WorldWideScience

Sample records for technology introductory materials

  1. Recent advances in membrane materials: introductory remarks

    International Nuclear Information System (INIS)

    Ayral, A.

    2007-01-01

    A lot of separation operations are currently performed using membranes both for production processes and for environmental applications. The main part of the used membranes are organic membranes but for specific conditions of utilization inorganic or organic-inorganic membranes have been also developed. Among the applications for gas separation, some examples are the removal of hydrogen from ammonia synthesis gas, the removal of carbon dioxide from natural gas and air separation. Environmental considerations like massive scale air and water pollution and also the gradual rarefaction of fossil energy resources gave rise to the concept of sustainable growth and to related strategies like process intensification, the reuse of water and solvents at their point of use, hydrogen as energy vector (requiring H 2 production...)..Membranes will have a key part to play in the new technologies associated with these strategies. Intensive efforts of research and development are now engaged everywhere in the world to develop high performance membranes for those emerging applications. Membrane science is a multidisciplinary scientific and technological domain covering mainly materials science, physical chemistry, chemical engineering, modeling. This issue (Annales de chimie - Science des materiaux, 2007 Vol.32 N.2) provides a wide review of recent advances in membrane materials. It is based on the contributions of experts in different fields of membrane materials (organic, organic-inorganic hybrid, composite, carbon, metallic, ceramic; dense, porous, surface modified materials). (O.M.)

  2. Tracking Success in Large Introductory Classes using Technology

    Science.gov (United States)

    Robertson, Thomas H.

    2011-01-01

    A common problem frequently encountered in large introductory classes is the anonymity experienced by students. An effort is underway at Ball State University to explore the impact of technology on reducing this anonymity and improving student performance and success. In preparation for this study, performance and success measures for students in a previous class have been examined to provide background for construction of a model for formal testing and a control group for comparison of future results. Student performance measures obtained early in the course and final course grades were examined to identify potential early warning indicators that might be used to plan interventions much earlier than the traditional midterm course reports used to alert freshmen at academic risk. Class participation scores were based on data obtained with a personal response system (i>clicker). The scores were scaled to reflect about 80% comprehension and 20% attendance. Homework scores were obtained using the LON-CAPA Course Management System and instructional materials created by the author. Substantial linear correlations exist between 1) Exam 1 Scores after Four Weeks and 2) Raw Class Participation Scores for the First Six Weeks and the Final Course Score. A more modest linear correlation was found between 3) Homework Scores for First Six Weeks and Final Course Score. Of these three measures, only Class Participation Scores identified all students who ultimately received course grades lower than C. Several students scored in the danger zone according to Homework and Class Participation Scores but earned course grades of C or better. It appears that an early warning plan based on Class Participation Scores would permit effective identification of at-risk students early in the course.

  3. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  4. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  5. Use of Multimedia in an Introductory College Biology Course to Improve Comprehension of Complex Material

    Science.gov (United States)

    Rhodes, Ashley; Rozell, Tim; Shroyer, Gail

    2014-01-01

    Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…

  6. Materials and technology

    International Nuclear Information System (INIS)

    Gockel, E.; Simon, J.

    1998-01-01

    New materials and the processes for their economical fabrication and use are the factors which drive innovation in totally different fields of technology, such as energy engineering, transport, and information. But they also open up new fields of technology such as micro systems or medicine technology. Five out of a total of twelve articles are separately listed in the ENERGY database [de

  7. Software-Based Scoring and Sound Design: An Introductory Guide for Music Technology Instruction

    Science.gov (United States)

    Walzer, Daniel A.

    2016-01-01

    This article explores the creative function of virtual instruments, sequencers, loops, and software-based synthesizers to introduce basic scoring and sound design concepts for visual media in an introductory music technology course. Using digital audio workstations with user-focused and configurable options, novice composers can hone a broad range…

  8. Y-Notes; Introductory Sessions on Nuclear Technology

    International Nuclear Information System (INIS)

    2001-01-01

    This chapter is divided into next parts: What is 'Y-Notes ; Young generation opening session; Nuclear education and transfer of know-how; Nuclear technology; Other applications of nuclear technology; Nuclear programs and technical cooperation; Political aspects; Environment and safety; Communication and public perception; Economics; Fuel cycle challenges; Video

  9. Space and materiality in early childhood pedagogy – introductory notes

    OpenAIRE

    Løkken, Gunvor; Moser, Thomas

    2012-01-01

    This issue of Education Inquiry includes a thematic section with five articles about different aspects of the physical environment in Norwegian early childhood education institutions (kindergartens). The contributions represent five out of nine sub-projects in a research project entitled Kindergarten space – materiality, learning and meaning making – The importance of space for kindergarten’s pedagogical activities conducted at Vestfold University College (VUC) funded by the Norwegian Researc...

  10. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  11. Learning Efficacy and Cost-Effectiveness of Print versus e-Book Instructional Material in an Introductory Financial Accounting Course

    Science.gov (United States)

    Annand, David

    2008-01-01

    This article describes the concurrent development of paper-based and e-book versions of a textbook and related instructional material used in an introductory-level financial accounting course. Break-even analysis is used to compare costs of the two media. A study conducted with 109 students is also used to evaluate the two media with respect to…

  12. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  13. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  14. Mechanics for materials and technologies

    CERN Document Server

    Goldstein, Robert; Murashkin, Evgenii

    2017-01-01

    This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.

  15. Materials and technology in sport

    Science.gov (United States)

    Caine, Mike; Blair, Kim; Vasquez, Mike

    2012-08-01

    An evolution from natural to highly engineered materials has drastically changed the way in which athletes train and compete. Thanks to challenging technological problems and unconventional commercialization pathways, universities can make a direct impact on the development of sporting goods.

  16. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  17. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  18. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    Science.gov (United States)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they

  19. Introductory speeches

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. This chapter consist of introductory commentary and 4 introductory speeches (video records): (1) Introductory speech of Vincent Pillar, Board chairman and director general of Slovak electric, Plc. (SE); (2) Introductory speech of Stefan Schmidt, director of SE - Bohunice Nuclear power plants; (3) Introductory speech of Jan Korec, Board chairman and director general of VUJE Trnava, Inc. - Engineering, Design and Research Organisation, Trnava; Introductory speech of Dietrich Kuschel, Senior vice-president of FRAMATOME ANP Project and Engineering

  20. Introductory lecture: materials aspects of the supply and use of energy

    International Nuclear Information System (INIS)

    Pooley, D.

    1982-01-01

    Materials technology has a vital role to play in changes and improvements which are needed in the energy scene. For example, high-temperature corrosion-resistant materials will enable more efficient aircraft engines to be made. Understanding and combatting corrosion will continue to be important in the treatment and disposal of radioactive waste associated with the use of nuclear power. Many renewable energy sources, often particularly attractive in poor countries, will be economic only if the devices collecting or converting the sunlight, wind power, or other forms of raw energy are able to use materials very effectively and economically and in ways which ensure that the costs of operating and maintaining the devices are not too high. (author)

  1. Advanced baffle materials technology development

    Science.gov (United States)

    Johnson, E. A.; Vonbenken, C. J.; Halverson, W. D.; Evans, R. D.; Wollam, J. S.

    1991-10-01

    Optical sensors for strategic defense will require optical baffles to achieve adequate off-axis stray light rejection and pointing accuracy. Baffle materials must maintain their optical performance after exposure to both operational and threat environments. In addition, baffle materials must not introduce contamination which would compromise the system signal-to-noise performance or impair system mission readiness. Critical examination of failure mechanisms in current baffle materials are quite fragile and contribute to system contamination problems. Spire has developed technology to texture the substrate directly, thereby, removing minute, fragile interfaces subject to mechanical failure. This program has demonstrated that ion beam texturing produces extremely dark surfaces which are immune to damage from ordinary handling. This technology allows control of surface texture feature size and hence the optical wavelength at which the surface absorbs. The USAMTL/Spire program has produced dramatic improvements in the reflectance of ion beam textured aluminum without compromising mechanical hardness. In simulated launch vibration tests, this material produced no detectable contamination on adjacent catcher plates.

  2. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    Science.gov (United States)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  3. Materials, critical materials and clean-energy technologies

    Directory of Open Access Journals (Sweden)

    Eggert R.

    2017-01-01

    Full Text Available Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess “what is critical” to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  4. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  5. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  6. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    Science.gov (United States)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  7. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  8. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  9. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    Science.gov (United States)

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  10. Materials technology at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Betten, P.

    1989-01-01

    Argonne is actively involved in the research and development of new materials research and development (R ampersand D). Five new materials technologies have been identified for commercial potential and are presented in this paper as follows: (1) nanophase materials, (2) nuclear magnetic resonance (NMR) imaging of ceramics, (3) superconductivity developments and technology transfer mechanisms, and (4) COMMIX computer code modeling for metal castings, and (5) tribology using ion-assisted deposition (IAB). 4 refs., 7 figs., 1 tab

  11. Changing teaching techniques and adapting new technologies to improve student learning in an introductory meteorology and climate course

    Directory of Open Access Journals (Sweden)

    E. M. Cutrim

    2006-01-01

    Full Text Available Responding to the call for reform in science education, changes were made in an introductory meteorology and climate course offered at a large public university. These changes were a part of a larger project aimed at deepening and extending a program of science content courses that model effective teaching strategies for prospective middle school science teachers. Therefore, revisions were made to address misconceptions about meteorological phenomena, foster deeper understanding of key concepts, encourage engagement with the text, and promote inquiry-based learning. Techniques introduced include: use of a flash cards, student reflection questionnaires, writing assignments, and interactive discussions on weather and forecast data using computer technology such as Integrated Data Viewer (IDV. The revision process is described in a case study format. Preliminary results (self-reflection by the instructor, surveys of student opinion, and measurements of student achievement, suggest student learning has been positively influenced. This study is supported by three grants: NSF grant No. 0202923, the Unidata Equipment Award, and the Lucia Harrison Endowment Fund.

  12. Material Technology for Vortex Electronics

    Science.gov (United States)

    Kobayashi, T.; Oda, S.; Michikami, O.; Terashima, T.

    High-T_c superconductor (HTSC) thin films are typically grown by mean of pulsed laser deposition (PLD), metalorganic chemical vapor deposition (MOCVD), sputtering or molecular beam epitaxy (MBE). This chapter reviews recent progress in the thin film growth technologies of HTSCs.

  13. Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Frontiers in Materials Science and Technology. FOREWORD. Over the last few decades of the twentieth century, great inroads were made in further development of established materials by improved and novel processing routes. It was also a period of discovery of a range of new materials such as high temperature ...

  14. Emerging Materials Technology in Japan

    Science.gov (United States)

    1991-12-01

    the tetragonal to monoclinic transformation which results in a predominantly tetragonal material. Y2O3 or CeO2 also lowers the temperature at which...aircraft and/or spacecraft, but is expected to contribute in other fields. NKK used the doctor blade process to prepare green sheets from slurry made of

  15. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  16. What are green materials and technologies?

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available : green materials and technologies for new and existing buildings could considerably reduce CO(sub2) emissions while simultaneously improving indoor and outdoor air quality, social welfare, energy security, and ecological goods and services....

  17. RAW MATERIAL DEWATERING ELECTROMAGNETIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2012-04-01

    Full Text Available Moisture transfer schemes and mechanisms of capillary-porous materials dehydration are considered. Mechanical, thermal and diffusive mechanisms for different moisture linkage forms are analyzed, driving forces and velocity coefficients of processes are estimated. Availability of dehydration in microwave frequencies range field is shown. A new generalized complex that takes into account a specificity of micro- and nanokinetics of moisture transfer in products is proposed. The explanation of barodiffusive moisture transfer process mechanism in a product is shown. The results of experimental researches, in which specific energy of 1,9 MJ per 1 kg of removed moisture is reached, are shown. The tests results of the band dryer with microwave and infrared energy generators are presented.

  18. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  19. Emerging Materials Technologies That Matter to Manufacturers

    Science.gov (United States)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  20. Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Tailored materials and innovative designs of products are the key drivers in many modern technologies such as communication ... has been discussed employing the terms “freedom” and “fashion”. He emphasizes that in order to get the .... predictability in material performance. Current trends in processing of medium and.

  1. Quantum Information, computation and cryptography. An introductory survey of theory, technology and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Benatti, Fabio [Trieste Univ., Miramare (Italy). Dipt. Fisica Teorica; Fannes, Mark [Leuven Univ. (Belgium). Inst. voor Theoretische Fysica; Floreanini, Roberto [INFN, Trieste (Italy). Dipt. di Fisica Teorica; Petritis, Dimitri (eds.) [Rennes 1 Univ., 35 (France). Inst. de Recherche Mathematique de Rennes

    2010-07-01

    This multi-authored textbook addresses graduate students with a background in physics, mathematics or computer science. No research experience is necessary. Consequently, rather than comprehensively reviewing the vast body of knowledge and literature gathered in the past twenty years, this book concentrates on a number of carefully selected aspects of quantum information theory and technology. Given the highly interdisciplinary nature of the subject, the multi-authored approach brings together different points of view from various renowned experts, providing a coherent picture of the subject matter. The book consists of ten chapters and includes examples, problems, and exercises. The first five present the mathematical tools required for a full comprehension of various aspects of quantum mechanics, classical information, and coding theory. Chapter 6 deals with the manipulation and transmission of information in the quantum realm. Chapters 7 and 8 discuss experimental implementations of quantum information ideas using photons and atoms. Finally, chapters 9 and 10 address ground-breaking applications in cryptography and computation. (orig.)

  2. A case study of technology-enhanced active learning in introductory cellular biology

    Science.gov (United States)

    Chacon Diaz, Lucia Bernardette

    Science teaching and learning in higher education has been evolving over the years to encourage student retention in STEM fields and reduce student attrition. As novel pedagogical practices emerge in the college science classroom, research on the effectiveness of such approaches must be undertaken. The following research applied a case study research design in order to evaluate the experiences of college students in a TEAL classroom. This case study was conducted during the 2017 Summer Cellular and Organismal Biology course at a four-year Hispanic Serving Institution located in the Southwest region of the United States. The main components evaluated were students' exam performance, self-efficacy beliefs, and behaviors and interactions in the Technology-Enhanced Active Learning (TEAL) classroom. The findings suggest that students enrolled in a TEAL classroom are equally capable of answering high and low order thinking questions. Additionally, students are equally confident in answering high and low order thinking items related to cellular biology. In the TEAL classroom, student-student interactions are encouraged and collaborative behaviors are exhibited. Gender and ethnicity do not influence self-efficacy beliefs in students in the TEAL room, and the overall class average of self-efficacy beliefs tended to be higher compared to exam performance. Based on the findings of this case study, TEAL classrooms are greatly encouraged in science higher education in order to facilitate learning and class engagement for all students. Providing students with the opportunity to expand their academic talents in the science classroom accomplishes a crucial goal in STEM higher education.

  3. Introductory speech of 2003 annual meeting on nuclear technology 'Acceptance - key to success'

    International Nuclear Information System (INIS)

    Maichel, G.

    2003-01-01

    Acceptance and support are two basic preconditions for a successful implementation of projects. As a necessary prerequisite, the decisions to be taken must be based on established facts which are both transparent and understandable. Especially in technical projects, confidence in technology and in all parties involved is imperative. Nuclear power has lost acceptance when a small group of opponents, deliberately focusing on the improbable, but existing, risk gained support for this attitude in the public, and political circles began to share the same opinion. This makes it indispensable to regain broad-based acceptance by combining the dissemination of facts with instilling confidence. This includes the positive contribution of safe plant operation with a maximum of safety as the top priority, as an acknowledged and practiced approach. It also includes the dissemination of facts and the promotion of confidence on the part of all those engaged in nuclear power. Also energy policy in Germany should make decisions in a transparent, understandable fashion on the basis of proven facts. Opting out of the use of nuclear power, as well as the massive support granted to the expansion of renewable energies, are no adequate response to the challenges we are facing in energy policy. Irrespective of fundamental political opinions, nuclear competence in Germany must be preserved and supported. Moreover, the problems ahead, especially with respect to the management of nuclear waste, need to be addressed. International trends indicate a realistic assessment of nuclear power and interpretation of facts. Nuclear power is seen as an option for the future and either included as such in planning, or else is preserved as a building block in energy supply. (orig.) [de

  4. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  5. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  6. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  7. Raw materials for new technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kuersten, M. (Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany, F.R.)) (ed.)

    1990-01-01

    This volume contains 10 lectures given at the fifth international symposium on mineral resources held on October 19-21, 1988 in Hannover (FRG). The papers deal with the following subjects: 1. Advanced materials and the economy (J.P. Clark); 2. New materials: Research trends and technological impacts (H. Czichos); 3. High-Tech ceramics - new materials bring new prospects (G. Petzow); 4. BRITE-EURAM - international materials research for a future-oriented industry (summary) (J. G. Wurm); 5. The rare-earth industry, problems and prospects (summary) (P. Falconnet); 6. Precious metals in and for new technologies (H.-G. Bachmann); 7. Deposits of rare metals (F.W. Wellmer); 8. Alloys of the traditional metals and their future (summary) (H. Hauck et al.); 9. Minor metals - elements of increasing importance (U. Kerney); 10. Starting materials for advanced ceramics - production and properties (G. Franz; G. Schwier). (orig./MM) With 103 figs.; 36 tabs.

  8. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  9. The nuclear materials control technology briefing book

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  10. A MOOC for Introductory Physics

    Science.gov (United States)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  11. LTA structures and materials technology. [airships

    Science.gov (United States)

    Mayer, N. J.

    1975-01-01

    The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles will utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity will include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts.

  12. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  13. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  14. Ionized cluster beam technology for material science

    International Nuclear Information System (INIS)

    Takagi, Toshinori

    1997-01-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized

  15. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  16. Summary: Frontiers in Materials Science and Technology

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 28; Issue 1-2. Summary: Frontiers in Materials Science and Technology. Baldev Raj K Bhanu Sankara Rao. Volume 28 Issue 1-2 February-April 2003 pp 5-15. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/sadh/028/01-02/0005-0015 ...

  17. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    Kelly, B.T.; Murgatroyd, R.A.

    1977-06-01

    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  18. Radiation technology of improved quality materials production

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  19. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  20. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  1. Introductory Comments

    Directory of Open Access Journals (Sweden)

    Jolanta Sujecka

    2016-12-01

    Full Text Available Introductory Comments The fifth yearly volume of the Colloquia Humanistica comprises a thematic section on Nation, Natsiya, Ethnie. The subject it discusses has thus far received little attention as a research problem in the Slavia Orthodoxa, the Slavia Romana, the Balkans but also in Central and Eastern Europe.   Uwagi wstępne Piąty numer rocznika "Colloquia Humanistica" przedstawia dział tematyczny, poświęcony kategoriom narodu, nacji i etni. Temat ten, w takiej perspektywie, którą proponujemy, nie spotkał się dotąd z należytym namysłem badawczym w sferze Slavia Otrhodoxa, Slavia Romana i na Bałkanach, jak też w Europie Środkowo-Wschodniej.

  2. Fiscal 1997 report on the results of the introductory R and D of the New Sunshine Project under a consignment from NEDO. Introductory R and D of the supercritical fluid use technology; 1997 nendo `New Sunshine keikaku` sendo kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chorinkai ryutai riyo gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The R and D of chemical reaction using supercritical fluids started in fiscal 1997. In the R and D of solvent reaction, as the research on polymer decomposition with supercritical water, studies were conducted of the mechanism of conversion reaction to chemical materials, cleavage mechanism of stable chemical bonds, and synthetic reaction in the supercritical state reaction field. In the research on oxidation reaction, as the study of complete oxidation in supercritical water for high efficiency energy recovery, studies of complete oxidation of liquid fuels, and complete oxidation of solid fuels. In the research on hydrogenation, studies of lightening of heavy oil in supercritical water, etc. In the R and D of the basic technology, studies of corrosion mechanism of metals in supercritical water, construction of the basic framework for technical database of supercritical fluids, etc. In the survey of technical trends and new research themes, the introductory R and D of element technology, etc. were conducted, and the results were described of the survey of technical trends and new research themes and the trend survey of overseas technology. 314 refs., 87 figs., 81 tabs.

  3. Superhydrophobic Materials Technology-PVC Bonding Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  4. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Strategies and technologies for nuclear materials stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-10-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation.

  6. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation

  7. Development, Implementation, and Assessment of Climate Curricular Materials for Introductory Undergraduates: Lessons Learned from the InTeGrate Project's Climate of Change Module

    Science.gov (United States)

    Walker, B.; Fadem, C. M.; Shellito, L. J.

    2014-12-01

    Designing climate change curricular materials suitable for wide adoption across institutions and academic disciplines (including those outside of the geosciences) requires collaboration among faculty at different types of institutions and consideration of a variety of student populations, learning styles, and course formats. The Interdisciplinary Teaching of Geoscience for a Sustainable Future (InTeGrate) project, an NSF STEP Center program, provides opportunities for faculty to develop 2-3 week teaching modules to engage students in understanding the intersections between geoscience topics and societal issues. From 2012-2014, a team of 3 faculty from a liberal arts college, comprehensive university, and community college developed, implemented, assessed, and revised a 2-3 week module for introductory undergraduates entitled "Climate of change: interactions and feedbacks between water, air, and ice". The module uses authentic atmosphere, ocean, and cryosphere data from several regions to illustrate how climate impacts human societies and that the climate system has interacting components complicated by feedbacks, uncertainties, and human behavioral decisions. Students also consider past and present human adaptations to climate fluctuations. The module was piloted in introductory geology, meteorology, and oceanography courses during the 2012-2013 academic year, during which time formative and summative assessments were administered and used to modify the curricular materials. We will provide an overview of the module's content, instructional strategies involved in implementing the module, and methods of formative and summative assessment. We will also report on lessons learned during the development, piloting, revision, and publishing process, the importance of fostering partnerships between faculty from different institution types, and design approaches that promote widespread adoption of climate curricular materials.

  8. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  9. Applying RFID technology in nuclear materials management

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J.P.; Bellamy, S.; Shuler, J.

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness

  10. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  11. Technologically enhanced naturally occurring radioactive materials.

    Science.gov (United States)

    Vearrier, David; Curtis, John A; Greenberg, Michael I

    2009-05-01

    Naturally occurring radioactive materials (NORM) are ubiquitous throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known as "technologically enhanced naturally occurring radioactive materials," often called TENORM. The existence of TENORM results in an increased risk for human exposure to radioactivity. Workers in TENORM-producing industries may be occupationally exposed to ionizing radiation. TENORM industries may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure to ionizing radiation. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium pigment production, fossil fuel extraction and combustion, manufacture of building materials, thorium compounds, aviation, and scrap metal processing. A search of the PubMed database ( www.pubmed.com ) and Ovid Medline database ( ovidsp.tx.ovid.com ) was performed using a variety of search terms including NORM, TENORM, and occupational radiation exposure. A total of 133 articles were identified, retrieved, and reviewed. Seventy-three peer-reviewed articles were chosen to be cited in this review. A number of studies have evaluated the extent of ionizing radiation exposure both among workers and the general public due to TENORM. Quantification of radiation exposure is limited because of modeling constraints. In some occupational settings, an increased risk of cancer has been reported and postulated to be secondary to exposure to TENORM, though these reports have not been validated using toxicological principles. NORM and TENORM have the potential to cause important human health effects. It is important that these adverse health effects are evaluated using the basic principles of toxicology, including the magnitude and type of exposure, as well as threshold and dose response.

  12. Nuclear technology: Looking to the future. Introductory statement to the Scientific Forum, 18 September 2007, Vienna, Austria

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2007-01-01

    In his opening remarks to the 8th Scientific Forum Dr. Mohamed ElBaradei, Director General of the International Atomic Energy Agency, stated that the IAEA has been charged with sharing the benefits of nuclear technology with all countries and peoples, while preventing the misuse of this technology for destructive ends. For fifty years the IAEA has been carried out this mission. In the 8th Scientific Forum the IAEA is turning its vision to the future. The first session of the forum will deal with nuclear power. Coupled with concerns related to the risk of climate change and the security of energy supply, this anticipated growth in energy demand is leading to predictions of a greater role for nuclear power. Innovation will play a key role in determining the extent to which nuclear energy will meet future energy needs. Advanced fuel cycles are already being developed with the aim of better energy utilization of uranium, plutonium and other actinides; developing small reactors that meet the needs of developing countries; and with built in enhanced features for safety, security, waste minimization and proliferation resistance. The Agency?s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is currently considering collaborative projects that would address some of these innovation needs. There are ongoing efforts to develop one or more mechanisms for the assurance of supply of nuclear fuel, and hopefully a multilateral mechanism for the management and control of the back end of the fuel cycle. The second session will focus on the use of nuclear technologies in food, agriculture and health. New developments in promising areas such as biotechnology, gene sequencing and nanotechnology, are anticipated to have a significant impact in the coming years on food and agriculture production. These initiatives will also generate benefits in human and animal health and land and water resource management. Nuclear applications stand to make key contributions

  13. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  14. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  15. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  16. Ion implantation for materials processing

    International Nuclear Information System (INIS)

    Smidt, F.A.

    1983-01-01

    This book reviews current research on ion implantation for materials processing as a viable technique for improving surface properties of metals and alloys-wear, fatigue, and corrosion. An introductory section on new potential applications of ion beam technology is provided. Contents: New potential applications of ion beam technology; ion implantation science and technology; wear and fatigue; corrosion; other research areas

  17. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  18. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  19. Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology

    OpenAIRE

    L. Novakova-Marcincinova; J. Novak-Marcincin

    2012-01-01

    Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Mod...

  20. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  1. Materials science and technology strained-layer superlattices materials science and technology

    CERN Document Server

    Pearsall, Thomas P; Willardson, R K; Pearsall, Thomas P

    1990-01-01

    The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting ...

  2. 2. International workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Carsughi, F.; Mansur, L.K.; Sommer, W.F.; Ullmaier, H.

    1997-11-01

    This document contains 25 papers consisting an abstract prepared by the authors, followed by copies of the presentation viewgraphs used by speakers. The topics were: Target options for SINQ; Overview of the NSNS target system; ISIS target and moderator materials; Trispal project; JHF N-ARENA; Design, load conditions and manufacturing aspect of the ESS MERCURY TARGET unit; Radiation damage simulatiion to measure recoil spectra distribution; Radiation damage calculation to spallation neutron source materials; Hadron-induced neutron production in Pb and U targets from 1-5 GeV; Proton beam effects on W rods, surface cooled by water; Corrosion and fatigue behavior of metals and alloys in high radiation fields; compability of materials with mercury for NSNS target system; Research activities at PSI on structural materials for spallation neutron source; The accelerator production of tritium materials reserach program and Los Alamos National Laboratory; Experimental program on irradiation effects in structural materials of the Trispal project; First pulsed power materials test at Livermore; Plan of thermal shock fracture test at JAERI; Is there a hydrogen problem in target materials in high-power spatllation source?; Materials consideration for the NSNS target; Materials durability issures in spallation neutron source applications; Post-irradiation investigations at the FZJ; Microstructure and hardening of steels containing high helium concentrations; Tensile properties and microstructure of the F82H ferritic-martensitic steel after irradiation in the PIREX facility

  3. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  4. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  5. Java experiments for introductory cognitive psychology courses.

    Science.gov (United States)

    Stevenson, A K; Francis, G; Kim, H

    1999-02-01

    Interactive on-line experiments provide a unique and useful method for communicating material to students that is otherwise cumbersome and often confusing. The Java programming language is particularly suited for Internet-based programming applications of this sort because it bypasses many technical issues, including resource availability, security, and cross-platform compatibility. In most cases, topics appropriate to this medium of presentation should (1) not be easily demonstrated by other means, (2) represent an important finding in the field, and (3) be robust with respect to variations in both participants and equipment. The present paper outlines the integration of interactive experiments into an introductory cognitive psychology classroom, describing several experiments currently available on the World-Wide Web (WWW). Evaluation of the technical aspects of the technology as well as expansion of the format to other courses is discussed.

  6. Rapid Prototyping: Technologies, Materials and Advances

    OpenAIRE

    Dudek P.; Rapacz-Kmita A.

    2016-01-01

    In the context of product development, the term rapid prototyping (RP) is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing....

  7. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  8. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  9. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  10. Progress in advanced high temperature materials technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Materials for intermediate temperature applications are considered, taking into account possibilities regarding the use of prealloyed powder processing to obtain superalloys with increased strength for turbine disk applications. Materials for high temperature application are also discussed. Attention is given to oxide dispersion strengthened alloys (ODS), ceramics, directionally solidified eutectics, ODS + gamma prime alloys, and composites. A description is presented of various approaches for providing environmental protection.

  11. Concise encyclopedia of semiconducting materials and related technologies

    CERN Document Server

    Mahajan, S M

    1992-01-01

    The development of electronic materials and particularly advances in semiconductor technology have played a central role in the electronics revolution by allowing the production of increasingly cheap and powerful computing equipment and advanced telecommunications devices. This Concise Encyclopedia, which incorporates relevant articles from the acclaimed Encyclopedia of Materials Science and Engineering as well as newly commissioned articles, emphasizes the materials aspects of semiconductors and the technologies important in solid-state electronics. Growth of bulk crystals and epitaxial layer

  12. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  13. Life prediction technology of structural materials

    International Nuclear Information System (INIS)

    Nagata, Norio

    1992-01-01

    There is empirically the time limit of use in all industrial plants and components. By defining the loss of functions as the expiration of life, if the forecast of life time or residual life of plants and components can be done, a very useful means becomes available for safety and economical efficiency. The life of plants is controlled by the occurrence and extension of defects in materials, and by the life of the material which is placed under most severe condition. Such severe condition is the environment of use itself with high temperature, corrosive environment, load, vibration and so on. The forecast of material life is to quantitatively grasp the damage behavior of materials under such condition, and to carry out the time control of the functions of plants by defect control. The time dependence of material damage such as fatigue damage, creep damage and corrosion damage is discussed. The forecast of material life by empirical knowledge and theoretical inference and the forecast of residual life are explained. Finally, the forecast of the life time of light water reactors is described as those constructed in initial period approach their design life. (K.I.)

  14. Physics of radiation damage and radiation materials technology

    International Nuclear Information System (INIS)

    1992-01-01

    This issue of 'Problems in Atomic Science and Technology', on the 'Physics of Radiation Damage and Radiation Materials Technology', is a collection of 24 papers on the effects on or processes in materials due to their irradiation by neutrons, ions in the energy range from a few tens of keV to several MeV (deuterium, helium, oxygen), and electrons. Included are studies on radiation damage of materials, on ion implantation, thermonuclear reactor materials testing, fast-particle energy loss ramifications for fusion reaction rates in materials, and biological radiation effects

  15. Redesigning Introductory Biology: A Proposal

    Directory of Open Access Journals (Sweden)

    Eileen Gregory

    2011-03-01

    Full Text Available With the increasing complexity and expansion of the biological sciences, there has been a corresponding increase in content in the first-year introductory biology course sequence for majors. In general this has resulted in courses that introduce students to large amounts of material and leave little time for practicing investigative science or skill development. Based on our analysis of data compiled from 742 biology faculty at a variety of institutions across the United States, we verified that there is strong agreement on the content appropriate for introductory biology courses for majors. Therefore, we propose that faculty teaching these courses focus primarily on the topics identified in this study, and redesign their courses to incorporate active learning strategies that emphasize the investigative nature of biology and provide opportunities for skill development.

  16. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  17. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  18. New materials and technology for cell immobilization.

    Science.gov (United States)

    Salter, G J; Kell, D B

    1991-06-01

    The choice of support materials for immobilizing cells is rapidly expanding. The literature that has appeared over the past year suggests that hydrogels will remain the first choice for the forseeable future, even though they are associated with many widely recognized problems. There is increasing interest in the use of tougher polymeric materials, and especially of inorganic ceramic supports. However, the most suitable cell support can be selected only after the process or form of reactor in which it is to be used has been assessed.

  19. Materials problems associated with fusion reactor technology

    International Nuclear Information System (INIS)

    Dutton, R.

    This paper outlines the principles of design and operation of conceptual fusion reactors, indicates the level of research funding and activity being proposed at major centres and reviews the major materials problems which have been identified, together with an outline of the experimental techniques which have been suggested for investigating these problems. (author)

  20. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  1. FY97 Materials & Processes Technology Area Plan

    Science.gov (United States)

    1996-09-01

    preproduction ability. Concentrator with Refractive verdsion engines. Trimarc is "--To meet 1700*F - 2800*F Linear Element Technology). 40% lighter than...graph- can also be used as acuators for tios of 1986 engine per- ite foams for structures. ailerons, flaps and landing gear formance baseline...Aerial Aluminum Garnet SCARLET - Solar Concentrator Vehicle Ni - Nickel with Refractive Linear Ele- UHF - Ultra High Frequency NLO - Nonlinear Optical or

  2. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  3. Technology development for nuclear material accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Choi, Hyoung Nae; Park, Ho Jun.

    1990-01-01

    Neutron yields from 19 F(α,n) 22 Na reaction of uranium neutron interaction with uranium-bass materials, and the characteristics of shielded neutron assay probe have been studied. On the basis of the above examination, U-235 enrichment in UF 6 cylinders like model 30B and model 48Y was measured by the reaction and U-235 contents in the containers by non-destructive total passive neutron assay method. Total measurement efficiency as a result was found to be 6.44 x 10 -4 and 1.25 x 10 -4 for model 30B and model 40Y UF 6 cylinder, respectively. The uncertainty of measured enrichment as compared to Tag value obtained from chemical analysis approached about 5 % of relative error at 95 % confidence interval. In the follow-up action for the previously developed (1988) computer system of nuclear material accounting the error searching and treatment routine in accordance with code 10, of IAEA and respective facility attachment has been added to easing the burden of manual error correction by operator. In addition, the procedure for LEMUF calculation has been prepared to help bulk facility operators evaluating MUF in the period of material balance. (author)

  4. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    OpenAIRE

    A. M. Gadzhieva; G. I. Kasianov

    2015-01-01

    Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environm...

  5. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  6. Materials and Components Technology Division research summary, 1992

    International Nuclear Information System (INIS)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database

  7. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  8. Materials and Components Technology Division research summary, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  9. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  10. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  11. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  12. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhieva

    2015-01-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environmental feasibility of tomatoes stage drying in the atmosphere of inert gas in solar dry kiln were evaluated; production scheme of dried tomatoes is improved; a system for tomato pomace drying is developed; a production scheme of powders of pulp, skin and seeds of tomatoes is developed. Combined method of tomato pomace drying involves the simultaneous use of the electromagnetic field of low and ultra-high frequency and blowing product surface with hot nitrogen. Conducting the drying process in an inert gas atmosphere of nitrogen intensified the process of moisture removing from tomatoes. The expediency of using tomato powder as enriching additive was proved. Based on the study of the chemical composition of the tomato powder made from Dagestan varieties of tomatoes, and on the organoleptic evaluation and physico-chemical studies of finished products, we have proved the best degree of recoverability of tomato powder during the production of reconstituted juice and tomato beverages.

  13. Industry technology assessment of graphite-polymide composite materials. [conferences

    Science.gov (United States)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  14. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  15. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  16. Using R for introductory statistics

    CERN Document Server

    Verzani, John

    2014-01-01

    The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.See What's New in the Second Edition:Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.Discussions of the use of RStudio helps new

  17. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  18. Third-Generation Display Technology: Nominally Transparent Material

    Directory of Open Access Journals (Sweden)

    Charles Willow

    2010-12-01

    Full Text Available Display technology is reshaping the consumer, business, government, and even not-for-profit markets in the midst of the digital convergence, coupled with recent smart phones led by Apple, Inc. First-Generation (1G display technology was dominated by the Cathode Ray Tubes, followed by Liquid Crystal Display and Plasma in 2G. A radically innovative shift as a disruptive technology is expected to follow in 3G to utilize virtually any transparent material, which wirelessly connects to portable access points. This paper studies the feasibility of the 3G Display Technology (DT with Technology S-Curves, and presents possible business models and technology strategies which may be generated from it. Additional subsets of business models may be derived for a wide range of industry applications.

  19. Nanomodified composite magnetic materials and their molding technologies

    Science.gov (United States)

    Timoshkov, I.; Gao, Q.; Govor, G.; Sakova, A.; Timoshkov, V.; Vetcher, A.

    2018-05-01

    Advanced electro-magnetic machines and systems require new materials with improved properties. Heterogeneous 3D nanomodified soft magnetic materials could be efficiently applied. Multistage technology of iron particle surface nanomodification by sequential oxidation and Si-organic coatings will be reported. The thickness of layers is 0.5-5 nm. Compaction and annealing are the final steps of magnetic parts and components shaping. The soft magnetic composite material shows the features: resistivity is controlled by insulating coating thickness and equals up to ρ =10-4 Ωṡm for metallic state and ρ =104 Ωṡm for insulator state, maximum magnetic permeability is μm = 2500 and μm = 300 respectively, induction is up to Bm=2.1 T. These properties of composite soft magnetic material allow applying for transformers, throttles, stator-rotor of high-efficient and powerful electric machines in 10 kHz-1MGz frequency range. For microsystems and microcomponents application, good opportunity to improve their reliability is the use of nanocomposite materials. Electroplating technology of nanocomposite magnetic materials into the ultra-thick micromolds will be presented. Co-deposition of the soft magnetic alloys with inert hard nanoparticles allows obtaining materials with magnetic permeability up to μm=104, magnetic induction of Bs=(0.62-1.3) T. Such LIGA-like technology will be applied in MEMS to produce high reliable devices with advanced physical properties.

  20. Functional materials for sustainable energy technologies: four case studies.

    Science.gov (United States)

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  1. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  2. Systems analysis for materials control and accountancy technology

    International Nuclear Information System (INIS)

    Daly, T.A.; Bucher, R.G.; Rothman, A.B.; Charak, I.; Persiani, P.J.

    1987-01-01

    The objective is to upgrade Materials Control and Accountancy (MCandA) technology over the flows of special nuclear materials throughout the DOE complex of fuel cycles. The program focus is to develop a ''Management Tool'' for decision support in evaluating MCandA upgrades, and invalidating the MCandA aspects of the Master Safeguards and Security Agreements (MSSA) effectiveness. The approach is the computerization of the nuclear materials flow charts, identification of key measurement locations in the production and product fuel cycle, and construct data information processing at each measurement location. The program is to provide the Office of Safeguards and Security (OSS) with a timely management decision support system in planning MCandA safeguards technology upgrades over the nuclear materials production and product cycles

  3. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; Carlson, Blair; Boettcher, Eric; Ruokolainen, Robert

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.

  4. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...

  5. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  6. Applying cinematic materials at geography lessons with suggestopedic educational technology

    Directory of Open Access Journals (Sweden)

    Вікторія Салімон

    2017-09-01

    Full Text Available The article describes the use of cinematic materials, especially materials from feature films as one of the best means to assimilate the information on the lessons with suggestopedic educational technology. Scientific research of this method including on geography  essons, have been analyzed. Modern pupils study, learn and grow under the influence of communication technologies, so they require a rapid response and adaptation to modern conditions, as well as other interests, a special motivation in training. Feature films, like nothing else, captivates the modern youth, so there is an opportunity to use the screen art for educational purposes and effect of the suggestopedic influence allows pupils to perceive a large amount of information. The use of cinematic materials with suggestopedic educational technology on geography lessons belongs to audiovisual learning tools, giving the opportunity to acquire different modern motivating knowledge. After analyzing suggestive teaching methods, the results of these methods application have been presented, the essence of cinematic materials use as audiovisual learning tools, especially materials from feature films, on suggestopedic lessons and feasibility of their use in the educational process have been described. The authors propose to focus on artistic learning tools or means of art, as a special type of vacated (released stimulating didactical art, that reveals the spare capacity in education and improves memorization and understanding of the studied material when using cinematic materials on geography lessons with suggestopedic educational technology. Methodical recommendations for the suggestopedic lesson using cinematic materials for the topic «Major relief forms of dry land of the Earth. Mountains» in the general geographic course have been suggested.

  7. Enriching Information Technology Course Materials by Using Youtube

    OpenAIRE

    Abdillah, Leon Andretti

    2017-01-01

    IT offers some benefits and collaborations in various sectors. This research focuses on exploring higher education subjects via social technology, YouTube. YouTube is the world largest video based contents application in the world. Current learning materials are not only in text and images, but included video contents. This research enriching students learning materials may involving YouTube as learning sources. The study observed 118 sophomore students in computer science faculty. The result...

  8. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  9. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  10. Materials and Components Technology Division research summary, 1991

    International Nuclear Information System (INIS)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base

  11. Developing Course Materials for Technology-Mediated Chinese Language Learning

    Science.gov (United States)

    Kubler, Cornelius C.

    2018-01-01

    This article discusses principles involved in developing course materials for technology-mediated Chinese language learning, with examples from a new course designed to take into account the needs of distance and independent learners. Which learning environment is most efficient for a given learning activity needs to be carefully considered. It…

  12. Friction, Fretting and Wear: Emerging Materials and Technologies

    Indian Academy of Sciences (India)

    tion, fatigue and wear of metals, alloys and polymers continue to challenge scientists and engineers. Friction, fracture and ... rough floors; and, finally, marvellous technological diversity of emerging materials in the new millennium demonstrates exciting advances in micro/nanoengineering. The diversity of applications ...

  13. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  14. Introductory real analysis

    CERN Document Server

    Kolmogorov, A N; Silverman, Richard A

    1975-01-01

    Self-contained and comprehensive, this elementary introduction to real and functional analysis is readily accessible to those with background in advanced calculus. It covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, and much more. 350 problems. 1970 edition.

  15. Sustainable careers: Introductory chapter

    NARCIS (Netherlands)

    Heijden, B.I.J.M. van der; Vos, A. de; Vos, A. de; Heijden, B.I.J.M. van der

    2015-01-01

    In this introductory chapter we will introduce the concept of ‘sustainable careers’ within the broader framework of contemporary careers. Departing from changes in the career context with regard to the dimensions of time, social space, agency and meaning, we advocate a fresh perspective on careers

  16. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  17. Black Holes and Pulsars in the Introductory Physics Course

    Science.gov (United States)

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  18. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  19. CANMET Materials Technology Laboratory technical review 2003-2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This technical review described research activities of the CANMET Materials Technology Laboratory, whose mandate is to develop and deploy technologies that improve aspects of producing and using products derived from minerals and metals. During the reporting period, 126 reports for clients were published and the lab participated in 15 national and international consortia. The Advanced Concrete Technology Program was reviewed. The Advanced Materials Technologies Program was discussed, and recent advances in the hydroforming of tubes and corrosion protection techniques for magnesium used in automobiles were presented. A review of the Sustainable Casting Program was presented. New materials for the mining industry were discussed, as well as issues concerning lost-foam casting. Details of the Efficient Metal Production Program were provided and new galvanized TRIP steel and metal inert gas welding processes were outlined. New additions to the Infrastructure Reliability Program included intelligent systems for pipeline infrastructure reliability; software for corrosion control; and risk management of pipelines. Additions to the Certifying Agency for Non-Destructive Testing included a new certification of X-Ray Fluorescence operators and revisions to the non-destructive testing qualification and certification of personnel. New patents developed by the laboratory included a hydrogen sensor using a solid hydrogen ion conducting electrolyte; reinforcement preform for the production of magnesium composite and other metal matrix composite materials; a rechargeable battery electrode testing device; a sulfide biosensor; and a bio-corrosion probe. During the 2 year review period, staff received 13 national and international awards. An outline of major facilities and equipment was presented, as well as details of new materials for use by the transportation sector. Advances in concrete and other construction materials were outlined, as well as metallurgical process improvements. A

  20. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  1. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  2. Material Identification Technology (MIT) concept technical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.L.; Harker, Y.D.; Yoon, W.Y.; Johnson, L.O.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) has initiated the design and development of a novel pulsed accelerator-based, active interrogation concept. The proposed concept, referred to as the Material Identification Technology (MIT), enables rapid (between accelerator pulses), non-destructive, elemental composition analysis of both nuclear and non-nuclear materials. Applications of this technique include material monitoring in support of counter-proliferation activities, such as export controls (at domestic and international inspection locations), SNM controls, nuclear weapon dismantlement, and chemical weapon verification. Material Identification Technology combines a pulsed, X-ray source (an electron accelerator) and a gamma detection system. The accelerator must maximize neutron production (pulse width, beam current, beam energy, and repetition rate) and minimize photon dose to the object. Current available accelerator technology can meet these requirements. The detection system must include detectors which provide adequate gamma energy resolution capability, rapid recovery after the initial X-ray interrogation pulse, and multiple single gamma event detection between accelerator pulses. Further research is required to develop the detection system. This report provides the initial feasibility assessment of the MIT concept.

  3. On Social and Material Aspects of Technological Control

    Science.gov (United States)

    Herfel, William E.

    This commentary on Hugh Lacey's paper emphasises the material aspects of the social structure within which technological control takes place. It is suggested here that when the example of the Green Revolution is examined in detail a clear-cut distinction between material and social constraints/possibilities is misleading. I propose a material analysis of the control situation. This analysis is placed within the material framework of the social structure within which the control system is employed. By widening of the analysis even further it is hoped that the environmental issues of the Green Revolution that concern Vandana Shiva can be addressed. I provide a glimpse of how such an account should proceed.

  4. Welcome and introductory remarks

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Wiley, W.R.; Wagoner, J.D.

    1993-01-01

    Attendees are welcomed to the conference. The general scope of the problem is touched on, and the driving point is made, that the development of new technology is necessary to meet the environmental restoration goals for the Hanford Reservation with a reasonable expenditure of funds and resources. If present technology in treating radioactive waste has to be applied to the wastes prior to final disposal, then the processing costs, and the resultant disposal costs, because of the volume of material to be disposed of, will be tremendous. This conference brings together researchers from national laboratories, universities, and industry to present the scope of the problem, the present status of separation science, and to encourage new technological development

  5. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  6. Applications of simulation experiments in LMFBR core materials technology

    International Nuclear Information System (INIS)

    Appleby, W.K.

    1976-01-01

    The development of charged particle bombardment experiments to simulate neutron irradiation induced swelling in austenitic alloys is briefly described. The applications of these techniques in LMFBR core materials technology are discussed. It is shown that use of the techniques to study the behavior of cold-worked Type-316 was instrumental in demonstrating at an early date the need for advanced materials. The simulation techniques then were used to identify alloying elements which can markedly decrease swelling and thus a focused reactor irradiation program is now in place to allow the future use of a lower swelling alloy for LMFBR core components

  7. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  8. VZLUSAT-1: verification of new materials and technologies for space

    Science.gov (United States)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  9. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  10. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  11. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  12. Recent trends in physics of material science and technology

    CERN Document Server

    Shrivastava, Keshav; Akhtar, Jamil

    2015-01-01

    This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers  of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics . The book is divided into three  scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.

  13. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  14. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  15. The new IAEA reference material: IAEA-434 technologically enhanced naturally occurring radioactive materials (TENORM) in phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Shakhashiro, A., E-mail: A.Shakhashiro@iaea.or [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Sansone, U. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Wershofen, H. [Environmental Radioactivity, PTP, Braunschweig (Germany); Bollhoefer, A. [Environmental Radioactivity, Department of the Environment and Heritage, Darwin (Australia); Kim, C.K. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Kim, C.S. [Department of Environmental Radioactivity Assessment, Korea Institute of Nuclear Safety, Daejeon, Republic of Korea (Former collaborator) (Korea, Republic of); Kis-Benedek, G. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Korun, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Moune, M. [LNE-LNHB, Laboratoire National Henri Becquerel, Gif-sur-Yvette Cedex (France); Lee, S.H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Tarjan, S. [Central Radiological Laboratory, Hungarian Agricultural Authority, Budapest (Hungary); Al-Masri, M.S. [Atomic Energy Commission of Syria, Damascus (Syrian Arab Republic)

    2011-01-15

    A reliable determination of Technologically Enhanced Naturally Occurring Radioactive Materials in phosphogypsum is necessary to comply with radiation protection and environmental regulations. In this respect, a new phosphogypsum reference material was produced and certified to assist in the validation of analytical methods and the quality assurance of produced analytical results. This paper presents the sample preparation methodology, material homogeneity assessment, characterization campaign results and assignment of property values, and associated uncertainties. The reference values and associated uncertainties for Pb-210, Ra-226, Th-230, U-234 and U-238 were established based on consensus values calculated from analytical results reported by three National Metrology Institutes and five expert laboratories.

  16. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  17. A global renewable mix with proven technologies and common materials

    Science.gov (United States)

    Ballabrera, J.; Garcia-Olivares, A.; Garcia-Ladona, E.; Turiel, A.

    2012-04-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. Taking into account the availability of materials, the resulting mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that might be required for the proposed solution is obtained and compared with available reserves. While the proposed global alternative to fossil fuels seems technically feasible, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling system were implemented and rechargeable zinc-air batteries could not be developed. As much as 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, the availability of materials may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption.

  18. Photonic band gap materials: Technology, applications and challenges

    International Nuclear Information System (INIS)

    Johri, M.; Ahmed, Y.A.; Bezboruah, T.

    2006-05-01

    Last century has been the age of Artificial Materials. One material that stands out in this regard is the semiconductor. The revolution in electronic industry in the 20th century was made possible by the ability of semiconductors to microscopically manipulate the flow of electrons. Further advancement in the field made scientists suggest that the new millennium will be the age of photonics in which artificial materials will be synthesized to microscopically manipulate the flow of light. One of these will be Photonic Band Gap material (PBG). PBG are periodic dielectric structures that forbid propagation of electromagnetic waves in a certain frequency range. They are able to engineer most fundamental properties of electromagnetic waves such as the laws of refraction, diffraction, and emission of light from atoms. Such PBG material not only opens up variety of possible applications (in lasers, antennas, millimeter wave devices, efficient solar cells photo-catalytic processes, integrated optical communication etc.) but also give rise to new physics (cavity electrodynamics, localization, disorder, photon-number-state squeezing). Unlike electronic micro-cavity, optical waveguides in a PBG microchip can simultaneously conduct hundreds of wavelength channels of information in a three dimensional circuit path. In this article we have discussed some aspects of PBG materials and their unusual properties, which provided a foundation for novel practical applications ranging from clinical medicine to information technology. (author)

  19. System analysis for material control and accountancy technology

    International Nuclear Information System (INIS)

    Persiani, P.J.; Daly, T.A.; Bucher, R.G.; Rothman, A.B.; Cha, B.C.; Trevorrow, L.E.; Seefeldt, W.B.

    1987-01-01

    The systems analysis for material control and accountancy technology (SAMCAT) program involves a working group structured to ensure that direct operating measurements, accountancy experience, and knowledge of the processes and flows of nuclear material in the total US Department of Energy (DOE) complex of production fuel cycles would be the major bases for developing and implementing a plan of action. This working group consists of facility operators, DOE Office of Safeguards Security headquarters and field offices, and government laboratories. The program focus is to develop a system for decision support in validating the material control and accountancy (MC ampersand A) aspects of the masters safeguards and security agreements effectiveness and in evaluating proposed MC ampersand A upgrades. This paper is a status report on the current capabilities of the system

  20. Technology development of nuclear material safeguards for DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo.

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs

  1. Nuclear microbeam study of advanced materials for fusion reactor technology

    International Nuclear Information System (INIS)

    Alves, L.C.; Alves, E.; Grime, G.W.; Silva, M.F. da; Soares, J.C.

    1999-01-01

    The Oxford scanning proton microprobe was used to study SiC fibres, SiC/SiC ceramic composites and Be pebbles, which are some of the most important materials for fusion technology. For the SiC materials, although the results reveal a high degree of homogeneity and purity in the composition of the fibres, some grains containing heavy metals were detected in the composites. Rutherford backscattering analysis further allowed establishing that at least some of these grains are not on the surface of the material but rather distributed throughout the bulk of the SiC composites. The two different types of Be pebbles analysed also showed very different levels of contaminants. The information obtained with the microbeam analysis is confronted with the one resulting from the broad beam PIXE and RBS analysis

  2. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  3. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  4. Modern laser technologies used for cutting textile materials

    Science.gov (United States)

    Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan

    2006-02-01

    With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.

  5. A global renewable mix with proven technologies and common materials

    International Nuclear Information System (INIS)

    García-Olivares, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emili; Turiel, Antonio

    2012-01-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. The mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. The most adequate deployment areas for the power stations are studied, as well as the required space. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that may be required for the proposed solution is obtained and compared with available reserves. Overall, the proposed global alternative to fossil fuels seems technically feasible. However, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling systems were implemented and rechargeable zinc–air batteries would not be developed; 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, they may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption. - Highlights: ▶ A global renewable mix with proven energy technologies and common materials. ▶ Wind turbines, concentrating solar power, hydroelectricity and wave attenuators. ▶ Mix technically feasible. Lithium, nickel and platinum may limit vehicles fleet. ▶ Sixty per cent of copper reserves used in the mix and in societal electrification. ▶ Power cannot growth exponentially. Future “spaceship economy” scenario expected.

  6. Innovative Mechanical Engineering Technologies, Equipment and Materials-2013

    Science.gov (United States)

    Ilnaz Izailovich, Fayrushin; Nail Faikovich, Kashapov; Mahmut Mashutovich, Ganiev

    2014-12-01

    In the period from 25 to 27 September 2013 the city of Kazan hosted the International Scientific Conference "Innovative mechanical engineering technologies, equipment and materials - 2013" (IRTC "IMETEM - 2013"). The conference was held on the grounds of "Kazanskaya Yarmarka" (Kazan). The conference plenary meeting was held with the participation of the Republic of Tatarstan, breakout sessions, forum "Improving the competitiveness and efficiency of engineering enterprises in the WTO" and a number of round tables. Traditionally, the event was followed by the 13th International specialized exhibition "Engineering. Metalworking. Kazan ", in which were presented the development of innovative enterprises in the interests of the Russian Federation of Industry of Republic of Tatarstan, to support the "Foundation for Assistance to Small Innovative Enterprises in Science and Technology" and the 8th specialized exhibition "TechnoWelding". Kashapov Nail, D.Sc., professor (Kazan Federal University)

  7. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  8. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  9. NASA's Advanced TPS Materials and Technology Development: Multi-Functional Materials and Systems for Space Exploration

    Science.gov (United States)

    Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.

    2017-01-01

    NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy

  10. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  11. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.

    Science.gov (United States)

    Taormina, Gabriele; Sciancalepore, Corrado; Messori, Massimo; Bondioli, Federica

    2018-04-01

    The aim of this review is a faithful report of the panorama of solutions adopted to fabricate a component using vat photopolymerization (VP) processes. A general overview on additive manufacturing and on the different technologies available for polymers is given. A comparison between stereolithography and digital light processing is also presented, with attention to different aspects and to the advantages and limitations of both technologies. Afterward, a quick overview of the process parameters is given, with an emphasis on the necessities and the issues associated with the VP process. The materials are then explored, starting from base matrix materials to composites and nanocomposites, with attention to examples of applications and explanations of the main factors involved.

  12. Modern introductory physics

    CERN Document Server

    Holbrow, Charles H; Amato, Joseph C; Galvez, Enrique; Parks, M. Elizabeth

    2010-01-01

    Modern Introductory Physics, 2nd Edition, by Charles H. Holbrow, James N. Lloyd, Joseph C. Amato, Enrique Galvez, and Beth Parks, is a successful innovative text for teaching introductory college and university physics. It is thematically organized to emphasize the physics that answers the fundamental question: Why do we believe in atoms and their properties?  The book provides a sound introduction to basic physical concepts with particular attention to the nineteenth- and twentieth-century physics underlying our modern ideas of atoms and their structure.  After a review of basic Newtonian mechanics, the book discusses early physical evidence that matter is made of atoms.  With a simple model of the atom Newtonian mechanics can explain the ideal gas laws, temperature, and viscosity.  Basic concepts of electricity and magnetism are introduced along with a more complicated model of the atom to account for the observed electrical properties of atoms. The physics of waves---particularly light and x-rays---an...

  13. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  14. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  15. Liquid crystals. Oligomeric and polymeric materials for soft photonic technologies

    International Nuclear Information System (INIS)

    Coles, Marcus James

    2002-01-01

    The current pace of today's information technologies might lead the casual observer to believe that this is all new. However the reality is that, as with most things, this is really a long evolution of processes based on tried, tested and re-adapted techniques. This thesis represents 12 years of predominantly technology driven research and covers a whole range of characterising, evaluating and fabricating devices based on liquid crystalline systems. Firstly polymer liquid crystals are discussed with respect to the fabrication of a flexible substrate display based on standard printing techniques and this is shown to have improved display viewing properties over a standard polymer dispersed liquid crystal (PDLC) device. Following on from this work is presented that involves the production of regular grid arrays in isotropic polymers that are used as control structures in nematic liquid crystal systems. This progresses onto a now patented device that allows the production of robust ferroelectric devices based on PDLC technology. Whilst the development of production techniques is important for the advancement of devices it would not be possible to keep up the pace without continued research into the basic liquid crystalline systems. The final chapter reviews work currently under supervision of the author based on flexoelectric effects in symmetric bimesogens. These materials possess responses times of the order of ∼100μs with an effective optic axis switching angle that is linear with the applied field and can be in well in excess of 90 deg. (author)

  16. Material saving by means of CWR technology using optimization techniques

    Science.gov (United States)

    Pérez, Iñaki; Ambrosio, Cristina

    2017-10-01

    Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,..) in CWR do not appear in this case.

  17. Development of structural materials on the base of new technology

    International Nuclear Information System (INIS)

    Belov, A.F.; Anoshkin, N.F.

    1982-01-01

    Some results are considered and possibilities which discovered in development of structural materials connected with development of such new technological processes as skull melting of titanium alloys, granule metallurgy, hot isostatic, diffusion welding are estimated. The method of skull melting with remelted skull is developed. The method assures sufficient possibilities for dissolving of high-heat components of charge and obtaining homogeneous ingots of series of new alloys. Granule metallurgy based on crystallization of the metal with high rate in the form of small (up to 300 μkm) particles and subsequent consolidation of them into compact billet discoveres a wide possibilities of creation of new structural material with more high operation indexes. It is noted that developed processes of granule production, their treatment, compacting and thermal treatment of the billets assure production of metal of high quality, satisfied the strong requirements of present standards. The process of hot isostatic pressing at which the workable metal is subjected to through uniform pressure by compressed gas after heating or semultaneously with its heating up to the temperatures of working in gasostats is one of new technological processes. A certain experience of the HIP use for production of compact billets from granules for diffusion welding of the billets is accumulated. This process has a great possibilities for densification of shaped castings. Investigation and application of the diffusion welding represent combination of elements into details of complex form in vacuum at the temperatures low of melting point under effect of small pressures are investigated both in our country and abroad. Diffusion welding gives a wide possibilities in the development of materials with higher properties at the expence of production of products of large dimensions from thin elements with fine-grained structure as well as products with assigned gradient of chemical composition, structure

  18. Propagations of the AAPT New Faculty Workshop: A case study of the infusion of student-centered technological and pedagogical innovations in the introductory physics program at West Point

    Science.gov (United States)

    Sones, Bryndol

    2009-03-01

    Since 2002, the Department of Physics at West Point has been the fortunate recipient of yearly attendance at the AAPT New Faculty Workshop. This sustained involvement has contributed directly to enhancements in our two-semester introductory physics program. Two aspects of West Point's environment make our involvement with the workshop especially fruitful: our diverse students and our frequent faculty turn-over. We teach to over 1100 students with majors across the entire spectrum. The majority of our faculty is an active duty Army officer here for just three years. At West Point, we rely on the workshop as a wellspring for faculty development, technological innovation, and pedagogical refinement. In the past few years, we have incorporated aspects of peer instruction, activity-based learning, and tutorials for student discovery. On the technological side, we now have TabletPCs for faculty, rf response cards (TurningPoint), high speed video analysis (LoggerPro) projects, and video tutoring capabilities (Camtashia). Student achievement is measured through our traditional course evaluation tools as well as nationally recognized standardize tests. Results will are discussed in the presentation.

  19. International Conference on Materials Science and Technology (ICMST 2012)

    Science.gov (United States)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has

  20. Advances in Materials and System Technology for Portable Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  1. Materials technology for InSb MISFET applications

    International Nuclear Information System (INIS)

    Barth, W.; Chen, C.W.; Lile, D.L.; Junga, F.

    1989-01-01

    The narrow and direct bandgap of indium antimonide is frequently used to good advantage in detection of light in the infra-red region; however, to data little use has been made of the high mobilities associated with this material. Although its high intrinsic carrier concentration generally necessitates operation at cooled temperatures, higher speeds and the advantage of integrating other devices on-chip with the infrared detectors encourages the development of an active device technology on this semiconductor. Considering its small bandgap, the problems associated with good p-n junctions may favor the MISFET in this application. Surprisingly, little has been done toward this goal, though structures such as charge-coupled-devices, focal array detectors, and a few insulated gate FETs have been fabricated. In this paper the authors present the results of recent work toward the development of a fabrication technology for InSb MISFETs. Specifically, they have conducted a study of etchants, metal contacts, and dielectrics for application to mesa-structure, insulated gate field transistors

  2. Application of Telepresence Technologies to Nuclear Material Safeguards

    International Nuclear Information System (INIS)

    Wright, M.C.; Rome, J.A.

    1999-01-01

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications

  3. Excerpts from the introductory statement. IAEA Board of Governors. Vienna, 19 March 2001

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    In his introductory statement to the IAEA Board of Governors, the IAEA Director General gave an overview of the Agency's activities regarding technological issues in nuclear power and non-power applications; safety issues related to nuclear power plants and research reactors; decommissioning of nuclear facilities; safety of radiation sources; and marine transport of radioactive materials. Further in the document he gives a brief description of the Agency's activities in the field of nuclear verification; Agency's participation in a field mission to Kosovo on environmental assessment of the consequences of the use of depleted uranium in ammunition; safety standards discussions with ICAO

  4. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  5. Survey of Introductory Astrophysics Textbooks

    Science.gov (United States)

    Bruning, David

    Although Bruning has produced a series of textbook surveys for introductory astronomy for non science majors, the present survey is the first to examine introductory astrophysics books intended for astronomy majors. It provides information about 21 introductory astrophysics textbooks: nine broad topic texts, two on techniques, three on the Solar System, one on galaxies and cosmology, and six on stars. A set of seven tables indicates prices, page counts by topics, pedagogical features of the text, appendixes, and text Web sites to help instructors narrow the list of textbooks for closer inspection as they make adoption decisions.

  6. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  7. 16 CFR 502.101 - Introductory offers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Introductory offers. 502.101 Section 502.101... FAIR PACKAGING AND LABELING ACT Retail Sale Price Representations § 502.101 Introductory offers. (a) The term introductory offer means any printed matter consisting of the words “introductory offer” or...

  8. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  9. Review of the technology for solar gasification of carbonaceous materials

    International Nuclear Information System (INIS)

    Epstein, M.; Spiewak, I.; Funken, K.H.; Ortner, J.

    1994-01-01

    Research has demonstrated the feasibility of solar assisted gasification of carbonaceous materials to form synthesis gas (syngas). The potential feedstocks range from natural gas, residual oil, biomass, and oil-shale to coal. The expected advantages of such processing are yields of syngas with calorific values above those of the carbonaceous feedstocks, syngas quality suited to production of hydrogen, methanol or bulk Fischer-Tropsch fuels, and the ability to process low-grade and waste materials with essentially no emissions to atmosphere other than small amounts of CO 2 . The review provides some background on solar receiver concepts to reach the high temperatures needed for syngas production, the basic chemistry involved, covers applicable experiments that have been reported with solar inputs and with conventional heating, heat transfer processes, process and energy balances, and cost analysis. Approximately 80 references are cited. The authors present their views on the most promising approaches to solar-assisted gasification, the technology development required, and the ultimate benefits of such development and commercialization

  10. Plasma medicine: an introductory review

    Science.gov (United States)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  11. Fiscal 1997 report on the introductory study. Human behavior recognition evaluation technology; 1997 nendo sentan kenkyu hokokusho. Ningen kodo ninchi hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Importance of the human behavior technology was paid attention to to get true safety and comfortableness of life through adaptability of products/systems to all humans. In consideration of the social and technological background, the human behavior recognition evaluation technology avoids economic/social losses caused by accidents and troubles and also provides the safe life environment for living people including the aged. Further, the gist of the project was proposed to make it clear that it can give a course of making things from a viewpoint of development of products dealing with individuals (personal fit) and can give new added values and contribute to heightening of international competitiveness at the same time. Development is made of technology of dividing concrete behavior patterns into types and also accumulating them in usable forms at the time of product design and in emergency and of technology of measuring all the time information on human behaviors in daily life without restrictions and on site. Supporting technology is developed for making the most of behavior information of users for product design and in emergency. Effects of the spread are also estimated. 76 refs., 13 figs., 9 tabs.

  12. Teaching introductory physics a sourcebook

    CERN Document Server

    Swartz, Clifford E

    1996-01-01

    Introductory physics attracts a wide variety of students, with different backgrounds, levels of preparedness, and academic destinations. To many, the course is one of the most daunting in the science curriclum, full of arcane principles that are difficult to grasp. To others, it is one of the most highly anticipated -the first step on the path to the upper reaches of scientific inquiry. In their years as instructors and as editors of The Physics Teacher, Clifford E. Swartz and the late Thomas Miner developed and encountered many innovative and effective ways of introducing students to the fundamental principles of physics. Teaching Introductory Physics brings these strategies, insights and techniques to you in a unique, convenient volume. This is a reference and a tutorial book for teachers of an introductory physics course at any level. It has review articles on most of the topics of introductory physics, providing background information and suggestions about presentation and relative importance. Whether you...

  13. Using crowdsourcing technology for testing multilingual public health promotion materials.

    Science.gov (United States)

    Turner, Anne M; Kirchhoff, Katrin; Capurro, Daniel

    2012-06-04

    Effective communication of public health messages is a key strategy for health promotion by public health agencies. Creating effective health promotion materials requires careful message design and feedback from representatives of target populations. This is particularly true when the target audiences are hard to reach as limited English proficiency groups. Traditional methods of soliciting feedback--such as focus groups and convenience sample interviews--are expensive and time consuming. As a result, adequate feedback from target populations is often insufficient due to the time and resource constraints characteristic to public health. To describe a pilot study investigating the use of crowdsourcing technology as a method to gather rapid and relevant feedback on the design of health promotion messages for oral health. Our goal was to better describe the demographics of participants responding to a crowdsourcing survey and to test whether crowdsourcing could be used to gather feedback from English-speaking and Spanish-speaking participants in a short period of time and at relatively low costs. We developed health promotion materials on pediatric dental health issues in four different formats and in two languages (English and Spanish). We then designed an online survey to elicit feedback on format preferences and made it available in both languages via the Amazon Mechanical Turk crowdsourcing platform. We surveyed 236 native English-speaking and 163 native Spanish-speaking participants in less than 12 days, at a cost of US $374. Overall, Spanish-speaking participants originated from a wider distribution of countries than the overall Latino population in the United States. Most participants were in the 18- to 29-year age range and had some college or graduate education. Participants provided valuable input for the health promotion material design. Our results indicate that crowdsourcing can be an effective method for recruiting and gaining feedback from English

  14. Operation, analysis, and design of signalized intersections : a module for the introductory course in transportation engineering.

    Science.gov (United States)

    2014-02-01

    This report presents materials that can be used as the basis for a module on signalized intersections in the introductory : course in transportation engineering. The materials were developed based on studies of the work of students who took : this in...

  15. The African Experience. Volume I: Syllabus Lectures; Volume II: Bibliographic References; Volume IIIA: Introductory Essays; Volume IIIB: Introductory Essays.

    Science.gov (United States)

    Paden, John N.; Soja, Edward W.

    In response to demands for more and better teaching about Africa in American higher education, the US Office of Education requested that the Program of African Studies at Northwestern University generate a set of teaching materials which could be used in introductory undergraduate courses. Included in these volumes, these materials provide…

  16. Intuitive introductory statistics

    CERN Document Server

    Wolfe, Douglas A

    2017-01-01

    This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course. The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonp...

  17. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Science.gov (United States)

    2010-07-12

    ... Foreign-Trade Zones Board Grant of Authority For Subzone Status Materials Science Technology, Inc... Materials Science Technology, Inc., located in Conroe, Texas, (FTZ Docket 46-2009, filed October 27, 2009... Science Technology, Inc., located in Conroe, Texas (Subzone 265C), as described in the application and...

  18. Passive RF component technology materials, techniques, and applications

    CERN Document Server

    Wang, Guoan

    2012-01-01

    Focusing on novel materials and techniques, this pioneering volume provides you with a solid understanding of the design and fabrication of smart RF passive components. You find comprehensive details on LCP, metal materials, ferrite materials, nano materials, high aspect ratio enabled materials, green materials for RFID, and silicon micromachining techniques. Moreover, this practical book offers expert guidance on how to apply these materials and techniques to design a wide range of cutting-edge RF passive components, from MEMS switch based tunable passives and 3D passives, to metamaterial-bas

  19. Eco Issues in Bulk Materials Handling Technologies in Ports

    OpenAIRE

    Nenad Zrnic; Milos Dordevic; Branislav Dragovic; Srdan Bosnjak

    2011-01-01

    This paper deals with eco issues in bulk materials handling in ports. Solid, free-flowing materials are said to be in bulk. Bulk materials han-dling is very difficult, because it incorporates all the features of liquids, gasses and mass solids. Energy efficiency, dust emissions in nearby en-vironment, dust explosions, jamming, noise, handling of hazardous ma-terials and protection of materials from contamination are issues that will be considered in this paper. Here are also presented possibl...

  20. What Motivates Introductory Geology Students to Study for an Exam?

    Science.gov (United States)

    Lukes, Laura A.; McConnell, David A.

    2014-01-01

    There is a need to understand why some students succeed and persist in STEM fields and others do not. While numerous studies have focused on the positive results of using empirically validated teaching methods in introductory science, technology, engineering, and math (STEM) courses, little data has been collected about the student experience in…

  1. Assessing the Success of an Introductory Programming Course

    Science.gov (United States)

    Ford, Marilyn; Venema, Sven

    2010-01-01

    With universities having difficulty attracting students to study information technology (IT), the scores needed for entry into IT degrees have dropped markedly. IT schools are thus having to cope by adjusting their introductory courses to ensure that students will still learn what is expected but without negatively impacting on pass rates. This…

  2. Effects of Team Teaching on Students Performance in Introductory ...

    African Journals Online (AJOL)

    This pre-test post-test non randomized experimental study investigated the effects of team teaching on students' performance in Introductory Technology. A total 316 Junior Secondary School Two students were randomly selected from four schools in Akwa Ibom State for the study. Data for the study was collected using ...

  3. Green technology foresight of products and materials - some reflections and results from an ongoing Danish project

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Pedersen, Thomas Thoning; Falch, Morten

    2005-01-01

    The article presents some methodological and theoretical reflections and some preliminary results from a Danish Green Technology Foresight project about environmental friendly products and materials, where the environmental potentials and risks from three technology areas are analysed: nano- bio...

  4. Simulation of high fluence swelling behavior in technological materials

    International Nuclear Information System (INIS)

    Garner, F.A.; Powell, R.W.; Diamond, S.; Lauritzen, T.; Rowcliffe, A.F.; Sprague, J.A.; Keefer, D.

    1977-06-01

    The U.S. Breeder Reactor Program is employing charged particle irradiation experiments at accelerated displacement rates to simulate neutron-induced microstructural changes in materials of technological interest. Applications of the simulation technique range from the study of fundamental microstructural mechanisms to the development of predictions of the high fluence swelling behavior of candidate alloys for breeder reactor ducts and fuel cladding. An exact equivalence probably cannot be established between all facets of the microstructural evolution which occurs in the disparate charged-particle and neutron environments. To aid in the correlation of data developed in the two environments an assessment has been made of the factors influencing the simulation process. A series of intercorrelation programs and analysis activities have been conducted to identify and explore the relevant phenomena. The factors found to exert substantial influence on the correlation process fall into two categories, one which deals with those variables which are atypical of the neutron environment and one which deals with the additional factors which arise due to the large differences in displacement rate of the two irradiation environments. While the various simulation techniques have been invaluable in determining the basic mechanisms and parametric dependencies of swelling, the potential of these tools in the confident prediction of swelling at high neutron fluence has yet to be realized. The basic problem lies in the inability of the simulation technique to reproduce the early microstructural development in the period that precedes and encompasses the incubation of voids. The concepts of temperature shift and dose equivalency have also been found to be more complicated than previously imagined. Preconditioning of metals in a neutron environment prior to simulation testing is now being employed in order to provide more appropriate starting microstructures

  5. Material System Engineering for Advanced Electrocaloric Cooling Technology

    Science.gov (United States)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  6. Materials Testing: Why Don't Those Bats Break? Resources in Technology.

    Science.gov (United States)

    Jacobs, James A.

    1995-01-01

    Describes high-tech methods of materials testing and organizations that perform it. Suggests that materials testing is an ideal example of the integration of mathematics, science, and technology. (SK)

  7. Labatorials in introductory physics courses

    Science.gov (United States)

    Sobhanzadeh, Mandana; Kalman, Calvin S.; Thompson, R. I.

    2017-11-01

    Traditional lab sections in introductory physics courses at Mount Royal University were replaced by a new style of lab called ‘labatorials’ developed by the Physics Education Development Group at the University of Calgary. Using labatorials in introductory physics courses has lowered student anxiety and strengthened student engagement in lab sessions. Labatorials provide instant feedback to the students and instructors. Interviews with students who had completed Introductory Physics labatorials as well as the anonymous comments left by them showed that labatorials have improved student satisfaction. Students improved their understanding of concepts compared to students who had taken traditional labs in earlier years. Moreover a combination of labatorials and reflective writing can promote positive change in students’ epistemological beliefs.

  8. A Case-Based Curriculum for Introductory Geology

    Science.gov (United States)

    Goldsmith, David W.

    2011-01-01

    For the past 5 years I have been teaching my introductory geology class using a case-based method that promotes student engagement and inquiry. This article presents an explanation of how a case-based curriculum differs from a more traditional approach to the material. It also presents a statistical analysis of several years' worth of student…

  9. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  10. Biomimicry and the Materiality of Ecological Technology and Innovation

    NARCIS (Netherlands)

    Blok, V.

    2016-01-01

    In this paper, we reflect on the concept of nature that is presupposed in biomimetic approaches to technology and innovation. Because current practices of biomimicry presuppose a technological model of nature, it is questionable whether its claim of being a more ecosystem friendly approach to

  11. Hungarian situation of the technologically enhanced naturally occuring radioactive materials

    International Nuclear Information System (INIS)

    Juhasz, L.; Szerbin, P.; Czoch, I.

    2003-01-01

    Full text: In Hungary, the main goal is that the Hungarian regulations should meet with the EU Directive No. 96/29. For this aim, a surveying project has been launched in order to collect all relevant information about the Hungarian TENORM situation. This surveying programme covers a lot of data collection (work activities, disposal places, residue quantities) and radiological measurements on the TENORM site. The Hungarian situation of TENORM definitely differs from other countries in the aspect of occurrence forms of natural sources (or in the imported raw materials), in the quantities of exploitation, in the level of the radioactivity and in the applied technological processes. Firstly, those work activities have been choosen where the huge amount of residues have been produced. The other criteria is that the activity concentration in a great portion of the given residues is much higher than the average activity concentration of the typical Hungarian soil. After filtering and ranking, the following main activities enhanced the radioactivity level are left: uranium mining and milling, coal mining, coal firing in power plants, bauxite mining and aluminous earth production. At the uranium mining and milling area the uranium content of residues ranges from 20 to 70 g t -1 , and above those the dose rate is 0.4-10 μSv h -1 . The waste rock piles and heaps for leaching were restored and the remediation of tailings ponds is still under way. In the mountain Mecsek and on the territory from the highland Balaton to the mountain Vertes, the radioactivity level of the coals is 10-50 times higher than the worldwide average. The coal fired plants have piled up in the order of magnitude of 10 million tons of fly ash, bottom ash and slag in ponds around the plants. The radioactivity of U-238 series of ash and slag is in the range from 200 to 2000 Bq·kg -1 . The radionuclide concentrations of bauxite ores range from 200 to 300 Bq·kg -1 . At the refining factories, a lot of red

  12. On-line radiation teaching materials using IT technology

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi

    2005-01-01

    We developed the on-line radiation teaching materials using the Internet, in order to provide the teaching support materials of atomic power and radiation educations in on-school study, as well as to create the complementary study system in off-school study. The themes of teaching materials were selected from requests by teachers. In the case of an elementary school, the teaching material 'an environmental problem and atomic power' was created as the aggregate of each content for study without boundary between subjects. The teaching material 'medical treatment and radiation' was created for junior high school students to raise the individual knowledge. In the case of a high school, the teaching material nucleus and radiation' was prepared to supplement the physical study of students. The on-line teaching materials were tried to 300 junior high school and high school students, 68% of students answered that the teaching material is effective to understand atomic power and radiation, though 17% answered they were not effective. Although there are problems to prepare IT learning equipments and learning follow-up system in the material, it is suggested that the on-line teaching materials will provide the novel learning system including debates for the study. This method has no limitation of time and place. (author)

  13. The socio-materiality of learning practices and implications for the field of learning technology

    Directory of Open Access Journals (Sweden)

    Aditya Johri

    2011-12-01

    Full Text Available Although the use of digital information technologies in education has becomecommonplace, there are few, if any, central guiding frameworks or theories thatexplicate the relationship between technology and learning practices. In thispaper, I argue that such a theoretical framework can assist scholars and practitionersalike by working as a conduit to study and design learning technologies.Towards this goal, I propose socio-materiality as a key theoretical construct withvaluable insights and implications for the field of learning technology. Sociomaterialityhelps balance the disproportionate attention given to either the socialimplications of technology use or the material aspects of technology design.Furthermore, I forward ‘socio-material bricolage' as a useful analytical frameworkto examine and design technology-infused learning environments. I illustratethe value of the framework by applying it to three case studies of formaland informal technology-based learning.

  14. The Effect of Instructional Technology and Material Design Course to Teacher Candidates' Gaining of Technological Pedagogical Content Knowledge Competencies

    Science.gov (United States)

    Tozkoparam, Süleyman Burak; Kiliç, Muhammet Emre; Usta, Ertugrul

    2015-01-01

    The aim of this study is to determine Technological Pedagogical Content Knowledge (TPACK) Competencies of teacher candidates in Turkish Teaching department of Mevlana (Rumi) University and the effect of Instructional Technology and Material Design (ITMD) Course on TPACK. The study is a study of quantitative type and single-group pretest-posttest…

  15. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  16. Information Technology and Transcription of Reading Materials for the Visually Impaired Persons in Nigeria

    Science.gov (United States)

    Nkiko, Christopher; Atinmo, Morayo I.; Michael-Onuoha, Happiness Chijioke; Ilogho, Julie E.; Fagbohun, Michael O.; Ifeakachuku, Osinulu; Adetomiwa, Basiru; Usman, Kazeem Omeiza

    2018-01-01

    Studies have shown inadequate reading materials for the visually impaired in Nigeria. Information technology has greatly advanced the provision of information to the visually impaired in other industrialized climes. This study investigated the extent of application of information technology to the transcription of reading materials for the…

  17. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  18. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  19. Physics of radiation damage and radiation materials technology

    International Nuclear Information System (INIS)

    1994-01-01

    Materials of the meeting ''Nuclear power in Ukraine'' are published in the present issue. The meeting was held i Alushta, 28 September - 3 October 1993. Important issues of nuclear power development in Ukraine are considered, including creation of the nuclear fuel cycle, nuclear safety and economics. Part of materials are devoted to discussing projects of advanced reactors

  20. Pathogenetics. An introductory review

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2015-07-27

    development/progres sion and pathogenesis of genetic defects. It comprises the study of mutagens or factors capable of affecting the structural integrity of the genetic material leading to mutational changes that, in the majority of ...

  1. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  2. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  3. Basic research for nuclear energy. y Study on the nuclear materials technology

    International Nuclear Information System (INIS)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs

  4. Proceedings of the third international conference on recent advances in material processing technology: book of abstracts

    International Nuclear Information System (INIS)

    Mannan, S.L.; Manisekar, K.; Lenin, N.; Ramanan, P.

    2013-01-01

    The objective of the conference was to disseminate information on the latest trends and global research in manufacturing and material processing techniques. This conference provided a forum to share information on technologies, concepts, and techniques to improve the quality of the products and productivity. The deliberations at the conference provided discussion on Casting Technology, Forming processes, Manufacturing Techniques, Simulation and Modeling Techniques, Tools and Precision Engineering, Condition Monitoring, Composites, Optimization Techniques, Surface Engineering, Welding Technology, Nano Technology, Recycle Technology, Fuel Cell Technology, Sensors and Robotics, Materials for Energy Engineering, Rapid Protyping, Eco-Manufacturing Systems, Functionally Graded Materials, Non-Destructive Evaluation, Materials Development and Evaluation etc. Articles relevant to INIS are indexed separately

  5. Semantics in Teaching Introductory Physics.

    Science.gov (United States)

    Williams, H. Thomas

    1999-01-01

    Contends that the large vocabulary used for precise purposes in physics contains many words that have related but potentially confusing meanings in everyday usage. Analyzes the treatment of Newton's Laws of Motion in several well-known introductory textbooks for evidence of inconsistent language use. Makes teaching suggestions. (Contains 11…

  6. MRI Experiments for Introductory Physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-01-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…

  7. Fourier Analysis in Introductory Physics

    Science.gov (United States)

    Huggins, Elisha

    2007-01-01

    In an after-dinner talk at the fall 2005 meeting of the New England chapter of the AAPT, Professor Robert Arns drew an analogy between classical physics and Classic Coke. To generations of physics teachers and textbook writers, classical physics was the real thing. Modern physics, which in introductory textbooks "appears in one or more extra…

  8. Failure Rates in Introductory Programming

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2007-01-01

    It is a common conception that CS1 is a very difficult course and that failure rates are high. However, until now there has only been anecdotal evidence for this claim. This article reports on a survey among institutions around the world regarding failure rates in introductory programming courses...... solid proof of the actual failure and pass rates of CS1....

  9. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Costs and Benefits of Vendor Sponsored Learning Materials in Information Technology Education

    Science.gov (United States)

    Hua, David M.

    2013-01-01

    The demand for qualified information technology professionals remains high despite downturns in the economy. It is imperative to provide students with a curriculum that provides a broad foundation in information technology knowledge, skills, and abilities. Students also need access to specialized technologies and learning materials to develop the…

  11. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  12. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    Science.gov (United States)

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  13. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  14. 50th Anniversary Celebration: 46th Sagamore Army Materials Research Conference on Advances and Needs in Multi-Spectral Transparent Materials Technology

    National Research Council Canada - National Science Library

    Sands, James M; McCauley, James W

    2008-01-01

    ... technology issues of critical importance to the U.S. Army community. The 46th Sagamore Army Materials Research Conference continued this tradition with a focus on Advances and Needs in Multi-Spectral Transparent Materials Technology...

  15. Introductory quantum mechanics for applied nanotechnology

    CERN Document Server

    Kim, Dae Mann

    2015-01-01

    This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

  16. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  17. Recycled Materials in European Highway Environments : Uses, Technologies, and Policies

    Science.gov (United States)

    2000-10-01

    The objective of this scanning tour was to review and document innovative policies, programs, and techniques that promote the use of recycled materials in the highway environment. The U.S. delegation met with more than 100 representatives from transp...

  18. Practices and technologies in hazardous material transportation and security.

    Science.gov (United States)

    2011-11-23

    "The University of Arkansas (UA) team is responsible for investigating practices of : hazardous material transportation in the private sector. The UA team is a subcontractor : to the project Petrochemical Transportation Security, Development of...

  19. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  20. MaTech - the BMFT ''new materials'' materials research program - 1994 annual report about new materials for innovative information technology, energy technology, traffic engineering, medical engineering and production engineering applications, and about general materials research and new fields

    International Nuclear Information System (INIS)

    Lillack, D.; Gilbert, I.; Runte, S.

    1995-01-01

    This annual report gives a survey of projects supported within the framework of the Matfo and Ma-Tech programs. These projects focus on research into materials for innovative: 1. information technology, 2. energy technology, 3. traffic engineering, 4. medical engineering, and 5. production engineering applications and on 6. general materials research and new fields. The descriptions of individual projects indicate project goals and work schedules, names of important sub-contractors, and total costs and the funds contributed by BMFT. Information added in an annex includes inter alia a list of publications, lectures, contracts, or patents resulting from project activities in the year 1994. (MM) [de

  1. Materials Technology Support for Radioisotope Power Systems Final Report

    International Nuclear Information System (INIS)

    Kramer, Daniel P.; Barklay, Chadwick D.

    2008-01-01

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules

  2. [Research and application of supply catalog and encoding identification technology applied to medical consumable materials management].

    Science.gov (United States)

    Luo, Jingna; Han, Wei; Zhang, Enke; Li, Shuaishuai

    2013-01-01

    In this article, medical consumable materials supply catalog technology was introduced through the principle, method and application of topic studies, at the same time bar code tags to tag and identify medical consumable materials were introduced. These two techniques established the correspondence between the real supplies logistics and information flow system, provided foundation for medical supplies all process tracking and traceability management. Supply catalog and encoding identification technology provide a new solution for the effective management of medical consumable materials.

  3. Using computer technology to identify the appropriate radioactive materials packaging

    International Nuclear Information System (INIS)

    Driscoll, K.L.; Conan, M.R.

    1989-01-01

    The Radioactive Materials Packaging (RAMPAC) database is designed to store and retrieve information on all non-classified packages certified for the transport of radioactive materials within the boundaries of the US. The information in RAMPAC is publicly available, and the database has been designed so that individuals without programming experience can search for and retrieve information using a menu-driven system. RAMPAC currently contains information on over 650 radioactive material shipping packages. Information is gathered from the US Department of Energy (DOE), the US Department of transportation (DOT), and the US Nuclear Regulatory Commission (NRC). RAMPAC is the only tool available to radioactive material shippers that contains and reports packaging information from all three Federal Agencies. The DOT information includes package listings from Canada, France, Germany, Great Britain, and Japan, which have DOT revalidations for their certificates of competent authority and are authorized for use within the US for import and export shipments only. RAMPAC was originally developed in 1981 by DOE as a research and development tool. In recent years, however, RAMPAC has proven to be highly useful to operational personnel. As packages become obsolete or materials to be transported change, shippers of radioactive materials must be able to determine if alternative packages exist before designing new packages. RAMPAC is designed to minimize the time required to make this determination, thus assisting the operational community in meeting their goals

  4. Strategic materials: Technologies to reduce US import vulnerability

    Science.gov (United States)

    1985-05-01

    Three nations, South Africa, Zaire, and the U.S.S.R., account for over half of the world's production of chromium, cobalt, manganese, and platinum group metals. These metals are essential in the production of high-temperature alloys, steel and stainless steel, industrial and automotive catalysts, electronics, and other applications that are critical to the U.S. economy and the national defense. With minor exceptions, there is no domestic mine production of any of the four metals. Government actions to assure secure supplies of metals critical to the United States have been limited largely to reliance on the national defense stockpile to ensure the availability of materials required for national defense in time of war, leaving it to the free market to provide a diversity of suppliers for the industrial economy. An overall strategy to reduce U.S. reliance on uncertain sources of supply of strategic materials should be based on a combination of three technical approaches: increase the diversity of the world supply of strategic metals through the development of promising deposits; decrease demand for strategic metals through the implementation of improved manufacturing processes and recycling of strategic materials from scrap and waste; and identify and test substitute materials for current applications and develop new materials with reduced strategic material content for future applications.

  5. Development of technologies for national control of and accountancy for nuclear materials

    International Nuclear Information System (INIS)

    Choi, Young Myung; Kwack, E. H.; Kim, B. K.

    2002-03-01

    The aim of this project is to establish a rigid foundation of national safeguards and to develop the new technologies for the nuclear control. This project is composed of four different technologies; 1. Monitoring technology for nuclear materials, 2. Detection technology for a single particle, 3. Safeguards information management technology, 4. Physical protection technology. Various studies such as a remote verification system for CANDU spent fuel in dry storage canister, a spent fuel verification system using an optical fiber scintillator, and development of softwares for safeguards and physical protection were performed in the frist phase('99-'01). As a result of this research, it has been identified that the developed technologies could be a crucial means of the control for the nuclear material and facilities related. We are planing to accomplish a steady national safeguard system in the second phase('02-'06). This research will help to elevate the transparency and credibility in national nuclear activities by improving the relative technologies

  6. Teaching Introductory Programming

    OpenAIRE

    Ljubomir Jerinic

    2014-01-01

    From the educational point of view, learning by mistake could be influential teaching method, especially for teaching/learning Computer Science (CS), and/or Information Technologies (IT). As learning programming is very difficult and hard task, perhaps even more difficult and extremely demanding job to teach novices how to make correct computers programs. The concept of design pedagogical patterns has received surprisingly little attention so far from the researchers in the field of pedagogy/...

  7. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  8. Study on structural materials used in thermonuclear fusion technology

    International Nuclear Information System (INIS)

    Billa, R.; Amaral, D.

    1995-01-01

    The main problem related to the construction of a thermonuclear fusion reactor is the absence of suitable materials for the process, concerning to temperature limits, heat flux and life time. The first wall is the most critical part of the structure, being submitted to radiation effects, ionic corrosion and coolant, besides thermal fatigue and tension produced by cyclical burning. The AISI 316(17-12SPH) stainless steel is used as structural material, which has a wide known database. This work proposes an alternative material study to be used in the future thermonuclear fusion reactors. As a option a study on the utilization of Cr-Mn(Fe-17 Mn-10 Cr-0,1 C) steels and their alloy variations is presented

  9. Materials technology assessment for a 1050 K Stirling space engine design

    Science.gov (United States)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  10. Utilizing Technology in Manual Material Handling and Safe Lifting.

    Science.gov (United States)

    Snyder, Mick

    2016-02-01

    There is great potential to decrease injuries with the use of these new technologies, especially musculoskeletal disorders and repetitive task-related injuries. Initial costs can be considerable for some of these units, but they are much cheaper than a back surgery. As with all technology, the first designs cost a small fortune, but as we are seeing even now, the pricing is decreasing and the quality is increasing for these devices. In 30 years, we might all have flying cars like "Back to the Future II" predicted we would in 2015 or be able to figure out a tricorder like on "Star Trek"! For more information on exoskeletons, exoskeletonreport.com is a great resource.

  11. Liquid crystals. Oligomeric and polymeric materials for soft photonic technologies

    CERN Document Server

    Coles, M J

    2002-01-01

    The current pace of today's information technologies might lead the casual observer to believe that this is all new. However the reality is that, as with most things, this is really a long evolution of processes based on tried, tested and re-adapted techniques. This thesis represents 12 years of predominantly technology driven research and covers a whole range of characterising, evaluating and fabricating devices based on liquid crystalline systems. Firstly polymer liquid crystals are discussed with respect to the fabrication of a flexible substrate display based on standard printing techniques and this is shown to have improved display viewing properties over a standard polymer dispersed liquid crystal (PDLC) device. Following on from this work is presented that involves the production of regular grid arrays in isotropic polymers that are used as control structures in nematic liquid crystal systems. This progresses onto a now patented device that allows the production of robust ferroelectric devices based on...

  12. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers…

  14. Participating Technologies? Nonhuman Others and Socio-Material Assemblages

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina

    2015-01-01

    This talk takes up the conversation analytical understanding of participation and combines it with the idea of technical agency developed in actor-network theory (Latour 2005). Rather than depicting nonhumans as objects of human actions, actor-network theory understands actions as socio-material ...

  15. Nuclear Technology Series. Course 21: Radioactive Materials Disposal and Management.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. CHOICE OF MATERIAL AND MANUFACTURING TECHNOLOGY OF CASTING

    Directory of Open Access Journals (Sweden)

    L. I. Kupriyanova

    2016-01-01

    Full Text Available As a result of the carried out work abundant type of steel was chosen for casting production of asterisk of the excavator «Kamatsu». This type of steel is widely used as the wearproof steel working in the conditions of abrasive and shock – abrasive wear. Mathematical modeling of process of filling and hardening of casting was done and it confirmed a choice of the technology to produce casting without faulty parts.

  17. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  18. U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M.C. MILLER

    2013-11-01

    Full Text Available The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

  19. A Theory Based Introductory Programming Course

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

    1999-01-01

    This paper presents an introductory programming course designed to teach programming as an intellectual activity. The course emphasizes understandable concepts which can be useful in designing programs, while the oddities of today's technology are considered of secondary importance. An important...... goal is to fight the trial-and-error approach to programming which is a result of the students battles with horribly designed and documented systems and languages prior to their studies at university. Instead, the authors strive for giving the students a good experience of programming as a systematic......, intellectual activity where the solution of a programming problem can be described in an understandable way. The approach is illustrated by an example which is a commented solution of a problem posed to the students in the course....

  20. Chemistry and technology of radiation processed composite materials

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting, e.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene. (author)

  1. Agaves as a raw material: recent technologies and applications.

    Science.gov (United States)

    Narváez-Zapata, J A; Sánchez-Teyer, L F

    2009-01-01

    Agave plants are a valuable source of raw material due to its fibrous and complex sugar content of their leaves and core, and their bagasse waste can be use for several aims. This plant genus belongs to the Agavaceae family and until now more than 200 species have been described. A large number of Agave species are currently used as raw material in several biotechnological processes. This review shows the reported applications and patents on fields like alcoholic brewages with special reference to Tequila and Mezcal, the isolation and use of compounds such as saponins and agave fructans, and their potential biotechnological application on several human demands. The process to obtain fibers and cellulose, stock feeds, and several miscellaneous extractives are also reviewed. Some possibilities and problems of cultivation are discussed.

  2. CAS Introductory Course in Italy

    CERN Multimedia

    2008-01-01

    The CERN Accelerator School’s introductory course is a great success. This year the CERN Accelerator School held its "Introduction to Accelerator Physics" course in Frascati, Italy, from 2-14 November in collaboration with the University of Rome "La Sapienza" and the INFN Frascati National Laboratory. The Introductory level course is particularly important since, for the majority of participants, it is the first opportunity to discover the various aspects of accelerator physics. For this school the programme had been significantly revised in order to take into account the new trends currently being developed in the field, thus putting more emphasis on linacs, synchrotron light sources and free-electron lasers. The school was a resounding success with 115 participants of more than 23 nationalities. Feedback from the students praised the expertise of the lecturers, the high standard of the lectures as well as the excellent organizati...

  3. Technology and equipment for processing diamond materials of modern electronics

    Directory of Open Access Journals (Sweden)

    Mityagin A. Yu.

    2009-02-01

    Full Text Available The methods of selection and sorting of diamonds according to their physical properties by modern physical methods of the analysis are developed, as well as the technologies of precision laser cutting of diamonds, their processing on a basis of thermochemical reactions in gas environment. The experimental installation for polishing and grinding of diamond plates, installation for slicing, installation for plasma-chemical processing are created. The techniques of surface roughness measurement of the processed plates and control of roughness parameters are developed. Some experimental results are given.

  4. Proceedings of the national conference on critical and strategic materials for advanced technologies

    International Nuclear Information System (INIS)

    2017-01-01

    The conference is totally devoted to all aspects of critical and strategic materials. The overall objectives of the symposium are to discuss: a) the key and enabling role of critical and strategic materials in advanced technologies; b) a sustainable supply and utilization of these materials; c) to bring into focus cross-cutting research and educational needs and scientific/technological grand challenges associated with the sustainable extraction, recovery, recycling, reuse, substitution and purification of critical materials and d) to communicate the research needs in this field to the scientists, technologists and government. Papers relevant to INIS are indexed separately

  5. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  6. Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes.

    Science.gov (United States)

    Agarwal, Tarun Kumar; Soree, Bart; Radu, Iuliana; Raghavan, Praveen; Iannaccone, Giuseppe; Fiori, Gianluca; Dehaene, Wim; Heyns, Marc

    2017-07-10

    Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore's alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V DD ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.

  7. Introductory analysis a deeper view of calculus

    CERN Document Server

    Bagby, Richard J

    2000-01-01

    Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students* A thorough concentration of basic topics of calculus* Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use* Covers natural logarithms and exponential functions* Provides the computational techniques often encountered in basic calculus

  8. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  9. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  10. The Development of a Skills Standard for Hazardous Materials Management Technology Technicians.

    Science.gov (United States)

    Johnson, James; Bear, Robert L.

    1995-01-01

    A multifaceted program, Goals 2000: Educate America," has as one of its top priorities the development of skills standards for certain key occupations. This articles examines the development of standards for Hazardous Materials Management Technology technicians. (LZ)

  11. Mining Pribram in science and technology. Proceedings of Session U - Mineral raw materials treatment

    International Nuclear Information System (INIS)

    Tomasek, J.; Vetejska, K.

    1987-01-01

    The proceedings of session ''Mineral raw materials treatment'' contain 27 papers of which only one deals with the application of nuclear technology, namely, the effect of fast electrons on the magnetic properties of the polymetallic Rudniany ore. (J.B.)

  12. Technologies of bearings systems production from composite materials by polyester resin injection into the closed mold

    Directory of Open Access Journals (Sweden)

    Аnatoliy M. Turenko

    2014-12-01

    Full Text Available An analysis of modern technologies for manufacturing components and bearing systems made of composite materials has been conducted. These technologies are based on the polyester resin injection method and do not require high financial costs in manufacturing. The proposed method, due to the low cost of tooling, is convenient to produce a wide range of items made of composite materials, both in large-scale and single-piece production. Composite materials are intensively used in automotive industry, especially for motor racing vehicles’ parts. These technologies allow to solve the problem of creating ultra-light assemblies for modern car bodies, energy-absorbing passive safety elements and other high-loaded parts. They provide better strength and weight characteristics and better specific energy-output ratio of passive safety elements, as compared to conventional materials (metals and plastics. Considering the above, the most appropriate technology for the automotive industry has been assessed with that choice substantiation.

  13. Automative Technology Objectives [and] Automotive Technology: Basic Textbooks and Instructional Materials. Career Education.

    Science.gov (United States)

    Dependents Schools (DOD), Washington, DC.

    This manual provides program objectives for instructors teaching automotive technology courses in junior and senior high Department of Defense Dependents Schools. The manual begins with a description of the automotive technology courses offered in the Dependents Schools, and a list of instructor expectations. Following is the main part of the…

  14. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  15. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  16. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  17. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  18. Vitrification of ion exchange materials. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  19. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  20. Excerpts from the introductory statement. IAEA Board of Governors. Vienna, 18 March 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    Excerpts are given from the Introductory Statement to the Board of Governors by the IAEA Director General Dr. Mohamed ElBaradei. Major topics covered in his introductory remarks include: protection against terrorism, nuclear technology, water resource management, application of sterile insect technique, human health, nuclear power, radioactive waste management, management of nuclear knowledge, nuclear safety, safety of radioactive sources, safeguards agreements and additional protocols, conceptual framework for integrated safeguards, Democratic People's Republic of Korea, and Iraq

  1. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  2. Applying commercial robotic technology to radioactive material processing

    International Nuclear Information System (INIS)

    Grasz, E.L.; Sievers, R.H. Jr.

    1990-11-01

    The development of robotic systems for glove box process automation is motivated by the need to reduce operator radiation dosage, minimize the generation of process waste, and to improve the security of nuclear materials. Commercial robotic systems are available with the required capabilities but are not compatible with a glove box environment. Alpha radiation, concentrated dust, a dry atmosphere and restricted work space result in the need for unique adaptations to commercial robotics. Implementation of these adaptations to commercial robotics require performance trade-offs. A design and development effort has been initiated to evaluate the feasibility of using a commercial overhead gantry robot for glove box processing. This paper will present the initial results and observations for this development effort. 1 ref

  3. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  4. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  5. Teacher design knowledge and beliefs for technology enhanced learning materials in early literacy: Four portraits

    NARCIS (Netherlands)

    Boschman, F.; McKenney, S.; Pieters, J.M.; Voogt, J.

    2015-01-01

    Teacher engagement in the design of technology-rich learning material is beneficial to teacher learning and may create a sense of ownership, both of which are conducive to bringing about innovation with technology. During collaborative design, teachers draw on various types of knowledge and beliefs:

  6. Industrial benefits and future expectations in materials and processes resulting from space technology

    Science.gov (United States)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  7. Radiation treatment of materials - elaboration bases of radiation technology; Obrobka radiacyjna materialow - zasady opracowywania technologii

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P.P. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The basic rules in design of radiation technologies have been presented and discussed. The recommendations for achieving of assigned goal in respect of obliged regulations have been done and explained on the example of radiation technology of adhesive materials and glue production.

  8. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  9. Initial ACTR retrieval technology evaluation test material recommendations

    International Nuclear Information System (INIS)

    Powell, M.R.

    1996-04-01

    Millions of gallons of radiaoctive waste are contained in underground storage tanks at Hanford (SE Washington). Techniques for retrieving much of this waste from the storage tanks have been developed. Current baseline approach is to use sluice jets for single-shell tanks and mixer pumps for double-shell tanks. The Acquire Commercial Technology for Retrieval (ACTR) effort was initiated to identify potential improvements in or alternatives to the baseline waste retrieval methods. Communications with a variety of vendors are underway to identify improved methods that can be implemented at Hanford with little or no additional development. Commercially available retrieval methods will be evaluated by a combination of testing and system-level cost estimation. Current progress toward developing waste simulants for testing ACTR candidate methods is reported; the simulants are designed to model 4 different types of tank waste. Simulant recipes are given for wet sludge, hardpan/dried sludge,hard saltcake, and soft saltcake. Comparisons of the waste and simulant properties are documented in this report

  10. The technology development for surveillance test of RPV materials 2

    International Nuclear Information System (INIS)

    Chang, Kee Ok; Lee, Sam Lai; Kim, Byoung Chul; Choi, Sun Pil; Choi, Kwen Jai

    1998-12-01

    Irradiation-induced changes in mechanical properties and magnetic parameters were measured and compared to explore possible correlations for Mn-Mo-Ni low alloy steel surveillance specimens which were irradiated to a neutron fluence of 2.4 x 10 1 9n/cm 2 (E≥1.0 MeV) in a typical pressurized water reactor environment at about 288 deg C. For mechanical property parameters, microvickers hardness, tensile and Charpy impact test were performed and Barkhausen Noise(BN) amplitude, coercivity, maximum induction were measured for magnetic parameters, respectively. Results of mechanical property measurements showed an increase in yield and tensil strength, microvickers hardness 41J indexed RT NDT and a decrease in upper shelf energy irrespective of base and weld metals. In the case of magnetic measurements, it is found that magnetic remanence, BN amplitude, BN energy have dropped significantly but coercivity has increased rapidly after irradiation. For isothermally heat treated condition of irradiated specimen, BN energy has increased while Vickers microhardness has decreased. Results of BNE and Vickers microhardness are reversed to the results on irradiated condition. All these consistent changes in magnetic parameter and Vickers microhardness measurement, which are thought to be resulted from the interaction between irradiation-induced defects and dislocation, and magnetic domain, respectively, show a possibility that magnetic measurement may be used to the evaluation of material degradation and recovery due to neutron irradiation and heat treatment, respectively, if a relevant large database is prepared. (author). 49 refs., 7 tabs., 23 figs

  11. IAEA programme on nuclear fuel cycle and materials technologies - 2009

    International Nuclear Information System (INIS)

    Killeen, J.

    2009-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) Delayed Hydride Cracking (DHC); 2) Structural Materials Radiation Effects (SMoRE); 3) Water Chemistry (FUWAC) and 4) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel assembly damage that did not result in breach of the fuel rod cladding, such as assembly bow or crud deposition an the experience with these unexpected fuel issues shows that they can seriously affect plant operations, and it is clear that concerns about reliability in this area are of similar importance today as fuel rod failures, at least for LWR fuel are discussed. Detection, examination and analysis of fuel failures and description of failures and mitigation measures as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications, including extraction, forming, properties and irradiation experience are presented

  12. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  13. Supercritical fluid technology in materials science and engineering: syntheses, properties, and applications

    National Research Council Canada - National Science Library

    Sun, Ya-Ping

    2002-01-01

    ... and polymer preparations and as alternative solvent systems for materials processing. In fact, materials-related applications have emerged as a new frontier in the development of supercritical fluid technology. I hope that this book will be a timely contribution to this emerging research field by serving at least two purposes. One is to provide intere...

  14. Technology development in materials working for nuclear sector and its consequences for the Brazilian market

    International Nuclear Information System (INIS)

    Volta, A.R.

    1992-01-01

    The technology transfer model adopted in materials development for Brazilian nuclear sector is described. Materials are very important for the industrial development and the National nuclear program has contributed with others areas, for example, metallurgical, siderurgical, equipment sectors, etc. Grafenrheinfeld Power Plant is used like reference plant for Angra-1, a Brazilian nuclear power plant. (M.V.M.)

  15. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  16. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  17. Solid state NMR studies of materials for energy technology

    Science.gov (United States)

    Nambukara Kodiweera Arachchilage, Chandana K.

    Presented in this dissertation are NMR investigations of the dynamical and structural properties of materials for energy conversion and storage devices. 1H and 2H NMR was used to study water and methanol transportation in sulfonated poly(arylene ether ketone) based membranes for direct methanol fuel cells (DMFC). These results are presented in chapter 3. The amount of liquid in the membrane and ion exchange capacity (IEC) are two main factors that govern the dynamics in these membranes. Water and methanol diffusion coefficients also are comparable. Chapters 4 and 5 are concerned with 31P and 1H NMR in phosphoric acid doped PBI membranes (para-PBI and 2OH-PBI) as well as PBI membranes containing ionic liquids (H3PO4/PMIH2PO4/PBI). These membranes are designed for higher-temperature fuel cell operation. In general, stronger short and long range interactions were observed in the 2OH-PBI matrix, yielding reduced proton transport compared to that of para-PBI. In the case of H3PO4/PMIH2PO 4/PBI, both conductivity and diffusion are higher for the sample with molar ratio 2/4/1. Finally, chapter 6 is devoted to the 31P NMR MAS study of phosphorus-containing structural groups on the surfaces of micro/mesoporous activated carbons. Two spectral features were observed and the narrow feature identifies surface phosphates while the broad component identifies heterogeneous subsurface phosphorus environments including phosphate and more complex structure multiple P-C, P-N and P=N bonds.

  18. Technological project of serpentine raw material milling from Dobšiná heaps

    Directory of Open Access Journals (Sweden)

    Alena Pietriková

    2005-11-01

    Full Text Available Serpentine heaps in the surrounding of Dobšiná are an old ecological problem of the city and at the same time a suitable material for the production of MgCl2 and SiO2. The technology of the production is based on the chemical processing of the raw material, which is preceded by the raw material preparation comprising of the mechanical and hydraulic sorting, milling and the magnetic separation operations.

  19. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY...AFRL-AFOSR-JP-TR-2016-0059 Optical material researches for frontier optical ceramics and visible fiber laser technologies Yasushi Fujimoto Osaka...07-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Optical material researches for frontier

  20. Development of a new bonding material and its trial application to accelerator technology

    International Nuclear Information System (INIS)

    Tanaka, Yasuhito; Yamano, Kiyoshi; Saito, Kenji

    2001-01-01

    We have succeeded to develop a new bonding material for new television technology, which has a very low outgas property. This bonding material has been tested and confirmed the excellent sealing or outgas property in various institutes. We have tried it to use as a vacuum sealant against the super-leaking in He-II. In this report, we will present the motivation of the bonding material development, and the result of the application to cryogenics. (author)

  1. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    International Nuclear Information System (INIS)

    Bakalyarov, A.M.; Karetnikov, M.D.; Kozlov, K.N.; Lebedev, V.I.; Meleshko, E.A.; Obinyakov, B.A.; Ostashev, I.E.; Tupikin, N.A.; Yakovlev, G.V.

    2007-01-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed

  2. Innovative Technological Materials Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling

    CERN Document Server

    Skrzypek, Jacek J

    2010-01-01

    This book provides at first ideas on the answers that neutrons and Synchrotron Radiation could give in innovative materials science and technology. In particular, non-conventional, unusual or innovative neutron and x-ray scattering experiments (from both the scientific and the instrumental point of view) will be described which either have novel applications or provide a new insight into material science and technology. Moreover, a capability of the existing and the enhanced constitutive models and numerical procedures to predict complex behaviour of the novel multifunctional materials is examined.

  3. Innovative technological materials. Structural properties by neutron scattering, synchrotron radiation and modeling

    International Nuclear Information System (INIS)

    Rustichelli, Franco; Skrzypek, Jacek J.

    2010-01-01

    This book provides at first ideas on the answers that neutrons and Synchrotron Radiation could give in innovative materials science and technology. In particular, non-conventional, unusual or innovative neutron and X-ray scattering experiments (from both the scientific and the instrumental point of view) are described which either have novel applications or provide a new insight into material science and technology. Moreover, a capability of the existing and the enhanced constitutive models and numerical procedures to predict complex behaviour of the novel multifunctional materials is examined. (orig.)

  4. Research on the Mode of Technology Innovation Alliance of the New Material Industry in Hunan Province

    Science.gov (United States)

    Wang, Fan

    2018-03-01

    One of the main directions of technology development in the 21st century is the development and application of new materials, and the key to the development of the new material industry lies in the industrial technology innovation. The gross scale of the new material industry in Hunan Province ranks the first array in China. Based on the present situation of Hunan’s new material industry, three modes of technology innovation alliance are put forward in this paper, namely the government-driven mode, the research-driven and the market-oriented mode. The government-driven mode is applicable to the major technology innovation fields with uncertain market prospect, high risk of innovation and government’s direct or indirect intervention;the research-driven mode is applicable to the key technology innovation fields with a high technology content; and the market-oriented mode is applicable to the general innovation fields in which enterprises have demands for technology innovation but such innovation must be achieved via cooperative research and development.

  5. Material scarcity: a reason for responsibility in technology development and product design.

    Science.gov (United States)

    Köhler, Andreas R

    2013-09-01

    There are warning signs for impending scarcity of certain technology metals that play a critical role in high-tech products. The scarce elements are indispensable for the design of modern technologies with superior performance. Material scarcity can restrain future innovations and presents therefore a serious risk that must be counteracted. However, the risk is often underrated in the pursuit of technological progress. Many innovators seem to be inattentive to the limitations in availability of critical resources and the possible implications thereof. The present shortages in industrial supply with technology metals may be interpreted as a wake-up call for technology developers to tackle the issue with due consideration. The article reviews the materials scarcity phenomenon from the viewpoint of sustainable development ethics. The following questions are discussed: 'Should preventative actions be taken today in order to mitigate resource scarcity in future?' and 'Should technology developers feel responsible to do this?' The discussion presents arguments for industrial designers and engineers to create a sense of responsibility for the proactive mitigation of material scarcity. Being protagonists of the innovation system, they have the opportunity to lead change towards resource-aware technology development. The paper concludes by outlining ideas on how they can pioneer sustainable management of critical materials.

  6. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    Science.gov (United States)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  7. Discussion on Application of Space Materials and Technological Innovation in Dynamic Fashion Show

    Science.gov (United States)

    Huo, Meilin; Kim, Chul Soo; Zhao, Wenhan

    2018-03-01

    In modern dynamic fashion show, designers often use the latest ideas and technology, and spend their energy in stage effect and overall environment to make audience’s watching a fashion show like an audio-visual feast. With rapid development of China’s science and technology, it has become a design trend to strengthen the relationship between new ideas, new trends and technology in modern art. With emergence of new technology, new methods and new materials, designers for dynamic fashion show stage art can choose the materials with an increasingly large scope. Generation of new technology has also made designers constantly innovate the stage space design means, and made the stage space design innovated constantly on the original basis of experiences. The dynamic clothing display space is on design of clothing display space, layout, platform decoration style, platform models, performing colors, light arrangement, platform background, etc.

  8. PREFACE: Wetting: introductory note

    Science.gov (United States)

    Herminghaus, S.

    2005-03-01

    of very specific and quantitative predictions were put forward which were aimed at direct experimental tests of the developed concepts [9]. Experimentally, wetting phenomena proved to be a rather difficult field of research. While contact angles seem quite easy to measure, deeper insight can only be gained by assessing the physical properties of minute amounts of material, as provided by the molecularly thin wetting layers. At the same time, the variations in the chemical potential relevant for studying wetting transitions are very small, such that system stability sometimes poses hard to solve practical problems. As a consequence, layering transitions in cryogenic systems were among the first to be thoroughly studied [10] experimentally, since they require comparably moderate stability. First-order wetting transitions were not observed experimentally before the early nineties, either in (cryogenic) quantum systems [11,12] or in binary liquid mixtures [13,14]. The first observation of critical wetting, a continuous wetting transition, in 1996 [15] was a major breakthrough [16]. In the meantime, a detailed seminal paper by Pierre Gilles de Gennes published in 1985 [17] had spurred a large number of new research projects which were directed to wetting phenomena other than those related to phase transitions. More attention was paid to non-equilibrium physics, as it is at work when oil spreads over a surface, or a liquid coating beads off (`dewets') from its support and forms a pattern of many individual droplets. This turned out to be an extremely fruitful field of research, and was more readily complemented by experimental efforts than was the case with wetting transitions. It was encouraging to find effects analogous to layering (as mentioned above) in more common systems such as oil films spreading on a solid support [18,19]. Long standing riddles such as the divergence of dissipation at a moving contact line were now addressed both theoretically and experimentally

  9. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    International Nuclear Information System (INIS)

    Bossart, S.J.; Hyde, J.

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D ampersand D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D ampersand D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment

  10. A Market Model for Evaluating Technologies That Impact Critical-Material Intensity

    Science.gov (United States)

    Iyer, Ananth V.; Vedantam, Aditya

    2016-07-01

    A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.

  11. Teaching Introductory Astronomy "Open and Out" & Looking Forward to the 2017 Solar Eclipse

    Science.gov (United States)

    Chu, I.-Wen Mike; Cronkhite, Jeff

    2016-01-01

    We present a new effort on teaching introductory astronomy addressing the specific challenges facing small colleges including limited resources, changing generational behavior and new technological trends. The approach adopts open source solutions into the developmental learning materials aiming for standardization and wide-scale applicability. In addition we utilize events and resources outside classroom into the learning. Among examples of the development are laboratory exercises based on the planetarium software Stellarium and remediation exercises using Khan Academy instructional videos. As the eventual goal is to move toward greater autonomy the cycles of improvement necessarily require student feedback in an entirely different instructional style based on egalitarian dialogues. We highlight a laboratory exercise on Earth-Moon distance estimation using parallax of the upcoming 2017 solar eclipse to illustrate the "open and out" philosophy. Achievements, limitations and some diagnostics of the current effort are also presented.

  12. Observing Projects in Introductory Astronomy

    Science.gov (United States)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  13. A Pretest for Introductory Crops Students.

    Science.gov (United States)

    Elkins, Donald M.

    1987-01-01

    Discusses the advantages of using a pretest in introductory agronomy courses. Provides a pretest that has been developed for use in an introductory crops course taught at Southern Illinois University. Includes 25 definitions, 17 true-false and multiple choice questions, and 6 short answer questions. (TW)

  14. A Different Approach to Teaching Introductory Psychology

    Science.gov (United States)

    Walker, Larry D.; Inbody, Paul W.

    1974-01-01

    This introductory psychology course consisting of 16 contemporary films available at each student's convenience; readings; discussion sessions; and laboratory experience, assisted by upper-division psychology students, is an attempt to minimize some of the problems of the usual introductory lecture course. (JH)

  15. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  16. Psychology Ethics in Introductory Psychology Textbooks

    Science.gov (United States)

    Zucchero, Renee' A.

    2011-01-01

    Previous research revealed that introductory psychology textbooks included limited information about psychology ethics. This study reviewed 48 current introductory psychology textbooks for research and other APA ethics content. These textbooks included slightly more total ethics content and were more thorough in their review of research ethics…

  17. Introductory Guide to European Corporate Law

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    Introductory Guide to European Corporate Law presents in an easily comprehensible and accessible way the main features and principles that govern European corporate law.......Introductory Guide to European Corporate Law presents in an easily comprehensible and accessible way the main features and principles that govern European corporate law....

  18. The Memorability of Introductory Psychology Revisited

    Science.gov (United States)

    Landrum, R. Eric; Gurung, Regan A. R.

    2013-01-01

    Almost 2 million students enroll in introductory psychology each year in the United States, making it the second most popular undergraduate course in the nation. Introductory psychology not only serves as a prerequisite for other courses in the discipline but for some students this course provides their only exposure to psychological science.…

  19. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  20. The role of applied physics in American introductory physics courses

    Science.gov (United States)

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-09-01

    To what extent should technology and applied physics be included in introductory physics courses? What is the proper balance between pure and applied physics? Should physics teachers devote precious time to socially relevant issues like nuclear power and alternative sources of energy? How much time should be spent, if any, on applications that are more relevant to the student's world like cars, music, television and refrigeration? Does including applications reduce or enhance student understanding of important classical topics? A response to these questions must be based on goals for physics teaching, on knowledge of how students learn and on the nature of the physics discipline. Since there is not enough time to teach everything in an introductory course, priorities must be determined.

  1. Nondestructive assay technology and in-plant dynamic materials control: ''DYMAC''

    International Nuclear Information System (INIS)

    Keppin, G.R.; Maraman, W.J.

    1975-01-01

    An advanced system of in-plant materials control known as DYMAC, Dynamic Materials Control, is being developed. This major safeguards R and D effort merges state-of-the-art nondestructive assay instrumentation and computer technology, with the clear objective of demonstrating a workable, cost-effective system of stringent, real time control of nuclear materials in a modern plutonium processing facility. Emphasis is placed on developing practical solutions to generic problems of materials measurement and control, so that resulting safeguards techniques and instrumentation will have widespread applicability throughout the nuclear community. (auth)

  2. 9th International Frumkin symposium: Electrochemical technologies and materials for 21st century. Abstracts

    International Nuclear Information System (INIS)

    2010-01-01

    Abstracts of the 9th International Frumkin symposium: Electrochemical technologies and materials for 21st century are presented. The symposium was held 24-29 October 2010 in Moscow. The symposium included the following microsymposiums: Electrical double layer and electrochemical kinetics (from phenomenological to molecular level); New processes, materials and devices for successful electrochemical transformation of energy; Corrosion and protection of materials; General and local corrosion; Electroactive composition materials; Bioelectrochemistry. The Frumkin symposium includes plenary lectures, oral and poster presentations. Official language of the symposium is English [ru

  3. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  4. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  5. Materials for inductive and microwave function integration in LTCC-technology multichip modules

    Energy Technology Data Exchange (ETDEWEB)

    Zaspalis, V T [Laboratory of Inorganic Materials, Chemical Process Engineering Research Institute, 57001 Thessaloniki (Greece); Kolenbrander, M [Ferroxcube GmbH, Department of Materials and Process Development, 22419 Hamburg (Germany); Boerekamp, J [Ferroxcube GmbH, Department of Materials and Process Development, 22419 Hamburg (Germany)

    2005-01-01

    Low Temperature cofired ceramics technology (LTCC) receives considerable industrial interest as a multichip module integration technology, particularly because its very good performance-cost combination. The integration potential of the LTCC technology will be significantly extended with the availability of LTCC-compatible low firing magnetic materials that will enable the integration of high frequency inductive functions. In this article the preparation of low firing cobalt containing hexagonal ferrite materials of the Z-structure (Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41}, or Co-Z) is described using a PbO-WO{sub 3} eutectic mixture as liquid phase sintering additive. Layers from the previous materials are prepared by the slip-casting technique and cofired with commercially available, low dielectric constant, LTCC tapes. Crack free multilayer structures are achieved after firing at 950-1000 deg. C.

  6. Managing critical materials with a technology-specific stocks and flows model.

    Science.gov (United States)

    Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy

    2014-01-21

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.

  7. Aspects regarding manufacturing technologies of composite materials for brake pad application

    Science.gov (United States)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.

    2018-01-01

    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  8. Managing Critical Materials with a Technology-Specific Stocks and Flows Model

    Science.gov (United States)

    2013-01-01

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245

  9. An analysis of results of measuring the speed passing through a material in a technological process

    Directory of Open Access Journals (Sweden)

    Marta Benková

    2006-06-01

    Full Text Available The process approach requires a smoothness and continuity for each individual technological /production process. From the viewpoint of ownership of each process a required input into the process technical and operation parameters for a required output of the process is important. From the viewpoint of monitoring a concrete process, the material entering the process having a temperature required by technological instruction is important.The speed of transition of a material through the technological mechanism should be constant and a product from the process should have required internal and external parameters. The speed is critical for the technological process. When using a measurement, values of speed are obtained, can be analysed from the point of view of variation in time and normality. For a comparison of real and required values, the box plot was prepared. The capability indexes were counted and the „overlaps” of tolerance interval for the required value of speed were compared.

  10. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  11. Update on Monitoring Technologies for International Safeguards and Fissile Material Verification

    International Nuclear Information System (INIS)

    Croessmann, C. Dennis; Glidewell, Don D.; Mangan, Dennis L.; Smathers, Douglas C.

    1999-01-01

    Monitoring technologies are playing an increasingly important part in international safeguards and fissile material verification. The developments reduce the time an inspector must spend at a site while assuring continuity of knowledge. Monitoring technologies' continued development has produced new seal systems and integrated video surveillance advances under consideration for Trilateral Initiative use. This paper will present recent developments for monitoring systems at Embalse, Argentina, VNHEF, Sarov, Russian, and Savannah River Site, Aiken, South Carolina

  12. TECHNOLOGICAL ASPECTS OF PRODUCTION OF THE CANDIED FRUITS FROM NON-TRADITIONAL RAW MATERIAL

    OpenAIRE

    I. R. Belenkaya; Ya. A. Golinskaya

    2016-01-01

    The article analyses the candied fruit market in Ukraine and describes the main technological operations pertainingto processing of non-traditional candied products – celery and parsnip roots. Darkening of the roots surface caused bythe enzyme oxidation is one of the problems arising when processing white roots, which leads to worse marketable conditionof the product. To prevent darkening, the developed technology provides for soaking raw material in 1% citric acid solutionimmediately after p...

  13. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    Science.gov (United States)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were

  14. Introductory statistics for engineering experimentation

    CERN Document Server

    Nelson, Peter R; Coffin, Marie

    2003-01-01

    The Accreditation Board for Engineering and Technology (ABET) introduced a criterion starting with their 1992-1993 site visits that "Students must demonstrate a knowledge of the application of statistics to engineering problems." Since most engineering curricula are filled with requirements in their own discipline, they generally do not have time for a traditional two semesters of probability and statistics. Attempts to condense that material into a single semester often results in so much time being spent on probability that the statistics useful for designing and analyzing engineering/scientific experiments is never covered. In developing a one-semester course whose purpose was to introduce engineering/scientific students to the most useful statistical methods, this book was created to satisfy those needs. - Provides the statistical design and analysis of engineering experiments & problems - Presents a student-friendly approach through providing statistical models for advanced learning techniques - Cove...

  15. ‘Spacer stitching’, an innovative material feeding technology for improved thermal resistance

    Science.gov (United States)

    Saeed, H.; Rödel, H.; Krzywinski, S.; Hes, L.

    2017-10-01

    This paper investigates the problems associated with heat loss occurring at the points of needle insertion. The insulation material at stitching points is compressed by sewing thread tensions and consequently the air entrapped is forced to leave its structure. It results in poor thermal insulation at the points of needle insertions. An innovative material feeding technology, ‘Spacer stitching’ is developed which addresses the state of the art of cold spots with a simpler and much efficient method. A comparison of sewing samples of conventional sewing technology with the spacer stitching is carried out in this research paper to study the improvement in thermal properties.

  16. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  17. Improving our national security readiness posture in high-technology materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.A. Jr. (Bureau of Mines, U.S. Dept. of Interior, Washington, DC (US))

    1989-05-01

    Having a stockpile is one of the principal options in ameliorating the effect of a supply disruption. The U.S. Government has had most of its present large stockpile of metals and minerals for over 40 years. During the past 10 to 15 years, there has been a steady increase in the use of new, highly purified or highly processed materials that have critical military-related applications, and many of these are substantially imported, making supply vulnerable during a defense emergency. The properties of these materials often make stockpiling difficult. The production and use technology of these materials significantly influences the ease of stockpiling. This paper examines a number of new materials in terms of technology and ease of stockpiling and consider other options for dealing with supply disruptions where necessary.

  18. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  19. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  20. Automation - Development of the Material-Technological Basis - Changed Conditions of Efficiency

    OpenAIRE

    Huebner, W.; Steinitz, K.

    1982-01-01

    This paper was presented at a joint seminar on flexible automation held in Berlin (East) from June 8-11, 1982. The seminar was a collaborative project between IIASA and the Academy of Sciences of the German Democratic Republic. The report and the working material presented to the conference deal, among other things, with the influence of the flexible automation on the further development of the material-technological basis and on the whole system of the productive forces. Hence the follo...

  1. Technology for complex processing of tin-rare earth raw materials

    International Nuclear Information System (INIS)

    Chumarev, V.M.; Okunev, A.I.; Krasikov, S.A.; Fedorov, V.D.; Safonov, A.V.

    1995-01-01

    The tested technology for processing of tin-rare earth raw materials with complicated composition, including the stage of reducing-sulfidizing melting of raw materials with tin and rare earth elements (gallium, thulium) transition in fumes, with rare refractory metals (tantalum, niobium, tungsten) transition in iron-base or matter-base alloy and transition of radionuclides in dump slag is offered. 4 fig., 5 refs

  2. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    Science.gov (United States)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  3. Quantitative Activities for Introductory Astronomy

    Science.gov (United States)

    Keohane, Jonathan W.; Bartlett, J. L.; Foy, J. P.

    2010-01-01

    We present a collection of short lecture-tutorial (or homework) activities, designed to be both quantitative and accessible to the introductory astronomy student. Each of these involves interpreting some real data, solving a problem using ratios and proportionalities, and making a conclusion based on the calculation. Selected titles include: "The Mass of Neptune” "The Temperature on Titan” "Rocks in the Early Solar System” "Comets Hitting Planets” "Ages of Meteorites” "How Flat are Saturn's Rings?” "Tides of the Sun and Moon on the Earth” "The Gliese 581 Solar System"; "Buckets in the Rain” "How Hot, Bright and Big is Betelgeuse?” "Bombs and the Sun” "What Forms Stars?” "Lifetimes of Cars and Stars” "The Mass of the Milky” "How Old is the Universe?” "Is The Universe Speeding up or Slowing Down?"

  4. MRI experiments for introductory physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-04-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.

  5. A preliminary investigation of materialism and impulsiveness as predictors of technological addictions among young adults.

    Science.gov (United States)

    Roberts, James A; Pirog, Stephen F

    2013-03-01

    Background and aims The primary objective of the present research is to investigate the drivers of technological addiction in college students - heavy users of Information and Communication Technology (ICT). The study places cell phone and instant messaging addiction in the broader context of consumption pathologies, investigating the influence of materialism and impulsiveness on these two technologies. Clearly, cell phones serve more than just a utilitarian purpose. Cell phones are used in public and play a vital role in the lives of young adults. The accessibility of new technologies, like cell phones, which have the advantages of portability and an ever increasing array of functions, makes their over-use increasingly likely. Methods College undergraduates (N = 191) from two U.S. universities completed a paper and pencil survey instrument during class. The questionnaire took approximately 15-20 minutes to complete and contained scales that measured materialism, impulsiveness, and mobile phone and instant messaging addiction. Results Factor analysis supported the discriminant validity of Ehrenberg, Juckes, White and Walsh's (2008) Mobile Phone and Instant Messaging Addictive Tendencies Scale. The path model indicates that both materialism and impulsiveness impact the two addictive tendencies, and that materialism's direct impact on these addictions has a noticeably larger effect on cell phone use than instant messaging. Conclusions The present study finds that materialism and impulsiveness drive both a dependence on cell phones and instant messaging. As Griffiths (2012) rightly warns, however, researchers must be aware that one's addiction may not simply be to the cell phone, but to a particular activity or function of the cell phone. The emergence of multi-function smart phones requires that research must dig beneath the technology being used to the activities that draw the user to the particular technology.

  6. Proceedings of the workshop on new material development. Nano-technology and hydrogen energy society

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Ohshima, Takeshi; Sugimoto, Masaki; Ohgaki, Junpei

    2005-03-01

    We have newly held the Workshop on New Material Development in order to enhance the research activities on new material development using radiation. Theme of this workshop was 'nano-technology and hydrogen', both of which are considered to have great influence on our social life and have shown rapid progress in the related researches, recently. Researchers from domestic universities, research institutes, and private companies have attended at the workshop and had the opportunity to exchange information and make discussions about the latest trend in the leading edge researches, and have contributed to the material development in future. The technology for manufacturing and evaluation of very fine materials, which is essential for the nano-technology, and the development of new functional materials, which will support the hydrogen energy society in future, have increasingly become important and have been intensively investigated by many research groups. In such investigation, the ionizing radiation is indispensable as the tool for probing and modifying materials. For this reason, this workshop was held at JAERI, Takasaki, a center of excellence for radiation application in Japan. This workshop was held by JAERI, Takasaki, on November 19, 2004 under the joint auspices of the Atomic Energy Society of Japan, the Chemical Society of Japan, the Polymer Science Society of Japan and the Japanese Society of Radiation Chemistry. The workshop was attended by 97 participates. We believe that this workshop supported by many academic societies will largely contribute to the research on new material development in the field of nano-technology and hydrogen. The 10 of the presented papers are indexed individually. (J.P.N.)

  7. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    Science.gov (United States)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  8. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    Baldev Raj; Rajagopalan, C.

    1996-01-01

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  9. Identification of Quality Visual-Based Learning Material for Technology Education

    Science.gov (United States)

    Katsioloudis, Petros

    2010-01-01

    It is widely known that the use of visual technology enhances learning by providing a better understanding of the topic as well as motivating students. If all visual-based learning materials (tables, figures, photos, etc.) were equally effective in facilitating student achievement of all kinds of educational objectives, there would virtually be no…

  10. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  11. Nuclear material safeguards technology development in the new structure of BATAN organization

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2001-01-01

    Full text: The implementation of Nuclear Energy Act No. 10/97 has led to a restructuring in BATAN organization in July 1999. A new unit, Center for Nuclear Material Safeguards Technology (PTPBN), was established to be especially in charge of safeguards facilities. The main responsibility of this unit is to develop the technology of safeguards and physical protection. The function of this unit is also to analyze the operational technical aspect of the International Convention of Nuclear. The duties of Center for Nuclear Material Safeguards Technology can be seen from the various programs set up for every fiscal year. The programs for the year 2000 were: Analyses of SSAC implementation in BATAN; Development of Safeguards information system; Creation of database of physical protection technology; Physical protection simulator for Bandung reactor research; Development of detector technology for physical protection system; Identification of BATAN activities and facilities submitted to IAEA in order to be in line with the Additional Protocol to the agreement between the Republic of Indonesia and the International Atomic Energy Agency for the Application of Safeguards in connection with the Treaty on Non-Proliferation on Nuclear Weapons, which was ratified on September 29th, 1999 in Vienna, Austria; Seminar on Safeguards technology held in Jakarta in September 2000. The program of 2001 will be focusing on the continuation of the previous year's program as well as the creation of new ones, such as: Collaboration with other countries. At initial stage experts from JBC-Japan were invited to share their expertise on their safeguards information system; Development of education and training for safeguards operators by emphasizing more on the techniques of nuclear materials measurement; Seminar on Safeguards technology scheduled for December 2001 by inviting experts from IAEA and modem countries; Field survey to determine the location of radionuclide station in Indonesia in

  12. PREFACE: International Scientific and Technical Conference ''Innovative Mechanical Engineering Technologies, Equipment and Materials-2014''

    Science.gov (United States)

    Nail, K.

    2015-06-01

    In the period from 3 to 5 December 2014 the city of Kazan hosted the International Scientific Conference ''Innovative mechanical engineering technologies, equipment and materials - 2014'' (ISC ''vIMETEM - 2014''). The event was followed by the 14th International specialized exhibition ''Engineering. Metalworking. Kazan'' The main objective of the annual conference was for participants to discuss scientific and technical achievements in the design and manufacture of engineering products, the expansion of cooperation between scientific organizations and enterprises of machine-building complex and the definition of perspective ways of creation and development of new techniques, technologies and materials. The conference ''IMETEM'' was devoted to the 90th anniversary of Fayzrahman Salahovich Yunusov, who made a great contribution in the field of aviation technology. Kashapov Nail, D.Sc., professor (Kazan Federal University)

  13. Device Innovation and Material Challenges at the Limits of CMOS Technology

    Science.gov (United States)

    Solomon, P. M.

    2000-08-01

    Scaling of the predominant silicon complementary metal-oxide semiconductor (CMOS) technology is finally approaching an end after decades of exponential growth. This review explores the reasons for this limit and some of the strategies available to the semiconductor industry to continue the technology extension. Evolutionary change to the silicon transistor will be pursued as long as possible, with increasing demands being placed on materials. Eventually new materials such a silicon-germanium may be used, and new device topologies such as the double-gated transistor may be employed. These strategies are being pursued in research organizations today. It is likely that planar technology will reach its limit with devices on the 10-nm scale, and then the third dimension will have to be exploited more efficiently to achieve further performance and density improvements.

  14. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  15. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    Science.gov (United States)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more

  16. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  17. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  18. Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Current material technologies limit space exploration and vehicle performance due to often unnecessary mass increase from copper wiring or heavy structural...

  19. Research on the development of green chemistry technology assessment techniques: a material reutilization case.

    Science.gov (United States)

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.

  20. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    Science.gov (United States)

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  1. Characterization and integrity testing of flexible film materials utilizing a unique corona beam technology

    Science.gov (United States)

    Gormley, Gregory J.

    2005-11-01

    The characterization, porosity, permeability and integrity of conductive and non-conductive medical and consumer flexible barrier packaging material are determined utilizing a novel electron beam technology and electronic instrumentation in an open atmosphere for 100% real-time, on-line testing. The electron beam developed in an open atmosphere maintains its prescribed frequency through the use of a nitrogen cover gas, ionizing the gas to create a corona beam. The corona beam discharge, maintained at a high negative voltage, forms from the holes or anomalies in the flexible barrier material. The anomaly is detected and analyzed in order to determine the presence of viral and sub-viral sized voids or holes, as well as other anomalies such as blisters and bubbles. The process can also utilize an established range of acceptability to certify materials that require a well defined level of permeability. This process can be performed by the flexible barrier film manufacturer to certify a specific quality level. It can be performed by the material fabricator to ensure quality standards for preformed materials. It can also be performed by the product packaging manufacturer that uses the packaging material to wrap their products and confirm the integrity of the final sealed package by measuring the atmosphere inside the finished package. There are many other packaging applications that can utilize this technology for film characterization, validation and integrity testing within the pharmaceutical, medical device, and food processing industries, as well as other industrial applications.

  2. Structures, Material and Processes Technology in the Future Launchers Preparatory Program

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Breteau, J.; Bouilly, Th.; Lavelle, Fl.; Cardone, T.; Fischer, H.; Appel, S.; Block, U.

    2014-06-01

    In the frame of the technology / demonstration activity for European launchers developments and evolutions, a top-down / bottom-up approach has been employed to identify promising technologies and alternative conception. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been devoted to structures, material and process technology.Preliminary specifications have been used in order to permit sub-system design with the goal to find the major benefit for the overall launch system. In this respect competitiveness factors have been defined to down- select the technology and the corresponding optimized design. The development cost, non-recurring cost, industrialization and operational aspects have been considered for the identification of the most interesting solutions. The TRL/IRL has been assessed depending on the manufacturing company and a preliminary development plan has been issued for some technology.The reference launch systems for the technology and demonstration programs are mainly Ariane 6 with its evolutions, VEGA C/E and others possible longer term systems. Requirements and reference structures architectures have been considered in order to state requirements for representative subscale or full scale demonstrators. The major sub-systems and structures analyzed are for instance the upper stage structures, the engine thrust frame (ETF), the inter stage structures (ISS), the cryogenic propellant tanks, the feeding lines and their attachments, the pressurization systems, the payload adapters and fairings. A specific analysis has been devoted to the efficiency of production processes associated to technologies and design features.The paper provides an overview of the main results of the technology and demonstration activities with the associated system benefits. The materials used for the main structures are

  3. Identifying difficult concepts in introductory programming

    OpenAIRE

    Humar, Klaudija

    2014-01-01

    In this diploma thesis we try to find the answer to why students experience difficulties in introductory programming. We ask ourselves what causes most problems while trying to understand concepts in introductory programming, generating code and designing algorithms. In the first section we introduce programming language Python as the first programming language being taught to students. We compare it with programming language Pascal and stress the advantages of Python that seem important ...

  4. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  5. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  6. Freeze-drying technology: A separation technique for liquid nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, J.A.; Efurd, D.W.; Banar, J.C.

    1997-01-01

    Freeze-drying technology (FDT) has been around for several decades as a separation technology. Most commonly, FDT is associated with the processing of food, but the largest industrial-scale use of FDT is in the pharmaceutical industry. Through a Cooperative Research and Development Agreement (CRADA) with BOC Edwards Calumatic, we are demonstrating the feasibility of FDT as a waste minimization and pollution prevention technology. This is a novel and innovative application of FDT. In addition, we plan to demonstrate that the freeze-dried residue is an ideal feed material for ceramic stabilization of radioactive waste and excess fissile material. The objective of this work is to demonstrate the feasibility of FDT for the separation of complex radioactive and nonradioactive materials, including liquids, slurries, and sludges containing a wide variety of constituents in which the separation factors are >10 8 . This is the first application of FDT in which the condensate is of primary importance. Our focus is applying this technology to the elimination of radioactive liquid discharges from facilities at Los Alamos National Laboratory (LANL) and within the U.S. Department of Energy complex; however, successful demonstration will lead to nuclear industry-wide applications

  7. Proceedings of the Symposium on Structural and Refractory Materials for Fusion and Fission Technologies

    International Nuclear Information System (INIS)

    Aktaa, J.; Samaras, M.; Serrano de Caro, M.; Victoria, M.; Wirth, B.

    2008-01-01

    The development of future fusion and Generation IV fission reactor power plant concepts will require extensive materials research to solve numerous technological problems. Structural components in these future reactors will be subjected to complex thermomechanical loading, higher operating temperatures, and high-irradiation doses (up to 100 dpa) which are beyond the current capabilities of conventional materials. Consequently, numerous worldwide research activities are under way to develop and qualify novel structural materials. At present, the most attractive candidate materials include low-activation ferritic martensitic steels and their ODS variants, vanadium alloys, SiC/SiC composites, as well as refractory materials like tungsten alloys and their ODS variants. The aim of this symposium is to provide an open forum for the discussion of materials issues and problems, and to promote future collaborations. Papers cover the following areas: Materials processing and development by composition and treatment; Irradiation effects, microstructure evolution, and mechanical properties degradation; Modeling of damage evolution and alloy stability; Mechanical properties and structural integrity; Materials-design interface, characterization, and modeling of constitutive behavior; Nuclear fuel element modeling; Ferritic/martensitic steels and ODS variants

  8. From Julius Caesar to Sustainable Composite Materials: A Passage through Port Caisson Technology

    Directory of Open Access Journals (Sweden)

    Eduardo Cejuela

    2018-04-01

    Full Text Available The breakwater construction technique using floating concrete caissons is well-known nowadays as a widespread system. Yet do we really know its origin? Since Julius Caesar used this technology in Brindisi (Italy up to the Normandy landings in June 1944, not only has this technology been developed, but it has been a key item in several moments in history. Its development has almost always been driven by military requirements. The greatest changes have not been conceptual but point occurring, backed by the materials used. Parallelisms can be clearly seen in each new stage: timber, opus caementitium (Roman concrete, iron and concrete… However, nowadays, achieving a more sustainable world constitutes a major challenge, to which the construction of caissons breakwaters must contribute as a field of application of new eco-friendly materials. This research work provides a general overview from the origins of caissons until our time. It will make better known the changes that took place in the system and their adaptation to new materials, and will help in clarifying the future in developing technology towards composite sustainable materials and special concrete. If we understand the past, it will be easier to define the future.

  9. Engineering light: advances in wavelength conversion materials for energy and environmental technologies.

    Science.gov (United States)

    Cates, Ezra L; Chinnapongse, Stephanie L; Kim, Jae-Hyuk; Kim, Jae-Hong

    2012-11-20

    Upconversion photoluminescence (UC) occurs in optical materials that are capable of absorbing low energy photons and emitting photons of higher energy and shorter wavelength, while downconversion (DC) materials may absorb one high energy photon and emit two of lower energy for quantum yields exceeding unity. These wavelength conversion processes allow us to transform electromagnetic radiation so it may be more effectively utilized by light-capturing devices and materials. Progress in designing more efficient organic and inorganic photochemical conversion systems has initiated a recent surge in attempts to apply these processes for practical uses, including enhancement of many energy and environmental technologies. In this review, we introduce important concepts in UC and DC materials and discuss the current status and challenges toward the application of wavelength conversion to solar cells, photocatalysis, and antimicrobial surfaces.

  10. Status and applications of diamond and diamond-like materials: An emerging technology

    Science.gov (United States)

    1990-01-01

    Recent discoveries that make possible the growth of crystalline diamond by chemical vapor deposition offer the potential for a wide variety of new applications. This report takes a broad look at the state of the technology following from these discoveries in relation to other allied materials, such as high-pressure diamond and cubic boron nitride. Most of the potential defense, space, and commercial applications are related to diamond's hardness, but some utilize other aspects such as optical or electronic properties. The growth processes are reviewed, and techniques for characterizing the resulting materials' properties are discussed. Crystalline diamond is emphasized, but other diamond-like materials (silicon carbide, amorphous carbon containing hydrogen) are also examined. Scientific, technical, and economic problem areas that could impede the rapid exploitation of these materials are identified. Recommendations are presented covering broad areas of research and development.

  11. Study of radon diffusion coefficient for technologically enhanced building construction materials

    International Nuclear Information System (INIS)

    Narula, A.K.; Goyal, S.K.; Chauhan, R.P.; Chakarvarti, S.K.

    2012-01-01

    Most building materials of natural origin contain small amounts of Naturally Occurring Radioactive Materials (NORMs), mainly radionuclides from the 226 Ra and 232 Th decay chains and 40 K. The origin of these materials is the earths crust, but they find their way into building materials, air, water, food and the human body itself. The worldwide average indoor effective dose due to gamma rays from building materials is estimated to be about 0.4 mSv per year. In many parts of the world, building materials containing radioactive materials have been used for generations. As individuals spend more than 80% of their time indoors, the internal and external radiation exposure from building materials creates prolonged exposure situations. The internal (inhalation) radiation exposure is due to 222 Rn and their short lived decay products exhaled from building materials into the room air. The average activity concentrations of 226 Ra, 232 Th and 40 K in the earths crust are 35, 30 and 400 Bq/kg respectively. However, elevated levels of natural radionuclides causing annual doses of several mSv were identified in some regions around the world. Recycled industrial by-products containing Technologically Phosphogypsum, a by-product in the production of phosphate fertilizers is used as building material, and red mud, a waste from primary aluminum production, is used in bricks, ceramics and tiles. The increased tendency of the building material industry to use industrial wastes as substitutes for natural products having relatively high activity concentration of NORMs and the increased exposure caused by them were the driving forces for undertaking the present investigation. (author)

  12. Cultural repertoires and food-related household technology within colonia households under conditions of material hardship

    Directory of Open Access Journals (Sweden)

    Dean Wesley R

    2012-05-01

    Full Text Available Abstract Introduction Mexican-origin women in the U.S. living in colonias (new-destination Mexican-immigrant communities along the Texas-Mexico border suffer from a high incidence of food insecurity and diet-related chronic disease. Understanding environmental factors that influence food-related behaviors among this population will be important to improving the well-being of colonia households. This article focuses on cultural repertoires that enable food choice and the everyday uses of technology in food-related practice by Mexican-immigrant women in colonia households under conditions of material hardship. Findings are presented within a conceptual framework informed by concepts drawn from sociological accounts of technology, food choice, culture, and material hardship. Methods Field notes were provided by teams of promotora-researchers (indigenous community health workers and public-health professionals trained as participant observers. They conducted observations on three separate occasions (two half-days during the week and one weekend day within eight family residences located in colonias near the towns of Alton and San Carlos, Texas. English observations were coded inductively and early observations stressed the importance of technology and material hardship in food-related behavior. These observations were further explored and coded using the qualitative data package Atlas.ti. Results Technology included kitchen implements used in standard and adapted configurations and household infrastructure. Residents employed tools across a range of food-related activities identified as forms of food acquisition, storage, preparation, serving, feeding and eating, cleaning, and waste processing. Material hardships included the quality, quantity, acceptability, and uncertainty dimensions of food insecurity, and insufficient consumption of housing, clothing and medical care. Cultural repertoires for coping with material hardship included reliance on

  13. Cultural repertoires and food-related household technology within colonia households under conditions of material hardship.

    Science.gov (United States)

    Dean, Wesley R; Sharkey, Joseph R; Johnson, Cassandra M; St John, Julie

    2012-05-15

    BSTRACT: Mexican-origin women in the U.S. living in colonias (new-destination Mexican-immigrant communities) along the Texas-Mexico border suffer from a high incidence of food insecurity and diet-related chronic disease. Understanding environmental factors that influence food-related behaviors among this population will be important to improving the well-being of colonia households. This article focuses on cultural repertoires that enable food choice and the everyday uses of technology in food-related practice by Mexican-immigrant women in colonia households under conditions of material hardship. Findings are presented within a conceptual framework informed by concepts drawn from sociological accounts of technology, food choice, culture, and material hardship. Field notes were provided by teams of promotora-researchers (indigenous community health workers) and public-health professionals trained as participant observers. They conducted observations on three separate occasions (two half-days during the week and one weekend day) within eight family residences located in colonias near the towns of Alton and San Carlos, Texas. English observations were coded inductively and early observations stressed the importance of technology and material hardship in food-related behavior. These observations were further explored and coded using the qualitative data package Atlas.ti. Technology included kitchen implements used in standard and adapted configurations and household infrastructure. Residents employed tools across a range of food-related activities identified as forms of food acquisition, storage, preparation, serving, feeding and eating, cleaning, and waste processing. Material hardships included the quality, quantity, acceptability, and uncertainty dimensions of food insecurity, and insufficient consumption of housing, clothing and medical care. Cultural repertoires for coping with material hardship included reliance on inexpensive staple foods and dishes, and

  14. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  15. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  16. Doing Age in a Digitized World—A Material Praxeology of Aging With Technology

    Directory of Open Access Journals (Sweden)

    Anna Wanka

    2018-04-01

    Full Text Available Digital technologies have gained vast relevance in postmodern societies and digital infrastructures are substantially integrated into the everyday lives of older people. This digitization is reframing the norms and practices of later life as well as the social construct of age itself. Despite the increasing amount of studies in the field of aging and technologies, it still lacks theorizing. This paper addresses this deficit, suggesting that the study of aging and technologies could profit from a comprehensive integration of theories from the sociology of aging, critical gerontology, and science-and-technology studies. We aim to make a theoretical contribution to this issue, asking: how is age being done in a digitized world? Applying a praxeological approach to aging and technologies, we firstly examine how theoretical and empirical work has constructed aging with technologies so far and identify its shortcomings. Some of this work so far lacks a proper consideration of social inequalities within these processes, whereas other studies lack a thorough consideration of materialities. Secondly, in an attempt to equally “praxeologize” and “materialize” the study of aging and technologies we develop a theoretical model that aims to overcome these shortcomings. In what we frame as a material praxeology of aging with technology, we are concerned with how age is being done through discursive formations, set into practice through social and material practices and involved in the (reproduction of social inequalities. Enriching a Bordieuan terminology of social fields with notions of non-human agency, this praxeology is founded on three assumptions: (1 Social fields constitute the contexts in which age as a social phenomenon is being done with and through technologies (2 Human and non-human agents are equally involved in this process (3 The actions of the involved agents emerge from an agency distributed among them, and are structured through the

  17. Progress of research on plasma facing materials in University of Science and Technology Beijing

    International Nuclear Information System (INIS)

    Ge, Chang-Chun; Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong

    2007-01-01

    In this paper, we report some new progress on plasma facing materials in University of Science and Technology Beijing (USTB), China. They include fabrication of tungsten coating with ultra-fine grain size by atmosphere plasma spraying; fabrication of tungsten with ultra-fine grain size by a newly developed method named as resistance sintering under ultra-high pressure; using the concept of functionally graded materials to join tungsten to copper based heat sink; joining silicon doped carbon to copper by brazing using a Ti based amorphous filler and direct casting

  18. Five Years of Research Into Technology-Enhanced Learning at the Faculty of Materials Science and Technology

    Science.gov (United States)

    Svetský, Štefan; Moravčík, Oliver; Rusková, Dagmar; Balog, Karol; Sakál, Peter; Tanuška, Pavol

    2011-01-01

    The article describes a five-year period of Technology Enhanced Learning (TEL) implementation at the Faculty of Materials Science and Technology (MTF) in Trnava. It is a part of the challenges put forward by the 7th Framework Programme (ICT research in FP7) focused on "how information and communication technologies can be used to support learning and teaching". The empirical research during the years 2006-2008 was focused on technology-driven support of teaching, i. e. the development of VLE (Virtual Learning Environment) and the development of database applications such as instruments developed simultaneously with the information support of the project, and tested and applied directly in the teaching of bachelor students. During this period, the MTF also participated in the administration of the FP7 KEPLER project proposal in the international consortium of 20 participants. In the following period of 2009-2010, the concept of educational activities automation systematically began to develop. Within this concept, the idea originated to develop a universal multi-purpose system BIKE based on the batch processing knowledge paradigm. This allowed to focus more on educational approach, i.e. TEL educational-driven and to finish the programming of the Internet application - network for feedback (communication between teachers and students). Thanks to this specialization, the results of applications in the teaching at MTF could gradually be presented at the international conferences focused on computer-enhanced engineering education. TEL was implemented at a detached workplace and four institutes involving more than 600 students-bachelors and teachers of technical subjects. Four study programmes were supported, including technical English language. Altogether, the results have been presented via 16 articles in five countries, including the EU level (IGIP-SEFI).

  19. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner

    2009-01-01

    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  20. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  1. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    International Nuclear Information System (INIS)

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m 2 , 20 dpa/y in Fe, in a volume of 500 cm 3 and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  2. The technological socio-materiality of kindergarten children’s conduct of everyday life

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    The conduct of everyday life concept has been enormously fruitful for theorizing how persons come to live their lives across diverse social contexts as participants in and contributors to social practices. However, social practice research still needs to investigate in a more detailed manner...... the relevance of material artifacts for conducting one’s everyday life. Everyday artifacts such as media technologies heavily shape the concrete socio-material arrangements in specific practices, hence co-constituting the scope of imaginable action possibilities. The presentation builds on insights drawn from...... a four-month researcher participation in a kindergarten practice. It argues that the relevance of media technologies can only be investigated in relation to the various perspectives of the other practice participants. The main focus is put on the children’s perspectives, as it is their conduct...

  3. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m{sup 2}, 20 dpa/y in Fe, in a volume of 500 cm{sup 3} and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  4. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    Science.gov (United States)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana

  5. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the Note Verbale dated 2 December 1992 received by the Director General from the Resident Representative of Argentina to the Agency relating to the export of nuclear material, equipment or technology, in order to provide information on that Government's Guidelines for Transfers of Nuclear-related Dual-use Equipment, Material and related Technology

  6. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  7. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs dollars / kg, the product energy consumption < 30 kwh / kg. The existing problems are pointed out. The prospect of the new metallurgical process with low cost, low energy consumption, low carbon and sustainable development are prospected.

  8. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  9. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    Science.gov (United States)

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  10. Patent applications for using DNA technologies to authenticate medicinal herbal material

    Directory of Open Access Journals (Sweden)

    Chan Albert

    2009-11-01

    Full Text Available Abstract Herbal medicines are used in many countries for maintaining health and treating diseases. Their efficacy depends on the use of the correct materials, and life-threatening poisoning may occur if toxic adulterants or substitutes are administered instead. Identification of a medicinal material at the DNA level provides an objective and powerful tool for quality control. Extraction of high-quality DNA is the first crucial step in DNA authentication, followed by a battery of DNA techniques including whole genome fingerprinting, DNA sequencing and DNA microarray to establish the identity of the material. New or improved technologies have been developed and valuable data have been collected and compiled for DNA authentication. Some of these technologies and data are patentable. This article provides an overview of some recent patents that cover the extraction of DNA from medicinal materials, the amplification of DNA using improved reaction conditions, the generation of DNA sequences and fingerprints, and the development of high-throughput authentication methods. It also briefly explains why these patents have been granted.

  11. Research of interaction between technological and material parameters during densification of sunflower hulls

    Science.gov (United States)

    Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír

    2018-01-01

    During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.

  12. Materials project of the Energy Conversion and Utilization Technologies (ECUT) program for Fiscal Year 1983: Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, L.E.; Jordan, A.; Carpenter, J.A. Jr.

    1987-02-01

    This is the annual technical progress report for fiscal year 1983 of the Materials Project of the US Department of Energy (DOE) Energy Conversion and Utilization Technologies (ECUT) Program. In fiscal year 1983, the ECUT Materials Project conducted research in four technical areas, or ''work elements,'' entitled High Temperature Materials, Lightweight Materials, Materials by Design, and New Assessments and Initiatives. The progress of the various tasks of the work elements is discussed in this report.

  13. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  14. Bulk Building Material Characterization and Decontamination Using a Concrete Floor and Wall Contamination Profiling Technology

    International Nuclear Information System (INIS)

    Aggarwal, S.; Charters, G.; Blauvelt, D.

    2002-01-01

    The concrete profiling technology, RadPro(trademark) has four major components: a drill with a specialized cutting and sampling head, drill bits, a sample collection unit and a vacuum pump. The equipment in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The drill head is used under hammer action to penetrate hard surfaces. This causes the bulk material to be pulverized as the drill travels through the radioactive media efficiently transmitting to the sampling unit a representative sample of powdered bulk material. The profiling equipment is designed to sequentially collect all material from the hole. The bulk material samples are continuously retrieved by use of a specially designed vacuumed sample retrieval unit that prevents cross contamination of the clean retrieved samples. No circulation medium is required with this profiling process; therefore, the only by-product from drilling is the sample. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the bulk building material. The activity data obtained during the profiling process is reduced and transferred to building drawings as part of a detailed report of the radiological problem. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk

  15. Study on electroplating technology of diamond tools for machining hard and brittle materials

    Science.gov (United States)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  16. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  17. Assessment of Corrosion Characteristics and Development of Remedial Technologies in Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Lim, Y. S. (and others)

    2007-04-15

    In general, materials having superior resistance to corrosion are used for main components and structures in nuclear power plants (NPPs) to improve their safety. During long-term operations in the high temperature and pressure environment, however, localized-corrosion related degradations occur frequently in those materials, leading to unexpected shutdown of the plants. The unexpected shutdowns may lower the operating efficiency of the power generation and expand the repair period, which results in a huge economical loss. Moreover, since the damages may cause a leakage of the primary coolant that brings about a contamination by radioactive substances, the corrosion related degradations of structural materials have become a menace to the safety of NPPs. The steam generator tubes forming a boundary between the primary and secondary sides of NPPs are one of the main components that are most damaged by corrosion. Therefore, it is strongly required to verify the degradation mechanisms of Alloy 182 and Alloy 600 materials used in the steam generator tubes and primary systems, to establish remedial techniques for the degradations, to manage the damages, and to develop techniques for the extension of the plant's life. In this study, (1) the assessment techniques of corrosion damages were improved and the database of the obtained results were established. (2) The basic technologies of the management of corrosion damages were developed for the practical use. (3) The fundamental technologies for inhibition and repair of corrosion damages were also developed. The results of this project are applicable to the assessment, failure analysis and life estimation of the materials against corrosion damages. The assessment data obtained in this work are available for the technical references of the corrosion failures of components in NPPs during operation. Furthermore, it is applicable to establish materials design requirements, to establish the optimum operation condition and to

  18. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    Science.gov (United States)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  19. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  20. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    Science.gov (United States)

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may

  1. Energy and Raw Materials in the Selection of Technologies for Iron and Steel

    Science.gov (United States)

    Fortini, Otavio Macedo

    2016-09-01

    This paper discusses the selection of metal extraction technologies according to the regional availability of energy resources. The most important energy sources in iron and steel production are determined from a review of current technologies to inform possible future scenarios of capacity replacement or expansion according to geography. Alternative technologies are not discussed, considering that actual investment in capacity is most often dominated by high degrees of risk aversion. As such, only technologies proven at a reasonable scale are included in the selection matrix. Scenarios of capacity choice are defined in terms of actions from external agents, those which are not directly involved in the industry but have the capacity to regulate actions by metal producing players. Two extreme scenarios corresponding to closed and open economies are used to set bounds for future expectations. Among steelmaking processes under fully open trade conditions, it is found that EAF steelmaking with charge pre-heat should be the technology of choice in all regions of the world except for South America and Europe, where Integrated Steel Mills have a cost advantage. In fully closed exchange scenarios, Integrated Steel Mills would be the prevalent technology in South America, Sub-Saharan Africa, India, and the former USSR, EAF with scrap pre-heating prevailing in all other regions. On the other hand, HYL-ZR would be the iron making technology of choice in all regions under full exchange scenarios. Under fully closed exchange conditions, Mini-Blast Furnaces, COREX, and HYL-ZR would find regional applications. Increases in raw materials and energy costs of 38 pct in steelmaking and 63 pct in ironmaking are found in going from fully open to fully closed exchange regimes. It is also found that Southeast Asia is the most suitable region for deploying new steelmaking capacity, while Australia and Russia are the best selection for new iron making capacity.

  2. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center 'Welding Processes and Technologies'

    International Nuclear Information System (INIS)

    Kozyrev, N A; Kryukov, R E; Galevsky, G V; Titov, D A; Shurupov, V M

    2015-01-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies».New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed. (paper)

  3. NEW TECHNOLOGIES FOR RESTORATION AND PROTECTION OF POWER EQUIPMENT WITH THE AID OF COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    A. O. Ischenko

    2017-01-01

    Full Text Available The analysis of possible variants of reconstruction of the power equipment is fulfilled and the conclusion concerning the prospects of such work with the use of composite materials is reached. The data on the technical characteristics of composite repair materials for various purposes are presented, the results of repairs of power equipment, in particular the technology for the recovery of the boarding surfaces of the diffuser rings and protection of the pumps D1250 casings are provided. The technology of the recovery pneumatic cylinder, hydraulic cylinder rod, as well as the unique technology of restoration of working surfaces of the impeller vanes of transfer pump, that had been destroyed by corrosion in conjunction with the cavitation processes and were considered as not restorable is described. The restored impeller was in operation during a year and only thereafter it was removed for restoration. Another composite material discussed in the article – diagum – makes it possible to perform a series of repairs associated with restoration of the rubber-covered surfaces of pump casings as well as with restoration of various surfaces of the conveyor belts. Taking the excellent adhesive properties of this composite into account, restoration of worn stainless steel sieve screens to remove abrasive material was fulfilled with the aid of it. The restoration was accomplished via the use of the conveyor belt which application time had expired, that was glued to a metal sieve with diagum. The use of the composites is economically justified, because the application of them in repairs reduces, firstly, terms of restoration work and, secondly, the price of repairs. Third, equipment that was damaged beyond repair is being commissioned by the use of the mentioned composites. 

  4. The development of cost-effective pavement design approaches using minerology tests with new nano-technology modifications of materials

    CSIR Research Space (South Africa)

    Jordaan, G

    2017-07-01

    Full Text Available to determine the mineral composition of materials allows engineers not only to allow these “problem” materials to be identified, but also to address the “perceived risk” of these materials during the design process. New proven Nano-technologies developed over...

  5. Results of the Rhine-Ruhr international materials conference and award 2005. Materials for energy technology in the 21st century - Documentation

    International Nuclear Information System (INIS)

    2005-01-01

    This paper contains the origin wording of 16 lectures (speech) and discussions, which were held on the first Rhine-Ruhr International Materials Conference in Essen, Germany, on October 23 and 24, 2005. The focus of the gathering was on materials research, development and production in the field of energy engineering. The following topics are dealt with: Energy Concepts for Closing the Gap between Demand and Environmental Protection (Klaus Toepfer); Materials Science: The Competitive Factor in the Global Energy Technology Development (Roland Schenkel); The Necessity for Innovation in the EU as Seen by a New Member State (K.J. Kurzydlowski); New Pathways for Cooperation between Materials Science and Industry (Paul M. Siffert); Energy Demand and Environmental Protection - how to get both in line (Mark Radka); Chinese Energy Efficiency Policy leading to cleaner Production in China (Ming Yang); The Global Significance of Solar Energy Supply (Adolf Goetzberger); The Vision of Sustainable Development of Nuclear Energy (Patrick Ledermann); Improving the Efficiency of Energy Technology with Novel Materials (Johannes Teyssen); New Material Concepts for High Efficiency and Low Risk Exploitation of Energy (Koichi Yagi); Materials Systems for Tomorrow's Gas Turbines (Wilfried Kurz); Science and Technological Advances in Fusion Energy Research, ITER and beyond (Bernard Saoutic); Materials, Systems and Milestones for Economically and Environmentally Attractive Fusion Power Plants (Ian Cook); Fuel Cells - The State of the Art: Applications, Feasibility, Technology and Outlook for the Next Decade (Roland Diethelm); Wind Energy - Significance and Challenges for Tomorrow (Christian Nath); Solar Energy - Time Scale for the Full Application (Volker Wittwer)

  6. Development of materials and manufacturing technologies for Indian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required

  7. Designing materials for advanced microelectronic patterning applications using controlled polymerization RAFT technology

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Chambers, Charles R.; Tran, Hoang V.; Okazaki, Hiroshi; Brun, Yefim; Romberger, Matthew L.; Sounik, James R.

    2011-04-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization technology enables the production of polymers possessing low polydispersity (PD) in high yield for many applications. RAFT technology also enables control over polymer architecture. With synthetic control over these polymer characteristics, a variety of polymers can be designed and manufactured for use in advanced electronic applications. By matching the specific RAFT reagent and monomer combinations, we can accommodate monomer reactivity and optimize acrylate or methacrylate polymerizations (193 and 193i photoresist polymers) or optimize styrenic monomer systems (248 nm photoresist polymers) to yield polymers with PD as low as 1.05. For 193i lithography, we have used RAFT technology to produce block copolymers comprising of a random "resist" block with composition and size based on conventional dry photoresist materials and a "low surface energy" block The relative block lengths and compositions may be varied to tune solution migration behavior, surface energy, contact angles, and solubility in developer. Directed self assembly is proving to be an interesting and innovative method to make 2- and even 3-dimensional periodic, uniform patterns. Two keys to acceptable performance of directed self assembly from block copolymers are the uniformity and the purity of the materials will be discussed.

  8. Waste processing: new near infrared technologies for material identification and selection

    Science.gov (United States)

    Cesetti, M.; Nicolosi, P.

    2016-09-01

    The awareness of environmental issues on a global scale increases the opportunities for waste handling companies. Recovery is set to become all the more important in areas such as waste selection, minerals processing, electronic scrap, metal and plastic recycling, refuse and the food industry. Effective recycling relies on effective sorting. Sorting is a fundamental step of the waste disposal/recovery process. The big players in the sorting market are pushing for the development of new technologies to cope with literally any type of waste. The purpose of this tutorial is to gain an understanding of waste management, frameworks, strategies, and components that are current and emerging in the field. A particular focus is given to spectroscopic techniques that pertains the material selection process with a greater emphasis placed on the NIR technology for material identification. Three different studies that make use of NIR technology are shown, they are an example of some of the possible applications and the excellent results that can be achieved with this technique.

  9. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    Science.gov (United States)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  10. Research on technology utilizing data freeway for base nuclear power materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Kurihara, Yutaka; Noda, Tetsuji; Shiraishi, Haruki; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu

    1997-01-01

    In order to carry out the selection of the nuclear power materials which are used in radiation, from high temperature to very low temperature, and in corrosive environment, and the development of the materials effectively, the construction of huge material data base is indispensable. The development of the distributed type material data base called 'freeway' is advanced jointly by National Research Institute for Metals, Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation and Japan Science and Technology Corporation. It has been aimed at that the results obtained in each research institute are made into a data base by that institute, and those data bases can be utilized mutually through network. In fiscal year 1996, the transfer to the system, by which the function showing the contents of system data and the function of data retrieval can be utilized from internet, was begun jointly. The present state of the data freeway, the operation environment of World Wide Web, and the trial making of the computation program for forecasting the change of the chemical composition of materials by neutron irradiation are reported. (K.I.)

  11. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  12. Application of plasma technology for the modification of polymer and textile materials

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow, the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.. Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

  13. Use of a Lecture Manual in Teaching an Introductory Soils Course.

    Science.gov (United States)

    Khan, Adam

    1986-01-01

    Describes a lecture manual for an introductory soil course, how it is used by students, and how it affects student learning. Students indicated that the manual and its condensed lecture material, exam schedule, and grading procedures were beneficial to their learning in the course. (ML)

  14. Evaluating an Active Learning Approach to Teaching Introductory Statistics: A Classroom Workbook Approach

    Science.gov (United States)

    Carlson, Kieth A.; Winquist, Jennifer R.

    2011-01-01

    The study evaluates a semester-long workbook curriculum approach to teaching a college level introductory statistics course. The workbook curriculum required students to read content before and during class and then work in groups to complete problems and answer conceptual questions pertaining to the material they read. Instructors spent class…

  15. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    Science.gov (United States)

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  16. The "Core Concepts Plus" Paradigm for Creating an Electronic Textbook for Introductory Business and Economic Statistics

    Science.gov (United States)

    Haley, M. Ryan

    2013-01-01

    This paper describes a flexible paradigm for creating an electronic "Core Concepts Plus" textbook (CCP-text) for a course in Introductory Business and Economic Statistics (IBES). In general terms, "core concepts" constitute the intersection of IBES course material taught by all IBES professors at the author's university. The…

  17. Threaded Introductory Chemistry for Prepharmacy: A Model for Preprofessional Curriculum Redesign

    Science.gov (United States)

    Barth, Benjamin S.; Bucholtz, Ehren C.

    2017-01-01

    Introductory chemistry courses are required as part of the undergraduate preparation necessary for entry into an array of professional programs. Given the varied priorities of the student population in these courses, it can be difficult to present the material such that students see their individual future academic priorities represented in each…

  18. Learning the Brain in Introductory Psychology: Examining the Generation Effect for Mnemonics and Examples

    Science.gov (United States)

    McCabe, Jennifer A.

    2015-01-01

    The goal of this research was to determine whether there is a generation effect for learner-created keyword mnemonics and real-life examples, compared to instructor-provided materials, when learning neurophysiological terms and definitions in introductory psychology. Students participated in an individual (Study 1) or small-group (Study 2)…

  19. Deep-Elaborative Learning of Introductory Management Accounting for Business Students

    Science.gov (United States)

    Choo, Freddie; Tan, Kim B.

    2005-01-01

    Research by Choo and Tan (1990; 1995) suggests that accounting students, who engage in deep-elaborative learning, have a better understanding of the course materials. The purposes of this paper are: (1) to describe a deep-elaborative instructional approach (hereafter DEIA) that promotes deep-elaborative learning of introductory management…

  20. Material problems in high temperature corrosive environments and their solution by surface technologies

    International Nuclear Information System (INIS)

    Anzai, Toshio; Shibata, Keiichi

    1992-01-01

    The materials for high temperature facilities are usually determined by the heat resistant strength except special corrosive environment. High temperature corrosion has been considered in the case of using low quality fuel which is avoided recently. Even though fuel is clean, high temperature corrosion occurs due to the rise of design temperature and the intake of sea salt particles. There is also one more high temperature corrosion problem on process side that consumes heat energy. The research on high temperature corrosion is important for realizing new energy system such as molten carbonate type fuel cell, pulverized coal-firing supercritical power generation and high temperature gas-cooled nuclear reactor. In this report, the examples experienced actually in a chemical plant are examined, and the possibility of material technology against high temperature corrosion is reviewed. Corrosion phenomena in high temperature environment, the examples of corrosion in the high temperature facilities in a chemical plant and the material technology as the countermeasures for corrosion prevention are reported. (K.I.)

  1. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design of a study of Systems Analysis for Material Control and Accountancy Technology (SAMCAT)

    International Nuclear Information System (INIS)

    Persiani, P.J.; Rothman, A.B.; Bucher, R.G.; Daly, T.A.; Cha, B.C.; Trevorrow, L.E.; Seefeldt, W.B.; Stewart, W.E.

    1987-01-01

    The Systems Analysis for Material Control and Accountancy Technology (SAMCAT) is a program to develop an interactive computer-based management system for decision support in evaluating Material Control and Accountancy (MCandA) upgrades and for validating the MCandA aspects of the Master Safeguards and Security Agreements (MSSA) effectiveness. This paper briefly reviews SAMCAT and presents the status of current activities, with primary focus on the design of a pilot study that has been planned for the near-term development program. The objective of the pilot study is to aid in the development and testing of assessment technologies by utilizing data and information from recent upgrades in MCandA measurements at several of the measurement locations that were important contributors to the uncertainty of the inventory differences (IDs) for a specific material balance area (MBA). The FB-Line MBA in the plutonium production cycle through Savannah River was recommended as a candidate MBA for the study. Attributes considered as selection criteria of key measurement locations for MCandA upgrades, importance rankings of the measurement locations, modeling approaches in evaluating the effectiveness of upgrades at given locations, and the data requirements to support the pilot study are presented. Applications of the near-term pilot study to the overall SAMCAT development program are also presented. 2 refs., 3 figs., 1 tab

  3. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  4. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  5. Introductory mathematics for the life sciences

    CERN Document Server

    Phoenix, David

    2002-01-01

    Introductory Mathematics for the Life Sciences offers a straightforward introduction to the mathematical principles needed for studies in the life sciences. Starting with the basics of numbers, fractions, ratios, and percentages, the author explains progressively more sophisticated concepts, from algebra, measurement, and scientific notation through the linear, power, exponential, and logarithmic functions to introductory statistics. Worked examples illustrate concepts, applications, and interpretations, and exercises at the end of each chapter help readers apply and practice the skills they develop. Answers to the exercises are posted at the end of the text.

  6. A 21st century perspective as a primer to introductory physics

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2011-01-01

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation have faced resistance, and the majority of introductory physics textbooks in wide adoption today have a general structure that has changed little in over 60 years. Thus, in comparison to biology, chemistry, geology, etc, physics is unique in that its introductory course is not a survey of the current status of the field. In an attempt to circumvent this problem in a tractable way, we have developed a qualitative front-end course designed to create a 21st century perspective that can be embedded into the beginning of a standard introductory physics sequence.

  7. Designing and Developing Supplemental Technology of PACI Model Materials through Blended Learning Methods

    Directory of Open Access Journals (Sweden)

    Effendi Limbong

    2017-06-01

    Full Text Available The 21st century English teachers and lecturers are required to have competencies in translating Content Knowledge (CK, integrating various Pedagogical Knolwedge (PK and implementing Technological Knowledge (TK in order to produce effective and efficient teaching. This research reveals and describes researchers efforts and pre-service EFL teachers (PSEFLTs roles in designing and developing the supplemental teaching and learning materials with PowerPoint, Audacity, Camtasia and Internet. To transform researcher roles and model to introduce and implement Technological, Pedagogical, and Content Knowledge (TPACK framework, this research implemented blended learning: traditional face to face (F2F and Facebook closed-group discussion (FBcgD based on Project-Based Learning (PBL. This research employed the qualitative autobiography narrative of self-study from the researchers experiences to implement blended learning. Semi-structure interviews were conducted with four PSEFLTs of group A and five PSEFLTs of group B to seek the PSEFLTs experiences in designing and developing PACI model. The results suggested that blended learning is can effectively and efficiently integrate and implement the design and development of a PACI model. Most importantly both of researcher and two groups realized that in integration of TPACK during a Computer Literacy course, the subject matter may be shaped by the application of technology; teaching as well as learning might be changed by the use of technology and the way to represent and communicate specific lessons to students.

  8. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  9. How does materiality shape Childbirth? An explorative journey into evidence, childbirth practices & Science and Technology Studies

    DEFF Research Database (Denmark)

    Clausen, Jette Aaroe

    2010-01-01

    is Science and Technology Studies (STS). (Post) Actor Network Theory and postphenomenology is used as theoretical resources to help formulate questions to EBM, midwifery and birthing practices. A central theoretical resource is the Dutch Philosopher Annemarie Mol’s concept of mul-tiplicity. Mol argues......" for those positioned in evidence based medicine and midwifery about the use of technology in childbirth. The empirical material is developed during a field study at a maternity ward. Noisy stories about the use of epidurals and fetal monitors are used as resources. Noisy stories are stories that do...... produced in RCTs and eve-ryday midwifery practices. This thesis encompasses 12 chapters aiming to make the familiar strange and the strange familiar. Histori-cally anthropologist travelled to far away exotic plac-es in an attempt to describe the unfamiliar in familiar terms. This text makes the opposite...

  10. Novel Materials, Processing, and Device Technologies for Space Exploration with Potential Dual-Use Applications

    Science.gov (United States)

    Hepp, A. F.; Bailey, S. G.; McNatt, J. S.; Chandrashekhar, M. V. S.; Harris, J. D.; Rusch, A. W.; Nogales, K. A.; Goettsche, K. V.; Hanson, W.; Amos, D.; hide

    2015-01-01

    We highlight results of a broad spectrum of efforts on lower-temperature processing of nanomaterials, novel approaches to energy conversion, and environmentally rugged devices. Solution-processed quantum dots of copper indium chalcogenide semiconductors and multi-walled carbon nanotubes from lower-temperature spray pyrolysis are enabled by novel (precursor) chemistry. Metal-doped zinc oxide (ZnO) nanostructured components of photovoltaic cells have been grown in solution at low temperature on a conductive indium tin oxide substrate. Arrays of ZnO nanorods can be templated and decorated with various semiconductor and metallic nanoparticles. Utilizing ZnO in a more broadly defined energy conversion sense as photocatalysts, unwanted organic waste materials can potentially be re-purposed. Current efforts on charge carrier dynamics in nanoscale electrode architectures used in photoelectrochemical cells for generating solar electricity and fuels are described. The objective is to develop oxide nanowire-based electrode architectures that exhibit improved charge separation, charge collection and allow for efficient light absorption. Investigation of the charge carrier transport and recombination properties of the electrodes will aid in the understanding of how nanowire architectures improve performance of electrodes for dye-sensitized solar cells. Nanomaterials can be incorporated in a number of advanced higher-performance (i.e. mass specific power) photovoltaic arrays. Advanced technologies for the deposition of 4H-silicon carbide are described. The use of novel precursors, advanced processing, and process studies, including modeling are discussed from the perspective of enhancing the performance of this promising material for enabling technologies such as solar electric propulsion. Potential impact(s) of these technologies for a variety of aerospace applications are highlighted throughout. Finally, examples are given of technologies with potential spin-offs for dual

  11. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  12. Materials research symposium 1988 of the Federal German Ministry of Research and Technology (BMFT). Proceedings and posters. Vol. 1

    International Nuclear Information System (INIS)

    1988-01-01

    In the context of concentrating the research activities on key areas of technology, the West German Ministry of Research and Technology started the materials research program in 1985. Long-term and risky questions of modern materials research were and are being tackled, using the instrument of combined project work, i.e.: the partnership of industry and scientific institutions. Three years after the start of the program, the technological state in West Germany in the field of new materials is to be documented and balanced by the 'Symposium on Materials Research'. Results of basic research to application orientated material developments are introduced by survey and detailed articles. The following subjects are dealt with in the first two volumes: 1. Functional polymers; 2. Structural polymers; 3. Metal materials; 4. Ceramics. 22 articles are listed separately in the 'ENERGY' databank. (orig./MM) [de

  13. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  14. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  15. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.

    Science.gov (United States)

    Xie, Ming; Gruen, Dieter M

    2010-11-18

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  16. Communications received from Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1994-04-01

    The Director General has received notes verbales to the export of nuclear material, equipment and technology from the following Permanent Missions to the International Atomic Energy Agency: notes verbales dated 1 March 1994 from the Permanent Missions of Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Italy, Japan, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland, the United Kingdom of Great Britain and Northern Ireland, the United States of America; and a note verbale dated 12 March 1994 from the Permanent Mission of Romania. The purpose of these notes verbales is to provide further information on these Governments' nuclear export policies and practices

  17. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  19. Unidirectional coating technology for organic field-effect transistors: materials and methods

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Qian, Jun; Yin, Yao; Shi, Yi; Li, Yun

    2015-05-01

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V-1 s-1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed.

  20. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  1. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques.

    Science.gov (United States)

    Papadiochou, Sofia; Pissiotis, Argirios L

    2018-04-01

    The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy

  2. DESIGN AND TECHNOLOGICAL SOLUTIONS FOR THE RESTORATION OF SEWERS USING ELEMENTS OF RECYCLED POLYMER COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    GONCHARENKO D. F.

    2017-01-01

    Full Text Available Problem statement. Currently sanitary drainage systems of large cities in Ukraine are significantly worn down with prolonged use and due to inefficient solutions for protection of the structures from aggressive effects of the environment, poor quality of materials and construction and installation works during building. Restoration of performance characteristics, reliability and durability of sewer tunnels is the costly and technically complex task, which is urgently needed to be fulfilled to prevent accidents including those with serious environmental impact. Modern work technique and the materials used for restoration allow us to solve these problems with different levels of efficiency, while reducing the cost of restoration due to use of recycled polymeric raw material, as well as to improvement of technological solutions is a currently important direction of research. Purpose of the article. To develop solutions for restoring serviceability, reliability and durability of sewer tunnels taking into account the accumulated experience in renovation of water disposal networks. Conclusion. Use of components made of recycled polymer composite materials during restoring sewer tunnels has significant economic and environmental effects and allows to undertake repair work in hard-to-reach areas.

  3. X-ray photoelectron spectroscopy for characterization of bionanocomposite functional materials for energy-harvesting technologies.

    Science.gov (United States)

    Artyushkova, Kateryna; Atanassov, Plamen

    2013-07-22

    The analysis of hybrid multicomponent bioorganic and bioinorganic composite materials related to energy technologies by using X-ray photoelectron spectroscopy is discussed. The approaches and considerations of overcoming the difficulties of analyzing hybrid multicomponent materials are demonstrated for different types of materials used in bioenzyme fuel cells, that is, enzyme immobilization in a hybrid inorganic-organic matrix, analysis of peptide binding and structure in the mediation of silica nanoparticle formation, analysis of enzyme-polymeric multilayered architectures obtained through layer-by-layer assembly, and study of the mechanism of electropolymerization. Thorough optimization of experimental design through analysis of an adequate set of reference materials, relevant timescales of sample preparation and X-ray exposure, careful peak decomposition and cross-correlation between elemental speciation, results in a detailed understanding of the chemistry of nanocomposite constituents and interactions between them. The methodology presented and examples discussed are of significant importance to the scientific and engineering communities focused on the immobilization of enzymes, proteins, peptides, and other large biological molecules on solid substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  5. Nuclear material facilities - security systems and technology R and D trends

    International Nuclear Information System (INIS)

    Ellis, D.; Steele, B.

    2002-01-01

    Full text: In the US, physical security research and development (R and D) during the 1970s and 1980s created a body of technology and systems engineering that largely defined the industry for several decades. However, despite today's terrorists threats and risks, the overall funding of new and innovative physical security solutions is relatively very small. Such factors constraining physical security R and D include the expansion of overall security responsibilities, the emphasis on programmatic and business performance, in addition to evolving (mis)perceptions that 'the problem has been solved' or that 'anyone can do security'. Underlying these factors, the lack of robust standards and certifications has limited the development and application of physical security products, systems, and services. The research and development of new security technologies must be evaluated against very demanding constraints - including costs/benefits, emerging threats, and policies. Going forward, the goal will be to create a more comprehensive approach to physical security of nuclear material facilities that matches evolving threats and that will complement the transition to an integrated security/operations management environment. Such a management model evaluates the additional value of increasing security alternatives in addition to determining trade-offs between the programmatic mission and security issues. Correspondingly, more explicit and strategically useful measures must be developed to determine importance that, in turn, will influence security-related R and D efforts. The research and development of security technologies should be based upon identified needs and requirements resulting from a systematic analysis of the threat and other conditions. In particular, security technologies and systems must be evaluated in terms of current and long-term impacts. Such needs are (will be) diverse and will depend upon sustained research investments in a broad range of technologies

  6. "Reverse Engineering" in Introductory Physics Education

    Science.gov (United States)

    Badraslioglu, Duruhan

    2016-01-01

    One of the intermediate goals of STEM education has been turning our students into problem solvers and critical thinkers who are equipped with better scientific analysis skills. In light of this initiative, it is imperative that we, the educators, modify the way we teach classic introductory physics topics, and in the long run all sciences, and…

  7. Exploring Urban America: An Introductory Reader.

    Science.gov (United States)

    Caves, Roger W.

    This introductory text presents a collection of articles from urban-studies journals to introduce undergraduate students to the interdisciplinary field of urban studies. The book is divided into 9 parts as follows: Part 1: Cities and Urbanism; part 2: Urban History; part 3: Urban Policy; part 4: Economic Development; part 5: Community Services and…

  8. Layering the Introductory History of Europe Course.

    Science.gov (United States)

    Waddy, Helena

    1997-01-01

    Describes an introductory undergraduate survey course on European history that incorporates three interrelated sections: constitutional government in Europe, the American revolution, and the French Revolution. The instruction emphasizes the interconnectedness among the events and includes repetition of key ideas and information. Discusses the…

  9. "World Religions" in Introductory Sociology Textbooks

    Science.gov (United States)

    Carroll, Michael P.

    2017-01-01

    A section on "world religions" (WRs) is now routinely included in the religion chapters of introductory sociology textbooks. Looking carefully at these WR sections, however, two things seem puzzling. The first is that the criteria for defining a WR varies considerably from textbook to textbook; the second is that these WRs sections…

  10. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  11. Using isomorphic problems to learn introductory physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  12. An Introductory Calculus-Based Mechanics Investigation

    Science.gov (United States)

    Allen, Bradley

    2017-01-01

    One challenge for the introductory physics teacher is incorporating calculus techniques into the laboratory setting. It can be difficult to strike a balance between presenting an experimental task for which calculus is essential and making the mathematics accessible to learners who may be apprehensive about applying it. One-dimensional kinematics…

  13. Teaching Health Care in Introductory Economics

    Science.gov (United States)

    Cutler, David M.

    2017-01-01

    Health care is one of the economy's biggest industries, so it is natural that the health care industry should play some role in the teaching of introductory economics. There are many ways that health care can appear in such a context: in the teaching of microeconomics, as a macroeconomic issue, to learn about social welfare, and even to learn how…

  14. Making Introductory Quantum Physics Understandable and Interesting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Making Introductory Quantum Physics Understandable and Interesting. Ranjana Y Abhang. Classroom Volume 10 Issue 1 January 2005 pp 63-73. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. 29 CFR 452.1 - Introductory statement.

    Science.gov (United States)

    2010-07-01

    ... elections will be fairly conducted. Specific provisions are included to assure the right of union members to... 29 Labor 2 2010-07-01 2010-07-01 false Introductory statement. 452.1 Section 452.1 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT...

  16. Students' Motivation to Study Introductory Marketing.

    Science.gov (United States)

    Gnoth, Juergen; Juric, Biljana

    1996-01-01

    Observes that there is little research on Australian students' motivations to enroll in particular college courses. Reports the results of an investigation of the motivations of students to undertake an introductory elective marketing course. Argues that this has implications for the areas of curriculum design, streaming procedures, and teaching…

  17. The Pythagorean Roots of Introductory Physics

    Science.gov (United States)

    Clarage, James B.

    2013-01-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on…

  18. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  19. Holography and Introductory Science at Hampshire College.

    Science.gov (United States)

    Wirth, Frederick H.

    1991-01-01

    An introductory Natural Science course with a focus on the laboratory is described. The main function of the course is getting students prepared for required individual projects in science. A copy of the syllabus, a description of laboratory experiments, and the context of the course are included. (KR)

  20. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  1. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1992-01-01

    The document reproduces the text of the Note Verbale dated 18 December 1991 received by the Director General of the IAEA from the Permanent Mission of Austria and relating to the export of nuclear material, equipment and technology

  2. Communications received from certain Member States regarding guidelines for the export of nuclear material, equipment or technology

    International Nuclear Information System (INIS)

    1988-11-01

    The document reproduces the text of a Note Verbale dated 20 October 1988 received by the IAEA Director General from the Permanent Mission of Spain relating to the export of nuclear material, equipment or technology

  3. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    International Nuclear Information System (INIS)

    Watson, R.D.

    1986-09-01

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update

  4. A proposal to improve a 3D printing technology of composite materials products

    Science.gov (United States)

    Zlobina, I. V.; Bekrenev, N. V.; Pavlov, S. P.

    2017-12-01

    The objects formed by 3D printing, in particular from nonmetallic materials, have an essential disadvantage not eliminated at the present time - a significant anisotropy of the structure and, as a consequence, of physical and mechanical characteristics. The research of 3DP technology in combination with the influence of microwave electromagnetic field of various power on the formed three-dimensional product has been carried out. It was established that a microwave electromagnetic field with an average specific power of 2450 MHz causes an increase in the homogeneity of the of powder materials’ structure, expressed in a decrease of the pore size by 24% and a decrease in their dispersion by almost 30%. As a consequence of the increase in the homogeneity of the structure, the flexural strength of Zp130-powder plates impregnated with cyanoacrylate has increased to 1.77 times. Thus, the use of the microwave electromagnetic field as a final stage in the formation of products made from composite materials is promising and requires additional studies to justify the serial production technology.

  5. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  6. Acoustic emission detection for mass fractions of materials based on wavelet packet technology.

    Science.gov (United States)

    Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing

    2015-07-01

    Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The first volume is divided in four parts and 22 chapters. It is structured as follows: PART I: Technology. Chapter 1: Technical Advancement of Fuel-Cell Research and Development (Dr. Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Juergen Mergel, Martin Mueller and Ralf Peters); 2: Single-Chamber Fuel Cells (Teko W. Napporn and Melanie Kuhn); 3: Technology and Applications of Molten Carbonate Fuel Cells (Barbara Bosio, Elisabetta Arato and Paolo Greppi); 4: Alkaline Fuel Cells (Erich Guelzow); 5: Micro Fuel Cells (Ulf Groos and Dietmar Gerteisen); 6: Principles and Technology of Microbial Fuel Cells (Jan B. A. Arends, Joachim Desloover, Sebastia Puig and Willy Verstraete); 7: Micro-Reactors for Fuel Processing (Gunther Kolb); 8: Regenerative Fuel Cells (Martin Mueller). PART II: Materials and Production Processes. Chapter 9: Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Juelich GmbH, Germany (Vincent Haanappel); 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration (Evren Gunen); 11: Sealing Technology for Solid Oxide Fuel Cells (K. Scott Weil); 12: Phosphoric Acid, an Electrolyte for Fuel Cells - Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity (Carsten Korte); 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (Heli Wang and John A. Turner); 14: Nanostructured Materials for Fuel Cells (John F. Elter); 15: Catalysis in Low-Temperature Fuel Cells - An Overview (Sabine Schimpf and Michael Bron). PART III: Analytics and Diagnostics. Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells (Ellen Ivers-Tiffee, Andre Leonide, Helge Schichlein, Volker Sonn and Andre Weber); 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks (Norbert H. Menzler and Peter Batfalsky); 18: In Situ Imaging at Large-Scale Facilities (Christian Toetzke, Ingo Manke and Werner Lehnert); 19: Analytics of Physical Properties of Low

  8. Interdisciplinary Introductory Course in Bioinformatics

    Science.gov (United States)

    Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.

    2010-01-01

    Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…

  9. Computer-Tailored Student Support in Introductory Physics.

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  10. Computer-Tailored Student Support in Introductory Physics.

    Directory of Open Access Journals (Sweden)

    Madeline Huberth

    Full Text Available Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system, which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  11. Computer-Tailored Student Support in Introductory Physics

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a ‘better-than-expected’ measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century. PMID:26352403

  12. Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells

    DEFF Research Database (Denmark)

    Cerri, I.; Lefebvre-Joud, F.; Holtappels, Peter

    A group of experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European...... Strategic Energy Technology Plan. The report summarises the results, including key targets identified for medium term (2020/2030) and long term (2050) timescales....

  13. TECHNOLOGICAL ASPECTS OF PRODUCTION OF THE CANDIED FRUITS FROM NON-TRADITIONAL RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    I. R. Belenkaya

    2016-08-01

    Full Text Available The article analyses the candied fruit market in Ukraine and describes the main technological operations pertainingto processing of non-traditional candied products – celery and parsnip roots. Darkening of the roots surface caused bythe enzyme oxidation is one of the problems arising when processing white roots, which leads to worse marketable conditionof the product. To prevent darkening, the developed technology provides for soaking raw material in 1% citric acid solutionimmediately after peeling. To improve the diffusion and osmotic processes and to soften roots before boiling in sugar syrup,the steam blanching has been applied. The constructed Gantt diagram proves that the developed technology can shorten thecandied fruit cooking period. The biochemical indicators of the obtained new products have been studied. It was establishedthat the candied fruit possess the appropriate physical and chemical indicators and original organoleptic properties resulting ina demand by consumers. The results of the taste evaluation of the experimental specimen confirmed a high quality of the products.

  14. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  15. New technology and energy-saving equipment for production of composite materials

    Science.gov (United States)

    Romanovich, A. A.; Glagolev, S. N.; Babaevsky, A. N.

    2018-03-01

    The article considers industrial technology and energy-saving equipment for cement and composite binder production with a reduction in energy intensity of the process up to 50% due to the synergetic effect during mechanic activation of the raw mix with the replacement of part of the clinker component with the mineral hydro-active additive. The technological process is based on the sequential introduction of components in dispersed phases into the feed mixture in the grinding path and at the stage of product separation with certain dispersed characteristics. The increase in the energy efficiency of the line is achieved by the joint operation of the press roller aggregate, which is the development of BSTU named after V.G. Shoukhov, and rotor-vortex mills of a very fine grinding of a new design. The experienced design of the aggregate with the device for deagglomeration of the pressed tape allows combining the processes of grinding and disaggregation of the pressed material, thereby reducing the operating costs and increasing the efficiency of using the grinding unit. Comparative tests of cement samples obtained in energy-saving aggregates (PRA + RVM) are given which allowed establishing that their beam strength for compression and bending is higher by 15-20% than the traditional method obtained in a ball mill. An analytical expression is also given that allows one to determine the power consumed for the deagglomeration of crushed and pressed material between the main rolls, taking into account the geometric dimensions of the rolls and the physico-mechanical characteristics of the material.

  16. Information Technologies and Material Requirement Planning (MRP in Supply Chain Management (SCM as a Basis for a New Model

    Directory of Open Access Journals (Sweden)

    L. Sagbansua

    2010-11-01

    Full Text Available In this study, information technologies, one of the biggest enablers of the modern supply chain management (SCM, are discussed. Types and ways of information technologies related to supply chain management are analyzed. Material Requirement Planning (MRP, Enterprise Resource Planning (ERP, and electronic trade are discussed to provide an example.

  17. Mineralogical and technology characterization of raw materials of clay used for ceramic blocks fabrication

    International Nuclear Information System (INIS)

    Campos, N.Q.; Tapajos, N.S.

    2012-01-01

    In the state of Para, the red ceramic industry has several segments highly generators of jobs and a strong social appeal. With so many companies focused on this productive sector emerge, but many without any administration quality. Therefore, this study focused the technological and mineralogical characterization of the raw material used in the manufacture of ceramic blocks, by Ceramica Vermelha Company, located in the district of Inhangapi-PA. The raw material was obtained by the techniques of X-ray diffraction (XRD) to determine the present crystalline phases through an accurate and efficient procedure, where it was possible to identify the peaks relating to montmorillonite, illite and kaolinite clay in the sample, and kaolinite and quartz in the sample laterite. Another important result was the absorption of water, with average satisfactory according to the standards. According to a sieve analysis, the laterite the sand fraction showed a greater extent compared to the other, while the clay silt exceeding 80% was found to be too plastic material. The resistance to compression, the results were below the required by the standard, suggesting more accurate test methods. (author)

  18. Overview on materials and technological developments for the LMJ cryogenic target assembly

    International Nuclear Information System (INIS)

    Reneaume, B.; Allegre, G.; Botrel, R.; Bourcier, H.; Bourdenet, R.; Breton, O.; Collier, R.; Dauteuil, C.; Durut, F.; Faivre, A.; Fleury, E.; Geoffray, I.; Geoffray, G.; Jeannot, L.; Jehanno, L.; Legaie, O.; Legay, G.; Meux, S.; Schunk, J.; Theobald, M.; Vasselin, C.; Perin, J.P.; Viargues, F.; Paquignon, G.

    2011-01-01

    The cryogenic target assemblies (CTAs) designed for Laser Megajoule (LMJ) experiments have many functions and have to meet severe specifications imposed by implosion physics, the CTA thermal environment, and the CTA interfaces with the Megajoule laser cryogenic target positioner. Therefore, CTA fabrication uses many challenging materials and requires several technological studies. During the last 2 years, many developments have enabled better collection of comprehensive data on target constitutive materials and improvements in the fabrication of the CTA base, hohlraum, and aluminum turret. Studies have been carried out (a) to better characterize thermal properties of materials allowing optimization of the thermal simulation of the hohlraum, (b) to improve the CTA base fabrication process in order optimize thermal studies of the LMJ experimental filling station (EFS), and (c) to determine coatings on the polyimide membrane that may limit the 300 K thermal effect on the micro-shell and increase the deuterium-tritium fuel lifetime. CTAs have been produced to evaluate fabrication knowledge, to characterize CTAs, to study air tightness, and to study filling and D 2 ice layering on the EFS. An overview of the results that have been obtained during the past 2 years is presented in this paper. (authors)

  19. Assessment of materials technology of pressure vessels and piping for coal conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Canonico, D.A.; Cooper, R.H.; Foster, B.E.; McClung, R.W.; Nanstad, R.K.; Robinson, G.C.; Slaughter, G.M.

    1978-08-01

    The current technology of the materials, fabrication, and inspection of pressure vessels and piping for commercial coal conversion systems is reviewed. Comparison is made between the various codes applicable to these conversion systems. Areas of concern, such as material compatibility and fracture toughness, are cited. Recommendations are made that should increase the reliability of these components, the failure of which would result in a major outage of the plant. We believe that to date most of the current studies of various competing processes have emphasized the capital cost aspects to show potential competition with other energy sources but have not adequately examined the influence of design features on both potential maintenance and disruptive failure costs. It appears, for example, that the choice of vessel size (which is dictated by single vs multiple train process designs) has been examined primarily from the standpoint of capital costs. Maintenance, operation, relative part load capability, and relative probability of failure are unanswered questions. The materials having the most favorable mechanical properties and costs, unfortunately, are sensitive to various embrittling phenomena.

  20. Design status and development strategy of China liquid lithium-lead blankets and related material technology

    Science.gov (United States)

    Wu, Y.; FDS Team

    2007-08-01

    A series of fusion reactors (named FDS series) have been designed and assessed in China, with four types of liquid lithium lead blankets including the RAFM steel-structured He-cooled quasi-static LiPb tritium breeder (SLL) blanket, the RAFM steel-structured He-LiPb dual-cooled (DLL) blanket, the RAFM steel-structured refractory material thermally-insulated high temperature LiPb (HTL) hydrogen production blanket and the RAFM steel or optionally the austenitic stainless steel-structured He-LiPb dual-cooled high level waste transmutation (DWT) blanket. To demonstrate and validate the feasibility of the candidate blankets for fusion energy application, the three-phases-strategy of TBM (test blanket module) development, i.e. material R&D and out-of-pile experimental mockup, EAST-TBM and ITER-TBM have been proposed. A brief overview of the four types of LiPb blanket designs and their goals are given. Material technology requirement and development strategy are also presented in this paper.

  1. NATO Advanced Research Workshop: Application of Natural Microporous Materials to the Environmental Technology. Book of Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    In this proceedings About 80 people from Albania, Belgium, Bulgaria, Czech Republic, Estonia, Germany, Greece, Italy, Poland, Portugal, Romania, Russia, Spain, U.K., Turkey, Ukraine, U.S.A. and Slovakia took part in the workshop. 56 reports had been presented. from which 19 reports deals with the scope of INIS. The purpose of the workshop was the critical assessment of the current developments in the field of utilization of natural microporous materials (zeolites, clays, oxides) for the solution of problems related to the toxic and nuclear waste management, the water pollution control and decontamination, the environmental catalysis associated to the atmospheric pollution, the creation of new materials for energy storage and agricultural management including the development of artificial soils for plant growth in the space. Of especial importance for this meeting was the exchange of information and know-how among specialists working in institutions of NATO and Cooperation Partner countries aiming in the development of common strategies for the solution of environmental problems and the promotion of the further scientific and technological collaboration. Nineteen papers deals with the using of microporous materials for separation of radionuclides

  2. A new ion-beam laboratory for materials research at the Slovak University of Technology

    Science.gov (United States)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  3. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  4. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  5. Emerging technologies from the foot-prints of heavy ions radiation in insulating materials

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2012-01-01

    One of the most interesting aspects of heavy-ions interaction with dielectric materials is the phase change at the point of interaction creating a damage trail, popularly known as latent track, which in fact, is the footprint of the incident ion. It is very convenient to amplify chemically this foot-print and manufacture a membrane under certain conditions. A membrane, with its most comprehensive and clear definition, is an intervening phase separating two phases and/or acting as an active or passive barrier to the transport of matter between phases. The very existence of a membrane relies upon the functionality domain of the pores contained therein. The geometrical traits and morphology of the pore ensembles dictate the applications, which any membrane can serve to. There are variety of membranes being developed and used in myriad of applications in diverse fields of science and technology. The range of commercially available membrane materials is quite diverse and varies widely in terms of composition, and physical structure. The creation of pores, whether through natural self-assembling phenomenon or man-made processes, might itself be an issue of interest but these are the pore-traits which are fundamentally more important, whether the membrane is being used for sieving-one of the ever most important applications the mankind has been using for thousand of years, or in the technological applications-the most recent one being nano technology. This talk would be addressed to the development of membranes - organic (polymeric) in general, formed through irradiation of polymeric foils with heavy and energetic ions followed by chemical processing leading finally to what is known as 'Track Etch Membranes (TEMs)', and present the review of the innovative applications of these membranes from filtration to electro-kinetic based applications and nano-/micro fabrication of devices- the potent aspect of emerging technologies. The emphasis would be on the dependence of useful

  6. Pedagogical Utilization and Assessment of the Statistic Online Computational Resource in Introductory Probability and Statistics Courses

    Science.gov (United States)

    Dinov, Ivo D.; Sanchez, Juana; Christou, Nicolas

    2009-01-01

    Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment. The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual

  7. Advanced Research and Technology Development Fossil Energy Materials Program implementation plan for fiscal years 1987 through 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Carlson, P.T. (comps.)

    1987-09-01

    This program implementation plan for the Department of Energy Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program reviews the technical issues and the materials research and development needs of fossil energy technologies. The status and plans for research and development activities in the AR and TD Fossil Energy Materials Program to meet those needs are presented. Detailed information about these plans is provided for FY 1987 through FY 1989, and long-range plans are described for FY 1990 and FY 1991.

  8. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  9. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiemann, Dora K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choi, Junoh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  10. National Ignition Facility quality assurance plan for laser materials and optical technology

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  11. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  12. Functional materials for information and energy technology: Insights by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Martina [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Nemšák, Slavomír; Plucinski, Lukasz [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Schneider, Claus M., E-mail: c.m.schneider@fz-juelich.de [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); JARA Jülich-Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich (Germany); Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany)

    2016-04-15

    Highlights: • Photoemission spectro/microscopy studies of functional material systems. • Hard X-ray photoemission spectroscopy from magnetic semiconductors and insulators. • Information depth studies in hard X-ray photoemission microscopy. • Soft X-ray standing wave ambient pressure photoemission spectroscopy from liquid films. - Abstract: The evolution of both information and energy technology is intimately connected to complex condensed matter systems, the properties of which are determined by electronic and chemical interactions and processes on a broad range of length and time scales. Dedicated photoelectron spectroscopy and spectromicroscopy experiments can provide important insights into fundamental phenomena and applied functionalities. We discuss some recent methodological developments with application to relevant questions in spintronics, and towards operando studies of resistive switching and electrochemical processes.

  13. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  14. A research project to develop and evaluate a technical education component on materials technology for orientation to space-age technology

    Science.gov (United States)

    Jacobs, J. A.

    1976-01-01

    A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.

  15. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  16. Using the Teach Astronomy Website to Enrich Introductory Astronomy Classes

    Science.gov (United States)

    Hardegree-Ullman, K. K.; Impey, C. D.; Patikkal, A.; Austin, C. L.

    2013-04-01

    This year we implemented Teach Astronomy as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive astronomy content of the website includes: an introductory text book, encyclopedia articles, images, two to three minute topical video clips, podcasts, and news articles. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. We will present an overview of how Teach Astronomy works and how instructors can use it as an effective teaching tool in the classroom. Additionally, we will gather feedback from science instructors on how to improve the features and functionality of the website, as well as develop new assignment ideas using Teach Astronomy.

  17. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunn, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Durbin, Samual [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); England, Jeff [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lindgren, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meier, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-05

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.

  18. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    International Nuclear Information System (INIS)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H.

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  19. Materials technology for coal-conversion processes. Seventeenth quarterly report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W. A.

    1979-01-01

    Studies of slag attack on refractories were continued, utilizing conditions relevant to MHD applications. Addition of 10 wt % K/sub 2/O seed to the slag did not increase its corrosive effect on the refractories tested. A hot gas-stream cleanup erosion-monitoring system using an ANL-developed nondestructive ultrasonic system was installed at the Morgantown Energy Technology Center (METC) during this period and was 75% completed. Characteristic-slope values obtained from broadband and resonant-band acoustic-emission transducers during rapid heating of a 95% Al/sub 2/O/sub 3/ refractory panel are consistent with theory. Corrosion information on type and thickness of corrosion-product layers was obtained on Incoloy 800, 310 stainless steel, Inconel 671 and 871 and 982/sup 0/C. Fluid-bed corrosion studies involving sulfation accelerators have shown that addition of 0.3 mol % CaCl/sub 2/ has no significant effect on corrosion behavior of the alloys studied. However, 0.5 mol % NaCl or 1.9 mol % Na/sub 2/CO/sub 3/ increases the corrosion rates of most materials. Failure analyses were performed on components from the slagging gasifier and liquefaction unit at the Grand Forks Energy Technology Center, and a ball valve from the METC Valve Dynamic Test Unit.

  20. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    Science.gov (United States)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.