WorldWideScience

Sample records for technology high power

  1. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  2. High-Power Ion Thruster Technology

    Science.gov (United States)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  3. High Performance Auxiliary Power Unit Technology Demonstrator.

    Science.gov (United States)

    1980-12-01

    aft bearings 1.13 P3 - Power producer CDP 1.14 DPHE - Lube pressure drop at heat exchanger 1.15 POFP - Load airflow orifice pressure 1.16 DPOFP - Load...P𔃽I -PSI G PEBL -PSIG P2 -PS.IG DPHE -PID POFP -F Iu 0. 022±_ 77. 3478 6o5. 6 4±4 ±8L-. 4852 19. 51-17.4 DPOFP -PSID Ni -,. N2-i -RPM NSATM -FPM...28. 0250 83. 3505 29. 861 1:9. 7680 PGi -PSIG PEBL -PSIG P3 -PSIG DPHE -PSID POFP -PSIG 0. 0100 77. 9199 72.4862 17. 25 ±19. 4122 1= DPOFP -PSID NI

  4. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  5. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  6. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  7. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  8. Operation and technology of high pulsed power generators

    International Nuclear Information System (INIS)

    Eyl, P.; Romary, P.

    1995-01-01

    In order to satisfy the needs of ''components and electronic circuits hardness'', a range of high pulsed power generators is available in the French Atomic Energy Commission. The goal of this paper is to present the general principles of operation and the main characteristics of the irradiation facilities which are operational at the CESTA center. Finally, we give a brief outline of the new technology developments. (authors). 6 refs., 16 figs

  9. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  10. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  11. Recent developments in high average power driver technology

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J.

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kV and 700 kV range are reported. A 250 kV, 1.5 kA/cm 2 , 30 ns electron beam diode has operated stably for 1.6 x 10 5 pulses

  12. Monograph on safety in high power and high energy advanced technologies and medical applications of lasers

    International Nuclear Information System (INIS)

    2016-01-01

    This monograph is intended for creating awareness amongst the safety and health professionals of nuclear and radiation facilities on hazards involved in high power and high energy advanced technologies as well as on how development of advanced technologies can benefit the common people

  13. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  14. Study of novel plasma devices generated by high power lasers coupled with a micro-pulse power technology

    International Nuclear Information System (INIS)

    Nishida, A; Chen, Z L; Jin, Z; Kondo, K; Nakagawa, M; Kodama, R; Arima, H; Yoneda, H

    2008-01-01

    The authors have proposed introducing a micro pulse power technology in high power laser plasma experiments to boost up the return current, resulting in efficiently guiding of energetic electrons. High current pulse power generators with a pulse laser trigger system generate high-density plasma that is well conductor. To efficiently guiding by using a micro pulse power, we estimated parameter of a micro pulse power system that is voltage of rise time, current, charging voltage and capacitance

  15. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  16. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Science.gov (United States)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  17. Applications of high-temperature superconductors in power technology

    International Nuclear Information System (INIS)

    Hull, John R

    2003-01-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications

  18. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  19. High Power Electronics - Key Technology for Wind Turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2014-01-01

    reliability challenges for the future wind turbines are explained. It is concluded that the wind turbine behavior/performance can be significantly improved by introducing power electronics, and there will be higher requirements for the power electronics performances in wind power application....

  20. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  1. High Performance Low Cost Digitally Controlled Power Conversion Technology

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes

    2008-01-01

    in order to reduce the power consumption of servers and datacenters. The work presented in this thesis includes digital control methods for switch-mode converters implemented in microcontrollers, digital signal controllers and field programmable gate arrays. Microcontrollers are cheap devices that can...... be used for real-time control of switch-mode converters. Software design in the assembly language of the microcontroller is important because of the limited resources of the microcontroller. Microcontrollers are best suited for power electronics applications with low bandwidth requirements because...... the execution time of the software algorithm that realises the digital control law will constitute a considerable delay in the control loop. Digital signal controllers are powerful devices capable of performing arithmetic functions much faster than a microcontroller can. Digital signal controllers are well...

  2. High-energy power capacitors, their applied technology and the trends

    International Nuclear Information System (INIS)

    2012-01-01

    High-voltage and high-energy-density power capacitors called high-power ones such as film or electrolytic capacitors, have been used in large quantities for the pulse power technology such as an impulse current or voltage generator and a laser power supply, and for the power electronics one with progress of the power semiconductor device and the inverter technology. Recently, electric double layer capacitors (EDLC) with remarkable technical progress have been applied for the equipments of electric power and industrial field for the purpose of energy saving or electric power quality improvement, which have come to link to the electric power system. Thus, using a lot of high-power capacitors near our life would require to know the structure, the principle and the characteristic of capacitors, and also to consider suitable directions for use, maintenance and safety and so on, when carrying out a system and a facility design. In the technical report, while describing the dielectric and the feature of some high-power capacitors, and introducing the application examples to the laser-fusion power supply and some systems with EDLC, the trend of standardization of EDLC and the directivity of the examination about installation and maintenance of the applied equipments are described. (author)

  3. Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain

    International Nuclear Information System (INIS)

    Zubi, Ghassan

    2011-01-01

    The shift to a low carbon society is an issue of highest priority in the EU. For electricity generation, such a target counts with three main alternatives: renewable energies, nuclear power and carbon capture and storage. This paper focuses on the renewables’ alternative. Due to resource availability, a technology mix with a high share of PV and wind power is gaining increasing interest as a major solution for several EU member states and in part for the EU collectively to achieve decarbonization and energy security with acceptable costs. Due to their intermittency, the integration of high shares of PV and wind power in the electricity supply is challenging. This paper presents a techno-economic assessment of technology mix alternatives with a high share of PV and wind power in Spain, as an example. Thereby, the focus is on the option of increasing wind curtailment versus substituting rigid baseload generation in favor of the more flexible gas turbines and combined cycle gas turbines. - Highlights: ► The potential of power generation from renewable energy resources in the EU is illustrated. ► The LEC of the different technologies considered is calculated for today and future scenarios. ► An excel-based model for the technology mix assessment is applied using Spanish data. ► Technology mix alternatives with a high share of PV and wind power are assessed. ► The focus is on increasing wind curtailment vs. relying on more flexible power generation units.

  4. Compact, Low-Power, and High-Speed Graphene-Based Integrated Photonic Modulator Technology

    Science.gov (United States)

    2017-11-02

    Compact, Low-Power, and High-Speed Graphene- Based Integrated Photonic Modulator Technology The views, opinions and/or findings contained in this...Graphene-Based Integrated Photonic Modulator Technology Report Term: 0-Other Email: sorger@gwu.edu Distribution Statement: 1-Approved for public release...which is an all-time record at Georgia Tech. Protocol Activity Status: Technology Transfer: Nothing to Report PARTICIPANTS: Person Months Worked

  5. The control system based on PXI technology for high voltage power supply

    International Nuclear Information System (INIS)

    Chen Dehong; Zhang Ming; Ma Shaoxiang; Xia Linglong; Zeng Zhen; Zhang Xueliang; Wang Chuliang; Yu Kexun

    2014-01-01

    A 100 kV/60 A high voltage power supply (HVPS) is being developed to carry some auxiliary heating research on J-TEXT and supply the auxiliary heating system. The power supply which consists of 144 switch modules is based on PSM technology. For the requirement of isolation, control and protection, a control system based on the PCI extensions for instrumentation (PXI) which meets up with the CODAC standards is designed with developed PSM technology for the high voltage power supply. The compact structure of hardware in the control system is presented too. And the control strategy which is based on shift phase pulse width modulation is discussed Some tests are performed on the control system to validate the control strategy, the experimental results show that the system has a good control performance and fast response, which meets the control requirement of 100 kV/60 A high voltage power supply. (authors)

  6. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  7. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  8. High temperature superconductors as a technological discontinuity in the power cable industry

    International Nuclear Information System (INIS)

    Beales, T.P.; McCormack, J.S.

    1994-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables

  9. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  10. Integrated Automotive High-Power LED-Lighting Systems in 3D-MID Technology

    NARCIS (Netherlands)

    Thomas, W.

    2014-01-01

    The growing energy consumption of lighting as well as rising luminous efficacies and -fluxes of high-power Light Emitting Diodes (LEDs) have contributed to the widespread use of LEDs in modern lighting systems. One of the most prominent users of the LED-technology is automotive (exterior) lighting.

  11. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  12. Application of pulse power technology to ultra high energy electron accelerators

    International Nuclear Information System (INIS)

    Nation, J.A.

    1989-01-01

    The author presents in this paper a review of the application of pulse power technology to the development of high gradient electron accelerators. The technology demands are relatively modest compared to the ultra high power technology used for inertial confinement fusion drivers. With the advent of magnetic switching intense electron beams can be generated with a sufficiently high repetition rate to be of interest for high energy electron accelerator driver applications. Most of the techniques considered rely on the excitation of large amplitude waves on the beams. Within this framework there are two broad categories of accelerator, those in which the waves are directly excited in and supported by the medium and, secondly, those where the waves are used to generate radiofrequency signals which are then coupled via structures to the beam being accelerated. In what follows we shall consider both approaches. Present-day pulse power technology limits pulse durations to about 100 nsec. Consequently, if these sources are to be used, we will need to use high group velocity structures to avoid the need for short accelerator module lengths. An advantage of the short pulse duration is that the available acceleration voltage gradient increases compared to that obtained using conventional rf drivers. 19 references, 9 figures, 1 table

  13. Organizational learning in high risk technologies: Evidence from the nuclear power industry

    International Nuclear Information System (INIS)

    Marcus, A.; Bromiley, P.; Nichols, M.

    1990-01-01

    Technologies where catastrophe is possible pose dangers not only to the immediate victims, but also to innocent bystanders and to future generations who have no control over the system. The question has been raised as to whether organization theory can be extended to such high risk technologies; for, after all, this theory is based on organizations that do not have catastrophic potential. It has been argued that there may be special features of high risk technologies, for example the need to combine structured and disciplined organizational forms with decentralization to deal with unplanned interactions, that makes the application of organization theory especially difficult. Furthermore, there has been relatively little empirical work on the management of high risk technologies (with regard to the nuclear power industry the exceptions are noted); and much of what is known comes from case analyses. This paper attempts to respond to these challenges, first, by taking a concept from organizational theory and applying it to a high risk technology, and second, by trying to empirically relate measures of this concept to measures of safety. The concept is organizational learning. The authors wish to determine if there is evidence of learning in the nuclear power industry, and, if there is evidence of learning, what form this learning takes

  14. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  15. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  16. High temperature heat exchanger application in power engineering and energy-technological processes

    International Nuclear Information System (INIS)

    Shpilrain, E.E.

    1986-01-01

    The possibilities for intensification of various processes in metallurgy and chemical technology, the prospects for enhancing power plant efficiency are often linked with temperature increase of reagents, heat carriers and working fluids. In some cases elevated temperatures give the opportunity to use new and principally different technologies, enhance capacities of power production units and technological apparatuses, improve their economical performance. The variety of problems where high temperature heat exchangers are or can be used are extremely wide. It is therefore impossible to overview all of them in one lecture. Therefore the author tries to consider only some examples which are typical and gives an impression of what kind of problems arise in these cases

  17. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  18. High-power free-electron lasers-technology and future applications

    Science.gov (United States)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  19. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  20. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    International Nuclear Information System (INIS)

    Kuznetsov, E. V.; Shemyakin, A. V.

    2010-01-01

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  1. APEX and ALPS, high power density technology programs in the U.S

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Berk, S.; Abdou, M.; Mattas, R.

    1999-02-01

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations

  2. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  3. High-Efficiency, Ka-Band Solid-State Power Amplifier Utilizing GaN Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a high-efficiency, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  4. Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE

    Directory of Open Access Journals (Sweden)

    Martin Smrž

    2017-10-01

    Full Text Available The development of kW-class diode-pumped picosecond laser sources emitting at various wavelengths started at the HiLASE Center four years ago. A 500-W Perla C thin-disk laser with a diffraction limited beam and repetition rate of 50–100 kHz, a frequency conversion to mid-infrared (mid-IR, and second to fifth harmonic frequencies was demonstrated. We present an updated review on the progress in the development of compact picosecond and femtosecond high average power radiation sources covering the ultraviolet (UV to mid-IR spectral range at the HiLASE Center. We also report on thin-disk manufacturing by atomic diffusion bonding, which is a crucial technology for future high-power laser development.

  5. Power Technologies Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.

    2002-09-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  6. Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles

    International Nuclear Information System (INIS)

    Yoon, Sang Won; Shiozaki, Koji; Glover, Michael D; Mantooth, H Alan

    2013-01-01

    This paper presents the feasibility of highly reliable and repeatable copper–tin transient liquid phase (Cu–Sn TLP) bonding as applied to die attachment in high temperature operational power modules. Electrified vehicles are attracting particular interest as eco-friendly vehicles, but their power modules are challenged because of increasing power densities which lead to high temperatures. Such high temperature operation addresses the importance of advanced bonding technology that is highly reliable (for high temperature operation) and repeatable (for fabrication of advanced structures). Cu–Sn TLP bonding is employed herein because of its high remelting temperature and desirable thermal and electrical conductivities. The bonding starts with a stack of Cu–Sn–Cu metal layers that eventually transforms to Cu–Sn alloys. As the alloys have melting temperatures (Cu 3 Sn: > 600 °C, Cu 6 Sn 5 : > 400 °C) significantly higher than the process temperature, the process can be repeated without damaging previously bonded layers. A Cu–Sn TLP bonding process was developed using thin Sn metal sheets inserted between copper layers on silicon die and direct bonded copper substrates, emulating the process used to construct automotive power modules. Bond quality is characterized using (1) proof-of-concept fabrication, (2) material identification using scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis, and (3) optical analysis using optical microscopy and scanning acoustic microscope. The feasibility of multiple-sided Cu–Sn TLP bonding is demonstrated by the absence of bondline damage in multiple test samples fabricated with double- or four-sided bonding using the TLP bonding process. (paper)

  7. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  8. High-power electro-optic switch technology based on novel transparent ceramic

    Science.gov (United States)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  9. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  10. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  11. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  12. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  13. Foundations of pulsed power technology

    CERN Document Server

    Lehr, Janet

    2018-01-01

    Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interferen...

  14. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  15. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    Science.gov (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  16. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  17. High technology and the courts: nuclear power and the need for institutional reform

    International Nuclear Information System (INIS)

    Yellin, J.

    1981-01-01

    In this article Professor Yellin analyzes the performance of the courts when confronted with the important and complex issues attending the commercial development of nuclear power. He draws three general conclusions from the analysis: (1) the failure of nuclear regulation indicates that substantive review of agency decision making is necessary; (2) the limitations of the courts' ability to understand the scientific and technological arguments inherent in the nuclear power cases suggest the need for hybrid legal and scientific oversight of technological decisions; and (3) procedural requirements of the adversary system tend to impede full presentation of the issues in nuclear power cases, again pointing to the need for new systems of review. Professor Yellin proposes creation of a permanent review board composed of masters trained in both science and law to which technological and scientific issues falling outside the special competence of the judiciary would be referred by the federal appellate courts

  18. High-voltage direct current (HVDC) transmission - a key technology for our power supply

    International Nuclear Information System (INIS)

    Dorn, J.

    2016-01-01

    The phasing-out of nuclear power in some countries and the aspirations of reducing carbon dioxide emissions have far-reaching implications for electric power generation in Europe. In the future, renewable electricity generation will account for a considerable share of the energy mix, but this type of production is often far from the load centers. In Germany, for example, large quantities of wind energy are already generated in the north and in the North Sea, but large load centers are located several hundred kilometers south of there. This requires an expansion of the transmission network with innovative solutions. High-voltage direct-current (HVDC) transmission plays an important role, since it brings a number of advantages over conventional AC technology and makes certain requirements feasible, for example Cable transmission over longer distances. The lecture presents the advantages of HVDC, the semiconductors used as well as the basic functions and typical performance of the used converter topopologies. The plant configurations and main components are illustrated using current projects. (rössner) [de

  19. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  20. Research of high power and stable laser in portable Raman spectrometer based on SHINERS technology

    Science.gov (United States)

    Cui, Yongsheng; Yin, Yu; Wu, Yulin; Ni, Xuxiang; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The intensity of Raman light is very weak, which is only from 10-12 to 10-6 of the incident light. In order to obtain the required sensitivity, the traditional Raman spectrometer tends to be heavy weight and large volume, so it is often used as indoor test device. Based on the Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) method, Raman optical spectrum signal can be enhanced significantly and the portable Raman spectrometer combined with SHINERS method will be widely used in various fields. The laser source must be stable enough and able to output monochromatic narrow band laser with stable power in the portable Raman spectrometer based on the SHINERS method. When the laser is working, the change of temperature can induce wavelength drift, thus the power stability of excitation light will be affected, so we need to strictly control the working temperature of the laser, In order to ensure the stability of laser power and output current, this paper adopts the WLD3343 laser constant current driver chip of Wavelength Electronics company and MCU P89LPC935 to drive LML - 785.0 BF - XX laser diode(LD). Using this scheme, the Raman spectrometer can be small in size and the drive current can be constant. At the same time, we can achieve functions such as slow start, over-current protection, over-voltage protection, etc. Continuous adjustable output can be realized under control, and the requirement of high power output can be satisfied. Max1968 chip is adopted to realize the accurate control of the laser's temperature. In this way, it can meet the demand of miniaturization. In term of temperature control, integral truncation effect of traditional PID algorithm is big, which is easy to cause static difference. Each output of incremental PID algorithm has nothing to do with the current position, and we can control the output coefficients to avoid full dose output and immoderate adjustment, then the speed of balance will be improved observably. Variable

  1. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  2. High linearity 5.2-GHz power amplifier MMIC using CPW structure technology with a linearizer circuit

    International Nuclear Information System (INIS)

    Wu Chiasong; Lin Tah-Yeong; Wu Hsien-Ming

    2010-01-01

    A built-in linearizer was applied to improve the linearity in a 5.2-GHz power amplifier microwave monolithic integrated circuit (MMIC), which was undertaken with 0.15-μm AlGaAs/InGaAs D-mode PHEMT technology. The power amplifier (PA) was studied taking into account the linearizer circuit and the coplanar waveguide (CPW) structures. Based on these technologies, the power amplifier, which has a chip size of 1.44 x 1.10 mm 2 , obtained an output power of 13.3 dBm and a power gain of 14 dB in the saturation region. An input third-order intercept point (HP 3 ) of -3 dBm, an output third-order intercept point (OIP 3 ) of 21.1 dBm and a power added efficiency (PAE) of 22% were attained, respectively. Finally, the overall power characterization exhibited high gain and high linearity, which illustrates that the power amplifier has a compact circuit size and exhibits favorable RF characteristics. This power circuit demonstrated high RF characterization and could be used for microwave power circuit applications at 5.2 GHz. (semiconductor integrated circuits)

  3. High power density superconducting rotating machines—development status and technology roadmap

    Science.gov (United States)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  4. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume III - Procedural Details

    National Research Council Canada - National Science Library

    1996-01-01

    .... The thrust of this program was to improve the reliability of High Voltage Power Supplies (HVPS). This was accomplished conducting a comprehensive evaluation of the materials, components and processes used to produce HVPS...

  5. The nuclear interaction analysis methods for diagnostics of high power ion beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhkov, V A; Grushin, I I; Remnev, G E [Nuclear Physics Inst., Tomsk (Russian Federation)

    1997-12-31

    The complex of Nuclear Interaction Analysis Methods including charged particle activation analysis (CPAA and HIAA), spectrometry of ion induced gamma-emission (PIGE and HIIGE) , characteristic X-ray emission (PIXE), and Rutherford Backscattering Spectrometry (RBS), have been used for diagnostics of the High Power Ion Beam (HPIB) assisted technologies. Accelerated ion beams from the EG-2.5 electrostatic generator and U-120 cyclotron were used for implementation of the techniques. The complex allows a lot of problems of elemental and isotopic analysis to be addressed. First, it is the determination of micro- and macrocomponents of modified materials; second, determination of surface density of thin films, multilayers and coatings, total surface gaseous contamination and amounts of the elements implanted in specimens; third, measurement of concentration depth profiles of the elements. Experiments have shown that the preferable application of nuclear analysis methods allows us to avoid the considerable errors arising when the concentration depth profiles of elements are measured by SIMS or AES in studies of mass transfer processes induced by HPIBs. (author). 1 tab., 2 figs., 3 refs.

  6. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  7. Technology developments for ACIGA high power test facility for advanced interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  8. Technology developments for ACIGA high power test facility for advanced interferometry

    International Nuclear Information System (INIS)

    Barriga, P; Barton, M; Blair, D G

    2005-01-01

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with ∼200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented

  9. High-energy-density physics researches based on pulse power technology

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko; Nakajima, Mitsuo; Kawamura, Tohru; Sasaki, Toru; Kondo, Kotaro; Yano, Yuuri

    2006-01-01

    Plasmas driven by pulse power device are of interest, concerning the researches on high-energy-density (HED) physics. Dense plasmas are produced using pulse power driven exploding discharges in water. Experimental results show that the wire plasma is tamped and stabilized by the surrounding water and it evolves through a strongly coupled plasma state. A shock-wave-heated, high temperature plasma is produced in a compact pulse power device. Experimental results show that strong shock waves can be produced in the device. In particular, at low initial pressure condition, the shock Mach number reaches 250 and this indicates that the shock heated region is dominated by radiation processes. (author)

  10. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  11. Status of Wind Power Technologies

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei

    2018-01-01

    With the development of wind turbine technology, wind power will become more controllable and grid‐friendly. It is desirable to make wind farms operate as conventional power plants. Wind turbine generators (WTGs) were mainly used in rural and remote areas for wind power generation. WTG‐based wind...... energy conversion systems (WECS) can be divided into the four main types (type 1‐4). Due to the inherent variability and uncertainty of the wind, the integration of wind power into the grid has brought challenges in several different areas, including power quality, system reliability, stability......, and planning. The impact of each is largely dependent on the level of wind power penetration in the grid. In many countries, relatively high levels of wind power penetration have been achieved. This chapter shows the estimated wind power penetration in leading wind markets....

  12. High-power fused assemblies enabled by advances in fiber-processing technologies

    Science.gov (United States)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  13. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  14. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  15. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    Science.gov (United States)

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  16. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    International Nuclear Information System (INIS)

    Montgomery, Edward E. IV

    2010-01-01

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  17. Applying the Multisim Technology to Teach the Course of High Frequency Power Amplifier

    Science.gov (United States)

    Lv, Gang; Xue, Yuan-Sheng

    2011-01-01

    As one important professional base course in the electric information specialty, the course of "high frequency electronic circuit" has strong theoretical characteristic and abstract content. To enhance the teaching quality of this course, the computer simulation technology based on Multisim is introduced into the teaching of "high…

  18. The new technology on creation of multiatmispheric wide aperture high power gas lasers

    International Nuclear Information System (INIS)

    Khakimovich, Kazakov Komil

    2013-01-01

    laser volume energy pumping. More over amplifier by the new approach is aimed to be more compact and lighter, easy on production and exploitation and low cost. It means a real progress in production of all kind of high power MAWA lasers and amplifiers, such as: CO 2 , HF-DF, N 2 O-CO, eximer-lasers, etc. Author is ready to sell out the technology and patent rights on the new approach about creation of MAWA lasers and amplifiers to organization which will be interested. The demonstration model of such laser may be created in Laser Plasma Company by a contract, which may be organized through ISTC. (author)

  19. High Power Orbit Transfer Vehicle

    National Research Council Canada - National Science Library

    Gulczinski, Frank

    2003-01-01

    ... from Virginia Tech University and Aerophysics, Inc. to examine propulsion requirements for a high-power orbit transfer vehicle using thin-film voltaic solar array technologies under development by the Space Vehicles Directorate (dubbed PowerSail...

  20. Technical and economic feasibility of development innovative technological solutions for expansion the adjustment range of high-power CCP

    Science.gov (United States)

    Arakelyan, E. K.; Andryushin, A. V.; Burtsev, S. Y.; Andryushin, K. A.

    2017-11-01

    The analysis of technical and parametric constraints on the adjustment range of highpower CCP and recommended technological solutions in the technical literature for their elimination. Established that in the conditions of toughening the requirements for economy, reliability and maneuverability on the part of the system operator with the participation of CCP in control the frequency and power in the power system, existing methods do not ensure the fulfillment of these requirements. The current situation in the energy sector — the lack of highly manoeuvrable power equipment leads to the need participate in control of power consumption diagrams for all types of power plants, including CCP, although initially they were intended primarily for basic loads. Large-scale research conducted at the department of Automated control systems of technological processes, showed the possibility of a significant expansion of the adjustment range of CCP when it operating in the condensing mode and in the heating mode. The report presents the main results of these research for example the CCP-450 and CCP-450T. Various technological solutions are considered: when CCP in the condensation mode — the use of bypass steam distribution schemes, the transfer of a part of the steam turbine into a low-steam mode; when CCP operation in the heating mode — bypass steam distribution and the transfer CCP to gas turbine unit — power heating plants mode with the transfer the steam turbine to the motor mode. Data on the evaluation of the technical and economic feasibility of the proposed innovative technological solutions are presented in comparison with the methods used to solve this problem, which are used in practice, such as passing through the failures of the electric load graphs by transferring the CCP to the mode of operation with incomplete equipment. When comparing, both the economics, and the maneuverability and reliability of the equipment are considered.

  1. EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Constantin D. STĂNESCU

    2013-05-01

    Full Text Available In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T.

  2. Technology assessment HTR. Part 4. Power upscaling of High Temperature Reactors

    International Nuclear Information System (INIS)

    Van Heek, A.I.

    1996-06-01

    Designs of nuclear reactors can be classified in evolutionary, revolutionary and innovative designs. An innovative design is the High Temperature Reactor (HTR). Introduction of innovative reactors has not been successful until now. Globally, three requirements for this reactors for successful market introduction can be identified: (1) Societal support for nuclear energy, or if separable, for this reactor type, should be repaired; (2) After market introduction the innovative plant must be able to operate economically competitive; and (3) The costs of market introduction of an innovative reactor design must be limited. Until now all reactor designs classified as innovative have not yet been realized. High temperature reactors exist in many different designs. Common features are: helium coolant, graphite moderator and coated particle fuel. The combination of these creates the potential to fulfill the first requirement (public support), and similarly a hurdle to the second requirement (economical operation). All three problems existing in the eyes of the public are addressed, while a high degree of transparency is reached, making the design understandable also by others than nuclear experts. A consequence of designing according to the social support requirement is a limitation of the unit power level. The usual method to make nuclear power plants economically competitive, i.e. just raising the power level (economy of scale) could not be applied anymore. Therefore other means of cost decreasing had to be used: modularization and simplification. These ideas are explained. Since all existing HTRs are currently out of operation, additional experience from two small HTRs under construction at this moment in the Far East will be essential. In the history of HTR designs, an evolutionary path can be identified. The early designs had a philosophy of safety and economics very similar to those of LWR. Modularization was introduced to attain economic viability and the design was

  3. Authentic leaders and Teams More Powerful: An Application in High Technology Industry

    Directory of Open Access Journals (Sweden)

    Alfredo Barcellos Pinheiro de Lemos Filho

    2014-12-01

    Full Text Available This article seeks to analyze whether authentic leaders are associated with the most potent teams. The study was conducted in a high-tech company located in the city of Petrópolis (Rio de Janeiro. The work was carried out with 373 employees. The research is quantitative in nature, in which survey research conducted with structured self-administered questionnaire. The data collected were processed using structural equation modeling. The hypothetical model was tested based on the theoretical framework of the issue, and the results accepted the hypotheses proposed in the present modeling, indicating the observed variables that influence the power of the team. Moreover, an approach was performed using descriptive statistics for authentic leadership, virtuosity Team, affective commitment to the team and the team's power. Among the variables that had the greatest impact on the strength of the team, we highlight the "ability to listen" by leaders as a key element of the power of the team. Our findings reinforce the concepts found in the literature, suggesting that the impact of leaders on both employees and teams are mediated by other variables. In addition, our results may be of interest to businesses, especially in improving the business performance of organizations.

  4. High voltage power supply systems for electron beam and plasma technologies. Its new element base

    International Nuclear Information System (INIS)

    Dermengi, P.G.; Kureghan, A.S.; Pokrovsky, S.V.; Tchvanov, V.A.

    1994-01-01

    Transforming technique and high voltage technique supplementing each other more and more unite in indivisible constructions of modern apparatuses and systems and applicated in modern technologies providing its high efficiency. Specially worked out, ecologically clean, inertial, inflammable perfluororganic liquid is used in elements and electronic apparatuses simultaneously as insulating and cooling media. This liquid is highly fluid, fills tiny cavities in construction elements and in the places of high concentration of losses, where maximum local overheating of active parts or apparatus constructions takes place, it transforms to boiling state with highly intensive taking off of heat energy from cooled surface point. For instance, being cooled by mentioned perfluororganic liquid, copper wire can conduct current to 50 A/mm 2 density, but in ordinary conditions of transformers, reactors and busses, current density can reach only few Amperes. Possibility of considerable increasing of current density, that is reached by means of intensive cooling, provided by worked out liquid, and taking into account its incredibly high insulating features (liquid has electric strength to 50 KV/mm) allows to provide optimum heat regime of active parts of transformers. reactors, condenser, semiconductor devices, resistors, construction elements and electrotechnical apparatus in general. Particularly high effect of decreasing of weight and dimensions characteristics of elements and electrotechnical apparatus in general can be reached under working out of special constructions of each element and apparatus details, adapted to use of mentioned liquid as insulating and cooling media

  5. Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE

    Czech Academy of Sciences Publication Activity Database

    Smrž, Martin; Novák, Ondřej; Mužík, Jiří; Turčičová, Hana; Chyla, Michal; Nagisetty, Siva S.; Vyvlečka, Michal; Roškot, Lukáš; Miura, Taisuke; Černohorská, Jitka; Sikocinski, Pawel; Chen, Liyuan; Huynh, Jaroslav; Severová, Patricie; Pranovich, Alina; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-12, č. článku 1016. ISSN 2076-3417 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S; GA MŠk LM2015086; GA TA ČR(CZ) TG02010056 EU Projects: European Commission(XE) 739573 Grant - others:OP VVV - HiLASE-CoE(XE) CZ.02.1.01/0.0/0.0/15_006/0000674 Institutional support: RVO:68378271 Keywords : diode-pumped solid- state lasers (DPSSL) * high average power lasers * higher harmonic generation * Yb:YAG * mid-infrared radiation * thin-disk laser * picosecond pulses Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.679, year: 2016

  6. High reliable and Real-time Data Communication Network Technology for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, K. I.; Lee, J. K.; Choi, Y. R.; Lee, J. C.; Choi, Y. S.; Cho, J. W.; Hong, S. B.; Jung, J. E.; Koo, I. S.

    2008-03-01

    As advanced digital Instrumentation and Control (I and C) system of NPP(Nuclear Power Plant) are being introduced to replace analog systems, a Data Communication Network(DCN) is becoming the important system for transmitting the data generated by I and C systems in NPP. In order to apply the DCNs to NPP I and C design, DCNs should conform to applicable acceptance criteria and meet the reliability and safety goals of the system. As response time is impacted by the selected protocol, network topology, network performance, and the network configuration of I and C system, DCNs should transmit a data within time constraints and response time required by I and C systems to satisfy response time requirements of I and C system. To meet these requirements, the DCNs of NPP I and C should be a high reliable and real-time system. With respect to high reliable and real-time system, several reports and techniques having influences upon the reliability and real-time requirements of DCNs are surveyed and analyzed

  7. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  8. Technological Aspects: High Voltage

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered. (author)

  9. Technological Aspects: High Voltage

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    This paper covers the theory and technological aspects of high-voltage design for ion sources. Electric field strengths are critical to understanding high-voltage breakdown. The equations governing electric fields and the techniques to solve them are discussed. The fundamental physics of high-voltage breakdown and electrical discharges are outlined. Different types of electrical discharges are catalogued and their behaviour in environments ranging from air to vacuum are detailed. The importance of surfaces is discussed. The principles of designing electrodes and insulators are introduced. The use of high-voltage platforms and their relation to system design are discussed. The use of commercially available high-voltage technology such as connectors, feedthroughs and cables are considered. Different power supply technologies and their procurement are briefly outlined. High-voltage safety, electric shocks and system design rules are covered.

  10. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  11. The R/D of high power proton accelerator technology in China

    Science.gov (United States)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  12. Report of high efficiency waste power generation technology development in 1995; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (1995 nendo hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    High temperature and high pressure steam has been investigated for the high efficiency waste power generation technology development. The steam temperature below 300 centigrade is currently employed to avoid the corrosion of superheater, and the generating efficiency is less than 15%. Practical application of 500 centigrade and 100 kg/cm{sup 2} is planned by developing corrosion resistance materials. Environmental load reduction technology has been also developed. For the external circulation type fluidized bed furnace combustion tests using dummy waste in fiscal 1995, the temperature control at bag filter was effective for suppressing the dioxins. When using waste plastics, HCl could be reduced by blowing Ca compounds. Various Cr-Ni-Mo-based alloys have been developed as a corrosion resistance superheater tube material, and are currently tested. For the environmental load reduction technology, the development of pulse plasma exhaust gas treatment method has been continued from fiscal 1993. In fiscal 1995, this method was confirmed using a small-scale test unit, and also tested using a 5000 Nm{sup 3}/h bench-scale unit. The removal rates of dioxins at the outlet of bag filter were 99.8% and 99.3%, respectively. They were found to be affected greatly by the pulse waveform. 13 refs., 107 figs., 24 tabs.

  13. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  14. Applications of high power microwaves

    International Nuclear Information System (INIS)

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  15. Plasma-pulse formation and acceleration for fast high-power technology and switching applications

    International Nuclear Information System (INIS)

    Doucet, H.J.; Jones, W.D.; Moustaizis, S.; Lamain, H.; Rouille, C.

    1985-01-01

    A carbon plasma gun powered by a low-inductance capacitor bank and transmission line is used to produce μsec-length pulses of protons having densities of 10/sup 12/-10/sup 14/ cm/sup -3/ at distances of 0.3-1.5 m from the gun and velocities of 10-20 cm/μs. Essential features are a low-inductance surface switch and a nonlinear transmission grid

  16. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the ...

  17. Church - Technology - Nuclear Power

    International Nuclear Information System (INIS)

    May, H.

    1982-01-01

    In order to cope with the problems causing a great deal of trouble today, i.e. with fear and with the ethical substantiation of technology, the author considers an integration model necessary which is to link science and technology and religion and philosophy. (RW) [de

  18. Church - Technology - Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    May, H

    1982-03-01

    In order to cope with the problems causing a great deal of trouble today, i.e. with fear and with the ethical substantiation of technology, the author considers an integration model necessary which is to link science and technology and religion and philosophy.

  19. Managing the higher risks of low-cost high-efficiency advanced power generation technologies

    International Nuclear Information System (INIS)

    Pearson, M.

    1997-01-01

    Independent power producers operate large coal-fired installations and gas turbine combined-cycle (GTCC) facilities. Combined cycle units are complex and their reliability and availability is greatly influenced by mechanical, instrumentation and control weaknesses. It was suggested that these weaknesses could be avoided by tighter specifications and more rigorous functional testing before acceptance by the owner. For the present, the difficulties of developing reliable, lower installed cost/kw, more efficient GTCC designs, pressure for lower NO x emissions with 'dry' combustors continue to be the most difficult challenges for all GT manufacturers

  20. Material property requirements for application leak-before-break technology on nuclear power plant high-energy piping

    International Nuclear Information System (INIS)

    Li Chengliang; Deng Xiaoyun; Yin Zhiying; Liu Meng

    2012-01-01

    The application of leak-before-break (LBB) technology on nuclear power plant high-energy piping systems can improve their safety and economy, while propose some new requirements on testing material properties. The U.S. Nuclear Regulatory Commission's LBB related standard review plan and implementation specifications were analyzed, and test items, object, temperature, quantity and thermal aging effect of five general requirements were summarized. In addition, four key testing technical requirements, such as specimen size, side grooves, strain range and the orientation of specimens were also discussed to ensure the test data usefulness, representativeness and integrity. This study can provide some guidance for the aforementioned test program on domestic materials. (authors)

  1. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  2. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-04

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  3. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    Science.gov (United States)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  4. 1998 report on development of high-efficiency waste power generation technology. 2. Development of waste gasification and ash melting power generation technology; 1998 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu seika hokokusho. Haikibutsu gas ka yoyu hatsuden gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In regard to waste gasification and ash melting power generation, a basic test and examination were conducted in fiscal 1998, with a full-scale development test made ready to start. In the development of technology for raising steam temperature, evaluation of high temperature corrosivity of SH materials and development of high-temperature dust removal system were carried out for example, as were development of dechlorination technology for thermal decomposition process and development of ceramic high-temperature air heater. In the development of technology to prevent exhaust gas reheating, preliminary examination was made on denitrification technologies using a catalyst with superior low-temperature activity. In the development of technology to reduce self-heat melting critical calorific value, investigation and basic test were carried out concerning a stable waste feed system, with a pilot test device experimentally manufactured and tested based on the findings. In the development of technology for reducing external fuel input, examination and analysis were performed on pretreatment techniques for waste plastics, with basic data obtained for a waste blowing system project. In addition, the thermal decomposition and combustion characteristics of waste plastics were clarified by the basic test. (NEDO)

  5. Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays

    Science.gov (United States)

    2012-06-08

    pump‐pow A such spect  [17], approx owever, that ined by the S xploring  the  k all fabricat ding, small s is limitation  ed for high p 0μm diamet  in Fig...amage still o due to high h in general su cladding inte umped case, rformance.  wo examples ap, which all ows bulk‐silic so allows ach output‐ xplored ...Dawson, Editors, paper 79140U (2011).  [9] J. L. Wilson, C. Wang, A. E. Fathy, and Y. W. Kang, “Analysis of rapidly twisted hollow waveguides,”  IEEE

  6. Optical fiber sensors technology for supervision, control and protection of high power systems

    Science.gov (United States)

    Nascimento, Ivo Maciel

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  7. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  8. Fiscal 2000 report on the development of high-efficiency refuse-fueled power generation technology; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 2000 nendo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to develop a refuse gasification/fusion power generation technology to contribute to the effective utilization of unexploited energy and to reduction in greenhouse gas emissions. Developed in the technology of elevating steam temperature were the evaluation of high-temperature corrosion of SH materials and a high temperature dust removing system, dechlorination technology for the thermolysis process, and a ceramic-made high-temperature air heater. For the avoidance of exhaust gas reheating, development was carried out for a low-temperature denitration unit, stable refuse feeding system for reduction in the self-heat melting critical calorific value, waste plastic injection technology for reduction in the amount of external fuel injection, and so forth. The effect of the developed element technologies were evaluated and a detailed feasibility study was conducted for a refuse gas conversion power generation system using gas engine power generation for minor-scale general waste treatment facilities. In the survey of the trend of refuse-fueled power generation technologies, trend in Japan and advanced refuse-fueled power generation systems and their introduction in Europe and America were investigated. (NEDO)

  9. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  10. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  11. Fiscal 1997 technological survey report. R and D on micromachine technology (Development of high functional maintenance technology for power station equipment); 1997 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Activities were conducted in search of micromachine technology for a high functional maintenance system that inspects and repairs abnormal conditions such as cracks in a heat exchanger or a piping system without disassembling it in a power generating station such as a thermal or nuclear power plant. The activities were proceeded in four areas of (1) experimental manufacturing of the system (an inline self-running environment recognizing system, an external inspection system for fine tube group, and a system capable of light internal operation such as welding), (2) R and D on sophistication technology for functional devices, (3) R and D on common basic technologies, and (4) comprehensive investigation and research. In (1), examination of detailed basic specifications was carried out, as were examination of element technologies, experimental manufacturing and operation test of element devices, and performance evaluation. Further, a part of element devices was made on an experimental basis, with the basic functions demonstrated. In the comprehensive investigation and research, a trend in the future maintenance technology in power generating equipment was obtained and pigeonholed. (NEDO)

  12. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  13. Autonomously managed high power systems

    International Nuclear Information System (INIS)

    Weeks, D.J.; Bechtel, R.T.

    1985-01-01

    The need for autonomous power management capabilities will increase as the power levels of spacecraft increase into the multi-100 kW range. The quantity of labor intensive ground and crew support consumed by the 9 kW Skylab cannot be afforded in support of a 75-300 kW Space Station or high power earth orbital and interplanetary spacecraft. Marshall Space Flight Center is managing a program to develop necessary technologies for high power system autonomous management. To date a reference electrical power system and automation approaches have been defined. A test facility for evaluation and verification of management algorithms and hardware has been designed with the first of the three power channel capability nearing completion

  14. Prospects for power plant technology

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1993-01-01

    Careful conservation of resources in the enlarged context of the rational utilization of energy, the environment and capital will determine future power plant technology. The mainstays will be the further development of power plant concepts based on fossil (predominantly coal) and nuclear fuels; world-wide, also regenerative and CO 2 -free hydro-electric power will play a role. Rapid conversion of the available potential requires clear, long-term stable and reliable political framework conditions for the release of the necessary entrepreneurial forces. (orig.) [de

  15. Automation technology in power plants

    International Nuclear Information System (INIS)

    Essen, E.R.

    1995-01-01

    In this article a summery of the current architecture of modern process control systems in power plants and future trends have been explained. The further development of process control systems for power plants is influenced both by the developments in component and software technologies as well as the increased requirements of the power plants. The convenient and low cost configuration facilities of new process control systems have now reached a significance which makes it easy for customers to decide to purchase. (A.B.)

  16. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  17. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  18. Space power subsystem automation technology

    Science.gov (United States)

    Graves, J. R. (Compiler)

    1982-01-01

    The technology issues involved in power subsystem automation and the reasonable objectives to be sought in such a program were discussed. The complexities, uncertainties, and alternatives of power subsystem automation, along with the advantages from both an economic and a technological perspective were considered. Whereas most spacecraft power subsystems now use certain automated functions, the idea of complete autonomy for long periods of time is almost inconceivable. Thus, it seems prudent that the technology program for power subsystem automation be based upon a growth scenario which should provide a structured framework of deliberate steps to enable the evolution of space power subsystems from the current practice of limited autonomy to a greater use of automation with each step being justified on a cost/benefit basis. Each accomplishment should move toward the objectives of decreased requirement for ground control, increased system reliability through onboard management, and ultimately lower energy cost through longer life systems that require fewer resources to operate and maintain. This approach seems well-suited to the evolution of more sophisticated algorithms and eventually perhaps even the use of some sort of artificial intelligence. Multi-hundred kilowatt systems of the future will probably require an advanced level of autonomy if they are to be affordable and manageable.

  19. Pulsed high-power beams

    International Nuclear Information System (INIS)

    Reginato, L.L.; Birx, D.L.

    1988-01-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. This paper reports on a 70-MeV, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory that incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive of the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability

  20. Technology Roadmaps: Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The emerging technology known as concentrating solar power, or CSP, holds much promise for countries with plenty of sunshine and clear skies. Its electrical output matches well the shifting daily demand for electricity in places where airconditioning systems are spreading. When backed up by thermal storage facilities and combustible fuel, it offers utilities electricity that can be dispatched when required, enabling it to be used for base, shoulder and peak loads. Within about one to two decades, it will be able to compete with coal plants that emit high levels of CO2. The sunniest regions, such as North Africa, may be able to export surplus solar electricity to neighbouring regions, such as Europe, where demand for electricity from renewable sources is strong. In the medium-to-longer term, concentrating solar facilities can also produce hydrogen, which can be blended with natural gas, and provide low-carbon liquid fuels for transport and other end-use sectors. For CSP to claim its share of the coming energy revolution, concerted action is required over the next ten years by scientists, industry, governments, financing institutions and the public. This roadmap is intended to help drive these indispensable developments.

  1. Development of high-efficiency wastes-burning electric power generating technology. Volume 2. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In high-efficiency power generation using general wastes and combustible industrial wastes as fuel, development has been performed on a wastes gasifying and melting power generation technology. This technology is capable of suppressing generation of dioxines, recovering slag that can be utilized effectively, and reducing ash volume, by thermally decomposing the wastes and melting combustion ash at elevated temperatures by using thermally decomposed gases. With regard to the evaluation on high temperature corrosiveness of SH materials and the development of a high temperature dust removing system, a steam heater was designed, fabricated, and installed in a model plant, wherein the operation test has been performed for about 1,620 hours. For the technology of dechlorination during a thermal decomposition process, dechlorination rate of 90% was confirmed at 425 degrees C or higher in a demonstration plant. In addition, developments were made on a low temperature denitration device to avoid re-heating of waste gases, a stable wastes supply system to reduce quantity of self-heated melt limiting heat generation, and a waste plastics blowing technology to reduce external fuel charge quantity. Furthermore, a survey was carried out on the trends in wastes electric power generation technologies. (NEDO)

  2. High power excimer laser

    International Nuclear Information System (INIS)

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  3. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  4. Concentrating Solar Power. Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Concentrating solar power can contribute significantly to the world's energy supply. As shown in this roadmap, this decade is a critical window of opportunity during which CSP could become a competitive source of electrical power to meet peak and intermediate loads in the sunniest parts of the world. This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid technological progress, cost reductions and expanded industrial manufacturing of CSP equipment to enable mass deployment. Importantly, this roadmap also establishes a foundation for greater international collaboration. The overall aim of this roadmap is to identify actions required - on the part of all stakeholders - to accelerate CSP deployment globally. Many countries, particularly in emerging regions, are only just beginning to develop CSP. Accordingly, milestone dates should be considered as indicative of urgency, rather than as absolutes. This roadmap is a work in progress. As global CSP efforts advance and an increasing number of CSP applications are developed, new data will provide the basis for updated analysis. The IEA will continue to track the evolution of CSP technology and its impacts on markets, the power sector and regulatory environments, and will update its analysis and set additional tasks and milestones as new learning comes to light.

  5. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  6. Innovation on Energy Power Technology (1)

    Science.gov (United States)

    Nagano, Susumu; Kakishima, Masayoshi

    After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.

  7. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    Science.gov (United States)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  8. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  9. Progress of technological innovation on electric power in FY2014

    International Nuclear Information System (INIS)

    Nishikawa, Yoshikazu; Fujii, Yutaka; Sasagawa, Toshiro

    2015-01-01

    This paper overviews the technological development in FY2014 at Tokyo Electric Power Company, Chubu Electric Power Company, Hokuriku Electric Power Company, Shikoku Electric Power Company, and Electric Power Development Company. In this overview, further breakdown was made for the following departments of each company: nuclear power generation, thermal power generation, hydraulic power generation, power transmission, power distribution, transformation, research and development and technological development, and information and communication. In addition, this paper outlines the achievement of technological development at Japan Atomic Power Company, such as the technological development related to the existing power station, development of new technology, and the development of future reactor. Fukushima Daiichi Nuclear Power Station has developed an investigative system using a high altitude survey robot and a movable monitoring system. Hamaoka Nuclear Power Station examined the feasibility of state diagnostic technique based on multi-point analysis, and studied stress corrosion cracking at the newly established Nuclear Safety Research Laboratory. Shika Nuclear Power Station (Unit 1) applied a pipe stress improvement process by means of high frequency induction heating as a stress corrosion cracking countermeasure. Ikata Nuclear Power Station newly adopted high degree cross-linking cation resin, and high cracking strength anion resin as the primary resins. Oma Nuclear Power Station worked on the all reactor core utilization technology of MOX fuel. (A.O.)

  10. High-power klystrons

    Science.gov (United States)

    Siambis, John G.; True, Richard B.; Symons, R. S.

    1994-05-01

    Novel emerging applications in advanced linear collider accelerators, ionospheric and atmospheric sensing and modification and a wide spectrum of industrial processing applications, have resulted in microwave tube requirements that call for further development of high power klystrons in the range from S-band to X-band. In the present paper we review recent progress in high power klystron development and discuss some of the issues and scaling laws for successful design. We also discuss recent progress in electron guns with potential grading electrodes for high voltage with short and long pulse operation via computer simulations obtained from the code DEMEOS, as well as preliminary experimental results. We present designs for high power beam collectors.

  11. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  12. High power fast ramping power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  13. Reduction in adipose tissue volume using a new high-power radiofrequency technology combined with infrared light and mechanical manipulation for body contouring

    OpenAIRE

    Adatto, Maurice A.; Adatto-Neilson, Robyn M.; Morren, Grietje

    2014-01-01

    A growing patient demand for a youthful skin appearance with a favorable body shape has led to the recent development of new noninvasive body contouring techniques. We have previously demonstrated that the combination of bipolar radiofrequency (RF) and optical energies with tissue manipulation is an efficient reshaping modality. Here, we investigated the efficacy and safety of a new high-power version of this combined technology, in terms of adipose tissue reduction and skin tightening. Thirt...

  14. Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Wajahat Ullah Khan Tareen

    2018-06-01

    Full Text Available This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM and active power filter (APF inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519.

  15. Advanced communications technology satellite high burst rate link evaluation terminal power control and rain fade software test plan, version 1.0

    Science.gov (United States)

    Reinhart, Richard C.

    1993-01-01

    The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.

  16. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  17. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  18. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  19. Software technology for power control

    Energy Technology Data Exchange (ETDEWEB)

    Kakizoe, Hiroyuki; Suganuma, Isao; Yamaguchi, Shiu; Yasuda, Takashi

    1987-04-27

    High reliability, high-speed computing processing at the time of trouble, and easy data maintenance are required for a power control system. Design concept, materializing methods, tools and practical applications of the system software are presented. To enhance maintenability, structures and simulation functions, etc. were developed. To meet the requirement for high speed processing, systems for high speed filing and queueing, and a service subsystem were developed. To automate the overall system, a dual system was established by AIP subsystems to improve reliability. Discs can be protected by the dual system. A fallback system was employed which will separate a troubled portion to enable the continuous operation of the total system. Error logging and performance analysis tools were also developed. Data maintenance feature and application simulation programs were also developed to help operators easily modify the facilities data. (9 figs)

  20. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  1. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  2. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  3. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  4. Power Technologies Data Book 2003 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2004-06-01

    The 2003 edition of this report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  5. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  6. high power facto high power factor high power factor hybrid rectifier

    African Journals Online (AJOL)

    eobe

    increase in the number of electrical loads that some kind of ... components in the AC power system. Thus, suppl ... al output power; assuring reliability in ... distribution systems. This can be ...... Thesis- Califonia Institute of Technology, Capitulo.

  7. Feasibility study of high-performance pulsed power technology for supporting Hanford Site single-shell tank waste retrieval, March 29, 1996

    International Nuclear Information System (INIS)

    1996-10-01

    Westinghouse Hanford Company (WHC) has developed databases on retrieval methods that include more than 155 companies that have technologies potentially applicable to DSST waste retrieval, including the High Performance Pulsed Power Technology (HPT). This report summarizes the feasibility of the technology for supporting retrieval of SST waste. Other potential applications such as unblocking plugs in waste transfer pipelines are described in Appendix C. The feasibility study addresses issues of implementation, operation, and safety with a focus on strengths, weaknesses, and potential pitfalls of the technology. The feasibility study was based on information acquired from TZN GmbH, a German company that developed and manufactures HPT systems for a wide-range of applications. Marketing partners of TZN for this technology are the German company Telerob and R.J. International, the U.S. representative of both companies. An HPT system is capable of fracturing brittle materials into 100-microm particles using electrothermally-generated shock waves. Until now, the technology has been used only to separate glass, metal, ceramic, and plastic components. One primary application of the technology has been in foundries for removing ceramic molds from metal castings. Metals, except for those that are very brittle, are not impacted by the shock wave. The HPT system is highly effective in fracturing and mobilizing ceramic mold materials contained in the crevices of castings that are normally difficult to remove. The HPT system has also been shown to be effective in separating glass in windshields from their protective layers of plastic; concrete from reinforcing rods; ceramic, plastic, and metal materials in computer chips; and ceramic insulation from spark plugs and high-voltage insulators. The HP'T system has been used successfully to bore a 7-in. diameter hole into hard rock at a rate of 33 ft/hr. The HPT system has also been demonstrated successfully in mining applications

  8. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  9. Nuclear power technologies. Abstracts of reports

    International Nuclear Information System (INIS)

    Koltysheva, G.I.; Mukusheva, M.K.; Perepelkin, I.G.

    2000-01-01

    In May 14-17, 2000, and on the initiative of the Ministry of Science and High Education of the Republic of Kazakstan with cooperation of Department of Energy US, International Seminar on Nuclear Power Technologies was held in Astana, Kazakhstan. More than 70 reports of scientists from different countries (USA, Russia, Japan and Kazakhstan) were presented during the Seminar. Representatives from different international organizations (European Commission Delegation, IAEA), from organizations of Kazakstan, Russia, USA, Japan took part in the Seminar. In all at the Seminar there were more then 100 participants. The Seminar included Plenary Session, two sections: 1) Nuclear Safety and Nuclear Technologies; 2) Material Investigations for Nuclear and Thermonuclear Power; Workshop: Nuclear Facilities Decommissioning and Decontamination; and Posters

  10. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  11. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  12. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  13. Development of high-efficiency wastes-burning electric power generating technology. Volume 1. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper summarizes the achievements of developing a technology to generate electric power at high efficiency by using a combustion furnace that uses general wastes and combustible industrial wastes as fuel to generate high-temperature and high-pressure steam under a stabilized condition. In the developmental research of the combustion furnace, discussions were given on single-pass and double-pass type stalker furnaces, an internal circulation type fluidized bed furnace, and an external circulation type fluidized bed furnace, whereas technological prospects were established on any of them as the combustion furnace. In developing corrosion resistant super heater materials, demonstration tests were performed by using a pilot plant, corrosion mechanisms were elucidated, amount of corrosion in steam generating tubes was discussed, and corrosion life of super heaters was estimated. In developing a technology to reduce environmental load, developmental researches were carried out on a method to treat waste gases by using pulse plasma to have established nearly completely a waste gas treatment system technology. In the demonstration test using the pilot plant, the operation has started from February 1998, generating stably the steam conditions of 500 degrees C and 9.8 MPa, and the smooth operation has continued. (NEDO)

  14. The NASA CSTI High Capacity Power Program

    International Nuclear Information System (INIS)

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  15. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  16. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  17. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  18. HVDC power transmission technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  19. A Nordic project on high speed low power design in sub-micron CMOS technology for mobile phones

    DEFF Research Database (Denmark)

    Olesen, Ole

    circuit design is based on state-of-the-art CMOS technology (0.5µm and below) including circuits operating at 2GHz. CMOS technology is chosen, since a CMOS implementation is likely to be significantly cheaper than a bipolar or a BiCMOS solution, and it offers the possibility to integrate the predominantly...

  20. A Curriculum Guide for Power Technology, Grades 9-12.

    Science.gov (United States)

    Callahan, J. Thomas

    Designed to help the high school industrial arts instructor in teaching power technology, this curriculum guide concentrates on seven subject areas: exploratory power technology, electricity, electronics, small gas engines, automotive repair, transportation, and alternate energy sources. The general course objectives are identified as enabling the…

  1. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  2. Advance Power Technology Experiment for the Starshine 3 Satellite

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  3. A Nordic Project Project on High Speed Low Power Design in Sub-micron CMOS Technology for Mobile

    DEFF Research Database (Denmark)

    Olesen, Ole

    1997-01-01

    circuit design is based on state-of-the-art CMOS technology (0.5µm and below) including circuits operating at 2GHz. CMOS technology is chosen, since a CMOS implementation is likely to be significantly cheaper than a bipolar or a BiCMOS solution, and it offers the possibility to integrate the predominantly...... of including good off-chip components in the design by use of innovative, inexpensive package technology.To achieve a higher level of integration, the project will use a novel codesign approach to the design strategy. Rather than making specifications based on a purely architectural approach, the work uses...

  4. High power communication satellites power systems study

    International Nuclear Information System (INIS)

    Josloff, A.T.; Peterson, J.R.

    1994-01-01

    This paper discusses a DOE-funded study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. This study brings together a preeminent US Industry/Russian team to cooperate on the role of high power communication satellites in the rapidly expanding communications revolution. These high power satellites play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities will be significant

  5. Electrical power technology for robotic planetary rovers

    Science.gov (United States)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  6. Harness the Power of Technology

    Science.gov (United States)

    Duncan, Arne

    2011-01-01

    Today, U.S. educators are teaching in the midst of a technological revolution. Technology promises to provide innovative solutions in the nation's classrooms, just as it has transformed the way people communicate, socialize, and conduct business. In this article, the author argues that now is the time to harness technology to revolutionize the way…

  7. Skylab technology electrical power system

    Science.gov (United States)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  8. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  9. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  10. Report on the fiscal 1996 development of high efficient waste power generation technology; 1996 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The technical development was made by which high-temperature/high-pressure steam is generated in the incineration furnace using general waste, combustible industrial waste, etc. as fuel to generate power high efficiently, and reliability of the superheater, etc. was verified by the pilot plant. For it, the following were conducted: development of element technology (high-temperature/high-efficiency combustion furnace, corrosion resistant super heater materials, environmental load reduction technology) and the demonstration (demonstrative test in pilot plant, study of an optimum total system). In relation to the external circulation type fluidized bed furnace, reformation was made which enables simultaneous sampling of dioxins, etc. The combustion test was done using the reformed combustion testing furnace to obtain the data necessary for the study of formation/decomposition mechanism of dioxin. The amount of corrosion reduction of superheater sample material for pilot plant use was determined. A study was made of improvement of removal of dioxins and NOx in the pulse plasma exhaust gas treatment method. The pilot plant was installed. 10 refs., 205 figs., 79 tabs.

  11. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  12. Power, Ideology, and Technological Determinism

    Directory of Open Access Journals (Sweden)

    David J. Hess

    2015-12-01

    Full Text Available A Commentary on Taylor Dotson’s “Technological Determinism and Permissionless Innovation as Technocratic Governing Mentalities: Psychocultural Barriers to the Democratization of Technology”

  13. Pulse-power technology and its applications at LBT, Nagaoka

    Energy Technology Data Exchange (ETDEWEB)

    Yatsui, K; Masuda, W; Grigoriu, C; Masugata, K; Jiang, W; Imada, G; Imanari, K; Sonegawa, T; Chishiro, E [Laboratory of Beam Technology, Nagaoka University of Technology (Japan)

    1997-12-31

    Research activities on pulsed power technology and its applications at Laboratory of Beam Technology, Nagaoka University of Technology are reviewed. These activities include 1) development of a high power induction type linear accelerator (8 MV, 5 kA, 50 ns), 2) development of intense ion beam source, and 3) applications of pulsed ion beam in thin film and nanosize powder production. (author). 20 figs., 9 refs.

  14. Staged Introduction of Non-power and Power Nuclear Technologies to Newcomer Countries

    International Nuclear Information System (INIS)

    Uesaka, M.

    2016-01-01

    Full text: Staged introduction of non-power and power nuclear technologies to new comer countries and related knowledge management are presented. Contribution and benefit of radiation technology to medicine and society are very important before nuclear power plants are introduced. Recently, not only new nuclear power technologies but also compact and high performance accelerators for medicine and industrial/social infrastructure maintenance have been developed and used. Such staged introduction with respect to technology, education and economy contributes to enhancement of PA (Public Acceptance). Organized education, knowledge management and network should be associated. (author

  15. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  16. The NASA CSTI High Capacity Power Project

    International Nuclear Information System (INIS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Schmitz, P.; Vandersande, J.

    1992-01-01

    This paper describes the elements of NASA's CSTI High Capacity Power Project which include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timeliness recently developed

  17. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  18. Development of Process Technologies for High-Performance MOS-Based SiC Power Switching Devices

    Science.gov (United States)

    2007-08-01

    epilayers studied by positron annihilation and deep level transient spectroscopy ," Appl. Phys. Lett., vol. 90, p. 3377, 2001. [30] L. Storasta, J. P...the projected long-term lifetime is acceptable for power device applications . For devices in which the MOS interface is formed on implanted layers...TRPL) techniques, while deep level centers in the material are characterized by deep-level transient spectroscopy (DLTS). We found that the

  19. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  20. Technological file for high energy storage power capacitors; Filiere technologique pour condensateurs de puissance a haute energie stockee

    Energy Technology Data Exchange (ETDEWEB)

    Michalczyk, P.

    1996-03-28

    The `Megajoule` project driven by the Commissariat a l`Energie atomique, needs the storage of an 450 MJ energy in a capacitor bank. Each unitary 78 kJ capacitor must be build in a safe technology. The life time of such a capacitor is materialized by a loss of capacitance for a given number of discharge and not by a short circuit which can damage a part of the installation. The answer to the specifications use the combination of two existing technologies. Impregnated film foil capacitors; dry metallized polymer film capacitors. The energy induced by internal dielectric failures is limited by self-healing; the right arrangement of influential parameters, which are the resistivity of the metallization and the drawing of the segmentation is necessary to achieve this phenomenon. Appropriate manufacturing process, space factor, impregnation and thermal treatments are required to optimise the dielectric strength of the capacitors. The first test results valid this developed technology and our conclusions suggest some ways to improve the volume energy. (author) 13 refs.

  1. Nuclear power strategy: requirements for technology

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rachkov, V.I.

    2001-01-01

    The possible role of nuclear power in sustainable development demands answers to at least three questions: Is large-scale nuclear power essential to future development? - Is it feasible to have modern nuclear power transformed for large-scale deployment? - When will large-scale nuclear power be practically needed? The questions are analysed with the requirements to be fulfilled concerning present-day technologies

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  3. High power communication satellites power systems study

    Science.gov (United States)

    Josloff, Allan T.; Peterson, Jerry R.

    1995-01-01

    This paper discusses a planned study to evaluate the commercial attractiveness of high power communication satellites and assesses the attributes of both conventional photovoltaic and reactor power systems. These high power satellites can play a vital role in assuring availability of universally accessible, wide bandwidth communications, for high definition TV, super computer networks and other services. Satellites are ideally suited to provide the wide bandwidths and data rates required and are unique in the ability to provide services directly to the users. As new or relocated markets arise, satellites offer a flexibility that conventional distribution services cannot match, and it is no longer necessary to be near population centers to take advantage of the telecommunication revolution. The geopolitical implications of these substantially enhanced communications capabilities can be significant.

  4. High power microwave source development

    Science.gov (United States)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  5. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  6. Advance of technological innovations of electric power in 2012

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Takebe, Toshiro

    2013-01-01

    Twelve companies in Japan reported on the technological innovations in 2012. The Japan Atomic Power Company mainly studied five projects; (1) control of wall thinning of the secondary system in PWR by injection of molybdic acid, (2) application of pipe test method using electromagnetic acoustic resonance to existing equipment, (3) developed high performance Co-60 crud removal resin for Tsuruga Power Station Unit 2, (4) improvement of technology for safety of core in FBR, and (5) improvement of technology for coolant of FBR by dispersing nano-particles in liquid sodium metal. Tokyo Electric Power Company developed mainly three projects; (1) the support for the mental health care activities by industry protection staff at the Fukushima Daiichi and Daini Nuclear Power Plant, (2) laboratory test method using non-radioactive cesium for performance of decontamination reagent, and (3) decontamination effects estimation code (DeConEP). Hokuriku Electric Power Company reported the operations management measures in accordance with the safety enhancement measures to Shika nuclear power station. Other nine reports are published by Hokkaido Electric Power Co., Inc. Tohoku Electric Power Co., Inc. Chubu Electric Power Co., Inc., The Kansai Electric Power Co., Inc., The Chugoku Electric Power Co., Inc., Shikoku Electric Power Co., Inc., Kyushu Electric Power Co., Inc., Okinawa Electric Power Company Inc. and J-Power. (S.Y.)

  7. Power system technologies for the manned Mars mission

    International Nuclear Information System (INIS)

    Bents, D.; Patterson, M.J.; Berkopec, F.; Myers, I.; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems

  8. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  9. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  10. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  11. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  12. Molecularly Imprinted Polymer Technology: A Powerful, Generic ...

    African Journals Online (AJOL)

    Molecularly Imprinted Polymer Technology: A Powerful, Generic, Facile and Cost Effective Alternative for Enantio-recognition and Separation: A Glance at Advances and Applications. ... Tanzania Journal of Science. Journal Home · ABOUT ...

  13. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  14. Technology: the imbalance of power

    International Nuclear Information System (INIS)

    Teller, E.

    1980-01-01

    Dr. Teller writes that modern warfare is increasingly dominated by technology; here again, the United States is in danger of losing its lead over the Soviets. As we have failed to take advantage of our technical superiority, the Russians have moved ahead of us in rocketry, nuclear submarines, and anti-satellite technology. We ignore chemical and biological warfare: the Soviets do not. Teller feels the US should push ahead on producing the neutron bomb and the cruise missile - although, to inhibit escalation, we should announce that we would never be the first to use atomic weapons except within an invaded area - and we should spend more on civil defense and research and development. But in our dealings with other nations, the USSR, for example, we should shun treaties that are based on prohibition and seek those that promote cooperation. In the free world, the elimination of secrecy should be a constant goal. The only effective antidote to military technology is a technology for peace. We cannot afford to give up the hope for a peaceful world order

  15. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  16. Korean experiences on nuclear power technology

    International Nuclear Information System (INIS)

    Kim, H.; Yang, H.

    1994-01-01

    This paper describes the outstanding performance of the indigenous development program of nuclear power technology such as the design and fabrication of both CANDU and PWR fuel and in the design and construction of nuclear steam supply system in Korea. The success has been accomplished through the successful technology transfer from foreign suppliers and efficient utilization of R and D manpower in the design and engineering of nuclear power projects. In order to implement the technology transfer successfully, the joint design concept has been introduced along with effective on-the-job training and the transfer of design documents and computer codes. Korea's successful development of nuclear power program has resulted in rapid expansion of nuclear power generation capacity in a short time, and the nuclear power has contributed to the national economy through lowering electricity price by about 50 % as well as stabilizing electricity supply in 1980s. The nuclear power is expected to play a key role in the future electricity supply in Korea. Now Korea is under way of taking a step toward advanced nuclear technology. The national electricity system expansion plan includes 18 more units of NPPs to be constructed by the year 2006. In this circumstance, the country has fixed the national long-term nuclear R and D program (lgg2-2001) to enhance the national capability of nuclear technology. This paper also briefly describes future prospects of nuclear technology development program in Korea

  17. Reliability technology and nuclear power

    International Nuclear Information System (INIS)

    Garrick, B.J.; Kaplan, S.

    1976-01-01

    This paper reviews some of the history and status of nuclear reliability and the evolution of this subject from art towards science. It shows that that probability theory is the appropriate and essential mathematical language of this subject. The authors emphasize that it is more useful to view probability not as a $prime$frequency$prime$, i.e., not as the result of a statistical experiment, but rather as a measure of state of confidence or a state of knowledge. They also show that the probabilistic, quantitative approach has a considerable history of application in the electric power industry in the area of power system planning. Finally, the authors show that the decision theory notion of utility provides a point of view from which risks, benefits, safety, and reliability can be viewed in a unified way thus facilitating understanding, comparison, and communication. 29 refs

  18. Role of high technology in the nuclear industry

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A discussion of high technology identifies the characteristics which distinguish it from conventional technologies, and the impact high technology will have in the nuclear power industry in the near future. The basic theme is that high technology is an ensemble of competing technological developments that shifts with time and technological innovation. The attributes which current distinguish high technology are compactness, plasticity, convergence, and intelligence. These high technology attributes are presented as a prelude to some examples of high technology developments which are just beginning to penetrate the nuclear industry. Concluding remarks address some of the challenges which must be faced in order to assure that high technology is successfully adapted and used

  19. Simulation technology for power plants

    International Nuclear Information System (INIS)

    Kuwabara, Kazuo; Yanai, Katsuya.

    1988-01-01

    In the simulation of nuclear power stations, there are the simulation for the training of plant operation, the plant simulation for analyzing the operation of an electric power system, the simulation for controlling a core, the simulation for the safety analysis of reactors, the simulation for the design analysis of plants and so on as the typical ones. The outline and the technical features of these simulations are described. With the increase of capacity and complexity of thermal power plants, recently the automation of operation has advanced rapidly. The chance of starting up and stopping plants by operators themselves is few, and the chance of actually experiencing troubles also is few as the reliability of plants improved. In order to maintain the ability of coping with plant abnormality, an operation supporting system is strongly demanded. Operation training simulators and used widely now, and there are the simulators for analysis, those of replica type, those of versatile compact type and so on. The system configuration, modeling techniques, training function and others of the replica type are explained. In hydroelectric plants, the behavior of water in penstocks, the characteristics of water turbines, the speed control system for water turbines and the characteristics of generators become the main subjects of simulation. These are described. (Kako, I.)

  20. Report about the contribution of new technologies to the burial of high and very-high voltage power lines; Rapport sur l'apport de nouvelles technologies dans l'enfouissement des lignes electriques a haute et tres haute tension

    Energy Technology Data Exchange (ETDEWEB)

    Kert, Ch. [Assemblee Nationale, 75 - Paris (France)

    2001-12-01

    Today, high voltage overhead power lines are badly perceived by the population in particular in urban areas and in areas with remarkable landscapes, for their visual impact on the environment and for their possible effect on human health. With the increase of the domestic and foreign power demand, the high voltage grid will develop in the future and the partial burial of power lines can be the first steps towards a solution to these problems. This report makes a worldwide status of the state-of-the-art of power line burial technologies, all voltages considered, and then focusses on the very-high voltage challenge which encounters the most important technological and economical constraints. The technical feasibility has been proven but the lowering of costs needs the development of a real European market of power lines burial. (J.S.)

  1. The technological construction of social power.

    NARCIS (Netherlands)

    Brey, Philip A.E.

    2007-01-01

    This essay presents a theory of the role of technology in the distribution and exercise of social power. The paper studies how technical artefacts and systems are used to construct, maintain or strengthen power relations between agents, whether individuals or groups, and how their introduction and

  2. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  3. Advance in technologies of electric power in 2008

    International Nuclear Information System (INIS)

    Hamada, Kenichi; Maekawa, Fumiaki; Nakamura, Akio

    2008-01-01

    Ten electric power companies and two related companies reported their advance in technologies. The technologies of nuclear power plants were stated by ten companies, which consisted of introduction of new main control board to Tomari-3 in Hokkaido Electric Power Co., Inc., reduction methods of exposure dose of Higashidori-1 in Tohoku Electric Power, hot water based two-phase flow testing device for pipe thinning test by Tokyo Electric Power Company, Guideline for prevention of piping damage caused by combustion of mixture gases in BWR (the second edition) published by Thermal and Nuclear Power Engineering Society, setting up distributor in the low-pressure turbine of Shika-2 in Hokuriku Electric Power Company, development of rapid estimation method of release radioactivity and application of high density neutron source to nuclear transmutation of nuclear fuel cycle and introduction of new core monitor system by The Kansai Electric Power Co., Inc., upgrade of investigation of the effects of hot waste water and development of detector for dropout parts of cooling system in reactor by Shikoku Electric Power Co., Inc., change of transformer in Sendai-1 by Kyushu Electric Power Co., Inc., and reactor core design for Oma ABWR by J-Power. The Japan Atomic Power Company reported four articles such as development of technologies for established nuclear power plants, promotion of Tsuruga-3 and Tsuruga-4, application of clearance system in Japan and development of future reactors. (S.Y.)

  4. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, shows results...... of the recent advances and describes the remaining challenges. The presented results include a self-oscillating gate-drive, air core inductor optimizations, an offline LED driver with a power density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED driver with 89 % efficiency as well as a bidirectional VHF...

  5. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    International Nuclear Information System (INIS)

    Yinong Li; Dong Wang

    2006-01-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  6. Nuclear power technologies for application in developing countries

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.

    2000-01-01

    The tremendous social and political changes which have occurred during the recent decade in the former USSR made it possible to launch the process of commercialization of defense-related technologies in Russia. The so-called dual-use technologies are meant to be initially developed by the state for defense needs, but having a high commercial potential as well. To date, the process of such technology transfer from the state sector to a private one has been limited primarily by insufficient progress of the national private sector. Essentially, the main economic problem still remains the attraction of private capital for the promotion of dual-use technologies to the point at where they acquire commercially viable. A large number of advanced technologies are waiting to be commercialized. The report presented considers the prospects of civil use of some technologies related to the nuclear power area: space nuclear power systems, nuclear powered submarines and rector-pumped lasers. (author)

  7. Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques

    NARCIS (Netherlands)

    Acar, M.

    2011-01-01

    In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high

  8. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  9. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  10. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  11. Industrial Applications of High Power Ultrasonics

    Science.gov (United States)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  12. Proceeding of the 7. Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Jujuratisbela, Uju; Aziz, Ferhat; Su'ud, Zaki; Suprawhardana, M. Salman

    2002-02-01

    The seventh proceedings of seminar safety and technology of nuclear power plant and nuclear facilities, held by National Nuclear Energy Agency. The Aims of seminar is to exchange and disseminate information about safety and nuclear Power Plant Technology and Nuclear Facilities consist of technology; high temperature reactor and application for national development sustain able and high technology. This seminar level all aspects technology, Power Reactor research reactor, high temperature reactor and nuclear facilities. The article is separated by index

  13. A Study on Test Technology to Diagnose the Power Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K H; Kang, Y S; Jeon, Y K; Lee, W Y; Kang, D S; Kyu, H S; Sun, J H; Jo, K H [Korea Electrotechnology Research Institute (Korea, Republic of); Jung, J S; Mun, Y T; Lee, K H; Jung, E H; Kim, J H [Korea Water Resources Corporation (Korea, Republic of)

    1997-02-01

    In this study, we have educated KOWACO(Korea Water Resources Corporation) specialists about the insulation diagnostic technology and trained them the insulation diagnostic test and estimation method of power apparatus. The main results of this study are as follows; A. Education of basic high-voltage engineering. B. Research of insulation characteristic and deterioration mechanism in power apparatus C. Discussion on high-voltage test standard specifications. D. Study on insulation deterioration diagnostics in power apparatus. E. Field testing of insulation diagnosis in power apparatus. F. Engineering of insulation diagnostic testing apparatus to diagnose power apparatus. KOWACO specialists are able to diagnose insulation diagnostic test of power apparatus through this study. As they have instruments to diagnose power apparatus, they can do the test and estimation of the power apparatus insulation diagnosis. (author). refs., figs., tabs.

  14. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  15. High-powered manoeuvres

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  16. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  17. Smart Technology Brings Power to the People

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine you’re at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (You’ve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your home’s energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise™ Testbed Demonstration, a project funded primarily by DOE. Through the GridWise™ Demonstration projects, researchers are gaining insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100

  18. Preventive maintenance technology for nuclear power stations

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo

    1992-01-01

    With the increase of the number of nuclear power plants in operation and the number of years of operation, the improvement of reliability and the continuation of safe operation have become more important, and the expectation for preventive maintenance technology has also heightened. The maintenance of Japanese nuclear power plants is based on the time schedule maintenance mainly by the regular inspection carried out every year, but the monitoring of the conditions of various machinery and equipment in operation has been performed widely. In this report, the present state of checkup and inspection technologies and the monitoring and diagnostic technologies for operational condition, which are the key technologies of preventive maintenance, are described. As the checkup and inspection technologies, ultrasonic flow detection technology, phased array technology, Amplituden und Laufzeit Orts Kurven method and X-ray CT, and as the monitoring and diagnostic technologies for operational condition, the diagnosis support system for BWR plants 'PLADIS', those for rotary machines, those for turbogenerators, those for solenoid valves, the mechanization of patrol works and the systematizing technology are reported. (K.I.)

  19. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  20. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  1. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.1 volume. Element technology development; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (yoso gijutsu kaihatsu). 1997 nendo hokokusho (daiichi bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Following the previous fiscal year, the technology development was conducted of a high efficiency waste power generation system using general waste as fuel. In the development of high temperature high efficiency combustion furnace, a combustion test on the external circulating fluidized bed incinerator was made to obtain data on formation/decomposition of dioxins. Moreover, a combustion test was conducted using mock refuse, petroleum-derived waste and waste plastics, to confirm stabilized combustion characteristics and low pollution. In the development of a corrosion resistant superheater, made were the stress load high temperature corrosion test, study of intergranular corrosion by elements of impurities, etc. In the development of the environmental load reduction technology, conducted was the conceptional design of pulse plasma exhaust gas disposal equipment corresponding to the actual one. In the verification test in a pilot plant, the pilot plant passed the pre-use inspection and was completed in February 1998. In the study of an optimal total system, discussed were the data on the pilot plant verification test, measuring points, how to arrange them, etc. 2 refs., 88 figs., 50 tabs.

  2. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  3. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  4. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  5. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    Science.gov (United States)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  6. Reduction in adipose tissue volume using a new high-power radiofrequency technology combined with infrared light and mechanical manipulation for body contouring.

    Science.gov (United States)

    Adatto, Maurice A; Adatto-Neilson, Robyn M; Morren, Grietje

    2014-09-01

    A growing patient demand for a youthful skin appearance with a favorable body shape has led to the recent development of new noninvasive body contouring techniques. We have previously demonstrated that the combination of bipolar radiofrequency (RF) and optical energies with tissue manipulation is an efficient reshaping modality. Here, we investigated the efficacy and safety of a new high-power version of this combined technology, in terms of adipose tissue reduction and skin tightening. Thirty-five patients received one treatment per week over 6 weeks to their abdomen/flank, buttock, or thigh areas and were followed up to 3 months post completion of the treatment protocol. This new device has an increased power in the bipolar RF, as this parameter appears to be the most important energy modality for volume reduction. Patient circumferences were measured and comparisons of baseline and post treatment outcomes were made. Diagnostic ultrasound (US) measurements were performed in 12 patients to evaluate the reduction in adipose tissue volume, and a cutometer device was used to assess improvements in skin tightening. We observed a gradual decline in patient circumferences from baseline to post six treatments. The overall body shaping effect was accompanied with improvement in skin tightening and was clearly noticeable in the comparison of the before and after treatment clinical photographs. These findings correlated with measurements of adipose tissue volume and skin firmness/elasticity using diagnostic US and cutometer, respectively. The thickness of the fat layer showed on average a 29% reduction between baseline and the 1-month follow up. The average reduction in the circumference of the abdomen/flanks, buttocks, and thighs from baseline to the 3-month follow-up was 1.4, 0.5, and 1.2 cm, respectively, and 93% of study participants demonstrated a 1-60% change in fat layer thickness. Patients subjectively described comfort and satisfaction from treatment, and 97% of

  7. Nuclear power economics and technology: an overview

    International Nuclear Information System (INIS)

    1992-01-01

    Intended for the non-specialist reader interested in energy and environmental policy matters, this report presents an overview of the current expert consensus on the status of nuclear power technology and its economic position. It covers the potential demand for nuclear energy, its economic competitivity, and the relevant aspects of reactor performance and future technological developments. The report provides an objective contribution to the ongoing scientific and political debate about what nuclear power can offer, now and in the future, in meeting the world's growing demand for energy and in achieving sustainable economic development. 24 refs., 18 figs;, 12 tabs., 5 photos

  8. Design Method for the Coil-System and the Soft Switching Technology for High-Frequency and High-Efficiency Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-12-01

    Full Text Available Increasing the resonant frequency of a wireless power transfer (WPT system effectively improves the power transfer efficiency between the transmit and the receive coils but significantly limits the power transfer capacity with the same coils. Therefore, this paper proposes a coil design method for a series-series (SS compensated WPT system which can power up the same load with the same DC input voltage & current but with increased resonant frequency. For WPT systems with higher resonant frequencies, a new method of realizing soft-switching by tuning driving frequency is proposed which does not need to change any hardware in the WPT system and can effectively reduce switching losses generated in the inverter. Eighty-five kHz, 200 kHz and 500 kHz WPT systems are built up to validate the proposed methods. Experimental results show that all these three WPT systems can deliver around 3.3 kW power to the same load (15 Ω with 200 V input voltage and 20 A input current as expected and achieve more than 85% coil-system efficiency and 79% system overall efficiency. With the soft-switching technique, inverter efficiency can be improved from 81.91% to 98.60% in the 500 kHz WPT system.

  9. High Power Wireless Transfer : For Charging High Power Batteries

    OpenAIRE

    Gill, Himmat

    2017-01-01

    Wireless power transfer (WPT) is developing with emerging of new technologies that has made it possible to transfer electricity over certain distances without any physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronic, and especially in electric vehicle systems. The goal of this study is to provide a brief review of existing compensation topologies for the loosely coupled transformer. The technique used to simulate a co...

  10. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  11. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  12. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  13. Modular High Voltage Power Supply

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-18

    The goal of this project is to develop a modular high voltage power supply that will meet the needs of safeguards applications and provide a modular plug and play supply for use with standard electronic racks.

  14. Introduction of Capacitive Power Transfer Technology

    OpenAIRE

    Hattori, Reiji

    2017-01-01

    Wireless power transfer (WPT) technology is expected for eliminating troublesomeness of connecting an electronic cable. The development of WPT technology has a long history since Nikola Tesla built up Wardenclyffe Tower located in Long Island, New York for developing a WPT system in the early 1980’s. But it cannot be said that WPT technology is widely spread in a current human life space enough. The reason is that it cannot find the specific application which only WPT can achieve yet. There a...

  15. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  16. Innovation in electric power technologies in 2009

    International Nuclear Information System (INIS)

    Ohfusa, Takahiro; Hayasaka, Eiji; Ino, Hiroyuki

    2010-01-01

    This is a report of the title by Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Tohoku Electric Power and other nine enterprises in Japan. The outline is as follows. Tokyo Electric Power Company stated pipe thinning by the hot water based two-phase flow testing device, development of technologies for corrosion protection of nuclear reactor using titanium oxide, evaluation of fatigue damage by EBSD, and study of duty on the nuclear power plant. Japan Atomic Power Company (JAPC) stated the mechanism of decrease in exposure dose of the primary coolant system by zinc infusion, outline of Air Operated Valve Intelligent Diagnostic Analysis System (AVIDAS) and the grand packing system, development of SAPLS, the automatic search program of fuel position for design of PWR related core, development of compact containment water reactor (CCR) and FBR cycle system, investigation of the chain destruction of active fault under consideration of dynamic interaction of active faults and decommissioning of Tokai Nuclear Power Plant. Electric Power Development Company reported construction of the Oma Nuclear Power Plant, a future nuclear plant in Oma, Aomori. The reactor will be capable of using 100% MOX fuel core (MOX-ABWR). The operation will start November 2014. (S.Y.)

  17. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  18. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  19. Applications: REP-rate pulse power technology

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Research on the following topics is discussed: (1) REP-rate pulse power technology, (2) RTF-I, 300-J, 100-pps test facility experiments, (3) transformer development, (4) reactor system studies, (5) general conceptual design, (6) economic considerations, (7) specific reactor designs, (8) low-current density diode physics studies, and (9) plasma injected, microsecond, E-beam diodes

  20. Emission Control Technologies for Thermal Power Plants

    Science.gov (United States)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  1. Development in fiscal 1999 of technology to put photovoltaic power generation system into practical use. Demonstrative study on photovoltaic power generation system (Research on high-density linking technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system no jissho kenkyu (komitsudo renkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Taking a photovoltaic power generation system linked to distribution lines at high density as the object of discussion, investigative studies were performed on electric power quality, clarification of various problems including effects on operation and protection of distribution lines, the corrective measures thereof, and enhancement of power quality by utilizing inverters. This paper summarizes the achievements in fiscal 1999. In clarifying the problems associated with high-density linkage, discussions were given on possible amount of PV introduction into the distribution lines as seen from the electric performance aspect including power quality and safety. Placing the importance on identifying the current status of single operation preventing technologies, demonstrative discussions were given on the single operation preventing performance of commercially available inverters in testing 84 inverters operated in parallel by using the Rokko testing installation. In discussing the corrective measure technologies, development has been performed on a decentralized voltage stabilizing device based on injection of reactive power into high-voltage distribution lines as a measure to suppress voltage rise in the distribution lines. The reasonability of the fundamental characteristics thereof was verified by using the Akagi testing facilities. In addition, improved design was progressed on the two-step active prevention system. Commencement has taken place on verification of the reasonability of the fundamental characteristics and tests on parallel operation of multiple number of units. (NEDO)

  2. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. Demonstrative study of the photovoltaic power system (Study of the high density connection technology); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system no jissho kenkyu (Komitsudo renkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the photovoltaic power system connected to the distribution line in high density, study was made in terms of the power quality, elucidation of the effect on operation/protection of the distribution line and the measures to be taken, improvement of power quality using inverter, etc., and the FY 2000 results were summed up. In this fiscal year, the results of the research made in four years were arranged, and at the same time, the theoretical analysis, verification test, etc. that were necessary for summarization of the research results were carried out. As to various kinds of technology for the measures to be taken, the following were conducted: study of the effect on the rise in voltage of the distribution line, development of the dispersed control type voltage stabilization method, test on characteristics of individual operation of the inverter on the market, simulation analysis of characteristics of the continuous individual operation, development of the high reliability individual operation prevention method, verification study of the environmental adaptability, etc. As a technology for improving utility value of the photovoltaic power generation, a high function inverter was developed which conducts not only the dc-ac conversion, but the smoothing of generating output/load variations and load higher harmonics/reactive power compensation. At the Rokko testing facilities, test was made of the parallel operation (5 units) of the pole transformer. (NEDO)

  3. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment.

    Science.gov (United States)

    Schweitzer, Wolf; Thali, Michael J; Egger, David

    2018-01-03

    Prosthetic arm research predominantly focuses on "bionic" but not body-powered arms. However, any research orientation along user needs requires sufficiently precise workplace specifications and sufficiently hard testing. Forensic medicine is a demanding environment, also physically, also for non-disabled people, on several dimensions (e.g., distances, weights, size, temperature, time). As unilateral below elbow amputee user, the first author is in a unique position to provide direct comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body-powered arm which contains a number of new developments initiated or developed by the user: (1) quick lock steel wrist unit; (2) cable mount modification; (3) cast shape modeled shoulder anchor; (4) suspension with a soft double layer liner (Ohio Willowwood) and tube gauze (Molnlycke) combination. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) contains magnetic electrodes (Liberating Technologies). An on the job usage of five years was supplemented with dedicated and focused intensive two-week use tests at work for both systems. The side-by-side comparison showed that the customized body-powered arm provides reliable, comfortable, effective, powerful as well as subtle service with minimal maintenance; most notably, grip reliability, grip force regulation, grip performance, center of balance, component wear down, sweat/temperature independence and skin state are good whereas the iLimb system exhibited a number of relevant serious constraints. Research and development of functional prostheses may want to focus on body-powered technology as it already performs on manually demanding and heavy jobs whereas eliminating myoelectric technology's constraints seems out of reach. Relevant testing could be developed to help expediting this. This is relevant as Swiss disability insurance specifically supports prostheses that enable actual work integration. Myoelectric and

  4. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  5. High power klystrons for efficient reliable high power amplifiers

    Science.gov (United States)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  6. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  7. Localization of nuclear power plant technology

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Rudek, T.G.

    1998-01-01

    Asia, and particularly China, has an enormous need for power and must deal with the practicalities of building large base load units. In China, as in other countries, there are limitations on the use of large quantities of fossil fuel. This raises the possibility of turning to nuclear power to satisfy their energy needs. Other issues tend to point to the nuclear option for these growing economies, including economic considerations, environmental concerns, energy independence and raising the technological capabilities of the country. When a country embarks on a nuclear power program with the intention of localizing the technology, a long-term commitment is necessary to achieve this objective. Localization of nuclear technology is not a new phenomenon. The nature of the industry from the early beginnings has always involved transfer of technology when a new country initiated a nuclear power construction program. In fact, most previous experiences with this localization process involved heavy governmental, political and financial support to drive the success of the program. Because of this strong governmental support, only the receiving nation's companies were generally allowed to participate in the local business operations of the technology recipient. What is new and different today is the retreat from heavy financial support by the receiving country's government. This change has created a strong emphasis on cost-effectiveness in the technology transfer process and opportunities for foreign companies to participate in local business activities. ABB is a world-wide company with two parent companies that have been very active over many years in establishing cost-justified local operations throughout the world. Today, ABB has become the largest electrical engineering company in the world with respected local operations in nearly every country. Lessons learned by ABB in their world-wide localization initiatives are being applied to the challenge of cost

  8. Report on technological achievements in fiscal 1999. Institutions for research and development of new environmental industry creating type technologies (Development of harmful substance reducing device for incineration furnaces using high-efficiency power pulse technology); 1999 nendo shinki kankyo sangyo soshutsugata kenkyu kaihatsu seido seika hokokusho. Kokoritsu pulse power gijutsu wo mochiita shokyakuroyo yugai busshitsu sakugen sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Development has been proceeded on a harmful substance (SOx, NOx, Dioxine, etc.) reducing device for incineration furnaces that can be installed retroactively to existing incineration facilities, using high-efficiency power pulse technology of energy saving type, and discharge in honeycomb ceramics. The developmental activities were advanced by dividing them into researches on (1) research of gas decomposing devices, (2) research of pulse plasma electric power source, and (3) research of SI thyristor for pulse. In the research (1), a pulse plasma experiment and a gas decomposing experiment were performed. In the former experiment, discussions were given on effects of discharge electrode structure on discharge in the honeycomb ceramics, wherein it was made clear that employing the mesh-comb type electrode structure can realize discharge along the ceramics surface. In the latter experiment, it was revealed that the simulated gas (dibenzofuran) can be decomposed to 90% by using a coaxial cylindrical reaction device. In the research (2), studies were performed on increasing voltage and current in the device, as well as on semiconductor driving circuits. In the research (3), studies were made on the high-quality gate zone forming method and the quality conduction zone forming method. (NEDO)

  9. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  10. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  11. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  12. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  13. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  14. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  15. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  16. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  17. Technological development of Guangdong nuclear power station

    International Nuclear Information System (INIS)

    Huang Shiqiang

    2000-01-01

    After over 5 years of operations, the Guangdong Nuclear Power Station (GNPS) has achieved good results both economically and in operational safety performance. The main attributes to the success of the plant operational performances include the equipment reliability, the technical capability and management efficiency. To that the key strategy has been to adopt know-how and technological transfer and encourage self-innovation, aiming to strive for the long-term self-reliance in design, manufacturing and operating the plant. (author)

  18. The status of nuclear power technology

    International Nuclear Information System (INIS)

    Calori, F.

    1976-01-01

    A survey is presented of the present state of development concerning nuclear power technology, and the prospects of a modified future development of nuclear energy in the world are dealt with, modification being necessary on account of altered conditions in the development of the energy economy. Projections are made for the development of the fuel market taking into account the quantities and costs for the various steps of the fuel cycle. (UA) [de

  19. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  20. New technologies deployment for advanced power plants

    International Nuclear Information System (INIS)

    Kiyoshi, Yamauchi

    2007-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been the total engineering and manufacturing company of pressurized water reactors (PWRs) in Japan since the commencement of commercial operations of Mihama Unit 1 of the Kansai Electric Power Company in 1970. Over these decades, MHI has endeavored to develop a broad spread of nuclear technology, from design, manufacturing, and construction, to plant maintenance services. More recently, with the ever rising need for nuclear power generation around the world to prevent global warming and to cope with surging oil prices, MHI is striving to expand its nuclear power business in the world market, such as US-APWR (Advanced Pressurized Water Reactor) in the U.S., as well as to develop technology for advanced reactors and nuclear fuel cycles to ensure energy security in the future. This paper introduces these approaches, especially focused on new technologies deployment for the global needs, and clarifies the current status and future prospects of MHI as the world's leading nuclear company. (author)

  1. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  2. Automation technology for aerospace power management

    Science.gov (United States)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  3. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  4. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  5. High voltage power network construction

    CERN Document Server

    Harker, Keith

    2018-01-01

    This book examines the key requirements, considerations, complexities and constraints relevant to the task of high voltage power network construction, from design, finance, contracts and project management to installation and commissioning, with the aim of providing an overview of the holistic end to end construction task in a single volume.

  6. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  7. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  8. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  9. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  10. High power gyrotrons: a close perspective

    International Nuclear Information System (INIS)

    Kartikeyan, M.V.

    2012-01-01

    Gyrotrons and their variants, popularly known as gyrodevices are millimetric wave sources provide very high powers ranging from long pulse to continuous wave (CW) for various technological, scientific and industrial applications. From their conception (monotron-version) in the late fifties until their successful development for various applications, these devices have come a long way technologically and made an irreversible impact on both users and developers. The possible applications of high power millimeter and sub-millimeter waves from gyrotrons and their variants (gyro-devices) span a wide range of technologies. The plasma physics community has already taken advantage of the recent advances of gyrotrons in the areas of RF plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (LHCD) (8 GHz), electron cyclotron resonance heating (ECRH) (28-170-220 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering (CTS), heat-wave propagation experiments, and space-power grid (SPG) applications. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for the generation of multi- charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high frequency, broadband electron paramagnetic resonance (EPR) spectroscopy. Additional future applications await the development of novel high power gyro-amplifiers and devices for high resolution radar ranging and imaging in atmospheric and planetary science as well as deep space and specialized satellite communications, RF drivers for next generation high gradient linear accelerators (supercolliders), high resolution Doppler radar, radar ranging and imaging in atmospheric and planetary science, drivers for next-generation high-gradient linear accelerators

  11. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  12. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  13. Problems and prospects connected with development of high-temperature filtration technology at nuclear power plants equipped with VVER-1000 reactors

    Science.gov (United States)

    Shchelik, S. V.; Pavlov, A. S.

    2013-07-01

    Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.

  14. Abnormality diagnostic technology for nuclear power plants

    International Nuclear Information System (INIS)

    Ishikawa, Satoshi

    1986-01-01

    In nuclear power plants, it is feared that the failure of the installations containing radioactive substances may inflict serious damage on public and workers. Therefore in nuclear power plants, the ensuring of safety is planned by supposing hypothetical accidents which are not likely to occur from engineering viewpoint, and multiple protection measures are taken in the plant constitution. In addition to the safety measures from such hardware aspect, recently in order to prevent the occurrence of accidents by using various safety-confirming means, and to detect early when any accident occurred, the development and putting in practical use of many monitoring equipments have been promoted. In such background, the development of nuclear power generation supporting system was carried out for five years since fiscal year 1980, subsidized by the Ministry of International Trade and Industry, and in this report, the technology of equipment abnormality diagnosis developed as a part of that project and the diagnostic techniques for actual plants are described. The technology of diagnosing nuclear reactor abnormality includes the diagnosis of loose metal pieces and the abnormal vibration of in-core structures. The detection and diagnosis of valve leak and the diagnosis of the deterioration of detectors are also explained. (Kako, I.)

  15. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  16. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    Science.gov (United States)

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  17. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  18. Atmospheric Propagation and Combining of High-Power Lasers

    Science.gov (United States)

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  19. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  20. Achievement report on commissioned research of R and D in fiscal 2000 on micromachine technologies. Development of high function maintenance technology for power generation facilities; 2000 nendo kenkyu seika hokokusho. Hatsuden shisetsu you kokino mentenansu gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D has been carried out on a high function maintenance system that performs inspection and repair of anomalies such as internal cracks by using micromachines without need of disassembling heat exchangers and piping systems in power generation facilities. This paper summarizes the achievements in fiscal 2000. In the research of a prototype self-propelled system to recognize environment in tubes, the secondary prototype system integrating all of the elemental devices was fabricated, and its functions were verified. In the research of a prototype system to inspect outer surface of fine tube groups, a plurality of single machines that perform movement in narrow spaces on flat surface, interlocking, separation and flaw detection were connected to execute a vertical movement experiment. In the research of a prototype system for works internal to devices, fabrication and functional verification were conducted on the final prototype system which is equipped with functions of measuring very small nicks and performing repair works, which are mounted on the tip of a curved tube unit with multiple degrees of freedom. In the research of a functional device improving technology, a device that puts together artificial muscles, micro-joints, and a suspension device with very low friction was fabricated, and a functional verification was implemented thereon. (NEDO)

  1. Research on process management of nuclear power technological innovation

    International Nuclear Information System (INIS)

    Yang Hua; Zhou Yu

    2005-01-01

    Different from the other technological innovation processes, the technological innovation process of nuclear power engineering project is influenced deeply by the extensive environmental factors, the technological innovation of nuclear power engineering project needs to make an effort to reduce environmental uncertainty. This paper had described the mechanism of connection technological innovation process of nuclear power engineering project with environmental factors, and issued a feasible method based on model of bargaining to incorporate technological innovation process management of nuclear power engineering project with environmental factors. This method has realistic meanings to guide the technological innovation of nuclear power engineering project. (authors)

  2. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  3. Digital Process Management Technology for Nuclear Power Plants

    International Nuclear Information System (INIS)

    You, Young M.; Suh, Kune Y.

    2009-01-01

    PHILOSOPHIA, Inc. and Seoul National University have utilized the cutting edge Digital Process Management (DPM) technology for the good of Nuclear Power Plant in recent days. This work represent the overall benefits and the use of this new flow of technology which come into the spotlight. Before realizing the three dimensional (3D) technologies and applying it to real mechanical manufactures and constructions, majority of planning and designing works need huge time and cost even if the process is before the real work. Especially, for a massive construction such as power plant and harbor, without computer-aided technology currently we cannot imagine the whole process can be established easily. Computer-aided Design (CAD) is now main and common technology for manufacturing or construction. This technology lead the other virtual reality 3D technologies into the job site. As a member of these new technologies, DPM is utilized in high-tech and huge scale manufacturing and construction for the benefits of time and cost

  4. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  5. Laser power beaming applications and technology

    Science.gov (United States)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  6. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  7. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  8. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  9. Modularization Technology in Power Plant Construction

    International Nuclear Information System (INIS)

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-01-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  10. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  11. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  12. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  13. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    Science.gov (United States)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  14. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  15. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  16. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  17. FY 1994 Report on the technical results. Research and development of micromachine technologies (Development of highly functional maintenance technologies for power plants); 1994 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This research and development project is aimed at development of the technologies for the micromachines provided with maintenance functions, e.g., for examination and maintenance of abnormal conditions in heat exchangers, piping systems or the like. The initial target is set at establishment of basic technologies for the micromachines, in consideration of the available technologies. The R and D activities are directed to (1) microcapsules for, e.g., micro power generators, (2) mother machines having controlling and instructing functions, (3) non-cabled examination modules, (4) cabled examination modules, and (5) total systems. The item (1) involves the micro power generators, and mechanisms of signal transmission, flaw finding and driving/suspension; the item (2) mechanisms of micro-optics and connection, group controlling, microbatteries, action type controlling, and artificial muscles; the item (3) expansion/contraction type transfer mechanisms, light energy supply, micro visual sensation, function connection, and concerted controlling; the item (4) tubular manipulators, and mechanisms of light-aided power generation and voltage elevation; and the item (5) maintenance and micromachine systems. (NEDO)

  18. The high-power iodine laser

    Science.gov (United States)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  19. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  20. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    International Nuclear Information System (INIS)

    Meier, W; Bibeau, C

    2005-01-01

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of ∼2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies

  1. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  2. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  3. Development on power distribution technologies of four electric power companies in Japan. The Tokyo Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Electric power companies have been needed to cope with various needs in accordance with the progress of highly information-oriented society, the improvement of industrial technology, and the advancement and diversification of the living environment. In such situation, the power distribution section of Tokyo Electric Power has promoted technical development, setting up following priority items to put into operation: to reduce power failure caused by works and accidents, to improve reliability in supply, to reduce costs of construction and all over business management, to serve customers to answer various needs, to develop new technology and new methods based on the medium- and long-term prospect, and so forth. Several examples of recent technical development are introduced here. They are as follows; compact equipment and materials for electric poles to match the circumstances of cities and to simplify the construction method for power distribution, a 750kVA large high-voltage power-generation truck to make provision against an emergency such as a disaster by a typhoon, a compact transformer used on the ground, a high-voltage automatic cabinet, and a detector to find the failure of indoor power distribution works in resistances in a short time. 8 figs.

  4. Integration of Pneumatic Technology in Powered Mobility Devices.

    Science.gov (United States)

    Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A

    2017-01-01

    Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.

  5. Desulfurization technologies for flue gases from power stations, technological and financial characteristics

    International Nuclear Information System (INIS)

    Naumoski, Koce

    1997-01-01

    Harms on life environment, caused by aero pollution, for the last decades enforced fast development of technologies for filtration of gases that come from thermal power plants and other objects. SO 2 , that appear as one of outputs of fossil fuels combustion, and also processing of sulphide ore, is a main component of acid rains. Acid rains represent one of the most risky factors, responsible for dryne of woods and changing of flora and fauna on land and in water. Starting from 1931 year when on the thermal power plant BATTERSEA STATION, property of London Power, first scrubbers were monnted for filtration of flue gases of SO 2 , and up till today, many procedures are developed for desulfurization of flue gases. For easier coping with numerous technologies for desulfurization , various classifications were made. By state of aggregation of the absorption agent , the technologies for desulfurization of gases are divided in wet , semidry and dry procedures. Wet procedures are technologies with highness rate of desulfurization of 90-95 % and most flexible of the quality of fuel whose flue gases are filtered. Presently they have high price of 90-220 $/kw installed power. According to American sources, their price at the world market is forecasted that till 2000 year will reach price of 100 $/kw. Dry technologies for desulfurization of flue gases are last technologies. The rate of desulfurization is 50-60 % and its prise is 76 -113 $/kw. Their negative side is high variable costs 250 - 388 $/ ton SO 2 (at wet procedures variable costs 76 - 157 $/ton SO 2 ). Semidry technologies by financial and technological characteristics are wet and dry procedures. (Author)

  6. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  7. 依靠技术创新,安全高效发展核电,治理雾霾源头%Rely on Technological Innovation to Develop High Efficient Nuclear Power Generation Safely to Handel Haze Sources

    Institute of Scientific and Technical Information of China (English)

    周梦君

    2015-01-01

    It introduces haze's harmful effects and causes. It describes working principle of nuclear power, which determines ‘zero haze’ characteristics. In comparison with nuclear power generation and coal-fired power generation based on greenhouse gas emission and harm effect on environment, the paper points out that developing nuclear power has to adheres to‘safty and high efficiency’, which means we should accelerate innovative nuclear power technology in order to ensure safe and high-effective nuclear power development.%介绍了雾霾的危害和雾霾的成因。阐述了核发电的原理决定了核电的“零雾霾”特性;并在温室气体排放及对环境的影响两方面对核电与煤电做了比较,最后指出,发展核电必须始终坚持“安全、高效”;要确保核电安全高效发展,就必须依靠核电技术创新。

  8. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  9. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  10. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  11. Cost optimisation studies of high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  12. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  13. Cogeneration (hydrogen and electrical power) using the Texaco Gasification Power Systems (TGPS) technology

    International Nuclear Information System (INIS)

    Gardner, J.

    1994-01-01

    The information herein presents preliminary technical and cost data for an actual case study using Texaco Gasification Power Systems (TGPS) technology, incorporated as part of an overall refinery upgrade project. This study is based on gasification of asphalt and vacuum residue (see Table 1, feedstock properties) to produce hydrogen plus carbon monoxide (synthesis gas) for the ultimate production of high purity hydrogen and power at a major refinery in Eastern Europe. A hydrogen production of 101,000 Nm 3 /hr (9.1 tons/hr) at 99.9 (wt.%) purity plus 50 MW (net) power slated to be used by the refinery was considered for this study. Figure I shows a block diagram depicting the general refinery configuration upgrade as envisioned by the owner operator; included in the configuration as shown in the shaded area is the TGPS plant. Figure II shows a block flow diagram depicting the TGPS unit and its battery limits as defined for this project. The technology best suited to meet the demand for clean and efficient electric power generation and hydrogen production is the Texaco Gasification Power Systems (TGPS) process. This technology is based upon Texaco's proprietary gasification technology which is well proven with over 40 years of gasification experience. There are currently 37 operating units in the world today which have licensed the Texaco gasification process technology, with another 12 in design/construction. Total synthesis gas (hydrogen + carbon monoxide) production capacity is over 2,8 billion standard cubic feet per day. The TGPS, which is basically the Integrated Gasification Combined Cycle (IGCC) based upon the Texaco gasification technology, was developed by combining and integrating gasification with power generation facilities. (author). 3 figs., 9 tabs., 4 refs

  14. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  15. Fiscal 1993 report on technological results. R and D on new forming technology of composite materials (Development of innovative technology for producing members for high efficiency power generation); 1993 nendo fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    A forming technology was developed which uses superplasticity of composite materials, i.e., high-functional materials for power generating equipment for example. Activities were conducted in the three areas of (1) ceramic based composite materials, (2) development of metal-based composite forming technology, and (3) comprehensive investigation and adjustment. In (1), with a view to finding a composite forming technology, in which high tenacity materials are obtained by evenly dispersing particles or whiskers as reinforcements in a matrix, a room temperature forming technique using fine particles was exploited, as were a high temperature forming technique using fused bodies and a possibility of manifestation of superplasticity in the prepared composite materials. The materials used were Si{sub 3}N{sub 4} matrix-SiC, Al{sub 2}O{sub 3} matrix-TiC, and glass matrix composite based materials filling ceramics in fine holes of porous glass. In (2), composite forming technologies were examined for such composite materials as Al alloy matrix-SiC particulate-based by a molten metal stirring method, Al alloy matrix-ceramics short fiber-based by a high pressure forging method, Ti alloy matrix-ceramics particulate-based by a mechanical alloying method, and Al alloy matrix-ceramics particulate-based by an alkoxide method/powder metallurgy method. (NEDO)

  16. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  17. Integrated construction management technology for power plants

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun; Nishitani, Yasuhiko

    2003-01-01

    The improvement and rationalization of the plant construction technology has been promoted in order to shorten the construction period, to improve the quality and reliability, and especially to reduce construction costs. With the recent remarkable advances of computer technology, it is necessary to introduce an electronic information technology (IT) into the construction field, and to develop a business process. In such a situation, Hitachi has developed and applied integrated construction support system, which is consistent among design, production and construction. This system has design information and schedule information made electronically as a basic database, and characterizes with project management function based on that information. By introduction of this system, electronic processing of information and reduction of paperwork has enabled high efficiency and standardization of on-site indirect work. Furthermore, by collaboration with the civil company, electrical data exchange has been carried out and developed techniques to improve the interface between mechanical and civil work. High accuracy of construction planning and unification of schedule data have been achieved, and consequently, rework and adjustment at the job site have been greatly reduced. (author)

  18. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    Science.gov (United States)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  19. FY 2000 report on the results of the R and D of femtosecond technology. R and D of high intensity X-ray pulse use power generation facility monitoring system; 2000 nendo femto byo technology no kenkyu kaihatsu seika hokokusho. Kokido X sen pulse riyo hatsuden shisetsu monitoring system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project aims at creating new industrial basement technology which supports the highly information-oriented society in the 21st century, conducts the R and D of technology to control the state of light and electron in the femtosecond time domain (10{sup -15} - 10{sup -12} sec), and establishes the basement technology which exceeds the speed limit of the conventional electronics technology and also includes new functionality. Especially, in the R and D of the high intensity X-ray pulse use power generation facility monitoring system, the establishment is aimed at of the basement technology toward the realization of non-stop inspection of high speed moving objects of power generation facilities, etc. using femtosecond high intensity X-ray pulse generated in the interaction between femtosecond optical pulse and high density electron beam pulse. In this fiscal year, femtosecond X-ray was successfully generated. The pulse width of X-ray: 400fs, the wavelength: 6 angstroms, the X-ray dose generated in one collision: 10{sup 4} photons/pulse or more, and the energy of electron beam colliding with laser optical pulse: 12 MeV. Moreover, developed were the laser amplifying system and the stabilized high power femtosecond laser system. (NEDO)

  20. Microhydraulic transducer technology for actuation and power generation

    Science.gov (United States)

    Hagood, Nesbitt W.; Roberts, David C.; Saggere, Laxminarayana; Breuer, Kenneth S.; Chen, Kuo-Shen; Carretero, Jorge A.; Li, Hanqing; Mlcak, Richard; Pulitzer, Seward W.; Schmidt, Martin A.; Spearing, S. Mark; Su, Yu-Hsuan

    2000-06-01

    The paper introduces a novel transducer technology, called the solid-state micro-hydraulic transducer, currently under development at MIT. The new technology is enabled through integration of micromachining technology, piezoelectrics, and microhydraulic concepts. These micro-hydraulic transducers are capable of bi-directional electromechanical energy conversion, i.e., they can operate as both an actuator that supplies high mechanical force in response to electrical input and an energy generator that transduces electrical energy from mechanical energy in the environment. These transducers are capable of transducing energy at very high specific power output in the order of 1 kW/kg, and thus, they have the potential to enable many novel applications. The concept, the design, and the potential applications of the transducers are presented. Present efforts towards the development of these transducers, and the challenges involved therein, are also discussed.

  1. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  2. Research and development of superhigh-technological processing systems in fiscal 989 (1.2). Development of devices for highly processing power generating facility parts (1.2.3); Chosentan kako system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    Described herein are the results of the research and development project for developing superhigh-technological processing systems, and devices for highly processing power generating facility parts.The R and D project for the superhigh-technological processing systems involves short-wavelength exima lasers for the techniques to expand their serviceability and improve their qualities; highly focused, wide-band energy ion beams for gas-phase focused ion beams and large-capacity cluster ion beams; superprecision machining for investigations on superprecision machining elements; techniques for forming and laminating thin films; high-speed surface modification of the stock materials; supporting techniques; and total systems. The R and D for the devices for highly processing power generating facility parts include investigations on the techniques for expanding serviceability of high-output exima lasers serving repeatedly for extended periods, and the techniques allowing the devices serviceable repeatedly for extended periods. The other R and D items include the techniques for light-resistant, high-strength elements, large-current ion beams, and reshaping by exima laser beams. (NEDO)

  3. SIW based multilayer transition and power divider in LTCC technology

    KAUST Repository

    Abuzaid, Hattan

    2013-06-01

    A multilayer transition and balanced power divider are presented for millimeter-wave system-on-package (SoP). These two components operate at Ka-band and exploit the substrate integrate waveguide (SIW) technology with its shielding characteristics and the Low-temperature co-fired ceramics (LTCC) technology for its high density integration. A coupling slot has been used to perform vertical integration, which can be easily optimized through its length. The measured input return loss within the bandwidth of interest (32 GHz-38 GHz) is less than -15 dB and -18 dB for the multilayer transition and the power divider, respectively. The lateral dimensions of a multilayer system, such as a feed network of an array, can be greatly reduced by employing these 3D slot-coupled components. © 2013 IEEE.

  4. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (6) Operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Yujiro; Abe, Yutaka; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2004-01-01

    One of the most interesting devices for next generation reactor systems aiming at simplified system and improvement of safety and credibility is the steam injector which is a passive pump without large motor or turbo-machinery. One of the applications of the steam injector is the passive water injection system to inject the coolant water into the core. The system can be started up merely by injecting the steam without any outer power supply. Since the steam injector is a simple, compact and passive device for water injection, if the steam injector is applied to the actual reactor, it is expected to make the system simple and to reduce the construction cost. Although non-condensable gases are well known for reducing heat transfer between water and steam, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper reports about the experimental apparatus, measurement instrument and experimental results of observing the phenomenon inside the test section supplying water and steam to the test by using both the high-speed camera and the video camera and measuring the temperature and the pressure distribution n the test section. (author)

  6. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  7. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  8. Water Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  9. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  10. Military space power systems technology trends and issues

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Massie, L.D.

    1985-01-01

    This paper assesses baseload and above-baseload (alert, active, pulsed and burst mode) power system options, places them in logical perspective relative to power level and operating time, discusses power systems technology state-of-the-art and trends and finally attempts to project future (post 2000) space power system capabilities

  11. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.

    OpenAIRE

    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  12. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    Science.gov (United States)

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  13. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  14. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  16. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  17. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  18. Model-based reasoning technology for the power industry

    International Nuclear Information System (INIS)

    Touchton, R.A.; Subramanyan, N.S.; Naser, J.A.

    1991-01-01

    This paper reports on model-based reasoning which refers to an expert system implementation methodology that uses a model of the system which is being reasoned about. Model-based representation and reasoning techniques offer many advantages and are highly suitable for domains where the individual components, their interconnection, and their behavior is well-known. Technology Applications, Inc. (TAI), under contract to the Electric Power Research Institute (EPRI), investigated the use of model-based reasoning in the power industry including the nuclear power industry. During this project, a model-based monitoring and diagnostic tool, called ProSys, was developed. Also, an alarm prioritization system was developed as a demonstration prototype

  19. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  20. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  1. Techno-Human Mesh: The Growing Power of Information Technologies.

    Science.gov (United States)

    West, Cynthia K.

    This book examines the intersection of information technologies, power, people, and bodies. It explores how information technologies are on a path of creating efficiency, productivity, profitability, surveillance, and control, and looks at the ways in which human-machine interface technologies, such as wearable computers, biometric technologies,…

  2. Extending the Endurance, Missions and Capabilities of Most UAVs Using Advanced Flexible/Ridged Solar Cells and New High Power Density Batteries Technology

    Science.gov (United States)

    2011-03-01

    Charge Controller is also a DC- to-DC power (boost) converter with MPPT function and was used in the previous thesis [3]. Figure 51. GV26-4 solar...NUMBER OF PAGES 197 14. SUBJECT TERMS Thin-Film Photovoltaics , CIGS, UAV Systems, Solar Array, Maximum Power Point Tracker ( MPPT ), Energy Storage...to a suitable level for charging the battery. The charging process is then optimized by using the MPPT as a power -conditioning unit that

  3. Morality and ethics in high technology

    International Nuclear Information System (INIS)

    Schroeter, K.U.

    2003-01-01

    The ethical debate about what is feasible culminates, for one side, in the indignant moral question whether man is allowed to do all he is able to do and, for the other side, in the very obligation to keep redefining the limits of creation, and to act accordingly. Consequently, the Young Generation, at their meeting in Gronau, Westphalia (about which we reported), discussed about ''High Technology - Responsible on Ethical and Moral Grounds?'' The paper presented to the participants by pastor Kai Uwe Schroeter reflects this dichotomy, but also takes a clear position in favor of the expansion of nuclear power. This issue of atw contains a revised version of the paper. It is published in the hope that it will furnish arguments for the philosophical and ethical debates about high technology. (orig.) [de

  4. Comparative analysis of the application of different Low Power Wide Area Network technologies in power grid

    Science.gov (United States)

    Wang, Hao; Sui, Hong; Liao, Xing; Li, Junhao

    2018-03-01

    Low Power Wide Area Network (LPWAN) technologies developed rapidly in recent years, but the application principle of different LPWAN technologies in power grid is still not clear. This paper gives a comparative analysis of two mainstream LPWAN technologies including NB-IoT and LoRa, and gives an application suggestion of these two LPWAN technologies, which can guide the planning and construction of LPWAN in power grid.

  5. High power ubitron-klystron

    International Nuclear Information System (INIS)

    Balkcum, A.J.; McDermott, D.B.; Luhmann, N.C. Jr.

    1997-01-01

    A coaxial ubitron is being considered as the rf driver for the Next Linear Collider (NLC). Prior simulation of a traveling-wave ubitron using a self-consistent code found that 200 MW of power and 53 dB of gain could be achieved with 37% efficiency. In a ubiron-klystron, a series of cavities are used to obtain an even tighter electron bunch for higher efficiency. A small-signal theory of the ubitron-klystron shows that gain scales with the square of the cavity separation distance. A linear stability theory has also been developed. Verification of the stability theory has been achieved using the 2-12-D PIC code, MAGIC, and the particle-tracing code. Saturation characteristics of the amplifier will be presented using both MAGIC and a simpler self-consistent slow-timescale code currently under development. The ubitron can also operate as a compact, highly efficient oscillator. Cavities only two wiggler periods in length have yielded up to 40% rf conversion efficiency in simulation. An initial oscillator design for directed energy applications will also be presented

  6. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (8) numerical simulation using SOROBAN-grid CIP method

    International Nuclear Information System (INIS)

    Yasutaka Sakurai; Takashi Yabe; Tomomasa Ohkubo; Yoichi Ogata; Michitsugu Mori

    2005-01-01

    Generally, there are two coordinate systems in computation of fluid dynamics: curvilinear coordinate or Cartesian coordinate. The former is suitable for describing complex figure, but it cannot get high accuracy. On the other hand, the latter can easily increase the accuracy, but it needs a large number of grids to describe complex figure. In this paper, we propose a new grid generating method, the Soroban grid, which has large capability for treating complex figure and does not lose the accuracy. Coupling this grid generating method and the CIP method, we can get flexibility to describe complex figure without loosing (3rd order) accuracy. Since the Soroban grid is unstructured grid, we can not use the staggered grid and had better use the co-location grid. Although the fluid computation in the co-location grid is usually unstable, we succeeded in calculating the multi-phase flow that has large density difference applying the C-CUP method to this grid system. In this paper, we shall introduce this grid generating method and apply these methods to simulate the steam injector of power plant. (authors)

  7. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  8. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  9. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  10. Export controls on high technology

    Energy Technology Data Exchange (ETDEWEB)

    Frank, N.K.

    1987-01-01

    A overview of the Export Administration Act of 1979 and subsequent regulations and amendments focuses on how licensing requirements and restrictions against boycott affect high technology exports. The purpose of these controls is to limit the export of technology with possible military applications, as well as to advance US foreign policy and protect the economy without imposing too great a restriction on the principles of free trade. Thus, the act encompasses political, economic, and security goals. Problems of predictability arise when embargoes or other controls are imposed for political or foreign policy reasons without regard to economic impacts. Amendments have attempted to streamline the exporting process, particularly in the area of computer and software licensing.

  11. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  12. High-gradient electron accelerator powered by a relativisitic klystron

    International Nuclear Information System (INIS)

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  13. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  14. ACIGA's high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  15. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - Demonstrative research on photovoltaic power generation system (Study on grid interconnection technique for dispersed photovoltaic systems under high-density connection); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system no jissho kenkyu (komitsudo renkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Interconnecting photovoltaic systems with power transmission systems under high density affects power quality, protection, maintenance and stability of the transmission lines. As measures to deal with this issue, investigations are being made on (1) elucidation of effects imposed on transmission lines, (2) establishment of countermeasure technologies, and (3) technological options leading to higher value addition. In Item (1), with an objective to identify the current status, evaluations were given on prevention of independent operation of commercially available inverters, and on their stabilizing performance against system fluctuation. The evaluations were performed by conducting a test for multiple unit operation in parallel and a single unit performance test. The test result indicated that, while the prevention performance can be satisfied, maloperation has occurred frequently due to the system fluctuation, and that voltage rise due to the inverter was suppressed effectively by using the simultaneous control of active and reactive powers. In Item (2), a demonstration test was launched on an inverter incorporating a new prevention device. The effective means to suppress voltage rise in the high-voltage power transmission lines is the discrete voltage suppression by controlling reactive power. In addition, a proposal was made on a new voltage and phase detection method that can be used at short circuit of the high-voltage transmission lines. In Item (3), having a photovoltaic system contain a small size batteries was found effective in suppressing the power generation output variation, and in smoothing the loads. (NEDO)

  16. Simplified High-Power Inverter

    Science.gov (United States)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  17. Industrial Applications of Pulsed Power Technology

    Science.gov (United States)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  18. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  19. On the Ongoing Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...... in radio frequency transmission equipment helps to overcome those. However those circuits were not designed to meet the same requirements as power converters. This paper summarizes the contributions in recent years in application of very high frequency (VHF) technologies in power electronics, describes...

  20. Progress of innovation of electrical power technology in 2013

    International Nuclear Information System (INIS)

    Nakaiwa, Masaru; Inumaru, Jun; Hamada, Takashi

    2014-01-01

    The following is the description of technical innovations at five companies including Central Research Institute of Electric Power Industry, Japan Atomic Energy Agency, and Japan Nuclear Fuel Ltd. Central Research Institute of Electric Power Industry presented their efforts in (1) advancement of the safety of light water reactors (2) clarification of radiological risks and improvement of radiation protection matters (3) support of backend projects and (4) countermeasures against natural disasters for electric power distribution facilities aiming at the establishment of the optimum risk management. Japan Atomic Energy Agency presented the research and development related to (1) measures taken for the Fukushima Daiichi nuclear power plant accident (2) practical use of FBR cycle (3) disposal technology of high-level radioactive wastes (4) technical system to extract fusion energy (5) particle beam technology (6) research based on the formation of the foundation and social needs of atomic study (7) nuclear hydrogen/heat application (8) atomic safety (9) backend measures; and (10) nuclear proliferation. Japan Nuclear Fuel Ltd. presented the record of 5 and half years from the start to the completion of vitrification test. In the course of the development, the active test started from March 2003 was suspended due to the Great East Japan Earthquake on March 11th, 2011 but resumed thereafter and completed. (S.Y.)

  1. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  2. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of technology for effective utilization of power produced by polymer electrolyte fuel cell systems); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Kotai kobunshigata nenryo denchi no shutsuryoku yuko riyo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of technologies for effective utilization of power produced by polymer electrolyte fuel cell (PEFC) systems and waste heat, to spread cogeneration systems incorporating PEFC systems for residential purposes. Described herein are the FY 2000 results. The program for high-efficiency peripherals for residential PFEC systems attempts use of GaN-FET as the semiconductor device of wide band gap and high breakdown voltage to realize conversion efficiency over 90% by improving inverter efficiency. Two types of the prototype heat recovery systems are developed for the PEFC, one incorporating a latent heat cooling system and the other a water cooling system, to improve heat recovery efficiency and increase heat recovery temperature. The program for technology to fit PEFC output to energy demand develops hot water supply systems provided with a hot water storage function for stable supply of hot water irrespective of the heat recovery conditions, and also with a back-up function with burners. The program also develops the PEFC system of fine load following characteristics, for which pure hydrogen is used as the fuel to allow the system to instantaneously follow fluctuating loads. The program for high-efficiency partial load operation technology studies a 1kW-class residential PEFC cogeneration system incorporating a power storage device for high-efficiency operation at partial loads, where the former operates in a high output mode while the latter absorbs fluctuating loads. (NEDO)

  3. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.2 volume. Pilot plant verification test; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (pilot plant jissho shiken). 1997 nendo hokokusho (daini bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As to a high efficiency waste power generation system using general waste as fuel, the details of the following were described: design/construction management and operational study of pilot plant, design/manufacture/construction of pilot plant, and study of an optimal total system. Concerning the construction management and operational study, the paper described the application for governmental/official inspection procedures and taking inspection, process management of pilot plant, site patrol, safety management, management of trial run of pilot plant, drawing-up of a verification test plan and test run, etc. Relating to the design/manufacture/construction of pilot plant, an outline of the pilot plant was described. The paper also stated points to be considered in design of furnace structure and boiler structure, points to be considered of the verification test, etc. As to the study of an optimal total system, the following were described: survey of waste gasification/slagging power generation technology, basic study on RDF production process, survey of trends of waste power generation technology in the U.S., etc. 52 refs., 149 figs., 121 tabs.

  4. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  5. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  6. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  7. High power CW linac in PNC

    International Nuclear Information System (INIS)

    Toyama, S.; Wang, Y.L.; Emoto, T.

    1994-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is developing a high power electron linac for various applications. The electron beam is accelerated in CW operation to get maximum beam current of 100 mA and energy of 10 MeV. Crucial components such as a high power L-band klystron and a high power traveling wave resonant ring (TWRR) accelerator guides were designed and manufactured and their performance were examined. These design and results from the recent high power RF tests were described in this paper. (author)

  8. Power system restructuring and deregulation: trading, performance and information technology

    International Nuclear Information System (INIS)

    Loi Lei Lai

    2001-09-01

    Representatives from several countries have contributed to a book addressing the deregulation and restructuring of the electric power industry. Articles covered include guidance on asset management, transmission balancing and meter management systems, tools for studying competitive power markets, environmental impacts, costs and benefits, and the new strategies and technology available for power generation, transmission and distribution. The book should be of interest to power systems engineers, system operators, managers, planners and policy makers in the electric power business

  9. Student Technology Use for Powerful Learning

    Science.gov (United States)

    Heidenrich, Carol

    2013-01-01

    Technology has evolved as a valuable information and communication tool. In our knowledge and information society, students with information and communication technology (ICT) competence will be prepared for success. Teacher pedagogy and student learning have to change to fully integrate technology into the curriculum. Students may not have…

  10. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  11. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  12. FY 1992 report on the results of the R and D of advanced function creation processing technology. Development of technology to create high efficiency power generation use members; 1992 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper described the FY 1992 results of the technology to create high efficiency power generation use members. To enhance characteristics of super-high property permanent magnet up to the theoretical level, the development was proposed of a technology to control the size/configuration of micro crystal phase in association with the crystallization of alloy amorphous. For the development of environmental purification use high functional catalysts, a refining method using laser excitation was studied. The observation was also made of molecular adsorption on the Pd thin film catalyst prepared by RF sputtering. The multi-source excitation plasma CVD was proposed which was film-formed by exciting plasma as raw gas independently for each component and supplying it to the substrate of which the periphery was separately controlled. The paper also described the development of technology for ion/light combined assist ultra-thin film production for development of gas turbine combustion sensor. The study was also made of the synthesis of higher-order structure controlled high functional organic materials using the electrode interface combined field which is composed of electrode reaction/high grade photon/extreme magnetic field. In the development of the higher-order structure control technology using the photon combined reaction field, studies were made of the photo reaction film formation technology, the basic film formation technology in the combined reaction field, and the molecular orientation technology. (NEDO)

  13. FY 1992 report on the results of the R and D of advanced function creation processing technology. Development of technology to create high efficiency power generation use members; 1992 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper described the FY 1992 results of the technology to create high efficiency power generation use members. To enhance characteristics of super-high property permanent magnet up to the theoretical level, the development was proposed of a technology to control the size/configuration of micro crystal phase in association with the crystallization of alloy amorphous. For the development of environmental purification use high functional catalysts, a refining method using laser excitation was studied. The observation was also made of molecular adsorption on the Pd thin film catalyst prepared by RF sputtering. The multi-source excitation plasma CVD was proposed which was film-formed by exciting plasma as raw gas independently for each component and supplying it to the substrate of which the periphery was separately controlled. The paper also described the development of technology for ion/light combined assist ultra-thin film production for development of gas turbine combustion sensor. The study was also made of the synthesis of higher-order structure controlled high functional organic materials using the electrode interface combined field which is composed of electrode reaction/high grade photon/extreme magnetic field. In the development of the higher-order structure control technology using the photon combined reaction field, studies were made of the photo reaction film formation technology, the basic film formation technology in the combined reaction field, and the molecular orientation technology. (NEDO)

  14. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  15. Overview of NASA Power Technologies for Space and Aero Applications

    Science.gov (United States)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  16. Capacity choice, technology mix and market power

    International Nuclear Information System (INIS)

    Meunier, Guy

    2010-01-01

    This paper investigates strategic capacity choices in electricity markets comprised of heterogeneous firms. Long term strategic investments are analyzed assuming that the wholesale market is competitive. There are two technologies available to produce electricity; both are efficient and used at a first best optimum. When not all firms can invest in both technologies, there can be over investment in either of these technologies. It is shown that if the number of firms that can invest in a particular technology is limited, the development of competition solely using the other technology can decrease welfare. (author)

  17. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  18. Technological and social change and the future of nuclear power

    International Nuclear Information System (INIS)

    Douglas, H.

    1988-01-01

    Over the past decade and a half, the nuclear power industry has experienced growing public opposition. Underlying the nuclear industry's problems is a very fundamental anti-technology outlook by the public - visibly apparent in the environmental movement - that not only affects nuclear power but business in general. Is this anti-technology attitude of the public and media writers a passing phase, or will it wane and yield to a positive attitude toward technology? This paper discusses historical, sociological and technological change in the Western industrial world, and how changing attitudes might affect nuclear power in the future. (author)

  19. European coal technology applied by the Danish power companies

    Energy Technology Data Exchange (ETDEWEB)

    Frydenberg, B. [Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-31

    The development of coal-fired power plants has shown remarkable improvements with regard to efficiency and cleaner technology, and as coal remains the most important fuel for electric power production, it is important to make use of this technological development to reduce CO{sub 2} emissions. Of the three available technologies: Integrated Coal Gasification and Combined Cycle, Fluid Bed Combustion and Pulverised Coal with Ultra Supercritical Steam Data, the technology chosen by I/S ELSAM is the PC-USC with power production efficiencies growing from 45% to 50%. 5 figs., 1 tab.

  20. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2006-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can disrupt at a distance numerous electrical systems and high technology microcircuits that are especially sensitive to power surges...

  1. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    National Research Council Canada - National Science Library

    Wilson, Clay

    2008-01-01

    Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can overload or disrupt at a distance numerous electrical systems and high technology microcircuits, which are especially sensitive to power surges...

  2. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  3. Nuclear power. A technology for the future?

    International Nuclear Information System (INIS)

    Neles, Julia Mareike; Pistner, Christoph

    2012-01-01

    What exactly is nuclear power? How do nuclear power plants function? What do they contribute to power supply, and at what risk? The authors of this compact and clearly written book provide answers to these and more questions. They present the physical and technical fundamentals as well as safety, nuclear aste management and non-proliferation. The book enables its readers to understand the political consequences of the Fukushima reactor accident.

  4. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  5. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  6. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  8. Cost-estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R.

    1993-01-01

    Various advanced power plant concepts are currently under development. These include several advanced light water reactors as well as the modular high-temperature gas-cooled reactor and the advanced liquid-metal reactor. One measure-of the attractiveness of a new concept is cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electric generation. In order to make reasonable comparative assessments of competing technologies, consistent ground rules and assumptions must be applied when developing cost estimates. This paper describes the cost-estimate guidelines developed by Oak Ridge National Laboratory for the U.S. Department of Energy (DOE) to be used in developing cost estimates for the advanced nuclear reactors and how these guidelines relate to the DOE cost verification process

  9. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  10. Integrated Power and Attitude Control System (IPACS) technology developments

    Science.gov (United States)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  11. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  12. SOI technology for power management in automotive and industrial applications

    Science.gov (United States)

    Stork, Johannes M. C.; Hosey, George P.

    2017-02-01

    Semiconductor on Insulator (SOI) technology offers an assortment of opportunities for chip manufacturers in the Power Management market. Recent advances in the automotive and industrial markets, along with emerging features, the increasing use of sensors, and the ever-expanding "Internet of Things" (IoT) are providing for continued growth in these markets while also driving more complex solutions. The potential benefits of SOI include the ability to place both high-voltage and low-voltage devices on a single chip, saving space and cost, simplifying designs and models, and improving performance, thereby cutting development costs and improving time to market. SOI also offers novel new approaches to long-standing technologies.

  13. High technology and civil rights

    International Nuclear Information System (INIS)

    Lerche, P.

    1982-01-01

    Court decision reflect the widely felt lack of clarity about the present legal situation in the field of high technology. This confusion is also due to the fact that this legal situation is surrounded by civil rights constellations, which have more and more eroded the contours of our legal system in recent years: Today, civil rights are no longer specific, well-definable bulwarks for the citizen, but are more and more frequently interpreted by the supreme courts as sources of procedural requirements with more or less certain often vague consequences. This shifting of the accent in civil rights towards procedural matters is due to an innate logical necessity, however: The same civil right considered in the same situation, e.g., in planning for high technology, may give rise to very different, even contradictory individual claims. Therefore, one of the main modern objectives of civil rights becoming more and more apparent is the need to reconcile conflicting positions, which makes civil rights a driving force in balancing interests in the easiest possible way. Yet, one of the main deficiencies in this rapidly growing procedural approach is the one-sidedness often to be found as a result of isolated, punctual actions. This misses the objective of achieving adequate harmonization. As examples of such one-sided, isolated civil rights approaches, legal opinions are cited on the so-called public participation (possibility to object for those concerned) in the licensing procedures under the German Atomic Energy Act and for protection against environmental impacts. Quity rightly, this participation of the public is interpreted as an advance protection of civil rights. However, its consequences quite often are exaggerated. (orig.) [de

  14. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  15. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  16. 700 C power plant technology. Status and challenge

    Energy Technology Data Exchange (ETDEWEB)

    Tschaffon, Helmut [E.ON Energie AG, Muenchen (Germany)

    2010-07-01

    Coal will remain an indispensable major source of energy for power generation in the world in the coming decades, because there are resources for hundreds of years. Coal fired power plants can be operated very flexible which gets increasing importance due to the stochastic input from regenerative energies like wind and solar energy. Sustainable technologies for cool-fired power plants have to be developed to optimise environmental protection and to save valuable resources and reduce CO{sub 2}-emissions. Future coal fired steam power plants aim an elevated steam temperature of about 700 C to reach a net efficiency of about 50%. This paper will give an overview over the status of the development of the 700 C technology and will highlight the challenges to be overcome before their commercial use. The European way to a 700 C Power plant started with the project AD700 in the year 1998. In this project the basic design of a 400 MW demo plant was done and some material tests and component qualifications for nickel-based alloys and new austenitic steels were started and terminated. AD700 delivered the basis of the design of the Component Test Facility COMTES700 (RFCS funded project with European manufacturers and utilities). COMTES 700 was operated between 2005 and 2009. It was integrated into the E.ON power plant Scholven in Germany to test mainly nickel based materials and power plant components. In the project NRWPP700 (2006-2010, funded by NRW and financed by European utilities) the detail design of the steam generator, piping system and turbine of a 500 MW power plant was done. In 7 material projects the qualification of components and materials was supported. At the same time of lot of national and international R and D projects (e.g. MARCKO and COORETEC) were performed. Due to the high amount of these projects they cannot be mentioned here in a detailed way. In 2007 the E.ON project 50plus was started. The aim was to plan and build a 700 C demo plant in

  17. High Power Flex-Propellant Arcjet Performance

    Science.gov (United States)

    Litchford, Ron J.

    2011-01-01

    implied nearly frozen flow in the nozzle and yielded performance ranges of 800-1100 sec for hydrogen and 400-600 sec for ammonia. Inferred thrust-to-power ratios were in the range of 30-10 lbf/MWe for hydrogen and 60-20 lbf/MWe for ammonia. Successful completion of this test series represents a fundamental milestone in the progression of high power arcjet technology, and it is hoped that the results may serve as a reliable touchstone for the future development of MW-class regeneratively-cooled flex-propellant plasma rockets.

  18. Impacts of satellite power system technology

    Energy Technology Data Exchange (ETDEWEB)

    Moses, H.

    1979-01-01

    In the Satellite Power System (SPS) considered here, energy from the sun is collected by an array, 5 km*10.5 km in area, located in geostationary orbit. The array contains either silicon or gallium aluminum arsenide photovoltaic cells whose output is transformed to 2.45 GHz microwaves. These are beamed to earth to a 10 km*15 km rectifying antenna (rectenna) which rectifies the microwaves and interfaces the power with utility power lines. This paper deals with an assessment of both the environmental and societal aspects of an SPS. Under environmental aspects, attention is devoted to the health and ecological effects of both microwave radiation and other effects. 15 refs.

  19. Technological implications of fusion power: requirements and status

    International Nuclear Information System (INIS)

    Steiner, D.

    1978-01-01

    The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations

  20. High-power CO laser and its potential applications

    International Nuclear Information System (INIS)

    Sato, Shunichi; Takahashi, Kunimitsu; Shimamoto, Kojiro; Takashima, Yoichi; Matsuda, Keiichi; Kuribayashi, Shizuma; Noda, Osamu; Imatake, Shigenori; Kondo, Motoe.

    1995-01-01

    The R and D program for the development of a high-power CO laser and its application technologies is described. Based on a self-sustained discharge excitation scheme, the available laser output has been successfully scaled to over 20 kW. The CO laser cutting experiments for thick metals have been performed in association with the decommissioning technologies development. Other potential applications, which include those based on photo chemical process, are reviewed. Recently demonstrated high-power tunable operation and room-temperature operation are also reported. (author)

  1. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  2. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  3. ORNL superconducting technology program for electric power systems

    Science.gov (United States)

    Hawsey, R. A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  4. History of electric power technological innovation in 2017

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Okabe, Kazuhiko; Ichimura, Yasunori

    2017-01-01

    This is an overview of the electric power technology innovation of 12 electric power companies in 2016. Among them, this paper outlines the technological contents related to nuclear power of three major companies. TEPCO group applied a sealant from the outside to the back-up seal of reactor containment vessel that had deteriorated. It developed a good sealing system by combining with an improved sealant, and confirmed the effect at an experimental level. Regarding environmental restoration in Fukushima, TEPCO developed a personal dosimetry technology, environmental monitoring technology, and a technology to simulate radiation reduction amount after decontamination. Chubu Electric Power Company conducted researches on the applicability of the start-up range neutron monitor count rate prediction method related to fuel loading after a long-term shut-down of nuclear power generation, basic examination for practical use of laser decontamination, and possibility of tsunami prediction using satellite positioning information. With regard to the decommissioning measures of nuclear power plants, Japan Nuclear Power Electric Generation Co., Ltd. conducted studies on the decommissioning work of the Tokai Power Station, the safe dismantling method of the Tsuruga Power Station Unit 1 as decommissioning measures and fuel management, and the disposal method of radioactive contaminants. In the development of future reactor, this company conducted research on the development of fast breeder reactor system, etc. (A.O.)

  5. Quality management in nuclear power plant technology

    International Nuclear Information System (INIS)

    Brosche, D.; Ehrnsperger, K.

    2001-01-01

    Quality assurance and therefore quality management are essential preconditions for the safety and availability of nuclear power plants. On the basis of the rules of the Kerntechnischer Ausschuss KTA 1401 the quality management in the former Bayernwerk AG and the Bayernwerk Kernenergie GmbH as well as in the Arbeitsgemeinschaft Auftragnehmerbeurteilung within the VGB Technical Association of Large Power Plant Operators is described. (orig.) [de

  6. Construction Technologies for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Statute Article III, A.6, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. There are three distinct significant phases in a nuclear power plant (NPP) project after the signing of a contract; engineering, procurement, and construction and commissioning. Experience gained over the last forty years has shown that the construction phase is one of the most critical phases for the success of a project. Success is defined as completing the project with the specified quality, and within budget and schedule. The key to a successful construction project is to have an established programme that integrates the critical attributes into the overall project. Some of

  7. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the high-performance maintenance technologies for power generation plants; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies, as part of the R and D of the high-performance maintenance technologies for power generation plants. Production of the fine, functional circuits is studied for microscopic processing technology. The light source with variable wavelength-in a range of 2 to 5{mu}m for the solid-state laser, to measure concentration and composition of gases by the infrared absorption laser. The photon wave front compensator is being developed, to prevent disturbance-induced sensitivity deterioration for measurement of high temperature by the laser-aided ultrasonic instrumentation. The prototype of superconducting X-ray detector is developed, for high-sensitivity detection of impurities by measuring fluorescent X-ray. Development of the 10kW-class solid-state, rod-type laser is started for high-speed, high-precision laser-aided welding and cutting, and output of 11.3kW and electrical/optical conversion efficiency of 21.5% are achieved. An electrical/optical conversion efficiency of 17% is also achieved with the slab-type laser. An all-solid-state laser is being developed. It will produce high-energy pulses and high-quality beams capable of generating the beams which are converged very finely on the work with an average output power of 1KW (fundamental wave) and electrical/optical conversion efficiency of at least 20%. (NEDO)

  8. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  9. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  10. VG-400 atomic power and technological installation. Possible core design

    International Nuclear Information System (INIS)

    Komarov, E.V.; Laptev, F.V.; Lyubivyj, A.G.; Mitenkov, F.M.; Samojlov, O.B.; Sukhachevskij, Yu.B.

    1979-01-01

    The main characteristics, basic circuit and configuration of equipment of the VG-400 atomic power and technological installation are considered. This installation is intended for supplying with highly-potential heat of thermal electrochemical hydrogen production and for power generation in the steam-turbine cycle. The main installation characteristics: HTGR reactor heat power 1100 MW, electric power 300 MW, helium coolant pressure 50 atm, output temperature 950 deg C, steam pressure in the second contour 175 atm, temperature 535 deg C, core diameter and height 6.4 m and 4 m, respectively, number of spherical fuel elements 8.5x10 5 . The installation can ensure hydrogen production of 10 5 Nxm 3 /h. For the VG-400 reactor block the integral arrangement of the first circuit equipment in the reinforced concrete is chosen. Two versions of the reactor core with prismatic and spherical fuel elements are compared. It is shown that taking into account great potentialities of the spherical zone in a case of further temperature increase and its positive qualities with respect to construction and processing of fuel elements and graphite blocks, the utilization of simplier units and mechanisms in the overloading system and in the process of profiling of energy distribution the choice of the spherical configuration for the VG-400 pilot plant installation seems to be valid

  11. Economy and technology roles played by nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    1985-01-01

    On the basis of the survey analysis made by Atomic Energy Commission on the roles in economy and technology played in the nuclear energy development and utilization, the following are described: economic roles in nuclear energy development and utilization (the present state of nuclear power industry in Japan and the economy effects); technological roles in the same (the present state of nuclear power technology in Japan and the technology effects). The economy effects in other areas are on higher level than in other industries etc. Then, in the technology effects, system technology and quality control in the nuclear power possess significant effects in other areas. While the nuclear energy development and utilization is important in Japan's energy security, it is contributing largely to the economy and society in Japan. (Mori, K.)

  12. Fiscal 1999 achievement report. Important regional technology research and development--Advanced machining technology for high-melting point metal based members (Development of creating technology for high-efficiency power generating members); 1999 nendo koyuten kinzokukei buzai no kodo kako gijutsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted concerning technologies of creating high-melting point metal based members for the purpose of enabling gas turbines to withstand still higher temperatures. In the research which deals mainly with Nb, solid solution state is enhanced, high-temperature strength and tenacity are improved by enhanced composition and diffusion, and surfaces are modified in terms of resistance to oxidation and corrosion by the technologies of multi-layer coating and slope-structured coating. In the designing and evaluation of high-strength Nb based solid solution alloys, alloys excellent in high-temperature strength and room-temperature tenacity are obtained, which contain 5-30at% Mo and 5-15at% W. In the designing and evaluation of Nb based composite materials, it is found that it strengthens the composition of Nb based enhanced solid solution alloys to add Si to Nb alloys for the precipitation of silicides in the Nb based solid solution alloy matrices. In the study of the creation technology for and evaluation of Nb based ultrahigh-temperature members, experiments are conducted with attention focused on the discharge plasma sintering method. In the development of technologies for providing oxidation resisting capability, studies are conducted about ion implantation and ion plating. (NEDO)

  13. Progress of innovation of electrical power technology in FY2013

    International Nuclear Information System (INIS)

    Mayumi, Akihiko; Tanaka, Masanori; Yamaguchi, Hiroshi

    2014-01-01

    The following is the description of technical innovations at 12 companies including Tokyo Electric Power Company, Chubu Electric Power Company, and Japan Atomic Power Company. Tokyo Electric Power Company presented (1) the developments of a wet-type air decontaminating apparatus for inside/outside of power plant, (2) a robot to be used for field investigation at the Fukushima Daiichi nuclear power plant, (3) a visualization technology using laser for detection, and (4) removal of debris at the power plant. Chubu Electric Power Company presented application of a flap gate to the opening on exterior wall of building as a countermeasure against tsunami at the Hamaoka nuclear power plant. Hokuriku Electric Power Company presented a nuclear reactor operation training simulator for full-scope operation training for the Shika nuclear power station. Chugoku Electric Power Company presented their efforts in implementing a predictive monitoring system at the Shimane Nuclear Power Station. Shikoku Electric Power Company presented the installation of a weir with a flap gate to the interior of seawater pit as a countermeasure against tsunami. Japan Atomic Power Company presented an impact assessment method of fallout during transportation of materials caused by nuclear reactor accident, design and development of a square-type shielding container for radioactive wastes, a strength test on concrete materials for the safety design of Tsuruga Power Station Units 3 and 4, decommissioning of nuclear power plant, and research and development of the fast breeder reactor. (S.Y.)

  14. Thoughts on Documentation of Atomic Power Technology

    International Nuclear Information System (INIS)

    Oh, Jeong Hoon; Lee, Hee Won; Song, Ki Chan

    2012-01-01

    Korean Atomic Energy Research Institute (KAERI) has accumulated a number of technology development and research outcomes, including its representative achievements such as atomic energy technology independence and the first export of atomic energy system, since it was established in 1959. With its long history of over 50 years, KAERI has produced a large amount of information and explicit knowledge such as experiment data, database, design data, report, instructions, and operation data at each stage of its research and development process as it has performed various researches since its establishment. Also, a lot of tacit knowledge has been produced both knowingly and not unknowingly based on the experience of researchers who have participated in many projects. However, in the research environment in Korea where they focus overly on the output, tacit knowledge has not been managed properly compared to explicit knowledge. This tacit knowledge is as an important asset as explicit knowledge for an effective research and development. Moreover, as the first generation of atomic energy independence and research manpower retire, their accumulated experience and knowledge are in danger of disappearing. Therefore, in this study, we sought how to take a whole view and to document atomic energy technology researched and developed by KAERI, from the background to achievement of each field of the technology. Comprehensive and systematic documentation of atomic energy technology will establish a comprehensive management system of national atomic energy technology record to make a foundation of technical advancement and development of atomic energy technology. Also, it is expected to be used as an important knowledge and information resource of atomic energy knowledge management system

  15. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  16. Strategy of nuclear power technology: learn from Korea experience

    International Nuclear Information System (INIS)

    Sriyana; Nurlaila

    2003-01-01

    Technology is one of the economic and social elements which play an important role in modernization process. When modernity ideas come into society, technology will become fundamental prerequisite for the shake of its form of modem economic social system of the society. Therefore, various effort modernize society involve program of transfer technology in main agenda. Purpose of this study is to choose a process of technology transfer and according to be able to reach for technological ability of nuclear power self-reliance. This research is conducted by study of existing literature, namely learn from experience of Korea which have succeeded to develop nuclear energy technology with self-reliance. While this research scope is to describe the process of technology transfer and according to be able to reach for technological ability of nuclear energy self-reliance. This study conclude that program of technology transfer have to start since nuclear power development pre-project period, project construction of NPP period and also in operation period. To reach for technological ability of self-reliance require to be done by long-term program and require to be build by several units which last for a transfer of technology. Government Commitment to have important role also have to be strong to push the happening of technology transfer. Institutions in concerned should have to be clear and hold responsible according to its interest. National industries as executor of technology transfer require to be given by larger ones opportunity in course of transfer this technology. (author)

  17. Transferring nuclear power technology to foster Chinese self-reliance

    International Nuclear Information System (INIS)

    Levi, J-D.

    1998-01-01

    Being convinced that nuclear energy will play an important role in meeting its huge future energy demands, China considers that the development of a very strong national nuclear industry capable of covering all aspects of a major national power program is of paramount importance.In this context, China has invited its foreign partners to propose contributions to the studies for this development, in view of establishing a suitable cooperation program with the entire Chinese nuclear power industry, including design institutes, equipment manufacturers, construction companies and plant operators.One of the main objectives defined by the Chinese authorities for the further development of their nuclear industry with some international cooperation is the achievement of a very high level of self-reliance by Chinese industry in all of the following areas: project management, design and engineering, construction, equipment design and manufacturing,operation and maintenance. The major key to reaching this target of overall and long term self reliance lies in the implementation of thorough design know how transfer towards all partners of the Chinese nuclear industry, who shall acquire the necessary capabilities so as to completely master nuclear engineering. While this policy might entail fairly high front end investments by the technology receivers, in terms of industrial infrastructure nad engineering capabilities it is expected to pay off over the long term with the development of a substantial nuclear power plant construction program.(DM)

  18. Civil engineering in power plant technology

    International Nuclear Information System (INIS)

    Krolewski, H.

    1982-01-01

    Guaranteeing our power supplies requires increasingly large, bold or novel construction works (for example, 200 m chimney with installation of stays over a wide area for a wind power plant in Spain; up to 400 m structure height on floating drill rigs). The layman admires the impressiveness with which these demand great ability and responsibility on the part of the civil engineer. The inland power station builder has to concentrate on few spectacular methods of construction or dimensions. The success of the total undertaking is however no less attributable to structural prerequisites. Civil engineering problems have to be displaced by means of static and dynamic problems in order to meet licensing requirements (planning of construction supervision, fire prevention, structure of supply and disposal). (orig.) [de

  19. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  20. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  1. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  2. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  3. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  4. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  5. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  6. External Costs Related to Power Production Technologies

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1997-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment...

  7. SIW based multilayer transition and power divider in LTCC technology

    KAUST Repository

    Abuzaid, Hattan; Doghri, Ali; Wu, Ke; Shamim, Atif

    2013-01-01

    A multilayer transition and balanced power divider are presented for millimeter-wave system-on-package (SoP). These two components operate at Ka-band and exploit the substrate integrate waveguide (SIW) technology with its shielding characteristics

  8. Study of LANs access technologies in wind power system

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the energy challenges in the world, new types of generation technologies, such as renewable energy based generators, attract great attention and are being quickly developed, which results in the dramatic developments and changes in modern power systems, the communication technologies play...... a increasingly important role in guaranteeing the power system’s stability, reliability, and security. In this paper the necessity of communication technologies employed in wind power system are introduced. According the International Standards Organization (ISO) reference 7-layered model, the communication...... power environment are explained and discussed. Furthermore the simulation of application of Ethernet in an offshore wind farm communication network by a software, OPNET, is elaborated. With the investigation of the communication technologies in this paper, the offshore wind farm SCADA system can...

  9. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  10. Harnessing the Power of Wind Technology

    Science.gov (United States)

    Dotson, Tawny M.

    2009-01-01

    "Where the wind comes sweepin' down the plain" is more than just a song lyric for Oklahoma's career and technical education community. It's the acknowledgement of an untapped natural resource that has the potential to translate into both energy independence for the country and jobs for the state. Statewide, technology center instructors…

  11. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  12. Powered by technology or powering technology?---Belief-based decision-making in nuclear power and synthetic fuel

    Science.gov (United States)

    Yang, Chi-Jen

    The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic fuel had both been top priorities on the U.S. national policy agenda during certain periods of time. Nuclear power was promoted and pursued persistently with great urgency for over two decades. In contrast, synthetic fuel policy suffered from boom-and-bust cycles. The juxtaposition of policy histories of nuclear power and synthetic fuel highlights many peculiarities in policymaking. The U.S. government forcefully and consistently endorsed the development of civilian nuclear power for two decades. It adopted policies to establish the competitiveness of civilian nuclear power far beyond what would have occurred under free-market conditions. Even though synthetic fuel was characterized by a similar level of economic potential and technical feasibility, the policy approach toward synthetic fuel was almost the opposite of nuclear power. Political support usually stopped when the development of synthetic fuel technology encountered economic difficulties. The contrast between the unfaltering faith in nuclear power and the indeterminate attitude toward synthetic fuel raises many important questions. I argue that these diverging paths of development can be explained by exploring the dominant government ideology of the time or "ideology of the state" as the sociology literature describes it. The price-determining approach was a result of government preoccupied with fighting the Cold War. The U.S. intentionally idealized and deified nuclear power to serve its Cold War psychological strategy. These psychological maneuverings attached important symbolic meaning to nuclear power. The society-wide enthusiasm and resulting bandwagon market are better understood by taking the role of symbolism in the political arena into account. On the other hand, a "welfare state" ideology that stood behind synthetic fuel was confused

  13. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  14. Nuclear power technology requirements for NASA exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1990-01-01

    This paper discusses how future exploration of the Moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems and space transportation systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radio-isotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options which present compelling concepts for significantly reducing mass, cost or travel time required for Earth-Mars transport

  15. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  16. New technologies and new skills for operating nuclear power plants

    International Nuclear Information System (INIS)

    Parnalland, D.; Provost, J.L.; Thibault, X.; Peyrouton, J.M.; Guillas, J.; Nougaret, Ch.; Leporho, O.; Bruyere, M.; Francillon, E.; Mourlevat, J.L.; Azarian, G.; Aubry, S.; Debes, M.; Guillet, J.L.; Kaplan, P.; Chaloin, B.; Goetter, J.J.; Duplat, F.; Barbaud, J.; Guieu, S.

    2004-01-01

    Large companies like EDF or Framatome-ANP have to face a big turnover of staff because a lot of employees are expected to retire by 2015. They have drawn special training policies in order to avoid the loss of practical knowledge particularly in the field of maintenance. Technological progress, bringing more flexibility and reactivity to the power demand, are constant challenges for nuclear industry. In this series of short articles major improvements are reviewed. A new cladding material: the M5 alloy (zirconium + niobium + oxygen) can undergo up to 78 GWj/tU burnup and presents high resistance to corrosion, low generation of hydrogen, good behaviour in power ramps and in accidental situations. Progress in instrumentation and the broad use of digit technology have also led to improvements in reactor monitoring systems. Studies concerning the hydrogen risks back the decision to implement in each reactor unit a hydrogen catalytic re-combiner whose role will be to reduce the concentration of gaseous hydrogen through the production of water. (A.C.)

  17. High power accelerator for environmental application

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.

    2011-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  18. High power accelerator for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R.; Kim, S. M. [EB-TECH Co., Ltd., Yuseong-gu Daejeon (Korea, Republic of)

    2011-07-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant environmental pollution, given the seriousness of the situation and future risk of crises, there is an urgent need to develop the efficient technologies including economical treatment methods. Therefore, cost-effective treatment of the stack gases, wastewater and sludge containing refractory pollutant with electron beam is actively studied in EB TECH Co. Electron beam treatment of such hazardous wastes is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from radiolysis. However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW~1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with catalytic system, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment. (author)

  19. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  20. CO{sub 2} control technologies: ALSTOM Power approach

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelopoulos, G.N.; Marion, J.L.; Nsakala, N.; Griffin, T.; Bill, A. [ALSTOM Power Boiler GmbH, Stuttgart (Germany)

    2002-07-01

    ALSTOM Power is one of the largest providers of power generation equipment, turnkey power plants and services in the world. The Company is aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuels used in power generation. ALSTOM Power R&D laboratories run various programs aiming to find options that reduce greenhouse gas emissions through: Increasing the efficiency of power generation equipment by implementing the most modern technologies. Application of technologies to remove and sequester carbon dioxide created in power plants in an environmentally and economically favorable manner. In this paper an overview of ALSTOM's on-going CO{sub 2} mitigation development activities will be presented. First, energy efficiency improvements for both new and existing fossil fuel power plants are reviewed for both coal and natural gas fuels. Second, the development of novel power generation processes, including those involving combustion in O{sub 2}/CO{sub 2} atmospheres using pure or enriched oxygen for the purpose of CO{sub 2} capture is discussed. And finally, novel chemical-looping CO{sub 2} capture process technologies are introduced. The major challenge in CO{sub 2} capture techniques is the efficient separation and capture of CO{sub 2}. Conclusions are drawn herein regarding the technical feasibility, the resultant efficiency penalties, and the CO{sub 2} mitigation costs for the various options under study and development within ALSTOM Power. 7 refs., 8 figs.

  1. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  2. The technological demands of nuclear power

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1978-01-01

    The economics and reliability of nuclear power are discussed. Public hazard considerations are related to the public acceptance of risks in other industries. A brief account is given of nuclear safety engineering, including safety against terrorist attacks and against diversion by persons within the plant. Short-term and long-term safety problems are distinguished, with particular reference to the disposal or storage of fission products. (U.K.)

  3. High temperature superconductors in satellite communications. High power microwave resonators and filters in planar HTSC technology. Final report; Hochtemperatur-Supraleiter-Systeme in der Satellitenkommunikation. Leistungstaugliche Hochfrequenz-Resonatoren und -Filter in planarer HTSL-Technologie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumfalk, A.; Kaiser, T.; Kolesov, S.; Chaloupka, H.; Piel, H.; Hein, M.

    1999-07-31

    Goal of the R and D project was the development of miniaturized HTSC resonators and filters. The work was divided into two main packages: ({alpha}) Systematic investigations of thin film samples, manufactured by partners of the common project as well as the development of characterization methods. ({beta}) Considerations of all relevant topics related to the design and manufacturing of high power filters with given specifications. The power handling capability of thin films is the most challenging issue in film production. A large variation in film quality could be observed that can cause problems in the realization of HTSC components. Employing the introduced concept of edge current free disk and ring resonators, high power HTSC filters can be realized with an improvement of 400 in power handling capability compared to other HTSC resonator types. During optimization of the unloaded quality factor, dielectric losses were identified to be the limiting factor. Two-pole, four-pole Chebyshev and four pole elliptic filters were developed and characterized and showed low loss and high power handling capability. (orig.) [German] Die Zielsetzung des F und E-Vorhabens war es, stark miniaturisierte leistungstaugliche Resonatoren und Filter auf der Basis von Hochtemperatur-supraleitenden Duennfilmen zu entwickeln. Die Arbeiten gliederten sich in zwei Teilbereiche: Einerseits wurden Methoden zur Hochfrequenz-Charakterisierung der zugrundeliegenden HTSL-Schichten entwickelt und systematische Untersuchungen an Proben schichtherstellender Verbundpartner durchgefuehrt. Andererseits wurden alle relevanten Teilprobleme zur Entwicklung hochleistungstauglicher Filter bearbeitet und entsprechende Problemloesungen entwickelt. Bei der Schichtherstellung stellte sich die geforderte Leistungstragfaehigkeit der HTSL-Schichten als besondere Herausforderung dar. Es wurde eine grosse Streuung der Filmqualitaet beobachtet, wodurch die Realisierung von Bauelementen erschwert werden kann. Die

  4. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  5. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  6. PERFORMANCE OF LEAKAGE POWER MINIMIZATION TECHNIQUE FOR CMOS VLSI TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    T. Tharaneeswaran

    2012-06-01

    Full Text Available Leakage power of CMOS VLSI Technology is a great concern. To reduce leakage power in CMOS circuits, a Leakage Power Minimiza-tion Technique (LPMT is implemented in this paper. Leakage cur-rents are monitored and compared. The Comparator kicks the charge pump to give body voltage (Vbody. Simulations of these circuits are done using TSMC 0.35µm technology with various operating temper-atures. Current steering Digital-to-Analog Converter (CSDAC is used as test core to validate the idea. The Test core (eg.8-bit CSDAC had power consumption of 347.63 mW. LPMT circuit alone consumes power of 6.3405 mW. This technique results in reduction of leakage power of 8-bit CSDAC by 5.51mW and increases the reliability of test core. Mentor Graphics ELDO and EZ-wave are used for simulations.

  7. High power density reactors based on direct cooled particle beds

    International Nuclear Information System (INIS)

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs

  8. Technology, power and the political economy of inequality

    DEFF Research Database (Denmark)

    Guy, Frederick; Skott, Peter

    2015-01-01

    Technology can affect the distribution of income directly via its influence on both the bargaining power of different parties and the marginal product of different factors of production. This paper focuses mainly on the first route. The role of power is transparent in the case of medieval choke...

  9. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...

  10. New developments of plasma science with pulsed power technology

    International Nuclear Information System (INIS)

    Kamada, Keiichi; Ozaki, Tetsuo

    2010-03-01

    In this proceedings, the papers presented at the symposium on “New developments of Plasma Science with Pulsed Power Technology” held at National Institute for Fusion Science on March 5-6, 2009 are collected. The papers reflect the present status and recent progress in the experimental and theoretical works on plasma science using pulsed power technology. (author)

  11. A Review on the Recent Development of Capacitive Wireless Power Transfer Technology

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-11-01

    Full Text Available Capacitive power transfer (CPT technology is an effective and important alternative to the conventional inductive power transfer (IPT. It utilizes high-frequency electric fields to transfer electric power, which has three distinguishing advantages: negligible eddy-current loss, relatively low cost and weight, and excellent misalignment performance. In recent years, the power level and efficiency of CPT systems has been significantly improved and has reached the power level suitable for electric vehicle charging applications. This paper reviews the latest developments in CPT technology, focusing on two key technologies: the compensation circuit topology and the capacitive coupler structure. The comparison with the IPT system and some critical issues in practical applications are also discussed. Based on these analyses, the future research direction can be developed and the applications of the CPT technology can be promoted.

  12. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    International Nuclear Information System (INIS)

    Koji Okamoto; Tadashi Narabayashi; Chikako Iwaki; Shuichi Ohmori; Michitsugu Mori

    2006-01-01

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  13. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  14. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  15. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  16. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  17. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  18. Technological Mediation and Power: Postphenomenology, Critical Theory, and Autonomist Marxism

    NARCIS (Netherlands)

    Bantwal Rao, M.; Jongerden, J.P.; Lemmens, P.C.; Ruivenkamp, G.T.P.

    2015-01-01

    This article focuses on the power of technological mediation from the point of view of autonomist Marxism (Hardt, Negri, Virno, Berardi, Lazzarrato). The first part of the article discusses the theories developed on technological mediation in postphenomenology (Ihde, Verbeek) and critical theory of

  19. The Indian nuclear power programme: Challenges in PHWR technology

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The long-term strategy for development of nuclear power generation in India is based on a three-stage programme, formulated by Dr. H.J. Bhabha. This strategy takes into account and is optimally suited for achieving self reliance in nuclear technology; India's technological infrastructure; limited resources of Natural Uranium and abundant availability of Thorium within the country

  20. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  1. Survey and studies on the roles of nuclear power development in economy and technology

    International Nuclear Information System (INIS)

    1985-01-01

    The development and utilization of nuclear energy is principally for security of energy supplies but, on the other hand, is contributing largely to the economic activities and technology developments in Japan. In order to clarify the economic and the technological roles played by the nuclear energy development and utilization, Atomic Energy Commission has made survey and studies on the present state of nuclear power industry and of nuclear power technology and the respective effects in other areas. The nuclear power industry, through its high growth, is now a substantial portion, and so has significant influence, in Japan's whole economic activities. Then, the nuclear power technology, started with its introduction, is now on the world's leading level. Its effects in other areas include quality control, system technology, etc. (Mori, K.)

  2. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  3. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  4. Application of Modern Technologies for Nuclear Power Plant Productivity Improvements

    International Nuclear Information System (INIS)

    Joseph, A. Naser

    2011-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain current high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, new requirements and commitments, unnecessary workloads and stress levels, and human errors. Current plant operations are labor-intensive due to the vast number of operational and support activities required by the commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the desire by many plants to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New productivity improvement capabilities with measurable economic benefits are needed so that a successful business case can be made for their use. Improved and new instrumentation and control, human-system interface, information and communications technologies used properly can address concerns about cost-effectively maintaining current performance levels and enable shifts to even higher performance levels. This can be accomplished through the use of new technology implementations to improve productivity, reduce costs of systemic inefficiencies and avoid unexpected costs. Many of the same type of productivity improvements for operating plants will be applicable for new plants. As new plants are being built, it is important to include these productivity improvements or at least provide the ability to implement them easily later

  5. 4TH International Topical Conference on High-Power Electron and Ion-Beam Research and Technology, held in Palaiseau, France, 29 June - 3 July 1981.

    Science.gov (United States)

    1981-10-09

    N. Camarcat (Centre d’Etudes de Valduc ) noted that the French were new in this field and presented the results of the experiments on LIB production...Beam Production on Low Impedance Generators" N. Camarcat et al. C.E.A.-D.A.M.-S.E.C.R. Centre d’Etudes de Valduc , France 7...Acceleration on the Thalie Generator" J. Cortella et al. C.E.A.-D.A.M.-S.E.C.R. Centre d’Etudes de Valduc , France ION PRODUCTION II "The Work on High

  6. Driver Circuit For High-Power MOSFET's

    Science.gov (United States)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  7. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  8. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  9. Planning a revolution in nuclear power technology

    International Nuclear Information System (INIS)

    Egan, J.R.

    1987-01-01

    Approaching the marketing and deployment of small, inherently safe reactors from the standpoint of the legal and financial community, the author suggests various ideal planning criteria that should be adhered to by designers and suppliers in order for the new plants to achieve political and financial acceptability. Although new nuclear technology based on those criteria promise to rekindle the prospects for nuclear fission, neither governments nor suppliers are likely to undertake the requisite investments. Rather, the author proposes a private development initiative between the political community, private investors, and would-be suppliers. (author)

  10. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  11. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  12. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Y.; Kawamoto, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and

  13. Estimating the power efficiency of the thermal power plant modernization by using combined-cycle technologies

    International Nuclear Information System (INIS)

    Hovhannisyan, L.S.; Harutyunyan, N.R.

    2013-01-01

    The power efficiency of the thermal power plant (TPP) modernization by using combined-cycle technologies is introduced. It is shown that it is possible to achieve the greatest decrease in the specific fuel consumption at modernizing the TPP at the expense of introducing progressive 'know-how' of the electric power generation: for TPP on gas, it is combined-cycle, gas-turbine superstructures of steam-power plants and gas-turbines with heat utilization

  14. Global wind power potential: Physical and technological limits

    International Nuclear Information System (INIS)

    Castro, Carlos de; Mediavilla, Margarita; Miguel, Luis Javier; Frechoso, Fernando

    2011-01-01

    This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. ). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (). We propose a top-down approach, such as that in , to evaluate the physical-geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. ). - Highlights: → Reported wind power potentials are flawed because they violate energy conservation. → For the first time, it is evaluated the technological wind power potential with a top-down approach. → Our results show 1 TWe for the limit of wind power energy, which is much lower than previous estimates.

  15. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report.

    Science.gov (United States)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-07

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer.Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes.The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%.Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  16. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    International Nuclear Information System (INIS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-01-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer.Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes.The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%.Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making. (paper)

  17. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    Science.gov (United States)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  18. The Pastoral Power of Technology. Rethinking Alienation in Digital Culture

    Directory of Open Access Journals (Sweden)

    Katarina Giritli Nygren

    2012-05-01

    Full Text Available The purpose of this paper is to bring Foucault’s elaboration on ‘the pastoral modalities of power’ into play in order to rethink alienation in digital culture. Pastoral power is not displacing other conceptions of power, but provides another level of analysis involved in the forging of reasonable responsible subjects willing and able to sustain other conceptions of power. We will draw particularly on the early writings of Marx and the more recent poststructuralist developments concerning hegemony and superstructure in relation to technology. Technology as such is analysed in terms of repercussions of ‘design of the machine’ in industrial technological contexts and ‘design of digital culture’ in digital technological contexts. Pastoral power not only directs our focus to the making of technologies, but also to the making of individuals capable of taking on the responsibilities of technologies. This means that it is necessary to take on the notion of effective power of ideologies and their material reality.

  19. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    Science.gov (United States)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  20. A cooperative power trading system based on satisfaction space technology

    International Nuclear Information System (INIS)

    Matsumoto, K.; Maruo, T.; Mori, N.

    2006-01-01

    This paper proposed a new power trading system model designed to ensure customer cooperation with power suppliers. Designed as an Internet application, the cooperative power trading system modelled power markets using a satisfaction space technology A network model of electric power trading systems was developed to create a communication network system that consisted of suppliers, customers, and auctioneers. When demand exceeded supply, the auctioneer in the trading system requested power reductions from customers. Rewards were paid to maintain the degree of satisfaction of the customers. The supplier's evaluation function was defined as a function of market price and power supply. A power reducing method was developed using a combinatorial optimization technique. Suppliers and customers submitted bids for initial power trading quantities, while the auctioneer decided a market price based on bidding values. After receiving the market price, suppliers and customers submitted a second set of bids for expected power trading quantities. A power reduction plan was then developed by the auctioneer to balance the amount of power supply and demand. The system can be applied to customers whose evaluation functions cannot be estimated beforehand, as the auctioneer was able to choose the most efficient power reduction point selected by consumers using a maximum steep slope method. Simulations conducted to validate the trading system demonstrated that the system is capable of choosing efficient energy reduction plans. 6 refs., 4 tabs., 3 figs

  1. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  2. Concrete Technology program for nuclear power plants

    International Nuclear Information System (INIS)

    Hassazadeh, M.; Wrangensten, L.

    2009-01-01

    The nuclear power plants in Sweden and Finland were built during the seventies/eighties and it is planned to extend their service life and increase their production capacity. The challenges are now to assess the condition of the concrete structures; to verify whether or not the structures can withstand the prescribed loads and functions; and verify if the structures can be upgraded in order to fulfil the requirements regarding load bearing and functional capacity. A research program was launched whose priority is condition assessment of the reactor containment. The research includes condition of the pre-stressing reinforcement, reinforcement bars, lining, leakage etc. The conditions are assessed both by destructive and non-destructive test methods. The addressed properties are physical, mechanical, electro-chemical and geometrical. The paper presents the organisation of the program, the co-operating partners, the research program, and the content of the on-going and planned research projects

  3. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  4. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  5. Fiscal 1997 report under consignment from NEDO on photon measuring/processing technology (development of power generation facility use high-function maintenance technology); 1997 nendo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku photon keisoku kako gijutsu (hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A research/development was conducted on technologies of photon applied measuring/photon applied processing/photon generation which are usable for heightening of reliability and maintenance efficiency of power generation facilities. In fiscal 1997, high melting-point metal particles were manufactured by high energy density laser for formation of high temperature and stabilized fine functional circuit. Further, a wavelength changeable ultra red laser light source was studied which can make in-situ measurement of gas concentration and components. A study was also made to examine the surface composition by measuring fluorescent X-rays emitted by radiating high intensity laser beam on the surface of material. A rod type and a slab type as a high-output complete-solidified laser are under development. There is also a development aiming at high speed/high quality photon processing such as high speed/high precision welding/cutting and laser joining. Besides, a study is being made of high energy pulse/high quality beam complete-solidified laser. The paper made a comprehensive survey of the trend of the photon measuring/monitoring technology, and made a systematical arrangement of the developmental subjects extracted. 142 refs., 357 figs., 62 tabs.

  6. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  7. Gingin High Optical Power Test Facility

    International Nuclear Information System (INIS)

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  8. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  9. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  10. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  11. Proceedings of Wireless Technology in the Electric Power Industry Workshop

    International Nuclear Information System (INIS)

    2001-01-01

    A one-day workshop was conducted at EPRI Charlotte to identify technology issues related to wireless technology in nuclear power plants. The meeting concluded with a roundtable discussion to determine what projects could be conducted to address opportunities and gaps in this technology; the three projects recommended for further investigation were a risk analysis, development of a technology strategy, and development of guidelines for reliable implementation of wireless technologies. The Proceedings CD includes workshop presentations in PowerPoint format. The presentations cover the following topics: (1) Wireless Project at TXU: Integration of Voice, Data, and Video; (2) Radio Upgrade Project at Public Service Electric and Gas Company (PSE and G) of New Jersey; and (3) Operational Experience with Wireless Communication at Nuclear Plants

  12. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  13. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  14. Technology assessment Jordan Nuclear Power Plant Project

    International Nuclear Information System (INIS)

    2010-01-01

    Preliminary regional analysis was carried out for identification of potential sites for NPP, followed by screening of these sites and selecting candidate sites. Aqaba sites are proposed, where it can use the sea water for cooling: i.Site 1; at the sea where it can use the sea water for direct cooling. ii.Site 2; 10 km to the east of Gulf of Aqaba shoreline at the Saudi Arabia borders. iii.Site 3, 4 km to the east of Gulf of Aqaba shoreline. Only the granitic basement in the east of the 6 km²site should be considered as a potential site for a NPP. Preliminary probabilistic seismic hazard assessment gives: Operating-Basis Earthquake-OBE (475 years return period) found to be in the range of 0.163-0.182 g; Safe Shutdown Earthquake-SSE (10,000 years return period) found to be in the range of 0.333-0.502g. The process include also setting up of nuclear company and other organizational matters. Regulations in development are: Site approval; Construction permitting; Overall licensing; Safety (design, construction, training, operations, QA); Emergency planning; Decommissioning; Spent fuel and RW management. JAEC's technology assessment strategy and evaluation methodology are presented

  15. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  16. FY 1998 Annual report on research and development of industrial science and technology. R and D of carbon-based high-functional materials technology (R and D of highly functional management systems for power generation); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report summarizes the FY 1998 research results of, e.g., materials creation technology, technology for creating mechanically high-performance materials, and comprehensive surveys as part of the research and development of carbon-based high-performance materials technology. For the researches on materials creation technology, electron-excited plasma CVD was used to produce the diamond-like carbon and carbon nitride films. Fine particles of BCN diamond particles were also synthesized under high temperature and pressure. For the researches on technology for creating mechanically high-performance materials, a precision film-making apparatus was introduced and adjusted, to create carbon-based coating films excellent in tribological properties (low friction and wear type) for development of compositionally inclined film making technology. For technology of large-area film making, a small-sized microwave plasma CVD apparatus was made on a trial basis and used, to develop large-area diamond film making technology. The comprehensive surveys covered synthesis technology for application of high-performance materials to machines and tools, their application to tool members, and evaluation of tribological properties. (NEDO)

  17. FY 1998 Annual report on research and development of industrial science and technology. R and D of carbon-based high-functional materials technology (R and D of highly functional management systems for power generation); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report summarizes the FY 1998 research results of, e.g., materials creation technology, technology for creating mechanically high-performance materials, and comprehensive surveys as part of the research and development of carbon-based high-performance materials technology. For the researches on materials creation technology, electron-excited plasma CVD was used to produce the diamond-like carbon and carbon nitride films. Fine particles of BCN diamond particles were also synthesized under high temperature and pressure. For the researches on technology for creating mechanically high-performance materials, a precision film-making apparatus was introduced and adjusted, to create carbon-based coating films excellent in tribological properties (low friction and wear type) for development of compositionally inclined film making technology. For technology of large-area film making, a small-sized microwave plasma CVD apparatus was made on a trial basis and used, to develop large-area diamond film making technology. The comprehensive surveys covered synthesis technology for application of high-performance materials to machines and tools, their application to tool members, and evaluation of tribological properties. (NEDO)

  18. Technology in the policy process - controlling nuclear power

    International Nuclear Information System (INIS)

    Collingridge, D.

    1983-01-01

    The discussion in this book is built around nuclear power. The technology of nuclear power is shown to have features which make it inflexible in the sense that, once built, it is difficult and expensive to control. If inflexible technology is to be avoided, it is crucially important to be able to identify this failing at an early stage in the technology's development, before it has acquired an immunity to political control. Again, this problem is approached through the example of nuclear power, in particular the breeder reactor. The breeder is shown to be even less flexible than today's nuclear technology, because it will have higher capital costs, be of greater capital intensity, longer lead time, larger unit size, and will require more infrastructure for its operation. If this is developed, the breeder will be even less open to political control than the nuclear plant of the present. To put it another way, its planning will be even more open to errors and whatever errors are made will be even more costly than for existing nuclear technology. It is therefore even less of a socially and economically acceptable technology than today's nuclear power. (author)

  19. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  20. Integration trends in monolithic power ICs: Application and technology challenges

    NARCIS (Netherlands)

    Rose, M.; Bergveld, H.J.

    2016-01-01

    This paper highlights the general trend towards further monolithic integration in power applications by enabling power management and interfacing solutions in advanced CMOS nodes. The need to combine high-density digital circuits, power-management circuits, and robust interfaces in a single