WorldWideScience

Sample records for technology group space

  1. Group technology

    International Nuclear Information System (INIS)

    Rome, C.P.

    1976-01-01

    Group Technology has been conceptually applied to the manufacture of batch-lots of 554 machined electromechanical parts which now require 79 different types of metal-removal tools. The products have been grouped into 7 distinct families which require from 8 to 22 machines in each machine-cell. Throughput time can be significantly reduced and savings can be realized from tooling, direct-labor, and indirect-labor costs

  2. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  3. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  4. Technology Enhanced Learning Spaces

    NARCIS (Netherlands)

    Specht, Marcus

    2016-01-01

    Today’s tools and learning environments are often not designed for supporting situated, social, and mobile learning experiences and linking them to real world experiences. The talk will discuss some of the approaches for linking information space and real world space with new technology. By linking

  5. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  6. Advanced space transportation technologies

    Science.gov (United States)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  7. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  8. Quantum groups and quantum spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wess, Julius [Max-Planck Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)]|[Muenchen Univ. (Germany). Sektion Physik

    1996-07-01

    The lecture presents quantum groups and spaces, conjugation and SL{sub q}(2,C), q-Euclidean and q-Minkowski spaces. The concept of the quantum group SL{sub q}(2,C) prior developed is generalized to allow a conjugation, which is essential for physics. We have seen that quantum groups lead in a natural way to non-commutative spaces, a concept we feel should be exploited for physics, These non-commutative spaces have a well-defined mathematical structure, inherited from quantum group symmetries. As a first example, we have seen the q-deformed spinor space, the Manin plane. Spinors are the space of the fundamental representation of SU(2), and all other finite dimensional representations can be obtained by products of this representation. Spinors and their conjugates play the same role for S L(2,C). In this lecture we shall start from the Manin plane and discuss q-bi spinors, objects that span the q-Euclidean space for SU{sub q}(2) or the q-Minkowski space for SL{sub q}(2,C)

  9. Technological Spaces: An Initial Appraisal

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, Jean; Aksit, Mehmet

    2002-01-01

    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with

  10. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  11. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  12. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  13. Gamma gamma technology group

    Indian Academy of Sciences (India)

    The gamma gamma community are concerned that in the rush to prepare for the e+e− machine, allowance is not being made for a future upgrade of the photon linear collider. References. [1] ECFA/DESY Photon Collider Working Group: B Badelek et al, TESLA Technical. Design Report, Part VI, Chapter 1: Photon collider at ...

  14. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  15. Space technology developments in Malaysia:

    Science.gov (United States)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  16. Twistor space, Minkowski space and the conformal group

    International Nuclear Information System (INIS)

    Broek, P.M. van den

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the transformation of twistor space under space inversion and time inversion. (orig.)

  17. Space construction technology needs

    Science.gov (United States)

    Jenkins, L. M.

    1981-01-01

    Space construction systems made feasible by an operational Space Shuttle are discussed with a view toward assembly, installation and construction support equipment. The level of construction capability will be reflected in the number of launches to accomplish a certain mission, either in terms of the mission time line or on the density of packaging in the Orbiter payload bay. It is noted that the development of construction support equipment in zero-gravity simulations should be the most productive initial activity. Crew EVAs, as well as the beam builder, cherrypicker and power distribution buses are covered in detail.

  18. Connecting Learning Spaces Using Mobile Technology

    Science.gov (United States)

    Chen, Wenli; Seow, Peter; So, Hyo-Jeong; Toh, Yancy; Looi, Chee-Kit

    2010-01-01

    The use of mobile technology can help extend children's learning spaces and enrich the learning experiences in their everyday lives where they move from one context to another, switching locations, social groups, technologies, and topics. When students have ubiquitous access to mobile devices with full connectivity, the in-situ use of the mobile…

  19. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  20. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  1. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  2. Twistor space, Minkowski space and the conformal group

    NARCIS (Netherlands)

    van den Broek, P.M.

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the

  3. In-Space Inspection Technologies Vision

    Science.gov (United States)

    Studor, George

    2012-01-01

    Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors

  4. Group actions on geodesic Ptolemy spaces

    OpenAIRE

    Foertsch, T; Schroeder, Viktor

    2011-01-01

    In this paper we study geodesic Ptolemy metric spaces $ X$ which allow proper and cocompact isometric actions of crystallographic or, more generally, virtual polycyclic groups. We show that $ X$ is equivariantly roughly isometric to a Euclidean space.

  5. The United Nations Human Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed

  6. Mapping spaces and automorphism groups of toric noncommutative spaces

    Science.gov (United States)

    Barnes, Gwendolyn E.; Schenkel, Alexander; Szabo, Richard J.

    2017-09-01

    We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application, we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.

  7. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  8. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  9. Space-Time Crystal and Space-Time Group

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-01

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D +1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1 +1 D ) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2 +1 D , nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D +1 )-dimensional space-time crystal.

  10. Space-Time Crystal and Space-Time Group.

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  11. The fundamental group of the orbit space

    Directory of Open Access Journals (Sweden)

    Hattab Hawete

    2015-12-01

    Full Text Available Let G be a subgroup of the group Homeo(X of homeomorphisms of a topological space X. Let G¯$\\bar G$ be the closure of G in Homeo(X. The class of an orbit O of G is the union of all orbits having the same closure as O. We denote by X/G˜$X/\\widetildeG$ the space of classes of orbits called the orbit class space. In this paper, we study the fundamental group of the spaces X/G, X/G¯$X/\\bar G$ and X/G˜$X/\\widetildeG$

  12. Space transformation for understanding group movement.

    Science.gov (United States)

    Andrienko, Natalia; Andrienko, Gennady; Barrett, Louise; Dostie, Marcus; Henzi, Peter

    2013-12-01

    We suggest a methodology for analyzing movement behaviors of individuals moving in a group. Group movement is analyzed at two levels of granularity: the group as a whole and the individuals it comprises. For analyzing the relative positions and movements of the individuals with respect to the rest of the group, we apply space transformation, in which the trajectories of the individuals are converted from geographical space to an abstract 'group space'. The group space reference system is defined by both the position of the group center, which is taken as the coordinate origin, and the direction of the group's movement. Based on the individuals' positions mapped onto the group space, we can compare the behaviors of different individuals, determine their roles and/or ranks within the groups, and, possibly, understand how group movement is organized. The utility of the methodology has been evaluated by applying it to a set of real data concerning movements of wild social animals and discussing the results with experts in animal ethology.

  13. Student Facebook groups as a third space

    DEFF Research Database (Denmark)

    Aaen, Janus Holst; Dalsgaard, Christian

    2016-01-01

    The paper examines educational potentials of Facebook groups that are created and managed by students without any involvement from teachers. The objective is to study student-managed Facebook groups as a ‘third space' between the institutional space of teacher-managed Facebook groups and the non......-institutional, personal space of the Facebook network. The main study of the article examines six student-managed Facebook groups and provides an analysis of a total of 2247 posts and 12,217 comments. Furthermore, the study draws on group interviews with students from 17 Danish upper secondary schools and a survey...... answered by 932 students from 25 schools. Based on the survey and interviews, the paper concludes that Facebook is an important educational tool for students in Danish upper secondary schools to receive help on homework and assignments. Furthermore, on the basis of the analysis of Facebook groups...

  14. Charge space, exceptional observables and groups

    International Nuclear Information System (INIS)

    Guersey, F.

    1976-01-01

    It is shown that a class of exceptional quantum mechanical spaces represented by octonionic matrices and first introduced by Jordan, von Neumann and Wigner are suitable for representing the states of basic fermionic constituents (leptons and quarks) of elementary particles. In these exceptional spaces, the transformation groups that leave scalar products invariant are the exceptional groups. A gauge field theory based on E 7 is given as an example for the unification of weak, electromagnetic and strong interactions

  15. String cohomology groups of complex projective spaces

    DEFF Research Database (Denmark)

    Ottosen, Iver Mølgaard; Bökstedt, Marcel

    2007-01-01

    Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p. The compu......Let X be a space and write LX for its free loop space equipped with the action of the circle group T given by dilation. The equivariant cohomology H*(LXhT;Z/p) is a module over H*(BT;Z/p). We give a computation of this module when X=CPr for any positive integer r and any prime number p...

  16. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  17. Department of Defense Space Technology Guide

    Science.gov (United States)

    2001-01-01

    image processing • Exploitation technologies for bistatic phenom- enology of targets and clutter characteristics – Bistatic space-time adaptive...optical sensors, processors, links, and host spacecraft integration technolo- gies • Exploitation technologies for bistatic phenom- enology of

  18. Canadian Activities in Space Debris Mitigation Technologies

    Science.gov (United States)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  19. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  20. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  1. Space technology and robotics in school projects

    Science.gov (United States)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  2. Cognition and learning in space technology

    Directory of Open Access Journals (Sweden)

    Kelber Ruhena Abrão

    2016-12-01

    Full Text Available This work analyzes the impact of new technologies in everyday teaching situations. This is a qualitative research, one study of descriptive case, based on observations of the spaces of the classrooms, the same group of children between June 2013 and April 2015, the 1st, 2nd and 3rd years of Primary Education a Catholic private school, as well as interviews with the regents’ teachers of these classes. We seek to establish links between the acquisition of written language in conventional texts and those in hypertext, as well as understand how to structure the scientific and digital literacy in these areas. In that sense, it was found that these experiences are possible to happen in designed spaces antagonistically to traditional spaces as often, it is less rigid, more flexible, a fact that makes the pleasant atmosphere and at the same time, more accessible, providing an environment sometimes hybrid, in which the dimensions of notebook and tablet coexist and fusion of these opposed pairs of written language acquisition occurs.

  3. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  4. Advancing Radar Technologies for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing technologies remain the primary means by which scientific knowledge about the surrounding universe is gathered in lieu of human exploration. Radar...

  5. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  6. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  7. Office of Space Science: Integrated technology strategy

    Science.gov (United States)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  8. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  9. Nuclear Technologies for Space Exploration Conference

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.; Alger, D.

    1992-08-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC

  10. In-Space Propulsion (ISP) Aerocapture Technology

    Science.gov (United States)

    Munk, Michelle M.; James, Bonnie F.; Moon, Steve

    2005-01-01

    A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.

  11. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  12. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  13. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  14. Johnson Space Center Research and Technology Report

    Science.gov (United States)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  15. ESA Technologies for Space Debris Remediation

    Science.gov (United States)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  16. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  17. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  18. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  19. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  20. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  1. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    Science.gov (United States)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  2. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  3. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  4. Nonproliferation Challenges in Space Defense Technology - PANEL

    Science.gov (United States)

    Houts, Michael G.

    2016-01-01

    The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?

  5. Media Spaces, Places and Palpable Technologies

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten

    2006-01-01

    of these prototypes form what can be termed as media spaces - but rise questions to the traditional understanding of the media space concept - since the emergency response media spaces are not ‘set up' in predefined physical settings, do allow use of a range of (not necessarily predefined) media, and the people...... in the media space cannot be defined as a limited group of users. We also rise questions to the formality of communication, where we see the communication going on in emergency response, as a mix of formal and informal communication....

  6. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  7. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  8. N-1: Safeguards Science and Technology Group, Tour Areas

    International Nuclear Information System (INIS)

    Geist, William H.

    2012-01-01

    Group N-1 develops and provides training on nondestructive assay (NDA) technologies intended for nuclear material accounting and control to fulfill both international and domestic obligations. The N-1 group is located at Technical Area (TA)-35 in Buildings 2 and 27. Visitors to the area can observe developed and fielded NDA technologies, as well as the latest research efforts to develop the next generation of NDA technologies. Several areas are used for NDA training. The N-1 School House area typically is used for basic training on neutron- and gamma-ray-based NDA techniques. This area contains an assortment of gamma-ray detector systems, including sodium iodide and high-purity germanium and the associated measurement components. Many types of neutron assay systems are located here, including both standard coincidence and multiplicity counters. The N-1 School House area is also used for holdup training; located here are the mock holdup assemblies and associated holdup measurement tools. Other laboratory areas in the N-1 space are used for specialized training, such as waste NDA, calorimetry, and advanced gamma-ray NDA. Also, many research laboratories in the N-1 space are used to develop new NDA technologies. The calorimetry laboratory is used to develop and evaluate new technologies and techniques that measure the heat signature from nuclear material to determine mass. The micro calorimetry laboratory is being used to develop advanced technologies that can measure gamma rays with extremely high resolution. This technique has been proven in the laboratory setting, and the team is now working to cultivate a field-capable system. The N-1 group also develops remote and unattended systems for the tracking and control of nuclear material. A demonstration of this technology is located within one of the laboratory spaces. The source tracker software was developed by N-1 to monitor the locations and quantities of nuclear materials. This software is currently used to track

  9. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  10. Technology Sharing in Manufacturing Business Groups

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    , consultants, partners, and others. However, the distinction between the focal firm, on the one hand, and networks, on the other, is in this paper argued to be too extensive without intermediating nuances. Less focus is given to an in-between perspective configured by business groups or concerns here defined......, internal documents and protocols, and workshops. Following the clinical field-study approach, findings are theoretically validated in relation to literature. The analysis identifies and depicts four different types of technology-sharing scenarios in manufacturing business groups. Each type has particular...

  11. The Space Technology 5 Avionics System

    Science.gov (United States)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  12. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  13. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  14. Innovative technologies in urban mapping built space and mental space

    CERN Document Server

    Paolini, Paolo; Salerno, Rossella

    2014-01-01

    The book presents a comprehensive vision of the impact of ICT on the contemporary city, heritage, public spaces and meta-cities on both urban and metropolitan scales, not only in producing innovative perspectives but also related to newly discovered scientific methods, which can be used to stimulate the emerging reciprocal relations between cities and information technologies. Using the principles established by multi-disciplinary interventions as examples and then expanding on them, this book demonstrates how by using ICT and new devices, metropolises can be organized for a future that preserves the historic nucleus of the city and the environment while preparing the necessary expansion of transportation, housing and industrial facilities.

  15. 75 FR 47631 - Swets Information Services, Operations Department, Information Technology Group, Marketing Group...

    Science.gov (United States)

    2010-08-06

    ... Services, Operations Department, Information Technology Group, Marketing Group, Finance Group, Runnemede..., Information Technology (IT) Group, Marketing Group and the Finance Group into one entity instead of... Technology Group, Marketing Group, and Finance Group, Runnemede, New Jersey, who became totally or partially...

  16. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  17. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  18. Applications of Space-Age Technology in Anthropology

    Science.gov (United States)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  19. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  20. Groups on transformations in Finslerian spaces

    International Nuclear Information System (INIS)

    Misra, R.B.

    1993-01-01

    The article first appeared in the Internal Reports of the ICTP in 1981. Since then the topic has attracted a large number of authors and several contributions have been made thereafter. Thus, a previous work of the author is revised and up-dated here including the post-1981 contributions in the field. Infinitesimal transformations defining motions, affine motions, projective motions, conformal transformations and curvature collineations in various types of Finslerian spaces are discussed here. The notation and symbolism used in the paper is mainly based on the author's works. (author). 72 refs

  1. Retabulation of space group extinctions for electron diffraction

    International Nuclear Information System (INIS)

    Goodman, P.; Tanaka, M.

    1989-01-01

    The space group tables previously published by one of the authors and others are here presented in a revised and compacted form designed to make for compatability with existing tables for X-ray diffraction. 136 of the 230 space groups are subject to dynamic extinctions due to glide planes and screw axes, and the observables from these space groups in specific settings are tabulated. Tabs

  2. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  3. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  4. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  5. Sustainable In-Space Manufacturing through Rapid Prototyping Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — In space manufacturing is crucial to humanity’s continued exploration and habitation of space. While new spacecraft and propulsion technologies promise higher...

  6. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  7. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups

    International Nuclear Information System (INIS)

    Podles, P.

    1995-01-01

    We prove that each action of a compact matrix quantum group on a compact quantum space can be decomposed into irreducible representations of the group. We give the formula for the corresponding multiplicities in the case of the quotient quantum spaces. We describe the subgroups and the quotient spaces of quantum SU(2) and SO(3) groups. (orig.)

  8. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  9. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  10. Group representations in Banach spaces and Banach lattices

    NARCIS (Netherlands)

    Wortel, Marten Rogier

    2012-01-01

    In this thesis, group representations in Banach spaces and Banach lattices are studied. In the first part, chapter 2, a Banach algebra crossed product is constructed, which is an object that allows the translation of group representations in Banach spaces into Banach algebra representations. This

  11. Professional Discussion Groups: Informal Learning in a Third Space

    Science.gov (United States)

    Jordan, Robert A.

    2013-01-01

    In this ethnographic study, I explored two discussion groups and discovered Third Space elements such as cultural hybridity, counterscript, and sharing of experiences and resources contributed to a safe learning environment existing at the boundaries between participant personal and professional spaces. The groups operated under the auspices of a…

  12. Commercial space opportunities - Advanced concepts and technology overview

    Science.gov (United States)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  13. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  14. The Application of Intelligent Building Technologies to Space Hotels

    Science.gov (United States)

    Fawkes, S.

    This paper reports that over the last few years Intelligent Building technologies have matured and standardised. It compares the functions of command and control systems in future large space facilities such as space hotels to those commonly found in Intelligent Buildings and looks at how Intelligent Building technologies may be applied to space hotels. Many of the functions required in space hotels are the same as those needed in terrestrial buildings. The adaptation of standardised, low cost, Intelligent Building technologies would reduce capital costs and ease development of future space hotels. Other aspects of Intelligent Buildings may also provide useful models for the development and operation of space hotels.

  15. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  16. Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1989-01-01

    The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape.

  17. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  18. Space Missions and Information Technology: Some Thoughts and Highlights

    Science.gov (United States)

    Doyle, Richard J.

    2006-01-01

    A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

  19. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  20. Lidar In-Space Technology Experiment (LITE) L1

    Data.gov (United States)

    National Aeronautics and Space Administration — LITE_L1 data are LIDAR Vertical profile data along the orbital flight path of STS-64.Lidar In-Space Technology Experiment (LITE) used a three-wavelength (355 nm, 532...

  1. A contribution to group representations in locally convex spaces

    International Nuclear Information System (INIS)

    Jurzak, J.P.

    1977-01-01

    Let U be a continuous representation of a (connected) locally compact group G in a separated locally convex space E. It is shown that the study of U is equivalent to the study of a family Usub(i) of continuous representations of G in Frechet spaces Fsub(i). If U is equicontinuous, the Fsub(i) are Banach spaces, and the Usub(i) are realized by isomeric operators. When U is topologically irreducible, it is Naemark equivalent to a Frechet (or isomeric Banach, in the equicontinuous case) continuous representation. Similar results hold for semi-groups. (Auth.)

  2. Proceedings of the Twelfth International Symposium on Space Terahertz Technology

    Science.gov (United States)

    Mehdi, Imran (Editor)

    2001-01-01

    The Twelfth International Symposium on Space Terahertz Technology was held February 14-16, 2001 in San Diego, California, USA. This symposium was jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory, California Institute of Technology. The symposium featured sixty nine presentations covering a wide variety of technical topics relevant to Terahertz Technology. The presentations can be divided into five broad technology areas: Hot Electron Bolometers, superconductor insulator superconductor (SIS) technology, local oscillator (LO) technology, Antennas and Measurements, and Direct Detectors. The symposium provides scientists, engineers, and researchers working in the terahertz technology and science fields to engineers their work and exchange ideas with colleagues.

  3. Hypersonic Reusable Technologies for Access to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The central objective of the proposal is to implement a robust multi-physics optimization on a hypersonic space-plane concept. Optimization evaluates changes to the...

  4. Summary of Research 1995, Interdisciplinary Academic Groups (Command, Control & Communications Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group and Undersea Warfare Academic Group)

    OpenAIRE

    Faculty of the Academic Groups

    1995-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains information of research projects in the four interdisciplinary groups, Command, Control & Communications Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group and Undersea Warfare Academic Group, which were carried out under funding of the Naval Postgraduate School Research...

  5. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  6. Non-Supramenable Groups Acting on Locally Compact Spaces

    DEFF Research Database (Denmark)

    Kellerhals, Julian; Monod, Nicolas; Rørdam, Mikael

    2013-01-01

    Supramenability of groups is characterised in terms of invariant measures on locally compact spaces. This opens the door to constructing interesting crossed product $C^*$-algebras for non-supramenable groups. In particular, stable Kirchberg algebras in the UCT class are constructed using crossed ...

  7. Torus quotients of homogeneous spaces of the general linear group ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 119; Issue 1. Torus Quotients of Homogeneous Spaces of the General Linear Group and the Standard Representation of Certain Symmetric Groups. S S Kannan Pranab Sardar. Volume 119 Issue 1 February ...

  8. Group Tracking of Space Objects within Bayesian Framework

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2013-03-01

    Full Text Available It is imperative to efficiently track and catalogue the extensive dense group space objects for space surveillance. As the main instrument for Low Earth Orbit (LEO space surveillance, ground-based radar system is usually limited by its resolving power while tracking the small space debris with high dense population. Thus, the obtained information about target detection and observation will be seriously missed, which makes the traditional tracking method inefficient. Therefore, we conceived the concept of group tracking. The overall motional tendency of the group objects is particularly focused, while the individual object is simultaneously tracked in effect. The tracking procedure is based on the Bayesian frame. According to the restriction among the group center and observations of multi-targets, the reconstruction of targets’ number and estimation of individual trajectory can be greatly improved on the accuracy and robustness in the case of high miss alarm. The Markov Chain Monte Carlo Particle (MCMC-Particle algorism is utilized for solving the Bayesian integral problem. Finally, the simulation of the group space objects tracking is carried out to validate the efficiency of the proposed method.

  9. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-04-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  10. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-10-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  11. SpaceCube Technology Brief Hybrid Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2016-01-01

    The intent of this presentation is to give status to multiple audience types on the SpaceCube data processing technology at GSFC. SpaceCube has grown to support multiple missions inside and outside of NASA, and we are being requested to give technology overviews in various forums.

  12. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  13. Research and Technology 1996: Innovation in Time and Space

    Science.gov (United States)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  14. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  15. Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces

    Directory of Open Access Journals (Sweden)

    Przemysław Górka

    2014-01-01

    Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.

  16. Transfer of space technology to industry

    Science.gov (United States)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  17. [The professional reading group, a space for sharing knowledge].

    Science.gov (United States)

    Didry, Pascale

    2017-04-01

    Reading groups, staples of libraries and associations, offer an original space for sharing when, within teams of nurses or trainers, diverted from their habitual objects, they focus on professional themes. Writing is shared no longer as a leisure activity, but as a convivial time of training in a group of professionals. This article shares the experience of a nurse training institute in Nancy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. The crystallographic space groups and Heterotic string theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2009-01-01

    While the 17 planar crystallographic groups were shown to correspond to 17 two and three Stein spaces with a total dimension equal to DimE12=5α-bar o ≅685, the present work reveals that the corresponding 219 three dimensional groups leads to a total dimensionality equal to N o ≅8872 which happens to be the exact total number of massless states of the transfinite version of Heterotic super string spectrum.

  19. Differential calculus on quantum spaces and quantum groups

    International Nuclear Information System (INIS)

    Zumino, B.

    1992-01-01

    A review of recent developments in the quantum differential calculus. The quantum group GL q (n) is treated by considering it as a particular quantum space. Functions on SL q (n) are defined as a subclass of functions on GL q (n). The case of SO q (n) is also briefly considered. These notes cover part of a lecture given at the XIX International Conference on Group Theoretic Methods in Physics, Salamanca, Spain 1992

  20. Multipliers on weighted Hardy spaces over certain totally disconnected groups

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kitada

    1988-01-01

    Full Text Available In this note, we consider the multipliers on weighted H1 spaces over totally disconnected locally compact abelian groups with a suitable sequence of open compact subgroups (Vilenkin groups. We first show an (H1,L1 multiplier result from which Onneweer's theorem follows. We also give an (H1,H1 multiplier result under a condition of Baernstein-Sawyer type.

  1. Space Technology Mission Directorate: Game Changing Development

    Science.gov (United States)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  2. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  3. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  4. Trimesic acid dimethyl sulfoxide solvate: space group revision

    Directory of Open Access Journals (Sweden)

    Sylvain Bernès

    2008-07-01

    Full Text Available The structure of the title solvate, C9H6O6·C2H6OS, was determined 30 years ago [Herbstein, Kapon & Wasserman (1978. Acta Cryst. B34, 1613–1617], with data collected at room temperature, and refined in the space group P21. The present redetermination, based on high-resolution diffraction data, shows that the actual space group is more likely to be P21/m. The crystal structure contains layers of trimesic acid molecules lying on mirror planes. A mirror plane also passes through the S and O atoms of the solvent molecule. The molecules in each layer are interconnected through strong O—H...O hydrogen bonds, forming a two-dimensional supramolecular network within each layer. The donor groups are the hydroxyls of the trimesic acid molecules, while the acceptors are the carbonyl or the sulfoxide O atoms.

  5. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  6. Quantum mechanics on spaces with finite fundamental group

    International Nuclear Information System (INIS)

    Giulini, D.

    1995-01-01

    We consider in general terms dynamical systems with finite-dimensional, non-simply connected configuration-spaces. The fundamental group is assumed to be finite. We analyze in full detail those ambiguities in the quantization procedure that arise from the non-simply connectedness of the classical configuration space. We define the quantum theory on the universal cover but restrict the algebra of observables O to the commutant of the algebra generated by deck-transformations. We apply standard superselection principles and construct the corresponding sectors. We emphasize the relevance of all sectors and not just the abelian ones. (orig.)

  7. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  8. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  9. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  10. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  11. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  12. Winter School on Operator Spaces, Noncommutative Probability and Quantum Groups

    CERN Document Server

    2017-01-01

    Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems.  A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions.  The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The l...

  13. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  14. BiocapsuleTechnology for Delivery of Protein Therapeutics in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — This project concerns NASA Biocapsule technology, which involves the develoment of buckypaper containers for living cells, to be used for delivery of medical...

  15. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  16. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  17. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  18. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  19. Summary of the particle physics and technology working group

    International Nuclear Information System (INIS)

    Stephan Lammel et al. email = crathbun@fnal.gov

    2002-01-01

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large

  20. Summary of the particle physics and technology working group

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Lammel et al.

    2002-12-10

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  1. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber.......Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  2. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  3. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  4. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    Science.gov (United States)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  5. Space power technology into the 21st century

    International Nuclear Information System (INIS)

    Faymon, K.A.; Fordyce, J.S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel-hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions. 18 references

  6. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  7. The Lorentzian oscillator group as a geodesic orbit space

    Energy Technology Data Exchange (ETDEWEB)

    Batat, W. [Ecole Normale Superieure d' Enseignement Technologique d' Oran, Departement de Mathematiques et Informatique, B.P. 1523, El M' Naouar, Oran (Algeria); Gadea, P. M. [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Oubina, J. A. [Departamento de Xeometria e Topoloxia, Facultade de Matematicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2012-10-15

    We prove that the four-dimensional oscillator group Os, endowed with any of its usual left-invariant Lorentzian metrics, is a Lorentzian geodesic (so, in particular, null-geodesic) orbit space with some of its homogeneous descriptions corresponding to certain homogeneous Lorentzian structures. Each time that Os is endowed with a suitable metric and an appropriate homogeneous Lorentzian structure, it is a candidate for constructing solutions in d-dimensional supergravity with at least 24 of the 32 possible supersymmetries.

  8. Building Fluid Spaces: The Impact of the Technology in the Contemporary Space Conception

    Directory of Open Access Journals (Sweden)

    Priscila Arantes

    2008-08-01

    Full Text Available In this article, we are going to debate the new space-time configurations from the technological- informacional impact, taking the contemporary art as study object. Taking as object of study the contemporaty artistic practices, we will analyse the displacement of a vision of fixed space, homogeneous, given, at first, to a vision of mobile space, which occurs from the flow of constant communication and connection; a space built from a liquid cartography, produced in phenomenological and relational way.

  9. The dual algebra of the Poincare group on Fock space

    International Nuclear Information System (INIS)

    Klink, W.H.; Iowa Univ., Iowa City, IA

    1989-01-01

    The Lie algebra of operators commuting with the Poincare group on the Fock space appropriate for a massive spinless particle is constructed in terms of raising and lowering operators indexed by a Lorentz invariant function. From the assumption that the phase operator is an element of this Lie algebra, it is shown that the scattering operator can be written as a unitary representation operator of the group associated with the Lie algebra. A simple choice of the phase operator shows that the Lorentz invariant function can be interpreted as a basic scattering amplitude, in the sense that all multiparticle scattering amplitudes can be written in terms of this basic scattering amplitude. (orig.)

  10. Group quantization on configuration space: Gauge symmetries and linear fields

    International Nuclear Information System (INIS)

    Navarro, M.; Aldaya, V.; Calixto, M.

    1997-01-01

    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics

  11. Duality Group for Calabi-Yau 2-Moduli Space

    OpenAIRE

    Ceresole, A.; D'Auria, R.; Regge, T.

    1993-01-01

    We present an efficient method for computing the duality group $\\Gamma$ of the moduli space \\cM for strings compactified on a Calabi-Yau manifold described by a two-moduli deformation of the quintic polynomial immersed in $\\CP(4)$, $\\cW={1\\over5}(\\iy_1^5+\\cdots+\\iy_5^5)-a\\,\\iy_4^3 \\iy_5^2 -b\\, \\iy_4^2 \\iy_5^3$. We show that $\\Gamma$ is given by a $3$--dimensional representation of a central extension of $B_5$, the braid group on five strands.

  12. Space systems computer-aided design technology

    Science.gov (United States)

    Garrett, L. B.

    1984-01-01

    The interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system is described, together with planned capability increases in the IDEAS system. The system's disciplines consist of interactive graphics and interactive computing. A single user at an interactive terminal can create, design, analyze, and conduct parametric studies of earth-orbiting satellites, which represents a timely and cost-effective method during the conceptual design phase where various missions and spacecraft options require evaluation. Spacecraft concepts evaluated include microwave radiometer satellites, communication satellite systems, solar-powered lasers, power platforms, and orbiting space stations.

  13. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  14. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  15. Are groups working in the Information Technology class? | Mentz ...

    African Journals Online (AJOL)

    We discuss teache rs' perce ption of the use of group work in the Information Technology (IT) classroom. We describe the current situation regarding the implementation of group work in IT classrooms in South Africa as well as the challenges that IT teachers face when implementing group work. This information will be used ...

  16. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  17. Technology Development Risk Assessment for Space Transportation Systems

    Science.gov (United States)

    Mathias, Donovan L.; Godsell, Aga M.; Go, Susie

    2006-01-01

    A new approach for assessing development risk associated with technology development projects is presented. The method represents technology evolution in terms of sector-specific discrete development stages. A Monte Carlo simulation is used to generate development probability distributions based on statistical models of the discrete transitions. Development risk is derived from the resulting probability distributions and specific program requirements. Two sample cases are discussed to illustrate the approach, a single rocket engine development and a three-technology space transportation portfolio.

  18. Groups, matrices, and vector spaces a group theoretic approach to linear algebra

    CERN Document Server

    Carrell, James B

    2017-01-01

    This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...

  19. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  20. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  1. Laser space communication experiment: Modulator technology

    Science.gov (United States)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  2. Young Adults, Technology, and Weight Loss: A Focus Group Study

    OpenAIRE

    Stephens, Janna; Moscou-Jackson, Gyasi; Allen, Jerilyn K.

    2015-01-01

    Overweight and obesity are a major concern in young adults. Technology has been integrated into many weight loss interventions; however little is known about the use of this technology in young adults. The purpose of this study was to explore through focus group sessions the opinions of young adults on the use of technology for weight loss. A total of 17 young adults, between 18 and 25 years of age, participated in three focus group sessions. Major results indicated that young adults have ver...

  3. Submicron CMOS technologies for high energy physics and space applications

    CERN Document Server

    Anelli, G; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    2001-01-01

    The radiation environment present in some of today's High-Energy Physics (HEP) experiments and in space has a detrimental influence on the integrated circuits working in these environments. Special technologies, called radiation hardened, have been used in the past to prevent the radiation-induced degradation. In the last decades, the market of these special technologies has undergone a considerable shrinkage, rendering them less reliably available and far more expensive than today's mainstream technologies. An alternative approach is to use a deep submicron CMOS technology. The most sensitive part to radiation effects in a MOS transistor is the gate oxide. One way to reduce the effects of ionizing radiation in the gate oxide is to reduce its thickness, which is a natural trend in modern technologies. Submicron CMOS technologies seem therefore a good candidate for implementing radiation-hardened integrated circuits using a commercial, inexpensive technology. Nevertheless, a certain number of radiation-induced...

  4. Irreducible quantum group modules with finite dimensional weight spaces

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    a finitely generated U q -module which has finite dimensional weight spaces and is a sum of those. Our approach follows the procedures used by S. Fernando and O. Mathieu to solve the corresponding problem for semisimple complex Lie algebra modules. To achieve this we have to overcome a number of obstacles...... not present in the classical case. In the process we also construct twisting functors rigerously for quantum group modules, study twisted Verma modules and show that these admit a Jantzen filtration with corresponding Jantzen sum formula....

  5. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    Science.gov (United States)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  6. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  7. The birth of NASA the work of the Space Task Group, America's first true space pioneers

    CERN Document Server

    von Ehrenfried, Dutch

    2016-01-01

    This is the story of the work of the original NASA space pioneers; men and women who were suddenly organized in 1958 from the then National Advisory Committee on Aeronautics (NACA) into the Space Task Group. A relatively small group, they developed the initial mission concept plans and procedures for the U. S. space program. Then they boldly built hardware and facilities to accomplish those missions. The group existed only three years before they were transferred to the Manned Spacecraft Center in Houston, Texas, in 1962, but their organization left a large mark on what would follow. Von Ehrenfried's personal experience with the STG at Langley uniquely positions him to describe the way the group was structured and how it reacted to the new demands of a post-Sputnik era. He artfully analyzes how the growing space program was managed and what techniques enabled it to develop so quickly from an operations perspective. The result is a fascinating window into history, amply backed up by first person documentation ...

  8. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  9. Effect of farmer group membership on agricultural technology ...

    African Journals Online (AJOL)

    Uganda Census of Agriculture database of 2008 - 2009 was used to evaluate the effect of farmer group membership on agricultural technology adoption and crop productivity. This particular study aimed at providing policy; answers to whether the use of farmer' groups approach in agricultural information dissemination is ...

  10. Implementing Space Technology into Sustainable Development and Resilience Theory

    Directory of Open Access Journals (Sweden)

    Ciro Arévalo Yepes

    2013-11-01

    Full Text Available The paper explores potential and actual applications of space technology, particularly satellites in the context of sustainable development. The introduction explores the concept of sustainable development from a multilateral perspective and the framework of Rio+20 and the post-2015 development agenda. The paper then introduces space technology and its uses in economic growth, energy, food security, environmental surveillance, including coastal regions, with special emphasis on environmental disasters and the concept of resilience, and the social and welfare uses of humanitarian tele-medicine and tele-education and ways to overcome the digital divide. The conclusion gives recommendations to improve satellite capacity and an analysis of the systemic synergies between space technologies and “green industries” that may lead to tandem growth.

  11. Quiver theories for moduli spaces of classical group nilpotent orbits

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay; Kalveks, Rudolph [Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-06-21

    We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.

  12. Space Communication and Navigation Testbed Communications Technology for Exploration

    Science.gov (United States)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  13. Large space systems technology electronics: Data and power distribution

    Science.gov (United States)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  14. Transformational Technologies to Expedite Space Access and Development

    International Nuclear Information System (INIS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  15. The Social Shaping of Technology: A New Space for Politics?

    DEFF Research Database (Denmark)

    Yoshinaka, Yutaka; Clausen, Christian; Hansen, Anne Grethe

    2003-01-01

    effects, which are non-neutral and distributed, as the processes of shaping themselves have been. The chapter develops the notion of SST through socio-technical spaces. Here a heterogeneous set of elements, comprising of techniques, social actors, attribution of meanings, and problem definitions, etc...... on the socio-technical processes entailed in technology development and change. Our perspective is based on the understanding that technological development unfolds through processes with political implications, involving actors, their occasions and strategies that help bring about transitions in technological...... change. We identify a new perspective on political processes, with a broader focus on the political dimensions of technological decision-making, and a broader treatment of socio-technical space, maintaining a focus on inclusion and exclusion of actors, salient issues and how they are dealt...

  16. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  17. TERRA-KLEEN RESPONSE GROUP, INC. SOLVENT EXTRACTION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology which was demonstrated was a solvent extraction technology developed by Terra-Kleen Response Group. Inc. to remove organic contaminants from soil. The technology employs...

  18. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  19. Technology issues associated with using densified hydrogen for space vehicles

    Science.gov (United States)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  20. Progress in composite structure and space construction systems technology

    Science.gov (United States)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  1. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  2. Transformational System Concepts and Technologies for Our Future in Space

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2004-01-01

    Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process

  3. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  4. Space-reactor electric systems: subsystem technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  5. Space Station Freedom technology payload user operations facility concept

    Science.gov (United States)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  6. Plant cell technologies in space: Background, strategies and prospects

    Science.gov (United States)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  7. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  8. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  9. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  10. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  11. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  12. R-102, 1 Group Space-Independent Inverse Reactor Kinetics

    International Nuclear Information System (INIS)

    Kaganove, J.J.

    1966-01-01

    1 - Description of problem or function: Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this program determines the time variation of reactivity required to produce the given input of flux-time data. 2 - Method of solution: Time derivatives of neutron density are obtained by application of (a) five-point quartic, (b) three-point parabolic, (c) five-point least-mean-square cubic, (d) five-point least-mean-square parabolic, or (e) five-point least-mean-square linear formulae to the neutron density or to the natural logarithm of the neutron density. Between each data point the neutron density is assumed to be (a) exponential*(third-order polynomial), (b) exponential, or (c) linear. Changes in reactivity between data points are obtained algebraically from the kinetics equations, neutron density derivatives, and the algebraic representation of neutron density. First and second time derivatives of the reactivity are obtained by use of any of the formulae applicable to the neutron density. 3 - Restrictions on the complexity of the problem: Maxima of - 50 delay groups; 1000 data points; 99 data blocks (A data block is a sequence of input points characterized by a fixed time-interval between points, a smoothing option, and a number of repetitions of the smoothing option)

  13. Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

    OpenAIRE

    Le, Guan; Moore, Thomas; Slavin, James

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned...

  14. UNIESPAÇO A Space Technology and Science Program for Brazillian Universities

    Science.gov (United States)

    Ferreira, Jose Leonardo; Gurgel, Carlos

    This work describes the activioties of The UNIESPAÇO Program of the Brazillian Space Agency AEB. This program was stablished in 1997, just three years after the official announcement of the Brazillian Space Agency. Its objective is to integrate the university sector to the goals of the Brazillian National Space Activities Program - PNAE in order to attend the requirements of the Brazillian space sector by developing processes, products, analysis and studies relevants to PNAE development. Its main goal is to form a solid base for space research and development composed by specialized groups capable to execute projects for the space sector. In summary the main tasks for the UNIESPAÇO program are: - Stimulate and amplify the participation of universities and others related research institutionsd in the PNAE. - To promote research projects on selected topics to generate products, processes, analysis and studies that can be applied on the brazillian space program with emphasis on possible prototype instruments development as a result of the research projects. - To improve research and development groups on space science and technology in order to give and increase capacities to execute projects with higher complexity. The guidelines of the UNIESPAÇO program are determined by represetants from AEB, Brazillian Universities, Brazillian Academy of Sciences (ABC), INPE (Brazillian Space Institute) and IAE(Institute of Space and Aeronautics from DCTA).

  15. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  16. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  17. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  18. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  19. Prototype Space Technology Hall of Fame exhibit at Technology 2003: Analysis of data from computer-based questionaire

    Science.gov (United States)

    Ewell, Robert N.

    1994-01-01

    The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.

  20. Wicked problems in space technology development at NASA

    Science.gov (United States)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  1. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  2. Space Life Support Technology Applications to Terrestrial Environmental Problems

    Science.gov (United States)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  3. 75 FR 71464 - Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased...

    Science.gov (United States)

    2010-11-23

    ... Employment and Training Administration Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased Workers From Adecco, Cognizant, IBM, Infosys, Kana, Patni, Siemens, Tapfin, Veritas... Workers From At&T Solutions, Chimes, Cognizant, Patni, Siemens, Xerox Clarks Summit, PA; Notice of Revised...

  4. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  5. Progress on thin-film sensors for space propulsion technology

    Science.gov (United States)

    Kim, Walter S.

    1987-01-01

    The objective is to develop thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades to 1800 F. The technology established for aircraft gas turbine engines will be adapted to the materials and environment encountered in the SSME. Specific goals are to expand the existing in-house thin-film sensor technology and to test the survivability and durability of thin-film sensors in the SSME environment.

  6. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  7. Hydrogen-oxygen Space Shuttle ACPS thruster technology review.

    Science.gov (United States)

    Gregory, J. W.; Herr, P. N.

    1972-01-01

    A comprehensive program has provided the technology groundwork for the use of hydrogen-oxygen propellants in the Space Shuttle Attitude Control Propulsion System (ACPS) thrustors. This work has concentrated on generation of technology for injectors, cooled thrust chambers, valves, and ignition systems. The thrustors are designed to meet a unique and stringent set of requirements, including: long life for 100 mission reuses, high performance, light weight, ability to provide long duration firings as well as small impulse bits, ability to operate over wide ranges of propellant inlet conditions and to withstand reentry heating. The program has included evaluation of thrustors designed for ambient temperature and cold gaseous propellants at the vehicle interface.

  8. Novel Design Aspects of the Space Technology 5 Mechanical Subsystem

    Science.gov (United States)

    Rossoni, Peter; McGill, William

    2003-01-01

    This paper describes several novel design elements of the Space Technology 5 (ST5) spacecraft mechanical subsystem. The spacecraft structure itself takes a significant step in integrating electronics into the primary structure. The deployment system restrains the spacecraft during launch and imparts a predetermined spin rate upon release from its secondary payload accommodations. The deployable instrument boom incorporates some traditional as well as new techniques for lightweight and stiffness. Analysis and test techniques used to validate these technologies are described. Numerous design choices were necessitated due to the compact spacecraft size and strict mechanical subsystem requirements.

  9. Center Director Bridges visits Disability Awareness and Action working Group Technology Fair

    Science.gov (United States)

    1999-01-01

    Center Director Roy Bridges (standing, center) poses with members of the Disability Awareness and Action Working Group (DAAWG), which is holding the 1999 Technology Fair Oct. 20-21 at Kennedy Space Center. The Fair is highlighting vendors demonstrating mobility, hearing, vision and silent disability assistive technology. The purpose is to create an awareness of the types of technology currently available to assist people with various disabilities in the workplace. The theme is that of this year's National Disability Employment Awareness Month, 'Opening Doors to Ability.' Some of the vendors participating are Canine Companions for Independence, Goodwill Industries, Accessible Structures, Division of Blind Services, Space Coast Center for Independent Living, KSC Fitness Center and Delaware North Parks Services.

  10. Bauman Moscow State Technical University Youth Space Centre: Student's Way in Space Technologies

    Science.gov (United States)

    Mayorova, Victoria; Zelentsov, Victor

    2002-01-01

    The Youth Space Center (YSC) was established in Bauman Moscow State Technical University (BMSTU) in 1989 to provide primary aerospace education for young people, stimulate youth creative research thinking, promote space science and technology achievements and develop cooperation with other youth organizations in the international aerospace community. The center is staffed by the Dr. Victoria Mayorova, BMSTU Associate Professor, the YSC director, Dr. Boris Kovalev, BMSTU Associate Professor, the YSC scientific director, 5 student consultants and many volunteers. Informally YSC is a community of space enthusiasts, an open club for BMSTU students interested in space science and technology and faculty teaching in this field. YSC educational activities are based on the concept of uninterrupted aerospace education, developed and implemented by the center. The concept includes working with young space interested people both in school and university and then assisting them in getting interesting job in Russian Space Industry. The school level educational activities of the center has got different forms, such as lecturing, summer scientific camps and even Classes from Space given by Mir space station flight crew in Mission Control Center - Moscow and done in cooperation with All- Russian Aerospace Society Soyuz (VAKO Soyuz). This helps to stimulate the young people interest to the fundamental sciences ( physics, mathematics, computer science, etc.) exploiting and developing their interest to space and thus increase the overall educational level in the country. YSC hosts annual Cosmonautics conference for high school students that provides the University with capability to select well-prepared and motivated students for its' rocket and space related departments. For the conference participants it's a good opportunity to be enrolled to the University without entrance examinations. BMSTU students can participate in such YSC activities as annual international workshop for space

  11. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  12. Multicriterial comparative analysis of rocket and space technology

    Science.gov (United States)

    Gusynin, V. P.; Goldshtein, Yu. M.; Doroshkevich, V. K.; Kuznetsov, V. I.; Kuchugurny, Yu. P.

    The problem of a comparative analysis of objects of rocket and space technology is formulated in terms of one of fundamental problems of the system analysis, namely, comparisons of objects on set of diverse criteria. A procedure for a comparative estimation based on the method of the analytic hierarchy process is offered as an algorithm. We give an example, namely, a comparison of launcher-carriers, derived with the use of our software.

  13. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  14. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  15. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  16. Technology assessment for Spaceship Two, space tourism, and private spaceflight

    Science.gov (United States)

    Hancock, Randy

    A seven-step technology assessment was conducted to address questions regarding the significance and likely consequences associated with the introduction of Spaceship Two, space tourism, and private spaceflight. Impacts were assessed across four categories: the Role and Functions of Government, Private Industry Factors, Cultural and Societal Impacts, and the Time Frame in which these impacts were anticipated to occur. The technology assessment findings were compared to the results of expert interviews that addressed the sane four categories. The researcher noted that, while there was overwhelming agreement between the technology assessment's primary impacts and the expert interview responses, there were several differences. The technology assessment and interviewees agreed that the federal government would likely be both a regulator and user of private spaceflight. Both agreed that business partnerships would be key in pursuing private spaceflight. There was also consensus that, as market forces come to bear, ticket prices would drop and a larger market and broader passenger demographic would emerge. The technology assessment and experts agreed that an accident, especially one early in the industry's evolution, could be disastrous. Both agreed that private spaceflight can serve as a inspiration to students and be a positive influence in society, and both agreed that the start of passenger flights should take place in the 2010 - 2012 timeframe. Due to the potentially disastrous consequences of an accident, there was agreement between the technology assessment and experts on the value of flight and ground crew training, driven by insurance carriers and federal mandate. Most differences between the technology assessment's findings and the expert interview responses were due to omission, rather than direct disagreement. However, this was not the case in every instance. The most significant difference between the technology assessment and the experts involved the

  17. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  18. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    Science.gov (United States)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  19. Overcoming Learning Time And Space Constraints Through Technological Tool

    Directory of Open Access Journals (Sweden)

    Nafiseh Zarei

    2015-08-01

    Full Text Available Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigate how the Learning Management Blog (LMB overcomes the learning time and space constraints that contribute to students’ language learning and language acquisition processes. The participants were 30 ESL students at National University of Malaysia. A qualitative approach comprising an open-ended questionnaire and a semi-structured interview was used to collect data. The results of the study revealed that the students’ language learning and acquisition processes were enhanced. The students did not face any learning time and space limitations while being engaged in the learning process via the LMB. They learned and acquired knowledge using the language learning materials and forum at anytime and anywhere. Keywords: learning time, learning space, learning management blog

  20. CELL FORMATION IN GROUP TECHNOLOGY: A SIMILARITY ORDER CLUSTERING APPROACH

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2012-01-01

    Full Text Available Grouping parts into families which can be produced by a cluster of machine cells is the cornerstone of cellular manufacturing, which in turn is the building block for flexible manufacturing systems. Cellular manufacturing is a group technology (GT concept that has recently attracted the attention of manufacturing firms operating under jobshop environment to consider redesigning their manufacturing systems so as to take advantage of increased throughput, reduction in work-in-progress, set-up time, and lead times; leading to product quality and customer satisfaction. The paper presents a generalised approach for machine cell formation from a jobshop using similarity order clustering technique for preliminary cell grouping and considering machine utilisation for the design of nonintergrouping material handling using the single-pass heuristic. The work addresses the shortcomings of cellular manufacturing systems design and implementations which ignore machine utilisations, group sizes and intergroup moves.

  1. GROUP TECHNOLOGY IN CONTEXT OF THE PRODUCT CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Lenka Debnárová

    2014-03-01

    Full Text Available In the intensive competitive environment of the global economy, the survival of even the most well-established the world manufacturers depends on the ability to improve continuously quality while reducing costs. The resulting higher productivity is the key to market leadership and gaining sustainable competitive advantage. This paper outlines a group technology and classification of products which improve productivity, quality, inventory management of a company and reduce production times.

  2. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  3. Space experiments on basic technologies for a space elevator using microsatellites

    Science.gov (United States)

    Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito

    2017-09-01

    We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.

  4. Classifying spaces with virtually cyclic stabilizers for linear groups

    DEFF Research Database (Denmark)

    Degrijse, Dieter Dries; Köhl, Ralf; Petrosyan, Nansen

    2015-01-01

    We show that every discrete subgroup of GL(n, ℝ) admits a finite-dimensional classifying space with virtually cyclic stabilizers. Applying our methods to SL(3, ℤ), we obtain a four-dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its...

  5. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  6. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  7. AIR Technology: A Step Towards ARINC 653 in Space

    Science.gov (United States)

    Rufino, J.; Craveiro, J.; Schoofs, T.; Tatibana, C.; Windsor, J.

    2009-05-01

    The Integrated Modular Avionics and the ARINC 653 specifications are assuming a key role in the provision of a standard operating system interface for safety-critical applications in both the aeronautic and space markets. The AIR Technology, designed within the scope of an ESA initiative to develop a proof of concept, implements the notion of robust temporal and spatial partitioning. A different operating system kernel may be used per partition, furnishing the bare services to build the ARINC 653 application programming interface. This paper describes the advances done during AIR-II, an initiative to evolve the AIR Technology proof of concept towards an industrial product. Current prototype activities are based on RTEMS and on the SPARC V8 LEON3 processor and work is being done on the integration of Linux in the AIR Technology.

  8. The NASA program in Space Energy Conversion Research and Technology

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  9. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  10. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  11. METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of

  12. The new spaces of accumulation of the Votorantim Group

    Directory of Open Access Journals (Sweden)

    Leandro Bruno SANTOS

    2010-04-01

    Full Text Available This article aims to understand the recent changes in Brazilian industrial capitalism, especially the expansion of companies and business groups abroad. The analyzed theme is the Votorantim Group, one of the most important groups in the country and Latin America. The Group acts in several branches of the economy and it has recently invested in the acquisition of foreign companies in different business and countries. In this article, the theories of internationalization of companies and business groups and the path of the Votorantim Group are focused – from its origin to productive internationalization. The secondary data were compiled from annual reports of the group, specialized magazines and newspapers.

  13. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    Science.gov (United States)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  14. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  15. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  16. Extreme Environment Technologies for Space and Terrestrial Applications

    Science.gov (United States)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-01-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.

  17. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  18. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  19. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  20. Space power distribution system technology. Volume 1: Reference EPS design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

    1983-01-01

    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

  1. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  2. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  3. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  4. Astronomy and Space Technologies, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physics and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JE...

  5. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  6. Introducing School Children in Nigeria to SPACE Technology As a Tool for Mitigation of National Catastrophes

    Science.gov (United States)

    Alabi, O.

    2014-12-01

    The zonal workshops organized by the space education outreach unit of the African Regional Centre for Space Science and Technology Education utilized recent catastrophic events in Nigeria to attract pre-collegiate youths to space science and technology (SST). About 200 school children, aged between 10 and 18 years participated in the program which was coordinated at 2 different geopolitical zones in Nigeria in 2014. The 2-day event was packed with a lot of fun-filled, hands-on educational activities demonstrating the use of outer space to address prevailing socio-economic problems in the nation. The students were introduced to the Nigerian Earth Observation Satellites, and learned why these satellites cannot be used to track the school girls kidnapped by the terrorist group in the northern part of the country. They were also introduced to other types of satellites and participated in activities on the applications of TRMM satellite data to monitor flood events in Nigeria. The Global Positioning System (GPS) technology was introduced as a navigational tool to curb criminal activities in the country and participants used the hand-held GPS unit for geocaching. The program culminated in the launching of space clubs in all the participating schools and a teacher from each school received resource materials on DVD to nurture the space club. To assess the impact of the workshop on the knowledge level of the participants in space science, quiz competitions were administered and the average score of the students was above 70%. The enthusiasm displayed by the students, coupled with the brilliant performance in the evaluation tests, indicated that this method of informal education, that linked science to the alleviation of national disasters is viable, not only for stimulating the interest of Nigerian pre-collegiate youths in SST, but also to inspire the young learners and develop their interest in the Sciences, Technology, Engineering and Mathematics (STEM).

  7. Research on key technology of space laser communication network

    Science.gov (United States)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  8. Picard groups of the moduli spaces of semistable sheaves I

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This completes the extension of results of [6] to nodal curves. Let U = U(n,d) denote the moduli space of torsion-free sheaves of rank n and degree d on Y. If Y has only a single ordinary node as singularity, then the variety U(2,d) has a stratification, U = U ∪ U1 ∪ U0, a disjoint union. Points of U1 correspond to torsion-free.

  9. Application of dexterous space robotics technology to myoelectric prostheses

    Science.gov (United States)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  10. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  11. NASA's Space Environments and Effects (SEE) Program: The Pursuit of Tomorrow's Space Technology

    Science.gov (United States)

    Pearson, Steven D.; Hardage, Donna M.

    1998-01-01

    A hazard to all spacecraft orbiting the earth and exploring the unknown in deep space is the existence of a harsh and ever changing environment with its subsequent effects. Some of these environmental hazards, such as plasma, extreme thermal excursions, meteoroids, and ionizing radiation result from natural sources, whereas others, such as orbital debris and neutral contamination are induced by the presence of spacecraft themselves. The subsequent effects can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and advocates technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will provide an overview of the Program's purpose, goals, database management and technical activities. In particular, the SEE Program has been very active in developing improved ionizing radiation models and developing related flight experiments which should aid in determining the effect of the radiation environment on modern electronics.

  12. The Science and Technology of Future Space Missions

    Science.gov (United States)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  13. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  14. VZLUSAT-1: verification of new materials and technologies for space

    Science.gov (United States)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  15. Solar concentrator technology development for space based applications, volume 1

    Science.gov (United States)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the first of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the work done from January 1989 through December 1991.

  16. Solar concentrator technology development for space based applications, volume 2

    Science.gov (United States)

    Pintz, A.; Castle, C. H.; Reimer, R. R.

    1992-01-01

    Thermoelectric conversion using a radio-isotope heat source has been used where outer planetary space craft are too far away for absorbing significant solar energy. Solar dynamic power (SDP) conversion is one technology that offers advantages for applications within the inner planet region. Since SDP conversion efficiency can be 2 to 3 times higher than photovoltaic, the collecting surfaces are much reduced in area and therefore lighter. This becomes an advantage in allocating more weight to launched payloads. A second advantage results for low earth orbit applications. The reduced area results in lower drag forces on the spacecraft and requires less reboost propellant to maintain orbit. A third advantage occurs because of the sun-to-shade cycling while in earth orbit. Photovoltaic systems require batteries to store energy for use when in the shade, and battery life for periods of 10 to 15 years is not presently achievable. For these reasons the Solar Dynamics and Thermal Systems Branch at NASA LeRC has funded work in developing SDP systems. The generic SDP system uses a large parabolic solar concentrator to focus solar energy onto a power conversion device. The concentrators are large areas and must therefore be efficient and have low specific weights. Yet these surfaces must be precise and capable of being stowed in a launch vehicle and then deployed and sometimes unfurled in space. There are significant technical challenges in engineering such structures, and considerable investigation has been made to date. This is the second of two volumes reporting on the research done by the Advanced Manufacturing Center at Cleveland State University to assist NASA LeRC in evaluating this technology. This volume includes the appendices of selected data sets, drawings, and procedures. The objective of the grant was to restore the solar concentrator development technology of the 1960s while improving it with advances that have occurred since then. This report summarizes the

  17. Johnson Space Center Research and Technology Annual Report 1998-1999

    Science.gov (United States)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  18. Working Group 2 Summary:. Space Charge Effects in Bending Systems

    Science.gov (United States)

    Bohn, Courtlandt L.; Emma, Paul J.

    2000-12-01

    Participants in Working Group 2 included: Y. Batygin, C. Bohn, B. Carlsten, J. Ellison, P. Emma, Z. Huang, A. Kabel, R. Kishek, R. Li, P. Musumeci, S. Nagaitsev, J. Qiang, M. Reiser, A. Ruggerio, R. Warnock, and M. Zeitlin.

  19. Augmenting Space Technology Program Management with Secure Cloud & Mobile Services

    Science.gov (United States)

    Hodson, Robert F.; Munk, Christopher; Helble, Adelle; Press, Martin T.; George, Cory; Johnson, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Game Changing Development (GCD) program manages technology projects across all NASA centers and reports to NASA headquarters regularly on progress. Program stakeholders expect an up-to-date, accurate status and often have questions about the program's portfolio that requires a timely response. Historically, reporting, data collection, and analysis were done with manual processes that were inefficient and prone to error. To address these issues, GCD set out to develop a new business automation solution. In doing this, the program wanted to leverage the latest information technology platforms and decided to utilize traditional systems along with new cloud-based web services and gaming technology for a novel and interactive user environment. The team also set out to develop a mobile solution for anytime information access. This paper discusses a solution to these challenging goals and how the GCD team succeeded in developing and deploying such a system. The architecture and approach taken has proven to be effective and robust and can serve as a model for others looking to develop secure interactive mobile business solutions for government or enterprise business automation.

  20. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  1. Student "Facebook" Groups as a Third Space: Between Social Life and Schoolwork

    Science.gov (United States)

    Aaen, Janus; Dalsgaard, Christian

    2016-01-01

    The paper examines educational potentials of "Facebook" groups that are created and managed by students without any involvement from teachers. The objective is to study student-managed "Facebook" groups as a "third space" between the institutional space of teacher-managed "Facebook" groups and the…

  2. Production ready feature recognition based automatic group technology part coding

    Energy Technology Data Exchange (ETDEWEB)

    Ames, A.L.

    1990-01-01

    During the past four years, a feature recognition based expert system for automatically performing group technology part coding from solid model data has been under development. The system has become a production quality tool, capable of quickly the geometry based portions of a part code with no human intervention. It has been tested on over 200 solid models, half of which are models of production Sandia designs. Its performance rivals that of humans performing the same task, often surpassing them in speed and uniformity. The feature recognition capability developed for part coding is being extended to support other applications, such as manufacturability analysis, automatic decomposition (for finite element meshing and machining), and assembly planning. Initial surveys of these applications indicate that the current capability will provide a strong basis for other applications and that extensions toward more global geometric reasoning and tighter coupling with solid modeler functionality will be necessary.

  3. Technological implications of SNAP reactor power system development on future space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, R.V.

    1982-01-01

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development

  4. HI-STAR. Health Improvements Through Space Technologies and Resources: Final Report

    Science.gov (United States)

    Finarelli, Margaret G.

    2002-01-01

    The purpose of this document is to describe a global strategy to integrate the use of space technology in the fight against malaria. Given the well-documented relationship between the vector and its environment, and the ability of existing space technologies to monitor environmental factors, malaria is a strong candidate for the application of space technology. The concept of a malaria early warning system has been proposed in the past' and pilot studies have been conducted. The HI-STAR project (Health Improvement through Space Technologies and Resources) seeks to build on this concept and enhance the space elements of the suggested framework. As such, the mission statement for this International Space University design project has been defined as follows: "Our mission is to develop and promote a global strategy to help combat malaria using space technology". A general overview of malaria, aspects of how space technology can be useful, and an outline of the HI-STAR strategy is presented.

  5. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  6. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  7. Mapping Spaces, Centralizers, and p-Local Finite Groups of Lie Type

    DEFF Research Database (Denmark)

    Laude, Isabelle

    We study the space of maps from the classifying space of a finite p-group to theBorel construction of a finite group of Lie type G in characteristic p acting on itsbuilding. The first main result is a description of the homology with Fp-coefficients,showing that the mapping space, up to p...... between a finite p-group and theuncompleted classifying space of the p-local finite group coming from a finite groupof Lie type in characteristic p, providing some of the first results in this uncompletedsetting....

  8. On determining the isometry group of a Riemannian space

    International Nuclear Information System (INIS)

    Karlhede, A.; Maccallum, M.A.H.

    1982-01-01

    An extension of the recently discussed algorithm for deciding the equivalence problem for Riemannian metrics is presented. The extension determines the structure constants of the isometry group and enables us to obtain some information about its orbits, including the form of the Killing vectors in canonical coordinates. (author)

  9. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  10. Transformational Concepts and Technologies For the Exploration and Development of Space

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2003-01-01

    The performance and cost of available systems and technologies limit the programmatic prospects for the U.S. and the international community to achieve ambitious goals and objectives in future human and robotic exploration and development of space. Innovative applications of emerging technologies and new systems concepts are vital to enabling future space systems and architectures. This paper will discuss new technologies and their application to transformational systems concepts in space utilities and power, space infrastructure, transportation and exploration.

  11. Reduction Potato s hydric soil erosion using space technology

    Science.gov (United States)

    Guyot, E.; Rios, V.; Zelaya, D.; Rios, E.; Lepen, F.; Padilla, P.; Soria, F.

    The potato's crop has an econ omic importance in Tucuman's agricultural PBI (Gross Product Income) because its rank is fourth(4°). Production's potato area is a breakable agro system; its geographic location is in Pedemonte's agro-ecological region so is essential to handle hydric erosion. Therefore, the aim of this work is improve crop's potato irrigation management through satellite information merge with farm's practices. The space technology consented to obtain Digital Model Soil using both unique differential and dual frequency GPS signals and total station. The irrigation practices were carried out due to irrigation management (FAO) and satellite imagine software (ENVI). Preliminary results of this experience allowed to follow the crop's growing through multitemporal study; reprogramming farm's irrigation practices intended for manage reduction hydric erosion and heighten economically its productivity for the next period

  12. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  13. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications

    Science.gov (United States)

    Mason, Lee S.; Schreiber, Jeffrey G.

    2007-01-01

    Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.

  14. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  15. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  16. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    Science.gov (United States)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  17. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    Science.gov (United States)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human

  18. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Science.gov (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  19. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  20. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font

    2012-09-01

    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  1. The cohomology of orbit spaces of certain free circle group actions

    Indian Academy of Sciences (India)

    theorem for a free G-action on S1 ×CPm−1. It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined. Keywords. Characteristic class; finitistic space; free action; index; spectral sequence. 1. Introduction. Let X be a topological space and G a topological group acting continuously on ...

  2. On Spaces of Commuting Elements in Lie Groups

    Science.gov (United States)

    2014-02-25

    Yang - Mills theory. Further work was done by V. Kac and A. Smilga [23]. Work of A. Borel, R. Friedman and J. Morgan [11] addressed the special cases of...points of the Weyl group W acting naturally on H∗(G/T )⊗ T∗[V ], where T∗[V ] denotes the dual of the tensor algebra T[V ] generated by the 4 FREDERICK R...cohomology, the R- dual of ∧k1Rn ⊗ · · · ⊗ ∧kmRn lies in homological degree j = k1 + · · ·+ km of T∗[Ẽ] as well as tensor degree m > 0. The special case with

  3. Localization of epidural space: A review of available technologies.

    Science.gov (United States)

    Elsharkawy, Hesham; Sonny, Abraham; Chin, Ki Jinn

    2017-01-01

    Although epidural analgesia is widely used for pain relief, it is associated with a significant failure rate. Loss of resistance technique, tactile feedback from the needle, and surface landmarks are traditionally used to guide the epidural needle tip into the epidural space (EDS). The aim of this narrative review is to critically appraise new and emerging technologies for identification of EDS and their potential role in the future. The PubMed, Cochrane Central Register of Controlled Clinical Studies, and Web of Science databases were searched using predecided search strategies, yielding 1048 results. After careful review of abstracts and full texts, 42 articles were selected to be included. Newer techniques for localization of EDS can be broadly classified into techniques that (1) guide the needle to the EDS, (2) identify needle entry into the EDS, and (3) confirm catheter location in EDS. An ideal method should be easy to learn and perform, easily reproducible with high sensitivity and specificity, identifies inadvertent intrathecal and intravascular catheter placements with ease, feasible in perioperative setting and have a cost-benefit advantage. Though none of them in their current stages of development qualify as an ideal method, many show tremendous potential. Some techniques are useful in patients with difficult spinal anatomy and infants, and thus are complementary to traditional methods. In addition to improving the existing technology, future research should aim at proving the superiority of these techniques over traditional methods, specifically regarding successful EDS localization, better safety profile, and a favorable cost-benefit ratio.

  4. Scientific and educational center "space systems and technology"

    Science.gov (United States)

    Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.

    2015-10-01

    The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.

  5. Space technology for directly imaging and characterizing exo-Earths

    Science.gov (United States)

    Crill, Brendan P.; Siegler, Nicholas

    2017-09-01

    The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 10-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We describe in this paper a roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. Two of these studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.

  6. THE INFLUENCE OF DIFFERENT TEACHING TECHNOLOGIES ON THE 4TH GRADE PRIMARY SCHOOL GIRLS MOTOR SPACE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2010-09-01

    Full Text Available The researh was conducted in order to examine the effects of Teaching Physical Education on metrics space according to the applicated experimental treatment (of the current and alternative curriculum. The system consisting on 18 variables was applicated in oreder to estimate mobile abilities on the sample of 164 girls, 10-yearold schoolchildren. During the research it was used the experimental method with longitudinal approach. In order to collect datas during the initial and final measuring there were used adeguate testing techniques. In mobile space, after the experimental treatment, there were confirmed some huge differencies. The teaching contents, applicated during teaching process which is accuratly planned with the system of exercises and games, can cause the desired results and transformation in mobile space girls. Also, the results of the research showed that the applied technologies could influence the homogeneity within groups and the distance between them.

  7. NASA space station automation: AI-based technology review. Executive summary

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  8. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology

    Science.gov (United States)

    Siegford, Janice M.; Berezowski, John; Biswas, Subir K.; Daigle, Courtney L.; Gebhardt-Henrich, Sabine G.; Hernandez, Carlos E.; Thurner, Stefan; Toscano, Michael J.

    2016-01-01

    Simple Summary Tracking of individual animals within large groups is increasingly possible offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors and track their activities across time and space with minimal intervention and disturbance. We describe several tracking systems that are currently in use for laying hens and review each, highlighting their strengths and weaknesses, as well as environments or conditions for which they may be most suited, and relevant issues to fit the best technology for the intended purpose. Abstract Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns

  9. Brauer groups and obstruction problems moduli spaces and arithmetic

    CERN Document Server

    Hassett, Brendan; Várilly-Alvarado, Anthony; Viray, Bianca

    2017-01-01

    The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman...

  10. COSTANZA, 1-D 2 Group Space-Dependent Reactor Dynamics of Spatial Reactor with 1 Group Delayed Neutrons

    International Nuclear Information System (INIS)

    Agazzi, A.; Gavazzi, C.; Vincenti, E.; Monterosso, R.

    1964-01-01

    1 - Nature of physical problem solved: The programme studies the spatial dynamics of reactor TESI, in the two group and one space dimension approximation. Only one group of delayed neutrons is considered. The programme simulates the vertical movement of the control rods according to any given movement law. The programme calculates the evolution of the fluxes and temperature and precursor concentration in space and time during the power excursion. 2 - Restrictions on the complexity of the problem: The maximum number of lattice points is 100

  11. Managing the natural disasters from space technology inputs

    Science.gov (United States)

    Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.

    1997-01-01

    Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.

  12. Technology revenue management system for customer groups in hotels

    OpenAIRE

    Guadix Martín, José; Cortés, Pablo; Onieva Giménez, Luis Gerardo; Muñuzuri Sanz, Jesús

    2010-01-01

    This paper discusses revenue management; a technique that focuses on decision making that will maximize profit from the sale of perishable inventory units. New technologies management plays an important role in the development of revenue management techniques. Each new advance in technology management leads to more sophisticated revenue business capabilities. Today decision support revenue management systems and technologies management are crucial factors for the success of ...

  13. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  14. Industry/government seminar on Large Space systems technology: Executive summary

    Science.gov (United States)

    Scala, S. M.

    1978-01-01

    The critical technology developments which the participating experts recommend as being required to support the early generation large space systems envisioned as space missions during the years 1985-2000 are summarized.

  15. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  16. A cooperative power trading system based on satisfaction space technology

    International Nuclear Information System (INIS)

    Matsumoto, K.; Maruo, T.; Mori, N.

    2006-01-01

    This paper proposed a new power trading system model designed to ensure customer cooperation with power suppliers. Designed as an Internet application, the cooperative power trading system modelled power markets using a satisfaction space technology A network model of electric power trading systems was developed to create a communication network system that consisted of suppliers, customers, and auctioneers. When demand exceeded supply, the auctioneer in the trading system requested power reductions from customers. Rewards were paid to maintain the degree of satisfaction of the customers. The supplier's evaluation function was defined as a function of market price and power supply. A power reducing method was developed using a combinatorial optimization technique. Suppliers and customers submitted bids for initial power trading quantities, while the auctioneer decided a market price based on bidding values. After receiving the market price, suppliers and customers submitted a second set of bids for expected power trading quantities. A power reduction plan was then developed by the auctioneer to balance the amount of power supply and demand. The system can be applied to customers whose evaluation functions cannot be estimated beforehand, as the auctioneer was able to choose the most efficient power reduction point selected by consumers using a maximum steep slope method. Simulations conducted to validate the trading system demonstrated that the system is capable of choosing efficient energy reduction plans. 6 refs., 4 tabs., 3 figs

  17. Alkali Metal Thermal to Electric Converter (AMTEC) Technology Development for Potential Deep Space Scientific Missions

    Science.gov (United States)

    Mondt, J.; Sievers, R.

    1998-01-01

    This paper describes the alkali metal thermal to electric converter (AMTEC) technology development effort over the past year. The vapor-vapor AMTEC cell technology is being developed for use with either a solar or nuclear heat sources for space.

  18. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  19. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    Science.gov (United States)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  20. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-15

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N{sub 2}), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N{sub 2}-packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization.

  1. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-01

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N 2 ), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N 2 -packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization

  2. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  3. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  4. Positive-definite functions and unitary representations of locally compact groups in a Hilbert space

    International Nuclear Information System (INIS)

    Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.

    1977-08-01

    It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology

  5. 76 FR 66327 - Iron Mountain Information Management, Inc., Corporate Service Group, Information Technology (IT...

    Science.gov (United States)

    2011-10-26

    ... Employment and Training Administration Iron Mountain Information Management, Inc., Corporate Service Group..., applicable to workers of Iron Mountain Information Management, Inc., Corporate Service Group, Information... Management, Inc., Corporate Service Group, Information Technology (IT) Division. The Department has...

  6. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  7. Constructions of E_{vc} and E_{fbc} for groups acting on CAT(0) spaces

    OpenAIRE

    Farley, Daniel

    2009-01-01

    If G is a group acting properly by semisimple isometries on a proper CAT(0) space X, then we build models for the classifying spaces E_{vc} and E_{fbc} under the additional assumption that the action of G has a well-behaved collection of axes in X. (This hypothesis is described in the paper.) We conjecture that the latter hypothesis is satisfied in a large range of cases. Our classifying spaces resemble those created by Connolly, Fehrman, and Hartglass for crystallographic groups G.

  8. Thunderstorm Effects in Space: Technology Nanosatellite (TEST) Program

    National Research Council Canada - National Science Library

    Voss, Hank; Bennett, Adam

    2005-01-01

    Science Objections: Understand source/propagation of Acoustic Gravity Waves into space environment, investigate lightning-induced electron precipitation and coupling into the radiation belt, investigate thunderstorm...

  9. NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe

    Science.gov (United States)

    Ayazi, Roya

    2013-04-01

    NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe (Roya Ayazi, Secretary General NEREUS nereus.bruxelles@euroinbox.com) NEREUS currently unites 25 European regions and 39 Associate Members with the common objective to spread the use and understanding of space technologies across Europe for the benefit of regions and their citizens. As voice of European Regions, NEREUS serves as an advocate for the regions in matters of space uses and also as a direct channel to the regional users of space technologies (such as local authorities, SMEs, universities and research institutes and citizens). EO/GMES, Global Satellite Navigation and Telecommunication are identified by the NEREUS Political Charta as core areas of cooperation. NEREUS holds the view that broad societal awareness and involvement is vital to fully exploit Euope's space systems. Understanding the potentials of Copernicus and EGNOS/Galileo is in the first place an essential step for the development of the downstream sector. Therefore NEREUS makes special efforts to contribute with numerous network activities to communicate and promote the added value of space uses for public policies but also as valuable new business opportunities. In economic terms space uses are suited to stimulate economic growth and innovation dynamics at regional level. The network community produced several illustrative communication tools (publications, video, web-based tools, mobile NEREUS-exhibition) portraying examples how regions already use space systems and the concrete benefits for the citizens. Most of the NEREUS-publications and video are online: www.nereus-regions.eu. Pooling a considerable wealth of capabilities and expertise, the network offers its members a dynamic platform to collaborate and share experiences and knowledge inter regionally. But these tools were not only the outcome of an intensive regional collaboration but

  10. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Science.gov (United States)

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  11. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  12. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  13. Engine Family Groups for Verification of Clean Diesel Technology

    Science.gov (United States)

    These documents show engine family boxes that represent groupings of engine families with similar characterists (i.e., the emissions standards that the engines were built to) for current and past model years.

  14. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  15. MightySat I: Technology in Space for About a Nickel ($M)

    OpenAIRE

    Davis, R.J.; Monahan, Capt J.F.; Itchkawich, T.J.

    1996-01-01

    MightySat is a United States Air Force (USAF) Phillips Laboratory (PL) multi-mission, small satellite program dedicated to providing frequent, inexpensive, on-orbit demonstrations of high payoff space system technologies. PL is the USAF center for space technology research & development. MightySat platforms provide the on-orbit "lab bench" for responsively testing emerging technologies to ensure their readiness for operational Air Force missions. This paper focuses on the MightySat I vehicle,...

  16. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology.

    Science.gov (United States)

    Siegford, Janice M; Berezowski, John; Biswas, Subir K; Daigle, Courtney L; Gebhardt-Henrich, Sabine G; Hernandez, Carlos E; Thurner, Stefan; Toscano, Michael J

    2016-02-02

    Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns with selecting focal birds.

  17. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology

    Directory of Open Access Journals (Sweden)

    Janice M. Siegford

    2016-02-01

    Full Text Available Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns with selecting focal birds.

  18. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  19. Fundamental group of dual graphs and applications to quantum space time

    International Nuclear Information System (INIS)

    Nada, S.I.; Hamouda, E.H.

    2009-01-01

    Let G be a connected planar graph with n vertices and m edges. It is known that the fundamental group of G has 1 -(n - m) generators. In this paper, we show that if G is a self-dual graph, then its fundamental group has (n - 1) generators. We indicate that these results are relevant to quantum space time.

  20. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    Science.gov (United States)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  1. Department of Defense Space Science and Technology Strategy 2015

    Science.gov (United States)

    2015-01-01

    Nanosatellite Effort (SMDC-ONE) placed five 3U cubesats into orbit. These five satellites represented the first Army- developed spacecraft to be...enabled tactical communications in contested environments and diverse terrains Comms/data exfiltration nanosatellite SMDC Nanosatellite ...Acoustic Suppression (HiPAcS) Technology Development NASA FY 15 Test Orbital transport for nanosatellites Nanolauncher Technologies Initiative

  2. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  3. Fast GC for Space Applications Based on PIES Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a novel analytical instrument which combines the advantages of fast GC and a detector capable of identifying species is proposed. Experiments in the...

  4. Advanced Gas Sensing Technology for Space Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on...

  5. Space power distribution system technology. Volume 3: Test facility design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  6. Farmer groups key to boosting technology adoption in Kenya | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-09-20

    Sep 20, 2013 ... Kenya Medical Research Institute: Nutrition and health. Farmers share lessons and successes. Engaging farmers in evaluating improved crops and practices and sharing their lessons and successes with more farmer groups is proving to be an effective way to scale up techno- logy adoption — and one that ...

  7. Report of the task group on fermentation technology.

    CSIR Research Space (South Africa)

    Andrews, RJ

    1978-09-01

    Full Text Available on the facilities and needs of the South African fermentation industry, with economic and strategic implications, and submit recommendations on areas where further research was required. The Task Group was requested to pay specific attention to the potential...

  8. Group delay functions and its applications in speech technology

    Indian Academy of Sciences (India)

    Fourier transform phase; group delay functions; feature extraction from phase; feature switching; mutual information; K-L divergence. 1. Introduction. Speech is the output of a quasistationary process, since the characteristics of speech change con- tinuously with time. As the ear perceives frequencies to understand sound, ...

  9. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  10. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  11. Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Current material technologies limit space exploration and vehicle performance due to often unnecessary mass increase from copper wiring or heavy structural...

  12. Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.

    2000-01-01

    As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.

  13. Discussion on Application of Space Materials and Technological Innovation in Dynamic Fashion Show

    Science.gov (United States)

    Huo, Meilin; Kim, Chul Soo; Zhao, Wenhan

    2018-03-01

    In modern dynamic fashion show, designers often use the latest ideas and technology, and spend their energy in stage effect and overall environment to make audience’s watching a fashion show like an audio-visual feast. With rapid development of China’s science and technology, it has become a design trend to strengthen the relationship between new ideas, new trends and technology in modern art. With emergence of new technology, new methods and new materials, designers for dynamic fashion show stage art can choose the materials with an increasingly large scope. Generation of new technology has also made designers constantly innovate the stage space design means, and made the stage space design innovated constantly on the original basis of experiences. The dynamic clothing display space is on design of clothing display space, layout, platform decoration style, platform models, performing colors, light arrangement, platform background, etc.

  14. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  15. Development of Countermeasure and Application technologies to Space Radiation

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-01

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  16. Development of Countermeasure and Application technologies to Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-15

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  17. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  19. Generation of symmetry coordinates for crystals using multiplier representations of the space groups

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing

    1978-01-01

    Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of great importance to have a general method, which may be applied for any crystal at any wave vector, to generate these. The multiplier representations of the space groups as given by Kovalev...... and the projection-operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D36 space group, and the theoretical background for the representations of space groups in general is reviewed and illustrated on the example above. It is desirable to perform the projection...... of symmetry coordinates in such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal. The detailed illustrations should make it simple to apply the theory in any other case....

  20. Space power needs and forecasted technologies for the 1990s and beyond

    International Nuclear Information System (INIS)

    Buden, D.; Albert, T.

    1987-01-01

    A new generation of reactors for electric power will be available for space missions to satisfy military and civilian needs in the 1990s and beyond. To ensure a useful product, nuclear power plant development must be cognizant of other space power technologies. Major advances in solar and chemical technologies need to be considered in establishing the goals of future nuclear power plants. In addition, the mission needs are evolving into new regimes. Civilian and military power needs are forecasted to exceed anything used in space to date. Technology trend forecasts have been mapped as a function of time for solar, nuclear, chemical, and storage systems to illustrate areas where each technology provides minimum mass. Other system characteristics may dominate the usefulness of a technology on a given mission. This paper will discuss some of these factors, as well as forecast future military and civilian power needs and the status of technologies for the 1990s and 2000s. 6 references

  1. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  2. Large space system: Charged particle environment interaction technology

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.

  3. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  4. Information Technology Support For Debiasing Group Judgments: An Empirical Evaluation.

    Science.gov (United States)

    Benbasat; Lim

    2000-09-01

    Human judgments, made by either individuals or groups, have been found to contain biases. One of the most prevalent biases identified is the availability bias, associated with the phenomenon that events which are more available to human memory are correspondingly judged as occurring more frequently or as being more important. This paper is concerned with how to reduce the availability bias in the group context. It reports an experiment in which two computer-based support facilities, electronic brainstorming and electronic mail, were tested for their contributions to reducing the availability bias. A 2 x 2 experimental design was used: electronic brainstorming (available or not) and communication mode (electronic or verbal). Forty teams of three members each were asked to work on a task involving the rating of the importance of a number of items associated with a secretary's task. Both electronic brainstorming and electronic communication helped reduce the availability bias. In both cases, the reduction in bias was due to increased attention paid to items that were found to have low availability in the absence of these support tools. Copyright 2000 Academic Press.

  5. Space Technology Game Changing Development Astrobee: ISS Robotic Free Flyer

    Science.gov (United States)

    Bualat, Maria Gabriele

    2015-01-01

    Astrobee will be a free-flying robot that can be remotely operated by astronauts in space or by mission controllers on the ground. NASA is developing Astrobee to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station. These IVA tasks include interior environmental surveys (e.g., sound level measurement), inventory and mobile camera work. Astrobee will also serve as a platform for robotics research in microgravity. Here we describe the Astrobee project objectives, concept of operations, development approach, key challenges, and initial design.

  6. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  7. Selenomethionine substitution of orotidine-5-monophosphate decarboxylase causes a change in crystal contacts and space group

    DEFF Research Database (Denmark)

    Poulsen, Jens-Christian Navarro; Harris, Pernille; Jensen, Kaj Frank

    2001-01-01

    with the inhibitor 1-(5'-phospho- -D-ribofuranosyl)barbituric acid crystallizes under similar conditions as the native enzyme. In contrast to the native enzyme, where the crystals belong to the orthorhombic space group P212121, the SeMet-substituted enzyme crystallizes in the monoclinic space group P21......-wavelength anomalous dispersion technique, both native and SeMet-substituted proteins have been produced and purified. During the production of SeMet ODCase, it was observed that SeMet was the only amino acid that it was necessary to add to the defined medium during expression. SeMet-substituted ODCase in complex...

  8. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  9. SUMMARY OF THE RF TECHNOLOGY WORKING GROUP (T3).

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris

    2002-09-23

    The next-generation linear collider will require high-power microwave sources and accelerating systems vastly more challenging than its predecessor, the Stanford Linear Collider (SLC). Cost efficiency will demand high accelerating gradient to achieve beam energies five to ten times greater than in the SLC. Luminosity goals 10,000 times greater than the SLC demand efficient creation of the highest possible beam power without degradation of beam emittance. The past decade of R&D has demonstrated the feasibility of two technical approaches for building a 500-GeV center-of-mass system (cms) collider with attractive options for future upgrade. The TESLA R&D program offers the prospect of 1.3-GHz superconducting rf (srf) linacs with 23.4 MV/m gradient that can be upgraded later to 35 MV/m gradient by doubling the number of klystrons and the cryo-plant, to reach 800 GeV cms [1]. The Next Linear Collider (NLC) and Japanese Linear Collider (JLC) R&D programs offer the prospect of 11.4-GHz room-temperature linacs that can later be extended to 1 TeV by doubling the number of structures and klystrons, and to 1.5 TeV by additionally increasing gradient or length [2-4]. Both programs offer a 500-GeV linear collider project start within the next few years (2-3 years for TESLA, 3-4 years for NLC) based on available technology validated by experiments at several complementary test facilities. Both offer their upgrades as a result of further progress in R&D that is already underway.

  10. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  11. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  12. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  13. Fully Reusable Access to Space Technology (FAST) Methane Rocket

    Science.gov (United States)

    2007-03-16

    baseline design – NASA Ames partnered for aerothermal and TPS – Reusable Merlin engine option by SpaceX – Conceptual Research Corp design Key impacts......FAST) 5b. GRANT NUMBER Methane Rocket 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lt Cole Doupe, Jess Sponable, Jeffrey Zweber (AFRL/VA); Richard

  14. Radioisotope Power: A Key Technology for Deep Space Explorations

    Science.gov (United States)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  15. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    Science.gov (United States)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  16. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  17. Knowledge Transfer Plan of Action for Biomass. Working Group Technology and Knowledge August 2003 - August 2004

    International Nuclear Information System (INIS)

    Van Ree, R.; Beekes, M.L.; Knoef, H.; Koppejan, J.; Driegen, J.; Vos, R.

    2005-05-01

    As part of the title Plan of Action six working groups are involved in finding solutions to the most important bottlenecks in the market introduction of bio-energy systems. In the working group on Technology and Knowledge an overview is given of the best biomass technology/product combinations [nl

  18. Functional renormalization group approach to SU(N ) Heisenberg models: Real-space renormalization group at arbitrary N

    Science.gov (United States)

    Buessen, Finn Lasse; Roscher, Dietrich; Diehl, Sebastian; Trebst, Simon

    2018-02-01

    The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU (N )-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N , we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU (N ) models. In a case study of the square-lattice SU (N ) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N . In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018), 10.1103/PhysRevB.97.064416] we formulate a momentum-space pf-FRG approach for SU (N ) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.

  19. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  20. Brushless dc motors. [applications in non-space technology

    Science.gov (United States)

    1975-01-01

    Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.

  1. Overcoming Learning Time and Space Constraints through Technological Tool

    Science.gov (United States)

    Zarei, Nafiseh; Hussin, Supyan; Rashid, Taufik

    2015-01-01

    Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigates how the Learning Management Blog (LMB) overcomes…

  2. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  3. Future In-Space Operations (FISO): A Working Group and Community Engagement

    Science.gov (United States)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  4. Grouping horses according to gender-Effects on aggression, spacing and injuries

    DEFF Research Database (Denmark)

    Meisfjord Jørgensen, Grete Helen; Borsheim, Linn; Mejdell, Cecilie Marie

    2009-01-01

    of 66 horses were recruited from 4 different farms in Norway and Denmark and divided into six batches. Within each batch, horses were allotted into one mare group, one gelding group and one mixed gender group, with most groups consisting of three or four animals. After 4-6 weeks of acclimatisation......Many horse owners tend to group horses according to gender, in an attempt to reduce aggressive interactions and the risk of injuries. The aim of our experiment was to test the effects of such gender separation on injuries, social interactions and individual distance in domestic horses. A total...... before grouping, day 1 after grouping and after 4-6 weeks. No significant effect of gender composition was found on social interactions (P > 0.05), spacing (P > 0.07) or injuries (P > 0.23). Eighty percent of all aggressive interactions recorded were threats, not involving physical contact. Horses...

  5. Space power technology for the twenty-first century (SPT21)

    International Nuclear Information System (INIS)

    Borger, W.U.; Massie, L.D.

    1988-01-01

    During the spring and summer months of 1987, the Aero Propulsion Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio in cooperation with the Air Force Space Technology Center at Kirtland AFB, New Mexico, undertook an initiative to develop a Strategic Plan for Space Power Technology Development. The initiative was called SPT21, Space Power Technology for the Twenty-First Century. The planning process involved the participation of other Government organizations (U.S. Army, Navy, DOE and NASA) along with major aerospace companies and universities. Following an SPT21 kickoff meeting on 28 May 1987, detailed strategic planning was accomplished through seven (7) Space Power Technology Discipline Workshops commencing in June 1987 and concluding in August 1987. Technology Discipline Workshops were conducted in the following areas: (1) Solar Thermal Dynamic Power Systems (2) Solar Photovoltaic Cells and Arrays (3) Thermal Management Technology (4) Energy Storage Technology (5) Nuclear Power Systems Technology (6) Power Conditioning, Distribution and Control and (7) Systems Technology/Advanced Concepts. This technical paper summarizes the planning process and describes the salient findings and conclusions of the workshops

  6. Future role and significance of space activities in reflection of global social, technological and economic trends

    Science.gov (United States)

    Diekmann, Andreas; Richarz, Hans.-Peter

    The paper describes the interrelation of space activities and global socio-economic trends like "globalisation of markets" and "renaissance of fine arts". The interrelation reveals the economic strategic, technological and scientific dimension of space activities and their benefits to mankind. Then, the significance and perspectives of space activities in these dimensions are examined in more detail. The paper calls (1) for a more visible initiative to employ space activities to tackle urgent questions of global change and development, and (2) for a stronger impetus to secure European economic position in space sector as a key industry of the 21st century.

  7. Contagious architecture: computation, aesthetics, and space (technologies of lived abstraction)

    CERN Document Server

    Parisi, Luciana

    2013-01-01

    In Contagious Architecture, Luciana Parisi offers a philosophical inquiry into the status of the algorithm in architectural and interaction design. Her thesis is that algorithmic computation is not simply an abstract mathematical tool but constitutes a mode of thought in its own right, in that its operation extends into forms of abstraction that lie beyond direct human cognition and control. These include modes of infinity, contingency, and indeterminacy, as well as incomputable quantities underlying the iterative process of algorithmic processing. The main philosophical source for the project is Alfred North Whitehead, whose process philosophy is specifically designed to provide a vocabulary for "modes of thought" exhibiting various degrees of autonomy from human agency even as they are mobilized by it. Because algorithmic processing lies at the heart of the design practices now reshaping our world -- from the physical spaces of our built environment to the networked spaces of digital culture -- the nature o...

  8. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  9. Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves

    DEFF Research Database (Denmark)

    Morita, Shigeyuki; Penner, Robert

    modulo N are derived for all N. Furthermore, the first Johnson homomorphism, which is defined from the classical Torelli group to the third exterior power of the homology of the surface, is shown to lift to an explicit canonical 1-cocycle of the Teichmueller space. The main tool for these results...... cocycle lifts of the higher Johnson homomorphisms....

  10. Lie groups and symmetric spaces in memory of F. I. Karpelevich

    CERN Document Server

    Gindikin, S G

    2003-01-01

    The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician F. I. Karpelevich (1927-2000).

  11. Making Breakthroughs in the Turbulent Decade: China's Space Technology During the Cultural Revolution.

    Science.gov (United States)

    Li, Chengzhi; Zhang, Dehui; Hu, Danian

    2017-09-01

    This article discusses why Chinese space programs were able to develop to the extent they did during the turbulent decade of the Cultural Revolution (1966-1976). It first introduces briefly what China had accomplished in rocket and missile technology before the Cultural Revolution, including the establishment of a system for research and manufacturing, breakthroughs in rocket technology, and programs for future development. It then analyzes the harmful impacts of the Cultural Revolution on Chinese space programs by examining activities of contemporary mass factions in the Seventh Ministry of Machinery Industry. In the third section, this article presents the important developments of Chinese space programs during the Cultural Revolution and explores briefly the significance of these developments for the future and overall progress in space technology. Finally, it discusses the reasons for the series of developments of Chinese space technology during the Cultural Revolution. This article concludes that, although the Cultural Revolution generated certain harmful impacts on the development of Chinese space technology, the Chinese essentially accomplished their scheduled objectives in their space program, both because of the great support of top Chinese leaders, including the officially disgraced Lin Biao and the Gang of Four, and due to the implementation of many effective special measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  13. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  14. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  15. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  16. "A Really Nice Spot": Evaluating Place, Space, and Technology in Academic Libraries

    Science.gov (United States)

    Khoo, Michael J.; Rozaklis, Lily; Hall, Catherine; Kusunoki, Diana

    2016-01-01

    This article describes a qualitative mixed-method study of students' perceptions of place and space in an academic library. The approach is informed by Scott Bennett's model of library design, which posits a shift from a "book-centered" to a technology supported "learning centered" paradigm of library space. Two surveys…

  17. The Cube and the Poppy Flower: Participatory Approaches for Designing Technology-Enhanced Learning Spaces

    Science.gov (United States)

    Casanova, Diogo; Mitchell, Paul

    2017-01-01

    This paper presents an alternative method for learning space design that is driven by user input. An exploratory study was undertaken at an English university with the aim of redesigning technology-enhanced learning spaces. Two provocative concepts were presented through participatory design workshops during which students and teachers reflected…

  18. The impact of space research on semiconductor crystal growth technology

    Science.gov (United States)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  19. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  20. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    Science.gov (United States)

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  1. Industrial benefits and future expectations in materials and processes resulting from space technology

    Science.gov (United States)

    Meyer, J. D.

    1977-01-01

    Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.

  2. The role of Spaces and Occasions in the Transformation of Information Technologies

    DEFF Research Database (Denmark)

    Clausen, Christian; Koch, Christian

    1999-01-01

    The article adopts the view that technological change is a social process involving negotiations of a network of players. It aims at informing management of technology by identifying occasions and spaces where IT can be adressed and changed. the focus is on Enterprise Resource Planning systems....

  3. Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.D.

    1995-02-01

    The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

  4. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  5. Analysis and Geometry in Metric Spaces: Sobolev Mappings, the Heisenberg Group, and the Whitney Extension Theorem

    Science.gov (United States)

    Zimmerman, Scott

    This thesis focuses on analysis in and the geometry of the Heisenberg group as well as geometric properties of Sobolev mappings. It begins with a detailed introduction to the Heisenberg group. After, we see a new and elementary proof for the structure of geodesics in the sub-Riemannian Heisenberg group. We also prove that the Carnot-Caratheodory metric is real analytic away from the center of the group. Next, we prove a version of the classical Whitney Extension Theorem for curves in the Heisenberg group. Given a real valued function defined on a compact set in Euclidean space, the classical Whitney Extension Theorem from 1934 gives necessary and sufficient conditions for the existence of a Ck extension defined on the entire space. We prove a version of the Whitney Extension Theorem for C1 , horizontal curves in the Heisenberg group. We then turn our attention to Sobolev mappings. In particular, given a Lipschitz map from a compact subset Z of Euclidean space into a Lipschitz connected metric space, we construct a Sobolev extension defined on any bounded domain containing Z. Finally, we generalize a classical result of Dubovitskiǐ for smooth maps to the case of Sobolev mappings. In 1957, Dubovitskiǐ generalized Sard's classical theorem by establishing a bound on the Hausdorff dimension of the intersection of the critical set of a smooth map and almost every one of its level sets. We show that Dubovitskiǐ's theorem can be generalized to Wk,p loc (R n,Rm) mappings for all positive integers k and p > n.

  6. Determining sociability, social space, and social presence in (a)synchronous collaborative groups.

    Science.gov (United States)

    Kreijns, Karel; Kirschner, Paul A; Jochems, Wim; Van Buuren, Hans

    2004-04-01

    The effectiveness of group learning in asynchronous distributed learning groups depends on the social interaction that takes place. This social interaction affects both cognitive and socioemotional processes that take place during learning, group forming, establishment of group structures, and group dynamics. Though now known to be important, this aspect is often ignored, denied or forgotten by educators and researchers who tend to concentrate on cognitive processes and on-task contexts. This "one-sided" educational focus largely determines the set of requirements in the design of computer-supported collaborative learning (CSCL) environments resulting in functional CSCL environments. In contrast, our research is aimed at the design and implementation of sociable CSCL environments which may increase the likelihood that a sound social space will emerge. We use a theoretical framework that is based upon an ecological approach to social interaction, centering on the concept of social affordances, the concept of the sociability of CSCL environments, and social presence theory. The hypothesis is that the higher the sociability, the more likely that social interaction will take place or will increase, and the more likely that this will result in an emerging sound social space. In the present research, the variables of interest are sociability, social space, and social presence. This study deals with the construction and validation of three instruments to determine sociability, social space, and social presence in (a)synchronous collaborating groups. The findings suggest that the instruments have potential to be useful as measures for the respective variables. However, it must be realized that these measures are "first steps."

  7. Status of Mirror Technology for the Next Generation Space Telescope

    Science.gov (United States)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight

  8. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  9. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  10. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  11. IMIA Working Group 15 : Technology assessment and quality development in health informatics

    NARCIS (Netherlands)

    Gennip, E.M.S.J. van

    1999-01-01

    The working group on technology assessment and quality development in health informatics was established as a follow-up to the recommendations made at the IMIA-ISTAHC working conference in 1990. The working group was approved by the IMIA General Assembly at Kyoto, September, 1993. The working group

  12. Who Has the Power Over Spaces of Innovation? The Role of Technology in ICT-Triggered Change Processes

    Science.gov (United States)

    Linde, Anneli; Linderoth, Henrik C. J.

    ICT-triggered change processes are known to be unpredictable and technologies are not used the way designers or managers intend because of actor groups' innovation when ICT is deployed. The examination of sources of innovation in ICT-triggered change processes has had a socio-cognitive bias toward learning and the way actors make sense of ICT. This paper addresses the role of technology for actors in spaces of innovation. The aim of the paper is to analyze how features of ICT shape spaces for innovation in ICT-triggered change processes. To achieve this, two longitudinal case studies of the deployment of two ICT systems are analyzed. By analyzing features as programs of action inscribed in an ICT, we conclude that programs of action can be grouped along the dimensions "use/not use," "what to do," and "how to do." These dimensions will shape actor groups' spaces of innovation and their potential influence on deployment of ICT. Furthermore, we address how inscribed programs of action shape the need for temporal alliances between actor groups during the deployment of an ICT system.

  13. Technology Challenges and Opportunities for Very Large In-Space Structural Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2009-01-01

    Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.

  14. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  15. Solid rocket technology advancements for space tug and IUS applications

    Science.gov (United States)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  16. Planning and managing future space facility projects. [management by objectives and group dynamics

    Science.gov (United States)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  17. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    Science.gov (United States)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  18. What it Takes to Successfully Implement Technology for Aging in Place: Focus Groups With Stakeholders.

    Science.gov (United States)

    Peek, Sebastiaan Theodorus Michaël; Wouters, Eveline J M; Luijkx, Katrien G; Vrijhoef, Hubertus J M

    2016-05-03

    There is a growing interest in empowering older adults to age in place by deploying various types of technology (ie, eHealth, ambient assisted living technology, smart home technology, and gerontechnology). However, initiatives aimed at implementing these technologies are complicated by the fact that multiple stakeholder groups are involved. Goals and motives of stakeholders may not always be transparent or aligned, yet research on convergent and divergent positions of stakeholders is scarce. To provide insight into the positions of stakeholder groups involved in the implementation of technology for aging in place by answering the following questions: What kind of technology do stakeholders see as relevant? What do stakeholders aim to achieve by implementing technology? What is needed to achieve successful implementations? Mono-disciplinary focus groups were conducted with participants (n=29) representing five groups of stakeholders: older adults (6/29, 21%), care professionals (7/29, 24%), managers within home care or social work organizations (5/29, 17%), technology designers and suppliers (6/29, 21%), and policy makers (5/29, 17%). Transcripts were analyzed using thematic analysis. Stakeholders considered 26 different types of technologies to be relevant for enabling independent living. Only 6 out of 26 (23%) types of technology were mentioned by all stakeholder groups. Care professionals mentioned fewer different types of technology than other groups. All stakeholder groups felt that the implementation of technology for aging in place can be considered a success when (1) older adults' needs and wishes are prioritized during development and deployment of the technology, (2) the technology is accepted by older adults, (3) the technology provides benefits to older adults, and (4) favorable prerequisites for the use of technology by older adults exist. While stakeholders seemed to have identical aims, several underlying differences emerged, for example, with regard

  19. Applying Space Technology to Enhance Control of an Artificial Arm

    Science.gov (United States)

    Atkins, Diane; Donovan, William H.; Novy, Mara; Abramczyk, Robert

    1997-01-01

    At the present time, myoelectric prostheses perform only one function of the hand: open and close with the thumb, index and middle finger coming together to grasp various shaped objects. To better understand the limitations of the current single-function prostheses and the needs of the individuals who use them, The Institute for Rehabilitation and Research (TIRR), sponsored by the National Institutes of Health (August 1992 - November 1994), surveyed approximately 2500 individuals with upper limb loss. When asked to identify specific features of their current electric prosthesis that needed improvement, the survey respondents overwhelmingly identified the lack of wrist and finger movement as well as poor control capability. Simply building a mechanism with individual finger and wrist motion is not enough. Individuals with upper limb loss tend to reject prostheses that require continuous visual monitoring and concentration to control. Robotics researchers at NASA's Johnson Space Center (JSC) and Rice University have made substantial progress in myoelectric teleoperation. A myoelectric teleoperation system translates signals generated by an able-bodied robot operator's muscles during hand motions into commands that drive a robot's hand through identical motions. Farry's early work in myoelectric teleoperation used variations over time in the myoelectric spectrum as inputs to neural networks to discriminate grasp types and thumb motions. The resulting schemes yielded up to 93% correct classification on thumb motions. More recently, Fernandez achieved 100% correct non-realtime classification of thumb abduction, extension, and flexion on the same myoelectric data. Fernandez used genetic programming to develop functions that discriminate between thumb motions using myoelectric signal parameters. Genetic programming (GP) is an evolutionary programming method where the computer can modify the discriminating functions' form to improve its performance, not just adjust

  20. Large space system - Charged particle environment interaction technology. [effects on high voltage solar array performance

    Science.gov (United States)

    Stevens, N. J.; Roche, J. C.; Grier, N. T.

    1979-01-01

    Large high-voltage space power systems proposed for future applications in both low earth orbit and geosynchronous altitudes must operate in the space charged-particle environment with possible interactions between this environment and the high-voltage surfaces. The paper reviews the ground experimental work to provide indicators for the interactions that could exist in the space power system. A preliminary analytical model of a large space power system is constructed using the existing NASA Charging Analyzer Program, and its performance in geosynchronous orbit is evaluated. The analytical results are used to illustrate the regions where detrimental interactions could exist and to establish areas where future technology is required.

  1. Structure of glutaminyl cyclase from Drosophila melanogaster in space group I4

    International Nuclear Information System (INIS)

    Kolenko, Petr; Koch, Birgit; Rahfeld, Jens-Ulrich; Schilling, Stephan; Demuth, Hans-Ulrich; Stubbs, Milton T.

    2013-01-01

    The structure of ligand-free glutaminyl cyclase from D. melanogaster has been determined in a novel crystal form belonging to space group I4. The structure of ligand-free glutaminyl cyclase (QC) from Drosophila melanogaster (DmQC) has been determined in a novel crystal form. The protein crystallized in space group I4, with unit-cell parameters a = b = 122.3, c = 72.7 Å. The crystal diffracted to a resolution of 2 Å at the home source. The structure was solved by molecular replacement and was refined to an R factor of 0.169. DmQC exhibits a typical α/β-hydrolase fold. The electron density of three monosaccharides could be localized. The accessibility of the active site will facilitate structural studies of novel inhibitor-binding modes

  2. Space Technology: Game Changing Development Deep Space Engine (DSE) 100 lbf and 5 lbf Thruster Development and Qualification

    Science.gov (United States)

    Barnett, Gregory

    2017-01-01

    Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.

  3. Genetic Assessment of the Space Environment using MEMS Technologies

    Science.gov (United States)

    Jana, Dilip; Saint Jean, Dileon; Abdurakhimov, Siyovush; Kopparthy, Varun; Nestorova, Gergana; Pal, Nabamita; Nguyen, Nam; Derosa, Pedro; Sawyer, Lee; Crews, Niel; Decoster, Mark; Louisiana Tech University Team

    For decades, researchers have studied the damage to DNA by high-energy radiation. Radiation induced damage include DNA strand breaks, base damage and base substitution. Currently, though, scientists are discovering that it is, in fact, the non-irradiated cells adjacent to the irradiated cells are the primary source of carcinogenesis. To address these ``bystander effects'', we developed a radiation detector using multi-clad scintillating fibers and silicon pixel arrays to study the effect of radiation on gene expression changes using Microelectromechanical systems (MEMS) technology. The efficiency of proton energy deposition on each of the different layers of the radiation tracking detector has been simulated using GEANT4 toolkit and tested experimentally using the detector. The position of the proton beam was determined from the intensity of the output signal from orthogonal planes of the tracking detector. We have developed and tested an instrument that automates the extraction and quantification of RNA from living cells that automates the collection, purification, and reverse transcription (RT) of RNA from a precisely-defined area of the biological sample. NASA EPSCOR GRANT 13-EPSCoR-0027.

  4. Some isomorphic function and Fock space representations of the dual model superconformal group

    International Nuclear Information System (INIS)

    Horsley, R.

    1977-12-01

    The dual model superconformal group is first constructed as the set of transformations which preserve up to a variable factor a suitably defined metric in a superspace (Z, theta) where Z is (essentially) a complex number and theta is a Grassmann parameter. This means one has a graded Lie group. Superfunctions are then found which enable some super unitary representations to be constructed. This necessitates the introduction of enlarged matrices - some submatrices of which are composed of Grassmann elements. Finally isomorphic (up to a factor) Fock space representations are exhibited. (Auth.)

  5. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    Science.gov (United States)

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  6. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    Science.gov (United States)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  7. Technology Required to Image and Characterize an exo-Earth from Space

    Science.gov (United States)

    Crill, Brendan

    2018-01-01

    NASA's Exoplanet Exploration Program (ExEP) guides the development of technology that enables the direct imaging and characterization of exo-Earths in the habitable zone of Sun-like stars with future space observatories. Here we present the 2018 ExEP Technology Gap List, an annual update to ExEP's list of technologies, to be advanced in the next 1-5 years. Key technology gaps are starlight suppression with a coronagraph (internal occulters) or a starshade (external occulters), enabling imaging at extreme contrast (more than 10 billion) by blocking on-axis starlight, while allowing the reflected light of off-axis exoplanets be detected. Building and operating a space coronagraph capable of imaging an exo-Earth will require new technologies beyond those of WFIRST, the first high-contrast coronagraph in space. A starshade has never been used in a space mission and requires new capabilities in precision deployment of large structures, starlight suppression, and in formation sensing and control. We review the current state-of-the-art in coronagraph and starshade technology and the performance level that must be achieved to discover and characterize Earth analogs.

  8. Testing the accuracy of redshift-space group-finding algorithms

    Science.gov (United States)

    Frederic, James J.

    1995-04-01

    Using simulated redshift surveys generated from a high-resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimenisons. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra & Geller (1982) uses a generous linking length designed to find 'fingers of god,' while that of Nolthenius & White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depends on the purpose for which groups are to be studied. The Huchra & Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius & White algorithm misses high velocity dispersion groups and members but is less likely to include interlopers in its group assignments. Adjusting the parameters of either algorithm results in a trade-off between group accuracy and completeness. In a companion paper we investigate the accuracy of virial mass estimates and clustering properties of groups identified using these algorithms.

  9. Topological entropy and renormalization group flow in 3-dimensional spherical spaces

    International Nuclear Information System (INIS)

    Asorey, M.; Beneventano, C.G.; Cavero-Peláez, I.; D’Ascanio, D.; Santangelo, E.M.

    2015-01-01

    We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a≪1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6/a 2 . For masses lower than ((2π)/β), this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol , is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV >S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.

  10. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  11. An assessment of space reactor technology needs and recommendations for development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C. [Sandia National Labs., Albuquerque, NM (United States); Wiley, R.L. [Consultant, Columbia, MD (United States)

    1995-11-01

    In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. a systematic approach was used to explore needs at several levels that are increasingly specific. Level 0 -- general trends and issues; Level 1 -- generic space capabilities to address trends; Level 2 -- requirements to support capabilities; Level 3 -- system types capable of meeting requirements; Level 4 --generic reactor system types; and Level 5 -- specific baseline systems. Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper.

  12. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space

    Science.gov (United States)

    Bareza, Nestor D.; Hermosa, Nathaniel

    2016-05-01

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein’s postulate in special relativity. This has been a basic assumption in light’s various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light’s group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam’s divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

  13. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.

    Science.gov (United States)

    Bareza, Nestor D; Hermosa, Nathaniel

    2016-05-27

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

  14. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    Science.gov (United States)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products

  15. Regional Centres for Space Science and Technology Education Affiliated to the United Nations

    Science.gov (United States)

    Aquino, A. J. A.; Haubold, H. J.

    2010-05-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for space science and technology education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief report on the status of the operation of the Regional Centres and draws attention to their educational activities.

  16. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    Science.gov (United States)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  17. Prospective areas in the production technology of scientific equipment for space research

    Science.gov (United States)

    Breslavets, A. V.

    1974-01-01

    The average labor of individual types of operations in the percentage ratio of the total labor consumption of manufacturing scientific instruments and apparatus for space research is presented. The prospective areas in the production technology of billet, machining, mechanical assembly, installation and assembly, adjustment and regulation and testing and control operations are noted. Basic recommendations are made with respect to further reduction of labor consumption and an increase in the productivity of labor when manufacturing scientific equipment for space research.

  18. Toward a standardized structural-functional group connectome in MNI space.

    Science.gov (United States)

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain

  19. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  20. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  1. The applicability of DOE solar cell and array technology to space power

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    Current trends in terrestrial photovoltaics that might benefit future space power needs are reviewed. Emphasis is placed on the Low-Cost Solar Array Project with attention given to the materials task, the silicon sheet task, the production processes and equipment task, and encapsulation. The Photovoltaic Concentrator Technology Development Project is also discussed. It is concluded that terrestrial photovoltaic technology that has either been developed to date or is currently under development will not have any significant effect on the performance or cost of solar cells and panels for space over the near term (1980-1990).

  2. Electron Emitter for small-size Electrodynamic Space Tether using MEMS Technology

    DEFF Research Database (Denmark)

    Fleron, René A. W.; Blanke, Mogens

    2004-01-01

    system with focus on electron emitter design and manufacture using micro-electro-mechanical- system (MEMS) technology. The paper addresses the system concepts of a small size electrodynamic tether mission and shows a novel electron emitter for the 1-2 mA range where altitude can be effectively affected...... and the current flowing in the electrodynamic space tether. Applications to small spacecraft, or space debris in the 1–10 kg range, possess difficulties with electron emission technology, as low power emitting devices are needed. This paper addresses the system concepts of a small spacecraft electrodynamic tether...

  3. SMART-1 technology, scientific results and heritage for future space missions

    Science.gov (United States)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive

  4. NASA advanced space photovoltaic technology-status, potential and future mission applications

    Science.gov (United States)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  5. Infrared and submillimeter space missions in the coming decade programmes, programmatics, and technology

    CERN Document Server

    Sauvage, Marc; Gallais, Pascal; Vigroux, Laurent

    1996-01-01

    A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.

  6. The Group Evacuation Behavior Based on Fire Effect in the Complicated Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2014-01-01

    Full Text Available In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.

  7. NASA's Space Environments and Effects Program: Technology for the New Millennium

    Science.gov (United States)

    Hardage, Donna M.; Pearson, Steven D.

    2000-01-01

    Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.

  8. Profile of Nursing research groups of the National Council for Scientific and Technological Development

    Directory of Open Access Journals (Sweden)

    Andréia Cristina Barbosa Costa

    2014-09-01

    Full Text Available Nursing has been developing in the research field, therefore, it is important to be inserted into a research group of the National Council for Scientific and Technological Development, a funding agency that supports studies and strengthens the knowledge. This is a descriptive, retrospective and cross-sectional study that aimed to investigate the profile of Nursing research groups registered in the National Council for Scientific and Technological Development. A survey of data from research groups in Nursing took place in the first half of 2012, finding 440 groups. The Southeast region was the one that presented more research groups registered (49.5%. The leaders of the groups had from one to ten productions with Impact Factor (49.1%. It is concluded that Nursing is expanding in the research field, and that many Brazilian regions need to be encouraged, as this is a form of developing the area.

  9. Internet Technologies for Space-based Communications: State of the Art and Challenges

    Science.gov (United States)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to

  10. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  11. Older Adults Perceptions of Technology and Barriers to Interacting with Tablet Computers: A Focus Group Study.

    Science.gov (United States)

    Vaportzis, Eleftheria; Clausen, Maria Giatsi; Gow, Alan J

    2017-10-04

    New technologies provide opportunities for the delivery of broad, flexible interventions with older adults. Focus groups were conducted to: (1) understand older adults' familiarity with, and barriers to, interacting with new technologies and tablets; and (2) utilize user-engagement in refining an intervention protocol. Eighteen older adults (65-76 years old; 83.3% female) who were novice tablet users participated in discussions about their perceptions of and barriers to interacting with tablets. We conducted three separate focus groups and used a generic qualitative design applying thematic analysis to analyse the data. The focus groups explored attitudes toward tablets and technology in general. We also explored the perceived advantages and disadvantages of using tablets, familiarity with, and barriers to interacting with tablets. In two of the focus groups, participants had previous computing experience (e.g., desktop), while in the other, participants had no previous computing experience. None of the participants had any previous experience with tablet computers. The themes that emerged were related to barriers (i.e., lack of instructions and guidance, lack of knowledge and confidence, health-related barriers, cost); disadvantages and concerns (i.e., too much and too complex technology, feelings of inadequacy, and comparison with younger generations, lack of social interaction and communication, negative features of tablets); advantages (i.e., positive features of tablets, accessing information, willingness to adopt technology); and skepticism about using tablets and technology in general. After brief exposure to tablets, participants emphasized the likelihood of using a tablet in the future. Our findings suggest that most of our participants were eager to adopt new technology and willing to learn using a tablet. However, they voiced apprehension about lack of, or lack of clarity in, instructions and support. Understanding older adults' perceptions of technology

  12. REU Site: CUNY/GISS CGCR - Increasing Diversity in Earth and Space Science and Space Technology Research

    Science.gov (United States)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.

    2016-12-01

    This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).

  13. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  14. The space telescope: A study of NASA, science, technology, and politics

    Science.gov (United States)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  15. The use of a cubesat to validate technological bricks in space

    Science.gov (United States)

    Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.

    2017-11-01

    In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.

  16. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    Science.gov (United States)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  17. Space technology, sustainable development and community applications: Internet as a facilitator

    Science.gov (United States)

    Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed

    2006-07-01

    Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.

  18. Introduction to real-space renormalization-group methods in critical and chaotic phenomena

    Science.gov (United States)

    Hu, Bambi

    1982-11-01

    The methods of the real-space renormalization group, and their application to critical and chaotic phenomena are reviewed. The article consists of two parts: the first part deals with phase transitions and critical phenomena; the second part, bifurcations and transitions to chaos. We begin with an introduction to the phenomenology of phase transitions and critical phenomena. Seminal concepts such as scaling and universality, and their characterization by critical exponents are discussed. The basic ideas of the renormalization group are then explained. A survey of real-space renormalization-group methods: decimation, Migdal-Kadanoff approximation, cumulant and cluster expansions, is given. The Hamiltonian formulation of classical statistical systems into quantum mechanical systems by the method of the transfer matrix is introduced. Quantum renormalization-group methods of truncation and projection, and their application to the transcribed quantum mechanical Ising model in a transverse field are illustrated. Finally, the quantum cumulant-expansion method as applied to the one-dimensional quantum mechanical XY model is discussed. The second part of the article is devoted to the subject of bifurcations and transitions to chaos. The three most commonly discussed kinds of bifurcations: the pitchfork, tangent and Hopf bifurcations, and the associated routes to chaos: period doubling, intermittency and quasiperiodicity are discussed. Period doubling based on the logistic map is explained in detail. Universality and its expression in terms of functional renormalization-group equations is discussed. The Liapunov characteristic exponent and its analogy to the order parameter are introduced. The effect of external noise and its universal scaling feature are shown. The simplest characterizations of the Hénon strange attractor are intuitively illustrated. The purpose of this article is primarily pedagogical. The similarity between critical and chaotic phenomena is a recurrent

  19. Conserved quantities and group classification of wave equation on hyperbolic space

    Science.gov (United States)

    Jhangeer, Adil; Sharif, Sumaira

    2013-02-01

    This paper discusses the nonlinear wave equation on hyperbolic space. We extend some results reported in Nadjafikhah and Zaeim (2011) [17]. Partial Noether theorem is applied to the equation under consideration and partial Noether operators are computed for different cases of f(u). Furthermore, these partial Noether operators are utilized to calculate corresponding conserved quantities. A complete group classification is discussed for the considered equation. Maximal solvable algebra of Lie point symmetries is used to reduce the class of considered equation. Then algebras of translational symmetries are associated with its infinite conservation laws.

  20. Independence of automorphism group, center, and state space of quantum logics

    Energy Technology Data Exchange (ETDEWEB)

    Navara, M. [Technical Univ. of Prague (Czech Republic)

    1992-06-01

    We prove that quantum logics (-orthomodular posets) admit full independence of the attributes important within the foundations of quantum mechanics. Namely, we present the construction of quantum logics with given sublogics (=physical subsystems), automorphism groups, centers (={open_quotes}classical parts{close_quotes} of the systems), and state spaces. Thus, all these {open_quotes}parameters{close_quotes} are independent. Our result is rooted in the line of investigation carried out by Greechie; Kallus and Trnkova; Kalmbach; and Navara and Ptak; and considerably enriches the known algebraic methods in orthomodular posets. 19 refs., 1 fig.

  1. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  2. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  3. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    Science.gov (United States)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  4. Technology advancements for the U.S. manned Space Station - An overview

    Science.gov (United States)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  5. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  6. Mobile Technology Use Across Age Groups in Patients Eligible for Cardiac Rehabilitation: Survey Study.

    Science.gov (United States)

    Gallagher, Robyn; Roach, Kellie; Sadler, Leonie; Glinatsis, Helen; Belshaw, Julie; Kirkness, Ann; Zhang, Ling; Gallagher, Patrick; Paull, Glenn; Gao, Yan; Partridge, Stephanie Ruth; Parker, Helen; Neubeck, Lis

    2017-10-24

    Emerging evidence indicates mobile technology-based strategies may improve access to secondary prevention and reduce risk factors in cardiac patients. However, little is known about cardiac patients' use of mobile technology, particularly for health reasons and whether the usage varies across patient demographics. This study aimed to describe cardiac patients' use of mobile technology and to determine variations between age groups after adjusting for education, employment, and confidence with using mobile technology. Cardiac patients eligible for attending cardiac rehabilitation were recruited from 9 hospital and community sites across metropolitan and rural settings in New South Wales, Australia. Participants completed a survey on the use of mobile technology devices, features used, confidence with using mobile technology, willingness and interest in learning, and health-related use. The sample (N=282) had a mean age of 66.5 (standard deviation [SD] 10.6) years, 71.9% (203/282) were male, and 79.0% (223/282) lived in a metropolitan area. The most common diagnoses were percutaneous coronary intervention (33.3%, 94/282) and myocardial infarction (22.7%, 64/282). The majority (91.1%, 257/282) used at least one type of technology device, 70.9% (200/282) used mobile technology (mobile phone/tablet), and 31.9% (90/282) used all types. Technology was used by 54.6% (154/282) for health purposes, most often to access information on health conditions (41.4%, 117/282) and medications (34.8%, 98/282). Age had an important independent association with the use of mobile technology after adjusting for education, employment, and confidence. The youngest group (mobile technology than the oldest (>69 years) age group (odds ratio [OR] 4.45, 95% CI 1.46-13.55), 5 times more likely to use mobile apps (OR 5.00, 95% CI 2.01-12.44), and 3 times more likely to use technology for health-related reasons (OR 3.31, 95% CI 1.34-8.18). Compared with the older group, the middle age group (56

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  9. A survey of beam-combining technologies for laser space power transmission

    Science.gov (United States)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  10. An assessment of advanced displays and controls technology applicable to future space transportation systems

    Science.gov (United States)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  11. Implications of smart wear technology for family caregiving relationships: focus group perceptions.

    Science.gov (United States)

    Hall, Scott S; Kandiah, Jayanthi; Saiki, Diana; Nam, Jinhee; Harden, Amy; Park, Soonjee

    2014-10-01

    Technological advances in monitoring vulnerable care-recipients are on the rise. Recent and future development of Smart Wear technology (devices integrated into clothing that monitor care-recipients) might assist family caregivers with tasks related to caring for young children, relatives with disabilities, and frail spouses or parents. However, the development and use of this technology in family caregiving contexts is in its infancy. Focus group interviews of family caregivers were conducted to explore perspectives regarding the potential integration of Smart Wear technology into their family caregiving. Responses were analyzed qualitatively for themes related to perceptions of how Smart Wear could impact relationships between caregivers and care-recipients. Three major themes emerged: quality and quantity of interaction, boundary issues, and implications for anxiety. Implications and recommendations are discussed regarding maximizing the potential benefits of Smart Wear technology in ways that promote and protect healthy relationships among caregivers and care-recipients.

  12. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Science.gov (United States)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  13. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II

  14. Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media

    Science.gov (United States)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2018-01-01

    The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.

  15. Effect of nonsymmorphic space groups on correlation functions in iron-based superconductors

    Science.gov (United States)

    Nourafkan, R.; Tremblay, A.-M. S.

    2017-09-01

    The orbital basis is natural when one needs to calculate the effect of local interactions or to unravel the role of orbital physics in the response to external probes. In systems with nonsymmorphic point groups, such as the iron-based superconductors, we show that symmetries that emerge in observable response functions at certain wave vectors are absent from generalized susceptibilities calculated with tight-binding Hamiltonians in the orbital basis. Such symmetries are recovered only when the generalized susceptibilities are embeded back to the continuum using appropriate matrix elements between basis states. This is illustrated with the case of LiFeAs and is further clarified using a minimal tight-binding Hamiltonian with nonsymmorphic space group.

  16. Quantum spaces, central extensions of Lie groups and related quantum field theories

    Science.gov (United States)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  17. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and

  18. Hybrid Spaces and Hyphenated Musicians: Secondary Students' Musical Engagement in a Songwriting and Technology Course

    Science.gov (United States)

    Tobias, Evan S.

    2012-01-01

    This case study investigates how secondary students (three individuals and three groups) engaged with music and acted as musicians in a Songwriting and Technology Class (STC), a course involving the creation, performance, recording and production of original music with instruments and music technology. The following research question guided the…

  19. Interactive Whiteboards in Mathematics Spaces: An Examination of Technology Integration in An Urban Middle School

    Science.gov (United States)

    Young, Jamaal; Hamilton, Christina; Cason, Marti

    2017-01-01

    The purpose of this study was to examine the effects of integrating Interactive Whiteboard (IWB) technology on middle school mathematics achievement in an urban school. Propensity score matching was used to create a comparable control group in order to isolate the effects of IWB technology on mathematics achievement. An initial experimental group…

  20. Engaging the public with low-carbon energy technologies: Results from a Scottish large group process

    International Nuclear Information System (INIS)

    Howell, Rhys; Shackley, Simon; Mabon, Leslie; Ashworth, Peta; Jeanneret, Talia

    2014-01-01

    This paper presents the results of a large group process conducted in Edinburgh, Scotland investigating public perceptions of climate change and low-carbon energy technologies, specifically carbon dioxide capture and storage (CCS). The quantitative and qualitative results reported show that the participants were broadly supportive of efforts to reduce carbon dioxide emissions, and that there is an expressed preference for renewable energy technologies to be employed to achieve this. CCS was considered in detail during the research due to its climate mitigation potential; results show that the workshop participants were cautious about its deployment. The paper discusses a number of interrelated factors which appear to influence perceptions of CCS; factors such as the perceived costs and benefits of the technology, and people's personal values and trust in others all impacted upon participants’ attitudes towards the technology. The paper thus argues for the need to provide the public with broad-based, balanced and trustworthy information when discussing CCS, and to take seriously the full range of factors that influence public perceptions of low-carbon technologies. - Highlights: • We report the results of a Scottish large group workshop on energy technologies. • There is strong public support for renewable energy and mixed opinions towards CCS. • The workshop was successful in initiating discussion around climate change and energy technologies. • Issues of trust, uncertainty, costs, benefits, values and emotions all inform public perceptions. • Need to take seriously the full range of factors that inform perceptions

  1. LEACHATE CONTROL TECHNOLOGY USING JOINT INTERIOR SPACE OF SPSP CUTOFF WALLS AT LANDFILL SITES

    Science.gov (United States)

    Inazumi, Shinya; Kimura, Makoto; Kakuda, Toshimitsu

    This paper proposes leachate control technology usin g H-H joint interior space as a part of steel pile sheet pipe cutoff walls in coastal landfill site from a long-term perspective. In addition, the containment and remediation performance of the H-H joint in landfill site was evaluated by seepage and advection/dispersion analysis. The H-H joint was able to perform the containment and the remediation functions by keeping the low water-level at H-H joints interior space. Moreover, th e leachate control technology using H-H joint interior space demonstrates it's pos sible to contain water-solub le toxic substances in landfill sites and remediate them.

  2. Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    Science.gov (United States)

    Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao

    2017-11-01

    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.

  3. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  4. Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies

    International Nuclear Information System (INIS)

    Elokaby, Ayman

    2009-01-01

    The present short note points out a most interesting and quite unexpected connection between the number of distinct knot as a function of their crossing number and exceptional Lie groups and Stein space hierarchies. It is found that the crossing number 7 plays the role of threshold similar to 4 and 5 in E-infinity theory and for the 11 crossing the number of distinct knots is very close to 4α-bar 0 +1=548+1=549, where α-bar 0 =137 is the inverse integer electromagnetic fine structure constant. This is particularly intriguing in view of a similar relation pertinent to the 17 two and three Stein spaces where the total dimension is Σ 1 17 Stein=5α-bar 0 +1=685+1=686, as well as the sum of the eight exceptional Lie symmetry groups Σ i=1 8 |E i |=4α-bar 0 =548. The slight discrepancy of one is explained in both cases by the inclusion of El Naschie's transfinite corrections leading to Σ i=1 8 |E i |=(4)(137+k 0 )=548.328157 and Σ i=1 17 Stein=(5)(137+k 0 )=685.41097, where k o = φ 5 (1 - φ 5 ) and φ=(√(5)-1)/2.

  5. A dual use case study of space technologies for terrestrial medical applications (Conference Presentation)

    Science.gov (United States)

    Cozmuta, Ioana

    2017-05-01

    Many challenges exist in understanding the human body as a whole, its adaptability, its resilience, its immunological response, its healing and regeneration power. New knowledge is usually obtained by exploring unique conditions and environments and space is one such variable. Primarily, these attributes have been studied in space for the purpose of understanding the effect of the space environment on long duration space travel. However a myriad of lessons learned have emerged that are important for terrestrial medicine problems such as cardiovascular changes, intracranial pressure changes, vision changes, reduced immunity, etc. For medical study purposes, the changes induced by the space environment on the human body are in general fast and predictable; they persist while in the space environment but also revert to the initial pre-flight healthy state upon return to Earth. This provides a unique cycle to study wellness and disease prediction as well as to develop more effective countermeasures for the benefit of people on earth. At a scientific level, the environment of space can be used to develop new lines of investigations and new knowledge to push the terrestrial state of the art (i.e. study of phase diagrams, identification of new system's states, etc). Moreover, the specialized requirements for space medicine have driven advances in terrestrial medical technologies in areas such as monitoring, diagnostic, prevention and treatment. This talk will provide an overview of compelling examples in key areas of interest for terrestrial medical applications.

  6. Government/industry response to questionnaire on space mechanisms/tribology technology needs

    Science.gov (United States)

    Fusaro, Robert L.

    1991-01-01

    President Bush has proposed that the U.S. undertake an ambitious mission of manned and robotic exploration of the solar system. This mission will require advanced mechanical moving components, such as bearings, gears, seals, lubricants, etc. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of such a mission. To attempt to answer this, NASA-Lewis has sent out a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Missions needs and goals. If they deemed that the technology base inadequate, they were asked to specify the areas of greatest need. The unedited remarks of those who responded to the survey are presented.

  7. A Minuet of Galaxies: Hickson Compact Group 87 as Viewed by the Hubble Space Telescope

    Science.gov (United States)

    English, J.; Hunsberger, S.; Charlton, J.; Hamilton, F.; Bond, H. E.; Christian, C. A.; Frattare, L.; Levay, Z.; Noll, K.

    2000-05-01

    HCG 87 was selected from 3 visually, and scientifically, intriguing compact groups for HST WFPC2 imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) and registered their votes. The HST exposures in four filters (F450W, F555W, F675W and F814W) of the winning target were used to create a color image, released in September 1999 as part of the Hubble Heritage Team's program to provide images for public outreach and education. Along with these data and image, we present a preliminary determination of colors and brightness profiles for the large galaxies in this group. The pair of apparently interacting galaxies each harbour AGN. One is a ``boxy'' spiral with a prominent dust lane and the other a lenticular galaxy. Another group member is a smaller starbursting spiral galaxy. Our goal is to study their stellar populations and examine the influence of active nuclei on star formation histories. In addition, a similar analysis is being performed on all faint, extended objects distributed throughout the group. For those determined to be tidal dwarf galaxies, we plan to appraise the role gravitational instabilities play during their formation. Support for this work was provided by NASA through grant number GO-07632.01-96A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS5-26555.

  8. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    Science.gov (United States)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  9. [Genotyping of ABO Blood Group in Partial Population of Yunnan Province by SNaPshot Technology].

    Science.gov (United States)

    Yu, S X; Zeng, F M; Jin, Y Z; Wan, H J; Zhai, D; Xing, Y M; Cheng, B W

    2017-06-01

    To detect the genotype of ABO blood group by SNaPshot technology. DNA were extracted from the peripheral blood samples with known blood groups (obtained by serology) of 107 unrelated individuals in Yunnan. Six SNP loci of the 261th, 297th, 681th, 703th, 802th, and 803th nucleotide positions were detected by SNaPshot Multiplex kit, and relevant genetics parameters were calculated. In 107 blood samples, the allele frequencies of types A, B, O A , and O G were 0.355 1, 0.168 2, 0.230 0 and 0.247 6, respectively, while that of types A G and cis AB were not detected. The genotyping results of ABO blood group were consistent with that of serologic testing. SNaPshot technology can be adapted for genotyping of ABO blood group. Copyright© by the Editorial Department of Journal of Forensic Medicine

  10. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  11. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  12. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with

  13. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  14. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    Science.gov (United States)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  15. Profile of scientific and technological production in nursing education research groups in the south of Brazil.

    Science.gov (United States)

    Lino, Mônica Motta; Backes, Vânia Marli Schubert; Canever, Bruna Pedroso; Ferraz, Fabiane; Prado, Marta Lenise

    2010-01-01

    This research aimed to present the profile of production of Nursing Education Research Groups (NERG) scientific and technological production in the South of Brazil. This documentary, quantitative, exploratory-descriptive retrospective research was guided by the active search for products in the Lattes curriculum of previously selected NERG researchers, based on the 2006 Census of the Research Group Directory/CNPq, between 1995 and 2008. The results indicated that the 18 NERG from southern Brazil produced 453 papers in proceedings, 371 book chapters, 206 books, 1,437 scientific articles and 08 technological products, but no patent was registered. NERGs scientific production in the research region has grown progressively over the past 14 years. To strengthen this structure, the establishment of collaborative networks can be used as a strategy, so that political-scientific joint actions in the sector can advance science and technology.

  16. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    Science.gov (United States)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  17. Using Technology-Enhanced, Cooperative, Group-Project Learning for Student Comprehension and Academic Performance

    Science.gov (United States)

    Tlhoaele, Malefyane; Suhre, Cor; Hofman, Adriaan

    2016-01-01

    Cooperative learning may improve students' motivation, understanding of course concepts, and academic performance. This study therefore enhanced a cooperative, group-project learning technique with technology resources to determine whether doing so improved students' deep learning and performance. A sample of 118 engineering students, randomly…

  18. Computer-Supported Co-operative Learning Systems: Interactive Group Technologies and Open Learning.

    Science.gov (United States)

    Davies, Dick

    1988-01-01

    Discussion of interactive technologies and open learning focuses on computer supported cooperative work (CSCW), especially computer based message systems, and their effects on open learning. Topics discussed include cooperative learning; distance learning; individualized instruction; local area networks; group communication; and design principles…

  19. Quantifying the Effect of Discussion Group Membership on Technology Adoption and Farm Profit on Dairy Farms

    Science.gov (United States)

    Hennessy, Thia; Heanue, Kevin

    2012-01-01

    Purpose: Participatory extension, specifically farm discussion groups, has become a very popular form of agricultural extension in Ireland. The purpose of this article is to assess its effectiveness in promoting the adoption of new technologies and improving farm profit. Design/Methodology/Approach: Following a review of the background and theory…

  20. Best practice in undertaking and reporting health technology assessments : Working Group 4 report

    OpenAIRE

    Busse, R.; Orvain, J.; Velasco, M.; Perleth, M.; Drummond, M.; Gurtner, F.; Jorgensen, T.; Jovell, A.; Malone, J.; Ruther, A; Wild, C.

    2002-01-01

    [Executive Summary] The aim of Working Group 4 has been to develop and disseminate best practice in undertaking and reporting assessments, and to identify needs for methodologic development. Health technology assessment (HTA) is a multidisciplinary activity that systematically examines the technical performance, safety, clinical efficacy, and effectiveness, cost, costeffectiveness, organizational implications, social consequences, legal, and ethical considerations of the application of a heal...

  1. 77 FR 28411 - Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated...

    Science.gov (United States)

    2012-05-14

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated, and Catuity, Inc.; Order of Suspension of Trading May 10... information concerning the securities of Adrenalina because it has not filed any periodic reports since the...

  2. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    Science.gov (United States)

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  3. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    Science.gov (United States)

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  4. INVESTIGATION OF MARKETING TECHNOLOGIES IN THE INNOVATION PROCESS OF ROCKET AND SPACE INDUSTRY

    Directory of Open Access Journals (Sweden)

    K. B. Dobrova

    2016-01-01

    Full Text Available In this article we have studied the use of marketing technologies in the innovation process of enterprises of rocket and space industry. The present study specifies the relevance of chosen research topic, as well as the essence of marketing innovations at the enterprises of rocket and space industry, the structuring of marketing and management processes in the innovation process. There are provided the most common analytical instruments in the marketing and there is marked the importance of use of a global strategy for the enterprises of rocket and space industry. The article also specifies a clear example of application of marketing technologies in the innovation process of the Federal State Unitary Enterprise "State Space Research and Production Center named after Khrunichev M.V'.'. At the beginning the role and place of innovation management and innovation process in the strategic management of the FSUE "SSRPC named after Khrunichev M.V." are shown. Then there are described the basic marketing methods of program-oriented management of the innovation process in the FSUE "SSRPC named after Khrunichev M.V"" and there is highlighted the innovation marketing strategy of the FSUE "SSRPC named after Khrunichev M.V.". There are presented the distinctive features of the competitive strategy of the company of the rocket and space industry and the features of formation (development of the innovative enterprise development strategy based on marketing innovation in the FSUE "SSRPC named after Khrunichev M.V.". The conclusion includes the main findings of the study conducted.

  5. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  6. Technology, Educator Intention, and Relationships in Virtual Learning Spaces: A Qualitative Metasynthesis.

    Science.gov (United States)

    Gdanetz, Lorraine M; Hamer, Mika K; Thomas, Eileen; Tarasenko, Lindsey M; Horton-Deutsch, Sara; Jones, Jacqueline

    2018-04-01

    A main concern that remains with the continued growth of online nursing education programs is the way educator and student relationships can be affected by new technologies. This interpretive study aims to gain an understanding of how technology influences the development of interpersonal relationships between the student and faculty in a virtual learning environment. Using an established structured approach to qualitative metasynthesis, a search was conducted using PubMed, EBSCO, CINAHL, Medline, ProQuest, Ovid Nursing databases, and Google Scholar, focused on caring and relational aspects of online nursing education. Technology alters communication, thereby positioning the intentionality of the educator at the heart of interpersonal relationship development in virtual learning spaces. This interpretive synthesis of prior qualitative research supports the development of a framework for online nursing courses, the need for continuing education of nursing faculty, the value of caring intentions, and enhancement of the educator's technological proficiency. [J Nurs Educ. 2018;57(4):197-202.]. Copyright 2018, SLACK Incorporated.

  7. International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds

    Science.gov (United States)

    James, John T.; Limero, Thomas F.; Beck, Steve; Cheng, Patti F.; deVera, Vanessa J.; Hand, Jennifer; Macatangay, Ariel

    2010-01-01

    Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample acquisition. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.

  8. "Friends" and "Foes" in the Social Space of the Tatar Ethnic Group

    Directory of Open Access Journals (Sweden)

    Nataliia O. Khazieva

    2017-10-01

    Full Text Available The history of the World Culture is a demonstration of the "war" between the two opposites: on the one hand, we see a trend towards unification of all aspects of life on a global scale, and on the other, there is a clear confrontation between different groups of mankind. Of the many causes of the disunity of the people, the authors' focus at the opposition "friend – foe" as a metaphysical principle of formation of social space wasn't chosen by accident. The fact is that any culture, in principle, is dichotomous, and the opposition "friend – foe" is the fullest incarnation of this dichotomy. As a universal principle of the formation and functioning of the cultures, it originally manifests itself in every one of them. And, as the authors of the study suggest: this opposition could either "work" in general on the cross-cultural cooperation and unity or be one of the confrontation sources. The main result of the study is that history has prepared and put forward the Tartars for carrying out a special mission, to unite peoples and cultures. But the revolutionary social upheavals that take place in the modern world pose a threat (in the circumstances of forced migration of peoples, the growth of national consciousness of the former Soviet Union space, and especially in the face of Islamic fundamentalism on fulfilling this function.

  9. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  10. Selling the Space Telescope - The interpenetration of science, technology, and politics

    Science.gov (United States)

    Smith, Robert W.

    1991-01-01

    Attention is given to the politics of initiating the Space Telescope program and to the manner in which the coalition, or working consensus, for the Telescope was assembled, in particular, the role played by astronomers. It is contended that what ensued was a case study in the influence of government patronage on a large-scale scientific and technological program. It is concluded that while a politically feasible Space Telescope did result, in the selling process the Telescope had been both oversold and underfunded.

  11. Technologies for protection of the Space Station power system surfaces in atomic oxygen environment

    Science.gov (United States)

    Nahra, Henry K.; Rutledge, Sharon K.

    1988-01-01

    Technologies for protecting Space Station surfaces from degradation caused by atomic oxygen are discussed, stressing protection of the power system surfaces. The Space Station power system is described and research concerning the solar array surfaces and radiator surfaces is examined. The possibility of coating the solar array sufaces with a sputter deposited thin film of silicon oxide containing small concentrations of polytetrafluoroethylene is presented. Hexamethyldisiloxane coating for these surfaces is also considered. For the radiator surfaces, possible coatings include silver teflon thermal coating and zinc orthotitanate.

  12. Annual report to the Working Group on Technology, Growth, and Employment

    International Nuclear Information System (INIS)

    1985-04-01

    A meeting of the Working Group on High Energy Physics was convened in Brussels, Belgium, in July 1984, and impaneled new groups of technical experts to report on long-term planning, technical collaborations, and the identification of administrative obstacles experienced within the Summit countries that impede international collaboration. The charges to these three new groups are contained in this report under the section on the Brussels meeting. The reports prepared by the technical experts were then reviewed at the January 1985 meeting at Cadarache, France, and the results are contained in this report under the section on the Cadarache meeting. The Summit Working Group on High Energy Physics believes progress is being made toward cooperation among the Summit countries in the exploration of scientific and technological development upon which the Summit Heads of State and Government declared at Versailles revitalization and growth of the world economy will depend - to a large extent. At Cadarache, the Group found that, since its establishment, international collaboration has increased in the use of present accelerators and in the planning for future accelerators. The Group also found that there are specific areas of technology in which near-term research cooperation is possible. Finally, the Group identified administrative regulations that hamper effective international collaboration in science and technology and that could be revised or eliminated through coordinated, high level Summit action. The major accomplishment of the Working Group thus far has been the creation of a forum for discussions on collaboration in a major field of science by seven industrialized countries. The Group recommends the continuation of its review of long-term plans for major facilities on an intergovernmental basis

  13. Unpacking Virtual and Intercultural Spaces: A Presentation of a Conceptual Framework to Investigate the Connection between Technology and Intercultural Learning

    DEFF Research Database (Denmark)

    Pedersen, Rikke; Jørgensen, Mette; Harrison, Roger

    This paper presents a framework for the development of research within the emerging areas of internationalisation and technology that connect to build potential learning spaces within intercultural and global settings.......This paper presents a framework for the development of research within the emerging areas of internationalisation and technology that connect to build potential learning spaces within intercultural and global settings....

  14. Space-group approach to two-electron states in unconventional superconductors

    International Nuclear Information System (INIS)

    Yarzhemsky, V. G.

    2008-01-01

    The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPt 3 only theoretical nodal structure of IR E 2u is in agreement with all the experimental results. On the other hand, in the case of high-T c superconductors the two electron description of Cooper pairs in D 2h symmetry is not sufficient to describe experimental nodal structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron states and hidden symmetry D-4 h . (author)

  15. A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene

    DEFF Research Database (Denmark)

    Pawley, G. S.; Dietrich, O. W.

    1975-01-01

    A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position......, the shear movement being equal to one carbon-carbon bond of the naphthalene skeleton. In this process the molecules reorient, but are still related by the same symmetry operations. This transformation, although not unique, is probably the first of its kind to be discovered in molecular systems....

  16. Fisher's Zeros as the Boundary of Renormalization Group Flows in Complex Coupling Spaces

    International Nuclear Information System (INIS)

    Denbleyker, A.; Du Daping; Liu Yuzhi; Meurice, Y.; Zou Haiyuan

    2010-01-01

    We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that Fisher's zeros are located at the boundary of the complex basin of attraction of infrared fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of four-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action stabilize at a distance larger than 0.15 from the real axis in the complex β=4/g 2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infrared fixed points in models beyond the standard model.

  17. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-23

    Quantum groups in general and the quantum Anti-de Sitter group Uq(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of Uq(g), which plays the role of a BRST operator in the case of Uq(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.

  18. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    Science.gov (United States)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  19. Space Technology: A study of the significance of recognition for innovators of spinoff technologies. A case study on the impact of the space technology hall of fame award

    Science.gov (United States)

    1993-01-01

    This report represents the preliminary effort in studying the significance of recognition for innovators of spinoff technologies. The purpose of this initial year's effort in this area was to gather preliminary data and define the direction for the remainder of the research. This report focuses on the most recent recipients of the Hall of Fame Award, the developers of liquid-cooled garments. Liquid-cooled garments technology and its spinoffs were used as a case study to define and explore the factors involved in technology transfer and to consider the possible incentives in developing commercial applications including the Hall of Fame Award. Through interviews, views of award recipients were obtained on factors encouraging spinoffs as well as impediments to spinoffs. The researchers observed complex inter-relationships among the significant entities (government, individuals, large and small business), the importance of people, the importance of resource availability, and the significance of intrinsic motivation; drew preliminary conclusions pertaining to the direct and indirect influence of recognition like the Hall of Fame Award; and planned the direction for next year's follow-on research.

  20. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet