced PO2 lowers LG; if we made inspired PO2 approximate alveolar PO2, we predict that LG would be approximately zero and breathing would promptly stabilize. In six lambs, we switched the inspired gas from an inspiratory oxygen fraction of 0.4 to one of 0.12 during an epoch of PB; PB was immediately suppressed, supporting the view that the peripheral chemoreceptors play a pivotal role in the genesis and control of unstable breathing in the lamb. In the six lambs in which we administered hypercapnic gas during PB, breathing instability was also suppressed, but only after a considerable time lag, indicating the CO2 effect is likely to have been mediated through the central chemoreceptors. When we simulated both interventions in a published model of the adult respiratory controller, PB was immediately suppressed by CO2 inhalation and exacerbated by inhalation of hypoxic gas. These fundamentally different responses in lambs and adult humans demonstrate that PB has differing underlying mechanisms in the two species.

  5. Leadership in Post-Compulsory Education: Inspiring Leaders of the Future

    Science.gov (United States)

    Jameson, Jill

    2005-01-01

    Based around case studies of current leaders in post-compulsory education, this book explores a number of leadership models and styles in order to provide inspiration and guidance for the next wave of potential leaders. After an introduction, the book is divided into four parts and 18 chapters. Part One contains: (1) Leadership in Post-Compulsory…

  6. Soft Robotics: Biological Inspiration, State of the Art, and Future Research

    Directory of Open Access Journals (Sweden)

    Deepak Trivedi

    2008-01-01

    Full Text Available Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats (e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

  7. Inspiring Collaboration: The Legacy of Theo Colborn's Transdisciplinary Research on Fracking.

    Science.gov (United States)

    Wylie, Sara; Schultz, Kim; Thomas, Deborah; Kassotis, Chris; Nagel, Susan

    2016-09-13

    This article describes Dr Theo Colborn's legacy of inspiring complementary and synergistic environmental health research and advocacy. Colborn, a founder of endocrine disruption research, also stimulated study of hydraulic fracturing (fracking). In 2014, the United States led the world in oil and gas production, with fifteen million Americans living within one mile of an oil or gas well. Colborn pioneered efforts to understand and control the impacts of this sea change in energy production. In 2005, her research organization The Endocrine Disruption Exchange (TEDX) developed a database of chemicals used in natural gas extraction and their health effects. This database stimulated novel scientific and social scientific research and informed advocacy by (1) connecting communities' diverse health impacts to chemicals used in natural gas development, (2) inspiring social science research on open-source software and hardware for citizen science, and (3) posing new scientific questions about the endocrine-disrupting properties of fracking chemicals. © The Author(s) 2016.

  8. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    Science.gov (United States)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  9. On community as a governmental technology

    DEFF Research Database (Denmark)

    Olsson, Ulf; Petersson, Kenneth; Krejsler, John B.

    2014-01-01

    The purpose of this study is to investigate the reinstatement of community as a historical practice and governmental technology in contemporary political discourses of European Union (EU), and more specifically in the context of higher education including the education and training of teachers...... in the Nordic countries. Our focus is not educational policy as a base for ways of thinking about and organising education in Europe, but as a base for ways of thinking about and constructing Europe as a community (Nóvoa, 2004; Larner & Walters, 2004). To do this we use a genealogical method inspired by Michael...

  10. Biologically inspired emotion recognition from speech

    Directory of Open Access Journals (Sweden)

    Buscicchio Cosimo

    2011-01-01

    Full Text Available Abstract Emotion recognition has become a fundamental task in human-computer interaction systems. In this article, we propose an emotion recognition approach based on biologically inspired methods. Specifically, emotion classification is performed using a long short-term memory (LSTM recurrent neural network which is able to recognize long-range dependencies between successive temporal patterns. We propose to represent data using features derived from two different models: mel-frequency cepstral coefficients (MFCC and the Lyon cochlear model. In the experimental phase, results obtained from the LSTM network and the two different feature sets are compared, showing that features derived from the Lyon cochlear model give better recognition results in comparison with those obtained with the traditional MFCC representation.

  11. Molecular machines with bio-inspired mechanisms.

    Science.gov (United States)

    Zhang, Liang; Marcos, Vanesa; Leigh, David A

    2018-02-26

    The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines-which by and large function as switches-and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

  12. Technological Health Intervention in Population Aging to Assist People to Work Smarter not Harder: Qualitative Study

    OpenAIRE

    Chen, Sonia Chien-I

    2018-01-01

    Background Technology-based health care has been promoted as an effective tool to enable clinicians to work smarter. However, some health stakeholders believe technology will compel users to work harder by creating extra work. Objective The objective of this study was to investigate how and why electronic health (eHealth) has been applied in Taiwan and to suggest implications that may inspire other countries facing similar challenges. Methods A qualitative methodology was adopted to obtain in...

  13. Surface singularities in Eddington-inspired Born-Infeld gravity.

    Science.gov (United States)

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

  14. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials

    Science.gov (United States)

    Liu, Kesong; Du, Jiexing; Wu, Juntao; Jiang, Lei

    2012-01-01

    Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a ``mechanical hand'' to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.

  15. Making technology familiar: orthodox Jews and infertility support, advice, and inspiration.

    Science.gov (United States)

    Kahn, Susan Martha

    2006-12-01

    This paper examines how orthodox Jews use traditional strategies and new media simultaneously to cope with infertility in the age of new reproductive technologies. Not only have they used the Internet to establish support, information, and educational networks, but also they have created frameworks for unique professional collaborations among rabbis, doctors, and clinic personnel in order to ensure that their fertility treatments are conducted with strict attention to Jewish legal concerns, particularly with regard to incest, adultery, and traditional practices regarding bodily emissions. Throughout these processes, they have innovated a hybrid language for describing and explaining infertility treatments that blends Hebrew prayers, Yiddish aphorisms, English slang, Gematria (numerology), and biomedical terminology. By using idiomatic language and folk practice, orthodox Jews construct a unique terrain that shapes and makes familiar their experience and understanding of fertility treatment. Biomedicine in this context is understood as a set of tools and strategies that can be readily appropriated and harnessed to a particular set of individual and collective goals.

  16. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface

    Energy Technology Data Exchange (ETDEWEB)

    Raie, Diana S., E-mail: raiediana@yahoo.com [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); Mhatre, Eisha [Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena (Germany); Thiele, Matthias [Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena (Germany); Labena, A. [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); El-Ghannam, Gamal [National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza (Egypt); Farahat, Laila A. [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); Youssef, Tareq [National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza (Egypt); Fritzsche, Wolfgang [Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena (Germany); Kovács, Ákos T., E-mail: akos-tibor.kovacs@uni-jena.de [Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena (Germany)

    2017-01-01

    The aim of this study was directed to reveal the repulsive effect of coated glass slides by quercetin and its bio-inspired titanium oxide and tungsten oxide nanoparticles on physical surface attachment of Bacillus subtilis as an ab-initio step of biofilm formation. Nanoparticles were successfully synthesized using sol–gel and acid precipitation methods for titanium oxide and tungsten oxide, respectively (in the absence or presence of quercetin). The anti-adhesive impact of the coated-slides was tested through the physical attachment of B. subtilis after 24 h using Confocal Laser Scanning Microscopy (CLSM). Here, quercetin was presented as a bio-route for the synthesis of tungsten mixed oxides nano-plates at room temperature. In addition, quercetin had an impact on zeta potential and adsorption capacity of both bio-inspired amorphous titanium oxide and tungsten oxide nano-plates. Interestingly, our experiments indicated a contrary effect of quercetin as an anti-adhesive agent than previously reported. However, its bio-inspired metal oxide proved their repulsive efficiency. In addition, quercetin-mediated nano-tungsten and quercetin-mediated amorphous titanium showed anti-adhesive activity against B. subtilis biofilm. - Highlights: • Novel quercetin-mediated nanoparticles were tested for anti-adhesion against attachment of cells forming biofilms. • Quercetin showed a low-grade of protection level against bacterial attachment. • Bio-inspired nano-anatase showed a lower efficiency than amorphous titanium. • Thermally treated bio-inspired nano-tungsten gets an improved anti-adhesive activity.

  17. Deployment Methods for an Origami-Inspired Rigid-Foldable Array

    Science.gov (United States)

    Zirbel, Shannon A.; Trease, Brian P.; Magleby, Spencer P.; Howell, Larry L.

    2014-01-01

    The purpose of this work is to evaluate several deployment methods for an origami-inspired solar array at two size scales: 25-meter array and CubeSat array. The array enables rigid panel deployment and introduces new concepts for actuating CubeSat deployables. The design for the array was inspired by the origami flasher model (Lang, 1997; Shafer, 2001). Figure 1 shows the array prototyped from Garolite and Kapton film at the CubeSat scale. Prior work demonstrated that rigid panels like solar cells could successfully be folded into the final stowed configuration without requiring the panels to flex (Zirbel, Lang, Thomson, & al., 2013). The design of the array is novel and enables efficient use of space. The array can be wrapped around the central bus of the spacecraft in the case of the large array, or can accommodate storage of a small instrument payload in the case of the CubeSat array. The radial symmetry of this array around the spacecraft is ideally suited for spacecraft that need to spin. This work focuses on several actuation methods for a one-time deployment of the array. The array is launched in its stowed configuration and it will be deployed when it is in space. Concepts for both passive and active actuation were considered.

  18. Cognitive wireless networks using the CSS technology

    CERN Document Server

    Li, Meiling; Pan, Jeng-Shyang

    2016-01-01

    The aim of this book is to provide some useful methods to improve the spectrum sensing performance in a systematic way, and point out an effective method for the application of cognitive radio technology in wireless communications. The book gives a state-of-the-art survey and proposes some new cooperative spectrum sensing (CSS) methods attempting to achieve better performance. For each CSS, the main idea and corresponding algorithm design are elaborated in detail. This book covers the fundamental concepts and the core technologies of CSS, especially its latest developments. Each chapter is presented in a self-sufficient and independent way so that the reader can select the chapters interesting to them. The methodologies are described in detail so that the readers can repeat the corresponding experiments easily. It will be a useful book for researchers helping them to understand the classifications of CSS, inspiring new ideas about the novel CSS technology for CR, and learning new ideas from the current status...

  19. Search of wormholes in different dimensional non-commutative inspired space-times with Lorentzian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2014-12-01

    In this paper we ask whether the wormhole solutions exist in different dimensional noncommutativity-inspired spacetimes. It is well known that the noncommutativity of the space is an outcome of string theory and it replaced the usual point-like object by a smeared object. Here we have chosen the Lorentzian distribution as the density function in the noncommutativity-inspired spacetime. We have observed that the wormhole solutions exist only in four and five dimensions; however, in higher than five dimensions no wormhole exists. For five dimensional spacetime, we get a wormhole for a restricted region. In the usual four dimensional spacetime, we get a stable wormhole which is asymptotically flat. (orig.)

  20. Area detectors technology and optics-Relations to nature

    International Nuclear Information System (INIS)

    PeIka, Jerzy B.

    2005-01-01

    Relations between natural vision and the artificial 2D imaging systems are discussed. A variety of animal vision as well as its main functional parts are briefly reviewed and compared with the artificial vision equivalents. An increasing advancement observed in human constructions of imaging devices due to recent rapid progress in science and technology is shown to resemble some sophisticated natural solutions formed by evolution in biological systems. The issues of the similarities and differences between the two kinds of vision are discussed. Main focus is put on optical systems forming the image, with special examples of the imaging systems designed to work in the region of the X-ray radiation. Examples of bio-inspired technological vision devices are presented

  1. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness

    Science.gov (United States)

    Zhai, Zirui; Wang, Yong; Jiang, Hanqing

    2018-03-01

    Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.

  2. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity

    International Nuclear Information System (INIS)

    Liang, Jianhe; Song, Ran; Huang, Qiaoling; Yang, Yun; Lin, Longxiang; Zhang, Yanmei; Jiang, Pinliang; Duan, Hongping; Dong, Xiang; Lin, Changjian

    2015-01-01

    Highlights: • The bio-inspired structure mimicked mulit-level structures of natural bone. • Ordered cell-sized microhole arrays were employed as microscale structure. • High surface roughness and superhydrophilicity were achieved on the titanium surface. • The bio-inspired titanium surface showed superior ability of biomineralization. • Cell responses were enhanced on the bio-inspired micro/nano-texutred surface. - Abstract: Biomimetic surface design of medical implants is vitally crucial to improve cellular responses and the integration of tissue onto materials. In this study, a novel hierarchical cell-sized microhole array combined with a nano-network structure was fabricated on a medical titanium surface to mimic multi-level bone structure. A three-step procedure was developed as follows: 1) electrochemical self-organization of etching on titanium substrate to create highly ordered cell-sized microhole arrays, 2) suitable dual acid etching to increase the roughness of the microholes, and then 3) electrochemical anodization in a NaOH electrolyte to construct a nano-network porous titania layer on the above micro-roughened surface. The bio-inspired micro/nano-textured structure presented the enhanced wettability and superhydrophilicity. The ability of in vitro biomineralization and corrosion resistance of the bio-inspired micro/nano-textured structure were enhanced after annealing treatment. More importantly, the bio-inspired micro/nano-textured structure on the titanium surface possessed a favourable interfacial environment to enhance attachment and proliferation of human osteoblast-like MG63 cells. All of the results demonstrated that such a bio-inspired surface of micro/nano-textured porous TiO 2 is a most promising candidate for the next generation of titanium implants

  3. Why RCN Nurse of the Year is such an inspiring winner.

    Science.gov (United States)

    2017-05-10

    Remember the name: Melanie Davies, RCN Nurse of the Year 2017 and a truly extraordinary woman. She has transformed care for people with learning disabilities on her ward, driven through changes across her hospital and health board in south Wales, and inspired others to follow suit across the country.

  4. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies.

    Science.gov (United States)

    Sadeghi, Ali; Mondini, Alessio; Mazzolai, Barbara

    2017-09-01

    In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm.

  5. Transforming Research in Oceanography through Education, Ethnography and Rapidly Evolving Technologies: An NSF-INSPIRE project.

    Science.gov (United States)

    German, C. R.; Croff Bell, K. L.; Pallant, A.; Mirmalek, Z.; Jasanoff, S.; Rajan, K.

    2014-12-01

    This paper will discuss a new NSF-INSPIRE project that brings together research conducted in the fields of Ocean Sciences, Education & Human Resources and Computer and Information Science & Engineering. Specifically, our objective is to investigate new methods by which telepresence can be used to conduct cutting edge research and provide authentic educational experiences to undergraduate students, remotely. We choose to conduct this research in an Oceanographic context for two reasons: first with the move toward smaller research ships in the national Oceanographic research fleet, we anticipate that access to berth space at sea will continue to be at a premium. Any component of traditional oceanographic research that can be ported to shore without loss of effectiveness would be of immediate benefit to the Ocean Sciences. Equally, however, we argue that any improvements to work place and/or education practices that we can identify while delivering research and education from the bottom of the deep ocean should be readily mappable to any other scientific or engineering activities that seek to make use of telepresence in less extreme remote environments. Work on our TREET project, to-date, has included recruitment of 6 early career scientists keen to take advantage of the research opportunity provided, together with two senior science mentors with experience using Telepresence and a cohort of undergraduate students at three of the ECS partner Universities, spanning 4 time zones across the continental US. Following a 12-week synchronous on-line seminar series taught in Spring-Summer 2014, the entire team joined together at the Inner Space Center in Sept-Oct 2014 to participate, virtually, in a cruise of research and exploration to the Kick'Em Jenny underwater volcano and adjacent cold seep sites, conducted by the Ocean Exploration Trust's ROV Hercules aboard the Exploration Vessel Nautilus. Our presentation will include preliminary results from that cruise.

  6. Swarm intelligence inspired shills and the evolution of cooperation

    OpenAIRE

    Duan, Haibin; Sun, Changhao

    2014-01-01

    Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of birds, we explore here the dependence of the evolution of cooperation on s...

  7. Clinically-inspired automatic classification of ovarian carcinoma subtypes

    Directory of Open Access Journals (Sweden)

    Aicha BenTaieb

    2016-01-01

    Full Text Available Context: It has been shown that ovarian carcinoma subtypes are distinct pathologic entities with differing prognostic and therapeutic implications. Histotyping by pathologists has good reproducibility, but occasional cases are challenging and require immunohistochemistry and subspecialty consultation. Motivated by the need for more accurate and reproducible diagnoses and to facilitate pathologists′ workflow, we propose an automatic framework for ovarian carcinoma classification. Materials and Methods: Our method is inspired by pathologists′ workflow. We analyse imaged tissues at two magnification levels and extract clinically-inspired color, texture, and segmentation-based shape descriptors using image-processing methods. We propose a carefully designed machine learning technique composed of four modules: A dissimilarity matrix, dimensionality reduction, feature selection and a support vector machine classifier to separate the five ovarian carcinoma subtypes using the extracted features. Results: This paper presents the details of our implementation and its validation on a clinically derived dataset of eighty high-resolution histopathology images. The proposed system achieved a multiclass classification accuracy of 95.0% when classifying unseen tissues. Assessment of the classifier′s confusion (confusion matrix between the five different ovarian carcinoma subtypes agrees with clinician′s confusion and reflects the difficulty in diagnosing endometrioid and serous carcinomas. Conclusions: Our results from this first study highlight the difficulty of ovarian carcinoma diagnosis which originate from the intrinsic class-imbalance observed among subtypes and suggest that the automatic analysis of ovarian carcinoma subtypes could be valuable to clinician′s diagnostic procedure by providing a second opinion.

  8. Assistive Free-Flyers with Gecko-Inspired Adhesive Appendages for Automated Logistics in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Gecko-inspired adhesives provide a new capability for assistive free fliers (AFF) in space. In comparison with conventional grippers, they make it possible to attach...

  9. Cognitive and Motivational Factors that Inspire Hispanic Female Students to Pursue STEM-Related Academic Programs that Lead to Careers in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Morel-Baker, Sonaliz

    Hispanics, and women in particular, continue to be underrepresented in the fields of science, technology, engineering, and mathematics (STEM). The purpose of this study was to analyze cognitive and motivational factors that inspired Hispanic female college students to major in STEM programs and aspire to academic success. This mixed methods study was conducted using both quantitative and qualitative data collection and analysis techniques in a sequential phase. Quantitative data were collected through the use of the 80-item Honey and Mumford Learning Styles Questionnaire, which was focused on the students' learning styles and how they impact Hispanic female students upon engaging in a STEM-related curriculum. Qualitative data were collected during interviews focusing on factors that led students to select, participate in, and make a commitment to some aspect of a STEM-related program. The questions that were asked during the interviews were intended to examine whether the existence of role models and STEM initiatives motivate Hispanic female students to major in STEM-related academic programs and aspire to academic success. The participants in this study were undergraduate Hispanic female students majoring in STEM-related academic programs and at a four-year university. The results indicate that the majority of the participants (88%) identified as reflectors, 4% as activists, 4% as theorists, and 4% as pragmatists. The results from the interviews suggested that the existence of role models (family members, educators, or STEM professionals) was a factor that motivated Hispanic females to major in STEM-related subjects and that exposure to STEM initiatives during K-12 education motivated Hispanic females to pursue a career in STEM.

  10. Searching for gravitational waves from the inspiral of precessing binary systems: New hierarchical scheme using 'spiky' templates

    International Nuclear Information System (INIS)

    Grandclement, Philippe; Kalogera, Vassiliki

    2003-01-01

    In a recent investigation of the effects of precession on the anticipated detection of gravitational-wave inspiral signals from compact object binaries with moderate total masses · , we found that (i) if precession is ignored, the inspiral detection rate can decrease by almost a factor of 10, and (ii) previously proposed 'mimic' templates cannot improve the detection rate significantly (by more than a factor of 2). In this paper we propose a new family of templates that can improve the detection rate by a factor of 5 or 6 in cases where precession is most important. Our proposed method for these new 'mimic' templates involves a hierarchical scheme of efficient, two-parameter template searches that can account for a sequence of spikes that appear in the residual inspiral phase, after one corrects for any oscillatory modification in the phase. We present our results for two cases of compact object masses (10 and 1.4 M · and 7 and 3 M · ) as a function of spin properties. Although further work is needed to fully assess the computational efficiency of this newly proposed template family, we conclude that these 'spiky templates' are good candidates for a family of precession templates used in realistic searches that can improve detection rates of inspiral events

  11. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  12. Super-light and pearl-chain technology for support of ancient structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Schmidt, Jacob Wittrup; Goltermann, Per

    2014-01-01

    optimal and often curved paths of strong concrete assembled from smaller segments by prestressing wires, so that expensive curved moulds and supports can be avoided. Pearl-chains can provide a resistance to impact and earthquake of ancient structures. High-strength concrete and prestressed carbon fibre......The patented super-light technology is inspired by ancient Roman concrete structures with strong concrete placed, where the engineer would like the forces to be, and light concrete fills out the shape stabilizing the strong and protecting it. Pearl-chain technology is invented in order to create...... reinforcement may be applied, because the new technology solves the main problems for that, since the light aggregate concrete provides a fire protection needed for both materials and provides a stabilization of the slender cores in compression. The paper explains more about the new technology...

  13. Training program for radiologic technologists for performing chest X-rays at inspiration in uncooperative children

    International Nuclear Information System (INIS)

    Langen, Heinz Jakob; Muras, S.; Kohlhauser-Vollmuth, C.; Stenzel, M.; Beer, M.

    2009-01-01

    A computer program was created to train technologists to perform chest X-rays in crying infants at maximum inspiration. Videos of 4 children were used. Using a computer program, the moment of deepest inspiration was determined in the video in the single frame view. During the normal running video, 14 technologists (3 with significant experience, 3 with little experience and 8 with very little experience in pediatric radiography) simulated a chest radiograph by pushing a button. The computer program stopped the video and the period of time to the optimal moment for a chest x-ray was calculated. Every technologist simulated 10 chest X-rays in each of the 4 video clips. The technologists then trained themselves to perform chest X-rays at optimal inspiration like playing a computer game. After training, the test was repeated. Changes were evaluated by t-test for unpaired samples (level of significance p < 0.05). Although the differences improved in all children, minimal deviation from the optimal moment for taking an X-ray at inspiration occurred in the periodically crying child (0.21 sec before and 0.13 sec after training). In a non-periodically crying infant, the largest differences were shown. The values improved significantly from 0.29 sec to 0.22 sec. The group with substantial experience in pediatric radiology improved significantly from 0.22 sec to 0.15 sec. The group with very little experience in pediatric radiology showed worse results (improvement from 0.29 sec to 0.21 sec). (orig.)

  14. Can Mobile Technology Enable Knowledge Communication in a Learning Environment?

    DEFF Research Database (Denmark)

    Kampf, Constance; Islas Sedano, Carolina

    2008-01-01

    this mobile phone game to help next years' students navigated the CampusNet system in order to study for the exam.  The CampusNet system can be seen as a knowledge management technology situated within the social context of the Project Management course, and so the examples offered, in effect, demonstrate...... To be effective, knowledge management systems need to encompass both social processes and technical components (McDermott 2000),   On the other hand, knowledge communication as a concept has emerged not from the inspiration of technology, but partly from the social-technical challenge of dealing...... with technology in knowledge management systems.  So, is knowledge communication a process that can be technologically enabled?  In this presentation, we explore the possibilities of socio-technical interaction for knowledge communication through the use of a mobile phone game as a knowledge communication tool...

  15. Tracking of Fluid-Advected Odor Plumes: Strategies Inspired by Insect Orientation to Pheromone

    National Research Council Canada - National Science Library

    Li, Wei

    2002-01-01

    .... These strategies are inspired by the maneuvers of moths flying upwind along a pheromone plume. Although moth maneuvers are well documented, the mechanisms underlying sensory perception and navigation are not fully understood...

  16. INSPIRE-HEP Ergys Dona Summer Student Report 2015

    CERN Document Server

    Dona, Ergys

    2015-01-01

    INSPIRE-HEP consists of millions of bibliographic records, while new records are continuously being submitted all the time. For indexing and organising reasons, it is very important that these records contain correct and accurate metadata. The maintenance of such a large number of records is error prone, time consuming and generally difficult if performed manually. This document describes the work carried out while developing parts of the Invenio-Checker module, a piece of software that tries to automate the tasks mentioned above, as well as the abilities obtained during the development.

  17. Barriers and drivers in creating greener plastic toys: A technology management methodology

    DEFF Research Database (Denmark)

    Falk Jensen, Maibritt; Liltorp, Helle; Tambo, Torben

    2012-01-01

    , and environmental concerns all meet at designer’s desk. Idealistic eco-oriented frameworks such as cradle-to-cradle (C2C) and design-for-disassembly (D4D) suggest inspiration for technical developers and material specialists. This study employs a mixed qualitative and quantitative method to analyze the adequacy...... to potential shortcomings in reverse logistics, a tendency to down-cycle valuable products more than necessary, and a risk of loss of control of reclaimed products in the downstream supply chain. The study suggests an eco-design-inspired framework for improving the marketers understanding and planning...... of greening of the product portfolio based on management of the individual technologies of creative design, mold design, polymers, and supply chain. The study is conducted within plastic toys, but results are applicable to a wide range of durable consumer products....

  18. Performing Chest X-Rays at Inspiration in Uncooperative Children: The Effect of Exercises with a Training Program for Radiology Technicians

    International Nuclear Information System (INIS)

    Langen, H.J.; Sengenberger, C.; Bielmeier, J.; Jocher, R.; Kohlhauser-Vollmuth, Ch.; Eschmann, M.

    2014-01-01

    It is difficult to acquire a chest X-ray of a crying infant at maximum inspiration. A computer program was developed for technician training. Method. Video clips of 3 babies were used and the moment of deepest inspiration was determined in the single-frame view. 12 technicians simulated chest radiographs at normal video speed by pushing a button. The computer program stopped the video and calculated the period of time to the optimal instant for a chest X-ray. Demonstration software can be tested at website online. Every technician simulated 10 chest X-rays for each of the 3 video clips. The technicians then spent 40 minutes practicing performing chest X-rays at optimal inspiration. The test was repeated after 5, 20, and 40 minutes of practice. Results. 6 participants showed a significant improvement after exercises (collective 1). Deviation from the optimal instant for taking an X-ray at inspiration decreased from 0.39 to 0.22 s after 40 min of practice. 6 technicians showed no significant improvement (collective 2). Deviation decreased from a low starting value of 0.25 s to 0.21 s. Conclusion. The tested computer program improves the ability of radiology technicians to take a chest X-ray at optimal inspiration in a crying child

  19. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  20. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide