WorldWideScience

Sample records for technology energy analysis

  1. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    International Nuclear Information System (INIS)

    Kruse, Juergen; Wetzel, Heike; Koeln Univ.

    2014-01-01

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  2. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Modeling energy technology choices. Which investment analysis tools are appropriate?

    International Nuclear Information System (INIS)

    Johnson, B.E.

    1994-01-01

    A variety of tools from modern investment theory appear to hold promise for unraveling observed energy technology investment behavior that often appears anomalous when analyzed using traditional investment analysis methods. This paper reviews the assumptions and important insights of the investment theories most commonly suggested as candidates for explaining the apparent ''energy technology investment paradox''. The applicability of each theory is considered in the light of important aspects of energy technology investment problems, such as sunk costs, uncertainty and imperfect information. The theories addressed include the capital asset pricing model, the arbitrage pricing theory, and the theory of irreversible investment. Enhanced net present value methods are also considered. (author)

  4. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  5. Media analysis of the representations of fusion and other future energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio [Institute of Social Sciences of the University of Lisbon, Av. Prof. Anibal de Bettencourt, 9 1600-189 Lisbon (Portugal); Oltra, Christian; Prades, Ana [CISOT-CIEMAT. Gran Via de les Corts Catalanes 604, 4, 2, 08007 Barcelona (Spain)

    2015-07-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  6. Media analysis of the representations of fusion and other future energy technologies

    International Nuclear Information System (INIS)

    Delicado, Ana; Schmidt, Luisa; Pereira, Sergio; Oltra, Christian; Prades, Ana

    2015-01-01

    Media representations of energy have a relevant impact on public opinion and public support for investment in new energy sources. Fusion energy is one among several emerging energy technologies that requires a strong public investment on its research and development. This paper aims to characterise and compare the media representations of fusion and other emerging energy technologies in Portugal and in Spain. The emerging energy technologies selected for analysis are wave and tidal power, hydrogen, deep sea offshore wind power, energy applications of nanotechnology, bio-fuels from microalgae and IV generation nuclear fission. This work covered the news published in a selection of newspapers in Portugal and Spain between January 2007 and June 2013. (authors)

  7. Renewable energy technology portfolio planning with scenario analysis: A case study for Taiwan

    International Nuclear Information System (INIS)

    Chen, T.-Y.; Yu, Oliver S.; Hsu, George Jyh-yih; Hsu, Fang-Ming; Sung, W.-N.

    2009-01-01

    This paper presents the results of a case study of applying a systematic and proven process of technology portfolio planning with the use of scenario analysis to renewable energy developments in Taiwan. The planning process starts with decision values of technology development based on a survey of society leaders. It then generates, based on expert opinions and literature search, a set of major technology alternatives, which in this study include: wind energy, photovoltaic, bio-energy, solar thermal power, ocean energy, and geothermal energy. Through a committee of technical experts with diversified professional backgrounds, the process in this study next constructs three scenarios ('Season in the Sun', 'More Desire than Energy', and 'Castle in the Air') to encompass future uncertainties in the relationships between the technology alternatives and the decision values. Finally, through a second committee of professionals, the process assesses the importance and risks of these alternative technologies and develops a general strategic plan for the renewable energy technology portfolio that is responsive and robust for the future scenarios. The most important contributions of this paper are the clear description of the systematic process of technology portfolio planning and scenario analysis, the detailed demonstration of their application through a case study on the renewable energy development in Taiwan, and the valuable results and insights gained from the application.

  8. Adapting for uncertainty : a scenario analysis of U.S. technology energy futures

    International Nuclear Information System (INIS)

    Laitner, J.A.; Hanson, D.A.; Mintzner, I.; Leonard, J.A.

    2006-01-01

    The pattern of future evolution for United States (US) energy markets is highly uncertain at this time. This article provided details of a study using a scenario analysis technique to investigate key energy issues affecting decision-making processes in the United States. Four scenarios were used to examine the driving forces and critical uncertainties that may shape United States energy markets and the economy for the next 50 years: (1) a reference scenario benchmarked to the 2002 annual energy outlook forecast, (2) abundant and inexpensive supplies of oil and gas, (3) a chaotic future beset with international conflict, faltering new technologies, environmental policy difficulties and slowed economic growth, and (4) a technology-driven market in which a variety of forces converge to reshape the energy sector. Each of the scenarios was quantified using a computable general equilibrium model known as the All Modular Industry Growth Assessment (AMIGA) model. Results suggested that the range of different outcomes for the US is broad. However, energy use is expected to increase in all 4 scenarios. It was observed that the introduction of policies to encourage capital stock turnover and accelerate the commercialization of high efficiency, low-emissions technologies may reduce future primary energy demand. The analysis also showed that lower energy prices may lead to higher economic growth. Policies introduced to improve energy efficiency and accelerate the introduction of new technologies did not appreciably reduce the prospects for economic growth. Results also suggested that lower fossil fuel prices discourage investments in energy efficiency or new technologies and may mask the task of responding to future surprises. It was concluded that an investment path that emphasizes both energy efficiency improvements and advanced energy supply technologies will provide economic growth conditions similar to the implementation of lower energy prices. 11 refs., 1 tab., 2 figs

  9. Evolutionary analysis of technological innovations: the example of solar photovoltaic and wind energy

    International Nuclear Information System (INIS)

    Taillant, Pierre

    2005-01-01

    The objective of this research thesis is to study the building up and the development of technologies for renewable energies considered as environmental radical innovations. In a first part, the author discusses the systemic aspects of innovation and the environmental challenges associated with energy technologies. He examines the main evolutions of energy systems over a long period. In a second part, he addresses innovation incentives in the case of environmental technologies and within the frame of the neo-classical economic theory. The next parts aim at presenting the theoretical framework of the evolutionary analysis of innovation and technical change, and at applying it to the case of technological innovations for renewable energies (photovoltaic and wind energy). World PV market trends are discussed and the technological competition context of this sector is analysed. The evolution of the solar PV technological system in Germany is discussed, as well as the specific case of development of the wind energy technological system in Denmark

  10. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  11. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation

    International Nuclear Information System (INIS)

    Šarauskis, Egidijus; Buragienė, Sidona; Masilionytė, Laura; Romaneckas, Kęstutis; Avižienytė, Dovile; Sakalauskas, Antanas

    2014-01-01

    To achieve energy independence, Lithuania and other Baltic countries are searching for new ways to produce energy. Maize is a crop that is suitable for both food and forage, as well as for the production of bioenergy. The objective of this work was to assess the energy efficiency of maize cultivation technologies in different systems of reduced tillage. The experimental research and energy assessment was carried out for five different tillage systems: DP (deep ploughing), SP (), DC (deep cultivation), SC (shallow cultivation) and NT (no tillage). The assessment of the fuel inputs for these systems revealed that the greatest amount of diesel fuel (67.2 l ha −1 ) was used in the traditional DP system. The reduced tillage systems required 12–58% less fuel. Lower fuel consumption reduces the costs of technological operations and reduces CO 2 emissions, which are associated with the greenhouse effect. The agricultural machinery used in reduced tillage technologies emits 107–223 kg ha −1 of CO 2 gas into the environment, whereas DP emits 253 kg ha −1 of CO 2 . The energy analysis conducted in this study showed that the greatest total energy input (approximately 18.1 GJ ha −1 ) was associated with the conventional deep-ploughing tillage technology. The energy inputs associated with the reduced-tillage technologies, namely SP, DC and SC, ranged from 17.1 to 17.6 GJ ha −1 . The lowest energy input (16.2 GJ ha −1 ) was associated with the NT technology. Energy efficiency ratios for the various technologies were calculated as a function of the yield of maize grain and biomass. The best energy balance and the highest energy efficiency ratio (14.0) in maize cultivation was achieved with the NT technology. The energy efficiency ratios for DP, SP, DC and SC were 12.4, 13.4, 11.3 and 12.0, respectively. - Highlights: • Energetical and economic analysis of maize cultivation was done. • Reduced tillage technology reduces working time, fuel consumption

  12. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  13. Factors influencing the societal acceptance of new energy technologies. Meta-analysis of recent European projects

    Energy Technology Data Exchange (ETDEWEB)

    Poti, B.; Difiore, M. [Consiglio Nazionale delle Ricerche, Rome (Italy); Brohmann, B.; Daniels, A.; Fritsche, U.; Huenecke, K. [Oeko-Institut, Darmstadt (Germany); Heiskanen, E. [National Consumer Research Centre, Helsinki (Finland); Raven, R.P.J.M.; Mourik, R.; Feenstra, C.F.J.; Willemse, R. [ECN Policy Studies, Petten (Netherlands); Hodson, M. [Centre for Sustainable Urban and Regional Futures SURF, University of Salford, Manchester (United Kingdom); Alcantud Torrent, A.; Schaefer, B. [Ecoinstitut Barcelona, Barcelona (Spain); Farkas, B.; Fucsko, J. [Hungarian Environmental Economics Centre MAKK, Budapest (Hungary); Jolivet, E. [IAE Toulouse, Toulouse (France); Maack, M.H.; Matschoss, K. [Icelandic New Energy INE, Reykjavik (Iceland); Oniszk-Poplawska, A. [Institute for Renewable Energy IEO, Warszawa (Poland); Prasad, G. [Energy Research Centre ERC, University of Cape Town, Cape Town (South Africa)

    2008-03-15

    Within this report an analysis is made of 27 case studies of historical and recent new energy technologies in different European regions and South Africa. The analysis focuses on the societal acceptance in these projects in order to identify determinants of success and failure. A wide diversity of technologies is discussed including hydrogen, CO2 capture and storage, biomass, solar and wind energy technologies.

  14. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  15. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  16. Fostering sustainable energy entrepreneurship among students : the Business Oriented Technological System Analysis (BOTSA) program at Eindhoven University of Technology

    NARCIS (Netherlands)

    Wijnker, M.A.S.G.; Kasteren, van Han; Romijn, H.A.

    2015-01-01

    The Business Oriented Technological System Analysis (BOTSA) program is a new teaching and learning concept developed by Eindhoven University of Technology (the Netherlands) with participation from innovative companies in renewable energy. It is designed to stimulate sustainable entrepreneurship

  17. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  18. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  19. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  20. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  1. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  2. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  3. Analysis on energy saving and emission reduction of clean energy technology in ports

    Science.gov (United States)

    Zhu, Li; Qin, Cuihong; Peng, Chuansheng

    2018-02-01

    This paper discusses the application of clean energy technology in ports. Using Ningbo port Co. Ltd. Beilun second container terminal branch as an example, we analyze the effect of energy saving and emission reduction of CO2 and SO2 by clean energy alternative to fuel oil, and conclude that the application of clean energy technology in the container terminal is mature, and can achieve effect of energy-saving and emission reduction of CO2 and SO2. This paper can provide as a reference for the promotion and application of clean energy in ports.

  4. Analysis of the impact of heat pump technology on the Irish energy system to the year 2000. Energy case study series: No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Brady, J.

    1977-09-15

    An analysis of the impact of existing and new heat pump technology on the Irish energy system to the year 2000 was undertaken. The methodology used involved the measurement of the potential impact against a base Reference Energy System for various heat pump strategies. A short analysis of the implementation rates and their effect on technology impact was also carried out.

  5. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  6. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  7. Basis of combined Pinch Technology and exergy analysis and its application to energy industry in Mexico

    International Nuclear Information System (INIS)

    Rodriguez T, M.A.; Rangel D, H.

    1994-01-01

    The energy industry scheme in Mexico has an enormous potential to do re adaptations with the intention of increase the efficiency in the use of energy. One of the most modern engineering tools to make such re adaptations consist in a suitable combination of analysis of exergy and Pinch technology. In this work, the basis of this new technology are presented, besides the potential areas of application in the Mexican energy industry are also considered. So then, it is shown that a combined analysis of exergy and Pinch technology (ACETP) is useful to analyze, in a conceptual and easy to understand way, systems that involve heat and power. The potential areas of application of ACETP are, cryogenic processes, power generation systems and cogeneration systems. (Author)

  8. Advanced energy technologies and climate change: An analysis using the Global Change Assessment Model (GCAM)

    International Nuclear Information System (INIS)

    Edmonds, J.; Wise, M.; MacCracken, C.

    1994-01-01

    The authors report results from a ''top down'' energy-economy model employing ''bottom up'' assumptions and embedded in an integrated assessment framework, GCAM. The analysis shows that, from the perspective of long-term energy system development, differences in results from the ''top down'' and ''bottom up'' research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences in modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the middle of the eighteenth century. The consideration of all greenhouse gases, and in particular sulfur, leads to some extremely interesting results that the rapid deployment of advanced energy technologies leads to higher temperatures prior to 2050 than in the reference case. This is due to the fact that the advanced energy technologies reduce sulfur emissions as well as those of carbon. The short-term cooling impact of sulfur dominates the long-term warming impact of CO 2 and CH 4 . While all energy technologies play roles, the introduction of advanced biomass energy production technology plays a particularly important role. 16 refs., 12 figs., 3 tabs

  9. An analysis of Grenada's power sector and energy resources: a role for renewable energy technologies?

    International Nuclear Information System (INIS)

    Wiesser, D.

    2004-01-01

    Presently, Grenada's power sector is fully dependent on fossil fuel imports for meeting the country's electricity demand. Electric utilities in Small Island Developing States (SIDS), in general, face high cost of electricity generation due to diseconomies of scale in production, consumption and logistical aspects. Grenada's private power monopoly is no exception and the high cost of import dependent electricity generation places an increasing burden on economic development. In light of rapid technological and economic improvement of renewable energy technologies (RETs), the country's abundant sources of renewable energy should be harnessed. Benefits are envisaged to include lower electricity cost, better environmental performance and a safer and diversified supply of energy. However, barriers for shifting power production towards meaningful contributions from RETs exist, both in government and industry. This work analyses important economic interactions between the power sector and economic development, bringing to attention the importance of power sector reform. Further, present problems of integrating RETs into the grid, ranging from technical and regulatory issues to shareholder interest are investigated. A summary and analysis of past research into renewable sources of energy (RES) underscore the potential for power production from RETs in Grenada. (author)

  10. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  11. Energy technology patents–CO2 emissions nexus: An empirical analysis from China

    International Nuclear Information System (INIS)

    Wang Zhaohua; Yang Zhongmin; Zhang Yixiang; Yin Jianhua

    2012-01-01

    Energy technology innovation plays a crucial role in reducing carbon emissions. This paper investigates whether there is relationship between energy technology patents and CO 2 emissions of 30 provinces in mainland China during 1997–2008. Gross domestic product (GDP) is included in the study due to its impact on CO 2 emissions and energy technology innovation, thus avoiding the problem of omitted variable bias. Furthermore, we investigate three cross-regional groups, namely eastern, central and western China. The results show that domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction; however, domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions, which is significant in eastern China, but is not significant in central, western and national level of China. The results of this study enrich energy technology innovation theories and provide some implications for energy technology policy making. - Highlights: ► We studied the causality between energy technology patents and CO 2 emissions using dynamic panel data approach. ► There is a long-run equilibrium relationship among energy technology patents, CO 2 emissions and GDP. ► Domestic patents for fossil-fueled technologies have no significant effect on CO 2 emissions reduction. ► Domestic patents for carbon-free energy technologies appear to play an important role in reducing CO 2 emissions. ► This study provides some references for the future energy technology policy making.

  12. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    House, P.W.; Coleman, J.A.; Shull, R.D.; Matheny, R.W.; Hock, J.C.

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  13. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  14. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  15. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  16. Health risks of energy technologies

    International Nuclear Information System (INIS)

    Travis, C.C.; Etnier, E.L.

    1983-01-01

    This volume examines occupational, public health, and environmental risks of the coal fuel cycle, the nuclear fuel cycle, and unconventional energy technologies. The 6 chapters explore in detail the relationship between energy economics and risk analysis, assess the problems of applying traditional cost-benefit analysis to long-term environmental problems (such as global carbon dioxide levels), and consider questions about the public's perception and acceptance of risk. Also included is an examination of the global risks associated with current and proposed levels of energy production and comsumption from all major sources. A separate abstract was prepared for each of the 6 chapters; all are included in Energy Abstracts for Policy Analysis (EAPA) and four in Energy Research Abstracts

  17. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  18. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  19. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  20. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  1. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  2. Energy analysis of an original steering technology that saves fuel and boosts efficiency

    International Nuclear Information System (INIS)

    Daher, Naseem; Ivantysynova, Monika

    2014-01-01

    Highlights: • A novel energy-saving steer-by-wire technology is introduced, dubbed “DC SbW”. • A prototype vehicle is retrofitted with “DC SbW” and tested for overall efficiency. • Energy analysis is conducted to compare “DC SbW” against state-of-the-art. • “DC SbW” achieves more work while consuming less fuel → higher efficiency. - Abstract: Stemmed by ever-increasing demand on fossil fuels and increased environmental awareness to reduce carbon emissions, improving the efficiency of components and systems has been receiving paramount attention in most industries during the past few years. This is especially true in the mobile machinery industry, which produces high power equipment with relatively low energy efficiency for the most part. Mobile machines strictly employ fluid power systems owing to the superlative power density of hydraulic components. Nevertheless, no major breakthrough technologies to significantly boost the efficiency of fluid power systems have emerged, except for the recent development of a throttle-less actuation technology, known as pump displacement control (DC), which has been proven to be an energy efficient alternative and a serious contender to state-of-the-art technologies. This paper deals with analyzing the energy efficiency of a DC steering system versus a more conventional valve controlled counterpart, which conveys how effectively the two systems convert the chemical energy stored in the diesel fuel into useful mechanical energy. Experimental testing on a prototype test vehicle showed that DC steering results in 14.5% fuel savings, 22.6% productivity gain, and a grand total of 43.5% fuel usage efficiency increase

  3. Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2012-01-01

    Relationships between measures of household energy use behavior and household characteristics are estimated using a unique dataset of approximately 5000 households in 10 EU countries and Norway. Family age-composition patterns are found to have a distinct impact on household energy use behavior. Households with young children are more likely to adopt energy-efficient technologies and energy conservation practices and place primary importance on energy savings for environmental reasons. By contrast, households with a high share of elderly members place more importance on financial savings, and have lower levels of technology adoption, energy conservation practice use, and knowledge about household energy use. Education levels also matter, with higher levels associated with energy-efficient technology adoption and energy conservation practice use. Similarly, university education increases the stated importance of energy savings for greenhouse gas reductions and decreases the stated importance for financial reasons. Education impacts also vary greatly across survey countries and there is some evidence of an Eastern–Western European divide with respect to attitudes towards energy savings. These cross-country differences highlight the need to balance a common EU energy-efficiency policy framework with flexibility for country specific policies to address unique constraints to energy-efficient technology and conservation practice adoption. - Highlights: ► Household energy use behavior is explored with data from 11 European countries. ► Household age structure and education influence household energy use behavior and attitudes. ► Significant country differences in household energy use behavior exist. ► The EU needs to balance a common energy-efficiency policy framework with country specific policies.

  4. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  5. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  6. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  7. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  8. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  9. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  10. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  11. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  12. Application of 'C.A.R.B. financial methodology' analysis for alternative energy technologies into UK housing

    International Nuclear Information System (INIS)

    Spanos, Ioannis; Duckers, Les; Holmes, Kenneth L.

    2007-01-01

    Current energy trends in UK housing are reviewed and then assessed by introducing the 'CARB financial analysis' methodology. CARB is an acronym for 'Carbon Abatement', as it evaluates the potential carbon-dioxide reduction from different technologies; 'Relative', as all the technologies examined are dependant on various primary sources; and 'Balance', as the cost of surplus CO 2 is quantified. According to conventional financial analysis, most of the technologies examined have the potential to provide positive returns on the investments especially for those with an environmentally conscious agenda. Further reduction of up to 30% of most installed alternative energy systems cost is required to compete with an investment in, e.g., a UK pension scheme. Using the 'CARB financial analysis' the cost of reducing CO 2 has been quantified, and compared with the potential cost of climate change impact. Conventional installed solar technologies are not financially attractive both with a pay back period calculations and 'CARB financial analysis' under current market costs and governmental subsidy regimes. Heat recovery technologies could be sensible investments, both in financial and environmental terms under particular assumptions; especially if the investment budget is small. The use of cogeneration technologies provides a financial advantage in the attempt to minimise the cost of climate change impact, as pay back period of such investment could be less than 7 yr, and the cost of CO 2 saved could be two to seven times less than the global damage cost of carbon emissions. (author)

  13. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  14. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  15. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  16. Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications

    International Nuclear Information System (INIS)

    Zoulias, E.I.; Lymberopoulos, N.; Tsoutsos, T.; Glockner, R.; Mydske, H.J.; Vosseler, I.; Gavalda, O.; Taylor, P.

    2006-01-01

    The European study entitled: 'Market Potential Analysis for Introduction of Hydrogen Energy Technology in Stand-Alone Power Systems (H-SAPS)' aimed to establish a broad understanding of the market potential for H-SAPS and provide a basis for promoting in wide scale new technological applications. The scope of the study was limited to small and medium installations, up to a few hundred kW power rating and based on RE as the primary energy source. The potential for hydrogen technology in SAPS was investigated through an assessment of the technical potential for hydrogen, the market analysis and the evaluation of external factors. The results are mostly directed towards action by governments and the research community but also industry involvement is identified. The results include targeted market research, establishment of individual cost targets, regulatory changes to facilitate alternative grid solutions, information and capacity building, focused technology research and bridging the technology gaps. (author)

  17. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  18. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish; Price, Philip

    2009-06-01

    Energy information systems comprise software, data acquisition hardware, and communication systems that are intended to provide energy information to building energy and facilities managers, financial managers, and utilities. This technology has been commercially available for over a decade, however recent advances in Internet and other information technology, and analytical features have expanded the number of product options that are available. For example, features such as green house gas tracking, configurable energy analyses and enhanced interoperability are becoming increasingly common. Energy information systems are used in a variety of commercial buildings operations and environments, and can be characterized in a number of ways. Basic elements of these systems include web-based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energy management applications. However the sheer number and variety of available systems complicate the selection of products to match the needs of a given user. In response, a framework was developed to define the capabilities of different types of energy information systems, and was applied to characterize approximately 30 technologies. Measurement is a critical component in managing energy consumption and energy information must be shared at all organizational levels to maintain persistent, efficient operations. Energy information systems are important to understand because they offer the analytical support to process measured data into information, and they provide the informational link between the primary actors who impact building energy efficiency - operators, facilities and energy managers, owners and corporate decision makers. In this paper, preliminary findings are presented, with a focus on overall trends and the general state of the technology. Key conclusions include the need to further pursue standardization and usability, x-y plotting as an under-supported feature, and

  19. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  20. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  1. A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options

    International Nuclear Information System (INIS)

    Kikuchi, Yasunori; Kimura, Seiichiro; Okamoto, Yoshitaka; Koyama, Michihisa

    2014-01-01

    Highlights: • Energy flow model was represented as the functionals of technology options. • Relationships among available technologies can be visualized by developed model. • Technology roadmapping can be incorporated into the model as technical scenario. • Combination of technologies can increase their contribution to the environment. - Abstract: The design of energy systems has become an issue all over the world. A single optimal system cannot be suggested because the availability of infrastructure and resources and the acceptability of the system should be discussed locally, involving all related stakeholders in the energy system. In particular, researchers and engineers of technologies related to energy systems should be able to perform the forecasting and roadmapping of future energy systems and indicate quantitative results of scenario analyses. We report an energy flow model developed for analysing scenarios of future Japanese energy systems implementing a variety of feasible technology options. The model was modularized and represented as functionals of appropriate technology options, which enables the aggregation and disaggregation of energy systems by defining functionals for single technologies, packages integrating multi-technologies, and mini-systems such as regions implementing industrial symbiosis. Based on the model, the combinations of technologies on both energy supply and demand sides can be addressed considering not only the societal scenarios such as resource prices, economic growth and population change but also the technical scenarios including the development and penetration of energy-related technologies such as distributed solid oxide fuel cells in residential sectors and new-generation vehicles, and the replacement and shift of current technologies such as heat pumps for air conditioning and centralized power generation. The developed model consists of two main modules; namely, a power generation dispatching module for the

  2. Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Tzamalis, G. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece); Zoulias, E.I.; Stamatakis, E.; Varkaraki, E. [Center for Renewable Energy Sources (CRES), RES and Hydrogen Technologies, 19th km Marathon Avenue, GR 19009 Pikermi (Greece); Lois, E.; Zannikos, F. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2011-01-15

    Two different options for the autonomous power supply of rural or/and remote buildings are examined in this study. The first one involves a PV - diesel based power system, while the second one integrates RES and hydrogen technologies for the development of a self - sustained power system. The main objective is the replacement of the diesel generator and a comparison between these two options for autonomous power supply. Model simulations of the two power systems before and after the replacement, an optimization of the component sizes and a techno - economic analysis have been performed for the purpose of this study. A sensitivity analysis taking into account future cost scenarios for hydrogen technologies is also presented. The results clearly show that the Cost of Energy Produced (COE) from the PV - hydrogen technologies power system is extremely higher than the PV - diesel power system. However, the adopted PV - hydrogen technologies power system reduces to zero the Green - House Gas (GHG) emissions. Moreover, the sensitivity analysis indicates that COE for the latter system can be further reduced by approximately 50% compared to its initial value. This could be achieved by reducing critical COE's parameters, such as PEM electrolyser and fuel cell capital costs. Hence, a possible reduction on the capital costs of hydrogen energy equipment in combination with emissions reduction mentioned above could make hydrogen - based power systems more competitive. (author)

  3. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  4. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  5. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2007-01-01

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  6. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  7. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  8. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  9. Fostering Sustainable Energy Entrepreneurship among Students: The Business Oriented Technological System Analysis (BOTSA Program at Eindhoven University of Technology

    Directory of Open Access Journals (Sweden)

    Mara Wijnker

    2015-06-01

    Full Text Available The Business Oriented Technological System Analysis (BOTSA program is a new teaching and learning concept developed by Eindhoven University of Technology (the Netherlands with participation from innovative companies in renewable energy. It is designed to stimulate sustainable entrepreneurship among engineering students in this field. The program combines the placement of students in companies to study and contribute to the development and incubation of sustainable energy innovations, with a curriculum at the university designed to support these internships from a scientific perspective. The teaching method assists students in developing a broad system view that enables them to analyze the potential of, and bottlenecks to promising innovations from a realistic business perspective. This empowers students to identify those techno-economic aspects that are critical to innovation success, and advise the entrepreneurs about these aspects. Experience indicates that teachers, students, and entrepreneurs find BOTSA a valuable way of coaching, learning and working. Theoretical support for this method is found in system analysis originating in evolutionary innovation theory in combination with concepts of entrepreneurship, business model generation and sustainable/green innovation.

  10. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  11. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  12. Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets

    Science.gov (United States)

    Okioga, Irene Teshamulwa

    This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.

  13. Likely market-penetrations of renewable-energy technologies

    International Nuclear Information System (INIS)

    Probert, S.D.; Mackay, R.M.

    1998-01-01

    The learning-curve concept is considered to be an important tool for predicting the future costs of renewable-energy technology systems. This paper sets out the underlying rationale for learning-curve theory and the potential for its application to renewable technologies, such as photovoltaic-module and wind-power generator technologies. An indication of the data requirements for carrying out learning-curve projections is given together with an assessment of the requirements necessary for an analysis to be undertaken of the application of learning curves to other renewable-energy technologies. The paper includes a cost comparison and a figure-of-merit criterion applicable to photovoltaic-module and wind-power-turbine technologies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Renewable energy systems: A societal and technological platform

    Energy Technology Data Exchange (ETDEWEB)

    Polatidis, Heracles; Haralambopoulos, Dias A. [University of the Aegean, Mytilene (Greece). Department of Environment

    2007-02-15

    Today, the analysis of renewable energy places the emphasis on the technological and economic attributes with social and environmental impact assessment providing for a rather static, narrow frame of analysis. The participation and response of social actors and other stakeholders is usually of a traditional type, with consultation documents and public meetings, collection of complaints and suggestion schemes. This often encourages parochialism and an over-concentration on relatively trivial issues. It is, therefore, imperative to establish a new participatory planning platform to incorporate the wider socio-economic aspects of renewable energy systems and to provide for an operational analytical decomposition of them. In this work the issue of decomposition analysis is clarified, and a new agenda for the societal and technological decomposition analysis of renewable energy systems is developed. A case study is disclosed to present the relevance of the established platform for integrated (renewable) energy systems planning. Innovative aspects comprise of the simultaneous inclusion of decision analysis and social acceptance methods and tools in concert with the related public participation techniques. (author)

  15. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  16. Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea

    International Nuclear Information System (INIS)

    Chung, Whan-Sam; Tohno, Susumu; Choi, Ki-Hong

    2011-01-01

    Highlights: → Using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. → A total emission matrix including both direct and indirect GHG emissions showed plain shape; however, ripple effects were observed in some sectors. → This process is useful in measuring national energy policies. → Several limitations of the Divisia decomposition analysis were pointed out. -- Abstract: Through energy input-output (E-IO) analyses from 1985 to 2005, the changes in three factors affecting GHG emissions in South Korea were analyzed. Based on the E-IO results, the changes in the direct and total (embodied) GHG emissions from the pertinent sectors were decomposed into three factors-the energy consumption effect, the social effect, and the technological effect-using the Sato-Vartia index for the three periods of 1985-1995, 1995-2000, and 2000-2005. The decomposition analysis demonstrated that a total emission matrix including both direct and indirect GHG emissions showed an evolution pattern that was very similar to the changes in direct GHG emissions; however, ripple effects were observed in the case of emissions from sector number -59 (Synthetic resins, synthetic rubber-p). The results showed that national energy policies such as those pertaining to the diversification of energy sources, shifts in the energy consumption structure (social effect), and the transformation to a low-carbon energy economy (technology effect) were effective. Finally, several limitations of the Divisia decomposition analysis were pointed out.

  17. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  18. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  19. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  20. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  1. Accelerating the market penetration of renewable energy technologies in South Africa

    International Nuclear Information System (INIS)

    Martens, J.W.; De Lange, T.J.; Cloin, J.; Szewczuk, S.; Morris, R.; Zak, J.

    2001-03-01

    There exists a large potential for renewable energy technologies in South Africa and despite the fact that rapid growth of the application of renewable energy takes place in many parts of the world, the current installed renewable capacity in South Africa is negligible. The objective of this study is to address this gap by analysing ways to accelerate the market penetration of renewable energy technologies in South Africa. The activities undertaken in this study comprise two major components: a thorough analysis of South Africa's specific constraints and barriers to renewable energy implementation, and a review of the lessons learnt from Member States of the European Union (EU) on the promotion of renewable energy development. The focus of the study was restricted to the analysis of electricity generating technologies, in particular solar energy, biomass, wind power and mini-hydro renewable energy technologies. Recommendations to stimulate the market penetration of renewable energy technologies in South Africa are formulated. They are structured in: actions to enhance the policy framework for renewable power generation, actions to enhance the policy framework for off-grid renewable energy, and recommendations to stimulate renewable energy project development. 44 refs

  2. Finnish energy technology programmes 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Finnish Technology Development Centre (Tekes) is responsible for the financing of research and development in the field of energy production technology. A considerable part of the financing goes to technology programmes. Each technology programme involves major Finnish institutions - companies, research institutes, universities and other relevant interests. Many of the energy technology programmes running in 1998 were launched collectively in 1993 and will be completed at the end of 1998. They are complemented by a number of other energy-related technology programmes, each with a timetable of its own. Because energy production technology is horizontal by nature, it is closely connected with research and development in other fields, too, and is an important aspect in several other Tekes technology programmes. For this reason this brochure also presents technology programmes where energy is only one of the aspects considered but which nevertheless contribute considerably to research and development in the energy production sector

  3. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  4. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  5. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  6. ImSET: Impact of Sector Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  7. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  8. Perspectives of energy efficient technologies penetration in the Greek domestic sector, through the analysis of Energy Performance Certificates

    International Nuclear Information System (INIS)

    Gelegenis, J.; Diakoulaki, D.; Lampropoulou, H.; Giannakidis, G.; Samarakou, M.; Plytas, N.

    2014-01-01

    The building sector in Greece presents a huge energy saving potential, the largest part of which is remaining unexploited. The recently enacted legislation for the energy performance of buildings, in combination with the financial support provided by funding programmes to low income families is expected to significantly boost the deployment of energy efficient technologies in the Greek domestic sector. The exploitation of these legal and financial instruments follows a formalised process of energy audits, resulting in buildings classification and in the submission of Energy Performance Certificates (EPCs) including suggestions to improve the dwellings' energy performance. The paper aims at an ex-ante evaluation of the market trends revealed by EPCs in Greece, in order to identify the perspectives of individual technologies and to assess the degree to which the certification procedure helps in improving the energy performance of buildings. The results indicate a strong trend towards less cost-effective technologies, revealing a sub-optimal allocation of financial resources and putting into risk the path towards the achievement of EU targets for 2020. - Highlights: • Energy Performance Certificates reveal market trends of energy efficient technologies. • SWH, replacement of windows and walls/roof insulation are most often recommended. • Other measures are controls, switch to NG; low cost measures are rarely recommended. • Cost-effectiveness is not the main factor explaining technology recommendations. • Amendment of EPC document and inspection process may enhance its effectiveness

  9. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  10. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  11. Energy and technology review

    International Nuclear Information System (INIS)

    Quirk, W.J.; Bookless, W.A.

    1994-05-01

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  12. Technological learning in energy-environment-economy modelling: A survey

    International Nuclear Information System (INIS)

    Kahouli-Brahmi, Sondes

    2008-01-01

    This paper aims at providing an overview and a critical analysis of the technological learning concept and its incorporation in energy-environment-economy models. A special emphasis is put on surveying and discussing, through the so-called learning curve, both studies estimating learning rates in the energy field and studies incorporating endogenous technological learning in bottom-up and top-down models. The survey of learning rate estimations gives special attention to interpreting and explaining the sources of variability of estimated rates, which is shown to be mainly inherent in R and D expenditures, the problem of omitted variable bias, the endogeneity relationship and the role of spillovers. Large-scale models survey show that, despite some methodological and computational complexity related to the non-linearity and the non-convexity associated with the learning curve incorporation, results of the numerous modelling experiments give several new insights with regard to the analysis of the prospects of specific technological options and their cost decrease potential (bottom-up models), and with regard to the analysis of strategic considerations, especially inherent in the innovation and energy diffusion process, in particular the energy sector's endogenous responses to environment policy instruments (top-down models)

  13. Estimating energy-augmenting technological change in developingcountry industries

    Energy Technology Data Exchange (ETDEWEB)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-07-07

    Assumptions regarding the magnitude and direction ofenergy-related technological change have long beenrecognized as criticaldeterminants of the outputs and policy conclusions derived fromintegrated assessment models. Particularly in the case of developingcountries, however, empirical analysis of technological change has laggedbehind simulation modeling. This paper presents estimates of sectoralproductivity trends and energy-augmenting technological change forseveral energy-intensive industries in India and South Korea, and, forcomparison, the United States. The key findings are substantialheterogeneity among both industries and countries, and a number of casesof declining energy efficiency. The results are subject to certaintechnical qualifications both in regards to the methodology and to thedirect comparison to integrated assessment parameterizations.Nevertheless, they highlight the importance of closer attention to theempirical basis for common modeling assumptions.

  14. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  15. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  16. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  17. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  18. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  19. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riddle, Matt [Argonne National Laboratory; Graziano, Diane [Argonne National Laboratory

    2017-10-09

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristic is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  20. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  1. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  2. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  3. Long-term energy futures: the critical role of technology

    International Nuclear Information System (INIS)

    Grubler, A.

    1999-01-01

    The paper briefly reviews the results of a 5-year study conducted by IIASA jointly with the World Energy Council (WEC) on long term-energy perspectives. After summarizing the study's main findings, the paper addresses the crucial role of technological change in the evolution of long-term energy futures and in responding to key long-term uncertainties in the domains of energy demand growth, economics, as well as environmental protection. Based on most recent empirical and methodological findings, long-term dynamics of technological change portray a number of distinct features that need to be taken account of in technology and energy policy. First, success of innovation efforts and ultimate outcomes of technological are uncertain. Second, new, improved technologies are not a free good, but require continued dedicated efforts. Third, technological knowledge (as resulting from R and D and accumulation of experience, i.e. technological learning) exhibits characteristics of (uncertain) increasing returns. Forth, due to innovation - diffusion lags, technological interdependence, and infrastructure needs (network externalities), rates of change in large-scale energy systems are necessarily slow. This implies acting sooner rather than later as a contigency policy to respond to long-term social, economic and environmental uncertainties, most notably possible climate change. Rather than picking technological 'winners' the results of the IIASA-WEC scenario studies are seen most appropriate to guide technology and R and D portfolio analysis. Nonetheless, robust persistent patterns of technological change invariably occur across all scenarios. Examples of primising groups of technologies are given. The crucial importance of meeting long-energy demand in developing countries, assuring large-scale infrastructure investments, maintaining a strong and diversified R AND D protfolio, as well as to dvise new institutional mechnisms for technology development and diffusion for instance

  4. Understanding the development trends of low-carbon energy technologies: A patent analysis

    International Nuclear Information System (INIS)

    Albino, Vito; Ardito, Lorenzo; Dangelico, Rosa Maria; Messeni Petruzzelli, Antonio

    2014-01-01

    Highlights: • Governments’ strategies set important frameworks to develop and sustain low-carbon energy technologies. • Commercial activities play a key role in the low-carbon energy technologies’ development. • The number of patents that are based upon basic research is growing. - Abstract: Eco-innovations are being recognized as fundamental means to foster sustainable development, as well as to create new business opportunities. Nowadays, the eco-innovation concept is gaining ground within both academic and practitioner studies with the attempt to better understand the main dynamics underlying its nature and guide policymakers and companies in supporting its development. This paper contributes to the extant literature on eco-innovation by providing a comprehensive overview of the evolution of a specific type of eco-innovations that are playing a crucial role in the current socio-economic agenda, namely low-carbon energy technologies. Accordingly, we focus our attention on the related patenting activity of different countries and organizations over time, as well as on influencing policy initiatives and events. Hence, we collected 131,661 patents granted at the United States Patent and Trademark Office (U.S.PTO.) between 1971 and 2010, and belonging to the “Nuclear power generation”, “Alternative energy production”, and “Energy conservation” technological classes, as indicated by the International Patent Classification (IPC) Green Inventory. Our findings report the development trends of low-carbon energy technologies, as well as identify major related environmental programs, historical events, and private sector initiatives explaining those trends, hence revealing how these different circumstances have significantly influenced their development over time

  5. Institutional analysis for energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Cole, R.J.

    1980-07-01

    This report summarizes principles, techniques, and other information for doing institutional analyses in the area of energy policy. The report was prepared to support DOE's Regional Issues Identification and Assessment (RIIA) program. RIIA identifies environmental, health, safety, socioeconomic, and institutional issues that could accompany hypothetical future scenarios for energy consumption and production on a regional basis. Chapter 1 provides some theoretical grounding in institutional analysis. Chapter 2 provides information on constructing institutional maps of the processes for bringing on line energy technologies and facilities contemplated in RIIA scenarios. Chapter 3 assesses the institutional constraints, opportunities, and impacts that affect whether these technologies and facilities would in fact be developed. Chapters 4 and 5 show how institutional analysis can support use of exercises such as RIIA in planning institutional change and making energy policy choices.

  6. New energy technologies. Report

    International Nuclear Information System (INIS)

    2004-01-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  7. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-01

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO 2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review

  8. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  9. A manual for the economic evaluation of energy efficiency and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Packey, D.J.; Holt, T.

    1995-03-01

    This manual is a guide for analyzing the economics of energy efficiency and renewable energy (EE) technologies and projects. It is intended (1) to help analysts determine the appropriate approach or type of analysis and the appropriate level of detail and (2) to assist EE analysts in completing consistent analyses using standard assumptions and bases, when appropriate. Included are analytical techniques that are commonly required for the economic analysis of EE technologies and projects. The manual consists of six sections: Introduction, Fundamentals, Selection Criteria Guide, Economic Measures, Special Considerations for Conservation and Renewable Energy Systems, and References. A glossary and eight appendices are also included. Each section has a brief introductory statement, a presentation of necessary formulae, a discussion, and when appropriate, examples and descriptions of data and data availability. The objective of an economic analysis is to provide the information needed to make a judgment or a decision. The most complete analysis of an investment in a technology or a project requires the analysis of each year of the life of the investment, taking into account relevant direct costs, indirect and overhead costs, taxes, and returns on investment, plus any externalities, such as environmental impacts, that are relevant to the decision to be made. However, it is important to consider the purpose and scope of a particular analysis at the outset because this will prescribe the course to follow. The perspective of the analysis is important, often dictating the approach to be used. Also, the ultimate use of the results of an analysis will influence the level of detail undertaken. The decision-making criteria of the potential investor must also be considered.

  10. Soft Energy Paths Revisited: Politics and Practice in Energy Technology Transitions

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2016-10-01

    Full Text Available This paper argues that current efforts to study and advocate for a change in energy technologies to reduce their climate and other environmental impacts often ignore the political, social, and bodily implications of energy technology choices. Framing renewable energy technologies exclusively in terms of their environmental benefits dismisses important questions about how energy infrastructures can be designed to correspond to democratic forms of socio-politics, forms of social organization that involve independence in terms of meeting energy needs, resilience in terms of adapting to change, participatory decision making and control, equitable distribution of knowledge and efficacy, and just distribution of ownership. Recognizing technological choices as political choices brings explicit attention to the kinds of socio-political restructuring that could be precipitated through a renewable energy technology transition. This paper argues that research on energy transitions should consider the political implications of technological choices, not just the environmental consequences. Further, emerging scholarship on energy practices suggests that social habits of energy usage are themselves political, in that they correspond to and reinforce particular arrangements of power. Acknowledging the embedded politics of technology, as the decades’ old concept of soft path technologies encourages, and integrating insights on the politics of technology with insights on technological practices, can improve future research on energy policy and public perceptions of energy systems. This paper extends insights regarding the socio-political implications of energy paths to consider how understandings of energy technologies as constellations of embedded bodily practices can help further develop our understanding of the consequences of energy technologies, consequences that move beyond environmental implications to the very habits and behaviors of patterned energy

  11. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    This chapter introduces Energy System Analysis methodologies and tools, which can be used for identifying the best application of different Fuel Cell (FC) technologies to different regional or national energy systems. The main point is that the benefits of using FC technologies indeed depend...... on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... technologies are very often connected to the use of hydrogen, which has to be provided e.g. from electrolysers. Decentralised and distributed generation has the possibility of improving the overall energy efficiency and flexibility of energy systems. Therefore, energy system analysis tools and methodologies...

  12. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  13. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  14. Estimating energy-augmenting technological change in developing country industries

    International Nuclear Information System (INIS)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Assumptions regarding the magnitude and direction of energy-related technological change have long been recognized as critical determinants of the outputs and policy conclusions derived from integrated assessment models. Particularly in the case of developing countries, however, empirical analysis of technological change has lagged behind simulation modeling. This paper presents estimates of sectoral productivity trends and energy-augmenting technological change for several energy-intensive industries in India and South Korea, and, for comparison, the United States. The key findings are substantial heterogeneity among both industries and countries, and a number of cases of declining energy efficiency. The results are subject to certain technical qualifications both in regards to the methodology and to the direct comparison to integrated assessment parameterizations. Nevertheless, they highlight the importance of closer attention to the empirical basis for common modeling assumptions

  15. The problem of valuing new energy technologies

    International Nuclear Information System (INIS)

    Awerbuch, Shimon.

    1996-01-01

    A brief editorial outlines the concepts and challenges facing the valuation of modular, renewable energy technologies which are covered in a special issue of ''Energy Policy''. The main problem is the narrowness of the traditional discounted cash flow analysis for valuing such projects when some of the benefits (e.g. flexibility, financial risk, reduction in overhead and indirect costs) are not fully recognized at the outset. (UK)

  16. Technology S-curves in renewable energy alternatives: Analysis and implications for industry and government

    International Nuclear Information System (INIS)

    Schilling, Melissa A.; Esmundo, Melissa

    2009-01-01

    Plotting the performance of a technology against the money or effort invested in it most often yields an S-shaped curve: slow initial improvement, then accelerated improvement, then diminishing improvement. These S-curves can be used to gain insight into the relative payoff of investment in competing technologies, as well as providing some insight into when and why some technologies overtake others in the race for dominance. Analyzing renewable energies from such a technology S-curve perspective reveals some surprising and important implications for both government and industry. Using data on government R and D investment and technological improvement (in the form of cost reductions), we show that both wind energy and geothermal energy are poised to become more economical than fossil fuels within a relatively short time frame. The evidence further suggests that R and D for wind and geothermal technologies has been under-funded by national governments relative to funding for solar technologies, and government funding of fossil fuel technologies might be excessive given the diminishing performance of those technologies.

  17. Renewable Energies and CO2 Cost Analysis, Environmental Impacts and Technological Trends- 2012 Edition

    CERN Document Server

    Guerrero-Lemus, Ricardo

    2013-01-01

    Providing up-to-date numerical data across a range of topics related to renewable energy technologies, Renewable Energies and CO2 offers a one-stop source of key information to engineers, economists and all other professionals working in the energy and climate change sectors. The most relevant up-to-date numerical data are exposed in 201 tables and graphs, integrated in terms of units and methodology, and covering topics such as energy system capacities and lifetimes, production costs, energy payback ratios, carbon emissions, external costs, patents and literature statistics. The data are first presented and then analyzed to project potential future grid, heat and fuel parity scenarios, as well as future technology tendencies in different energy technological areas. Innovative highlights and descriptions of preproduction energy systems and components from the past four years have been gathered from selected journals and international energy departments from G20 countries. As the field develops, readers are in...

  18. The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS

    International Nuclear Information System (INIS)

    Bodas Freitas, Isabel Maria; Dantas, Eva; Iizuka, Michiko

    2012-01-01

    This paper examines whether the Kyoto mechanisms have stimulated the diffusion of renewable energy technologies in the BRICS, i.e. Brazil, Russian, India China and South Africa. We examine the patterns of diffusion of renewable energy technologies in the BRICS, the factors associated with their diffusion, and the incentives provided by the Kyoto mechanisms. Preliminary analysis suggests that the Kyoto mechanisms may be supporting the spread of existing technologies, regardless if such technologies are still closely tied to environmental un-sustainability, rather than the development and diffusion of more sustainable variants of renewable energy technologies. This raises questions about the incentives provided by the Kyoto mechanisms for the diffusion of cleaner variants of renewable energy technologies in the absence of indigenous technological efforts and capabilities in sustainable variants, and national policy initiatives to attract and build on Kyoto mechanism projects. We provide an empirical analysis using aggregated national data from the World Development Indicators, the International Energy Agency, the United Nations Framework Convention on Climate Change and secondary sources. - Highlights: ► The Kyoto mechanisms may be supporting the diffusion of existing technologies. ► They may not be supporting the diffusion of sustainable renewable energy technologies. ► In the absence of appropriate capabilities and policies further diffusion is limited.

  19. Advances in energy systems and technology v.5

    CERN Document Server

    Auer, Peter L

    1986-01-01

    Advances in Energy Systems and Technology: Volume 5 present articles that provides a critical review of specific topics within the general field of energy. It discusses the fuel cells for electric utility power generation. It addresses the classification of fuel cell technologies. Some of the topics covered in the book are the major components of the fuel cell; the phosphoric acid fuel cells; molten carbonate fuel cells; solid oxide fuel cells; electric utility fuel cell systems; and the integration within fuel cell power plants. The analysis of the solar ponds is covered. The operational

  20. Promoting exports in the energy technology area

    International Nuclear Information System (INIS)

    Iten, R.; Oettli, B.; Jochem, E.; Mannsbart, W.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the position of Switzerland as a leader in the investment goods markets for energy-efficiency products and for technologies for using renewable forms of energy. The report quotes figures for exports in these areas and discusses the difficulty of extracting useful data on these products from normal statistical data. Analyses made by a group of experts from the export-oriented technology field, energy service providers and representatives of export promotion institutions are presented and figures are quoted for various product categories. Factors promoting the competitiveness of Swiss products are discussed as well as those impeding it. An analysis of export potential is presented and measures to promote export are discussed. The report also discusses the aids and promotion activities that are considered necessary by companies in the field and the macro-economic perspectives of increased export promotion

  1. A personal history: Technology to energy strategy

    International Nuclear Information System (INIS)

    Starr, C.

    1995-01-01

    This personal history spans a half century of participation in the frontiers of applies science and engineering ranging from the nuclear weapons project of World War II, through the development of nuclear power, engineering education, and risk analysis, to today's energy research and development. In each of these areas, this account describes some of the exciting opportunities for technology to contribute to society's welfare, as well as the difficulties and constraints imposed by society's institutional and political systems. The recounting of these experiences in energy research and development illustrates the importance of embracing social values, cultures, and environmental views into the technologic design of energy options. The global importance of energy in a rapidly changing and unpredictable world suggests a strategy for the future based on these experiences which emphasizes the value of applied research and development on a full spectrum of potential options

  2. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  3. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  4. Current Work in Energy Analysis (Energy Analysis Program -1996 Annual Report)

    Energy Technology Data Exchange (ETDEWEB)

    Energy Analysis Program

    1998-03-01

    This report describes the work that Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory has been doing most recently. One of our proudest accomplishments is the publication of Scenarios of U.S. Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the U.S. This analysis played a key role in shaping the U.S. position on climate change in the Kyoto Protocol negotiations. Our participation in the fundamental characterization of the climate change issue by the IPCC is described. We are also especially proud of our study of ''leaking electricity,'' which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of U.S. residential electricity currently expended on standby losses. The 54 vignettes contained in the following pages summarize results of research. activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national ENERGY STAR{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China. These are the intellectual endeavors of a talented team of researchers dedicated to public service.

  5. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  6. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  7. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    .S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of

  8. ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.

    1992-06-01

    This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

  9. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  10. Analysis of potential for market penetration of renewable energy technologies in peripheral islands

    International Nuclear Information System (INIS)

    Monteiro Alves, L.M.; Lopes Costa, A.; Graca Carvalho, M.

    2000-01-01

    Cape Verde Islands have important energy and water problems that limit their social and economic development. A field study will be performed focused on Cape Verde Islands to describe the present and future regional power market and to give a clear indication of the best strategies for the optimization of the power energy supply mix in Cape Verde Islands. The study will take into consideration renewable energy technologies and the concerned social, economic and environmental aspects of a given set of possible strategies. One case study will be considered in detail: the situation of the Santo Antao Island. Different energy technologies will be considered: solar, wind, geothermal and biomass. The present structure of the energy sector (capacity, distribution); energy demand, supply and trend; generating plants and infrastructures of Santo Antao will be described. (author)

  11. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  12. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  13. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  14. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  15. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  16. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  17. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    diffusion facilitated by environmental regulation. In my third paper, I address a broader scale of technology change, looking for evidence that improved technologies for energy generation and consumption have allowed less energy-intensive or pollution-intensive growth in developing countries. I analyze panel data on Gross Domestic Product (GDP) and national energy consumption to look for evidence of technology "leapfrogging" (i.e., decreased intensity of energy consumption for a given level of economic growth). I combine 1960-2014 data on energy consumption from the International Energy Agency with historical data that extends back to 1861 for several countries on energy consumption and fuel source, as well as GDP. I compare countries at the same income level and test whether energy consumption and energy intensity are different for today's less-developed countries compared to today's industrialized countries when they had similar income levels. Compared to prior analysis, my much longer time series allows me to test for leapfrogging over a scale appropriate to the pace of widespread technological change.

  18. Energy Technology Perspectives 2012: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Energy Technology Perspectives (ETP) is the International Energy Agency's most ambitious publication on new developments in energy technology. It demonstrates how technologies -- from electric vehicles to smart grids -- can make a decisive difference in achieving the objective of limiting the global temperature rise to 2 C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  19. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  20. Deregulation in an energy market and its impact on R and D for low-carbon energy technology

    International Nuclear Information System (INIS)

    Nakada, Minoru

    2005-01-01

    This paper analyzes the impact of deregulation in an energy market on R and D activities for new energy technology when climate policy is implemented. A model of growth with vertical innovation is modified by including an oligopolistic energy supply sector for demonstrating to what extent deregulation in the energy supply sector will affect R and D activities for low-carbon energy technology, provided that carbon taxation is implemented. The analysis shows that, when the elasticity of substitution between input factors is less than unity, deregulation will drive energy R and D activities and reduce CO 2 accumulation if the energy market is highly concentrated in the beginning. (author)

  1. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  2. Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase (LIGHTEnUP) – Analysis Tool User’s Guide

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2016-06-22

    The LIGHTEnUP Analysis Tool (Lifecycle Industry GreenHouse gas, Technology and Energy through the Use Phase) has been developed for The United States Department of Energy’s (U.S. DOE) Advanced Manufacturing Office (AMO) to forecast both the manufacturing sector and product life-cycle energy consumption implications of manufactured products across the U.S. economy. The tool architecture incorporates publicly available historic and projection datasets of U.S. economy-wide energy use including manufacturing, buildings operations, electricity generation and transportation. The tool requires minimal inputs to define alternate scenarios to business-as-usual projection data. The tool is not an optimization or equilibrium model and therefore does not select technologies or deployment scenarios endogenously. Instead, inputs are developed exogenous to the tool by the user to reflect detailed engineering calculations, future targets and goals, or creative insights. The tool projects the scenario’s energy, CO2 emissions, and energy expenditure (i.e., economic spending to purchase energy) implications and provides documentation to communicate results. The tool provides a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies. The tool allows the user to create multiple scenarios that can reflect a range of possible future outcomes. However, reasonable scenarios require careful attention to assumptions and details about the future. This tool is part of an emerging set of AMO’s life cycle analysis (LCA) tool such as the Material Flows the Industry (MFI) tool, and the Additive Manufacturing LCA tool.

  3. Patterns of technological innovation and evolution in the energy sector: A patent-based approach

    International Nuclear Information System (INIS)

    Lee, Kyungpyo; Lee, Sungjoo

    2013-01-01

    Given the ever-increasing pace and complexity of technological innovation in the energy sector, monitoring technological changes has become of strategic importance. One of the most common techniques for technology monitoring is patent analysis, which enables the identification of technological trends over time. However, few previous studies have carried out patent analysis in the energy sector. This study aims to explore patterns of innovation and of evolution in energy technologies, particularly focusing on similarities and differences across technologies. For this purpose, we first defined the relevant energy technologies and extracted the associated patent data from the United States Patents and Trademark Office (USPTO) and then adopted six patent indices and developed six patent maps to analyze their innovation characteristics. We then clustered energy technologies with similar characteristics, so defining innovation categories, and analyzed the changes in these characteristics over time to define their evolution categories. As one of the few attempts to investigate the overall trends in the energy sector's innovation and evolution, this study is expected to help develop an in-depth understanding of the energy industry, which will be useful in establishing technology strategies and policy in this rapidly changing sector. - Highlights: • We examined the patterns of innovation and evolution of energy technologies. • Six types of innovation patterns such as “competitive” or “mature” were identified. • Six types of evolution patterns such as “towards closed innovation” were identified. • The patterns of evolution were related to the patterns of innovation

  4. Situation analysis of the knowledge, competencies and skill requirements of jobs in renewable energy technologies in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This paper described the technological and marketing challenges of developing Canada's vast renewable energy sources. Canada's basic educational infrastructure provides a good foundation for developing renewable energy technologies in the coming decade. The following renewable energy technologies were highlighted: photovoltaic power systems; wind power systems; micro and small hydro power systems; solar air heating systems; solar water heating systems; biomass combustion systems; and, geothermal ground source heat pump systems. Each renewable technology has its own set of requirements that may differ from traditional technologies. The labour market needs and human resource considerations for these seven renewable energy technology industries were outlined. One of the main challenges lies in preparing technicians in renewable energy technologies and ensuring the availability of appropriate labour sources in relation to demand. Observations on training in renewable energies were also summarized with reference to typical jobs available within each sector, job description for each technology, qualifications and the required knowledge, skills and aptitudes for each industry. A list of Canadian company contacts by technology area was included. refs.

  5. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  6. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    1996-01-01

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  7. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Grubler, A.; Nakicenovic, N.; Victor, D.G.

    1999-01-01

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  8. Microelectronics in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Oeding, D; Jesse, G

    1984-07-01

    This meeting, which will take place on the 16th and 17th of October 1984 at the Old Opera House at Frankfurt on Main, in the context of the VDE Congress, will consist of 14 lectures on the state of the application of microelectronics to energy technology, and give its participants information on and a chance for discussion of this subject. The meeting will cover the following subjects: Microelectronics in energy supply undertakings; Microelectronics in the automation of power stations; Microelectronics in switchgear and transmission networks; Microelectronics in measurement technology; Microelectronics in lighting technology; Microelectronics in drive technology; Microelectronics in railway technology. The following shortened versions of these lectures are intended to motivate people to visit this event and to prepare contributions to and questions for the discussions.

  9. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  10. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  11. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  12. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  13. Technological Aspects of Russian Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available In the present study we examined the impact of technology on the development of world energy in the world, as well as on the development of international energy relations. The important role of international cooperation in the field of energy technologies as a key factor in the development and global deployment of energy technologies in the industry. The most effective technology in the world of multilateral cooperation under the auspices of the International Energy Agency (IEA and other international organizations. It allows the joint efforts of the countries concerned to develop new technologies, test them and implement in production. For Russia, it is very important, because at the moment our country is not only a leading exporter of energy resources, but also has a significant impact on global energy security. At the same time Russia's FEC requires urgent and serious modernization through the development and introduction of innovative technologies on the basis of the study of international experience. Therefore the question of modernization of Russian fuel and energy complex has an international character. One way to accelerate the process of modernization of the organization is a public-private partnership that will largely depend on the nature and possibilities of Russian energy diplomacy, given the geopolitical and economic realities in connection with the sanctions imposed by Western countries against our country.

  14. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  15. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  16. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    OpenAIRE

    Breunig, Hanna Marie

    2015-01-01

    There is a global need for energy technologies that reduce the adverse impacts of societal progress and that address today's challenges without creating tomorrow's problems. Life cycle impact assessment (LCIA) can support technology developers in achieving these prerequisites of sustainability by providing a systems perspective. However, modeling the early-stage scale up and impacts of technology systems may lead to unreliable or incomplete results due to a lack of representative technical, s...

  17. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  18. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2009-01-01

    An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted...... of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system...

  19. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics andAdvanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  20. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    International Nuclear Information System (INIS)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics and Advanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  1. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  2. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  3. Eco-development and energy efficient technologies in Russia: prospects and reality

    Science.gov (United States)

    Kurakova, Oksana

    2017-10-01

    The article highlights the concept of eco-standards in Russia, and discusses new technologies that allow to build energy-efficient houses in the form of countryside real estate. Special attention is given to the principle of heat production based on the use of individual facilities, power centers mini thermal power plants, as well as to ways to reduce water consumption at home. Presents analysis of the advantages projects “built-to-suit” for the introduction of the energy efficient technologies. Justified idea and principles of “green construction” in Russia in the real estate market. Conclusion about the effectiveness of the use, opportunities and development of energy efficient technologies.

  4. Energy. Economics - politics - technology. Energie. Wirtschaft - Politik - Technik

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A; Mielenhausen, E; Kallweit, J H; Schlueter, H; Schenkel, J; Vohwinkel, F; Streckel, S; Brockmann, H W

    1978-01-01

    The themes of the various aspects of the energy sector collected in this volume and discussed by different authors are: Energy policy, energy demand-research and forecasts, energy supplies, new technologies for future energy supply, generation of electrical energy by nuclear power stations, effect on the environment of energy plants, legal problems of site planning, and the authorisation of energy plants.

  5. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  6. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  7. Energy analysis program. 1995 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.

    1996-05-01

    This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

  8. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  9. Energy and economic milestones in Nigeria: Role of nuclear technology

    International Nuclear Information System (INIS)

    Dahunsi, S.O.A.

    2011-01-01

    Electric power supply could be the driving force critical to poverty reduction, economic growth and sustainable development in developing countries like Nigeria. Comparative analysis of several promising technologies that could be explored to achieve energy sufficiency however shows that nuclear power is more economically competitive and outstanding despite the relatively high initial capital cost. Furthermore, one of the critical conditions in deciding to invest in a specific electric power technology is the overall cost component of the new technology, nuclear therefore is in many places competitive with other forms of electricity generation. The fundamental attraction is about harnessing the sources of energy which takes cognizance of the environmental effects of burning fossil fuel and its security of supply. This paper therefore highlights the benefits of inclusion of nuclear energy in the Nigeria energy mix, a sine qua non for economic and social development, safer environment, wealth creation and a long term energy security.

  10. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  11. New energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Kuester, W J; Wagner, H F

    1977-01-01

    In the Federal Republic of Germany, analyses and forecasts of the energy supply and energy consumption have revealed five major sectors in which extensive R and D activities should be carried out: nuclear energy, coal technology, the utilization of solar energy, techniques for the economical use of energy, and nuclear fusion. Of these sectors, only nuclear energy will be able to make a major contribution to our energy supply both in the near future and over a longer period. The available capacity for mining the large deposits of coal in the Federal Republic of Germany can be increased only gradually and will therefore not make an appreciable contribution until a later date. Another fact to be considered is that a rapidly expanding utilization of this source of energy entails very heavy pollution of the environment. The utilization of solar energy in Central Europe will probably be possible only for supplying warm water for industry and for heating buildings. In the long term, solar energy will contribute only a small percentage of energy to the supply required by the Federal Republic of Germany. Intensive efforts are being made to develop technologies for the more economical use of energy. The priorities in this sector are the installation of district heating systems using waste heat from power stations, and the improved heat insulation of houses. It is not anticipated that the technical utilization of nuclear fusion will be introduced before the end of this century. Nonetheless, this source of energy still constitutes a possibility offering an extremely great potential in the long term, with the result that every effort is being made to put it to good use. The work being carried out in this field in the Federal Republic of Germany is being closely coordinated with the relevant activities undertaken by the other member countries of the European Community.

  12. Participating to the Transition Towards New Energy Technology Systems

    International Nuclear Information System (INIS)

    Tosato, G.

    2008-01-01

    The paper analyses possible implications for Croatia of a global transition towards new energy technology systems, as depicted by the recent report on scenarios and strategies to 2050 of the International Energy Agency [ETP2008]. The analysis is based upon the present Croatian energy balance. It takes into account some draft results of the USAID-supported Regional Energy Demand Planning (REDP) study under the South East Europe Regional Energy Market Support (SEE REMS) Project. The paper then presents ongoing EC-funded energy research projects, such as RES2020 (Monitoring and Evaluation of the Renewable Energy Sources directives implementation in EU27 and policy recommendations for 2020), REACCESS (Risk of Energy Availability: Common Corridors for Europe Supply Security) and REALISEGRID (REseArch, methodoLogIes and technologieS for the effective development of pan-European key GRID infrastructures to support the achievement of a reliable, competitive and sustainable electricity supply). The participation of Croatian research organizations to EC-funded research projects could make the transition towards new energy system an opportunity for economic development.(author)

  13. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  14. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  15. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Morteza; Omid, Mahmoud; Akram, Asadollah [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, School of Agriculture and Natural Resources, University of Tehran, Karaj (Iran)

    2010-07-15

    The aim of this study was to determine the amount of input-output energy used in potato production and to make an economic analysis of potato production in Hamadan province, Iran. Data for the production of potatoes were collected from 100 producers by using a face to face questionnaire method. The population investigated was divided into two groups. Group I was consisted of 68 farmers (owner of machinery and high level of farming technology) and Group II of 32 farmers (non-owner of machinery and low level of farming technology). The results revealed that 153071.40 MJ ha{sup -1} energy consumed by Group I and 157151.12 MJ ha{sup -1} energy consumed by Group II. The energy ratio, energy productivity, specific energy, net energy gain and energy intensiveness were calculated. The net energy of potato production in Group I and Group II was 4110.95 MJ ha{sup -1} and -21744.67 MJ ha{sup -1}, respectively. Cost analysis showed that total cost of potato production in Groups I and II were 4784.68 and 4172.64 $ ha{sup -1}, respectively. The corresponding, benefit to cost ratio from potato production in the surveyed groups were 1.09 and 0.96, respectively. It was concluded that extension activities are needed to improve the efficiency of energy consumption in potato production. (author)

  16. Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels

    International Nuclear Information System (INIS)

    Haase, Rachel; Bielicki, Jeffrey; Kuzma, Jennifer

    2013-01-01

    Algal biofuel is an emerging energy source that has the potential to improve upon the environmental benefits realized by conventional biofuels and contribute to the biofuels mandate set by the Renewable Fuel Standard (RFS). While there has been much research into producing fuel from algae, a commercial-scale facility has not yet been built. We examine two case studies of energy technology innovation in the United States, first generation biodiesel and solar photovoltaics (PV), using the technological innovation system (TIS) framework to provide lessons and inform the path forward for commercializing algal biofuel. We identify five event types that have been the most influential to these innovation processes: changing expectations, technology development, demonstration projects, policy targets, and government subsidies. Some algal biofuel demonstration projects have occurred, but despite falling under the mandates set forth in the RFS (a policy target), algal biofuels do not currently receive production subsidies. The main finding from the case study analysis is that government interventions have significantly influenced the innovation processes of first generation biodiesel and solar PV and will likely be key factors in the commercialization of algal biofuel. - Highlights: • Two energy technology case studies were analyzed with a TIS framework. • Major drivers in the innovation process were identified in each case. • Government interventions were key factors for both. • The one identified key driver algal biofuel is lacking is federal subsidies. • All components of the TIS framework deserve attention in promoting innovation

  17. Dynamics of energy systems: Methods of analysing technology change

    Energy Technology Data Exchange (ETDEWEB)

    Neij, Lena

    1999-05-01

    Technology change will have a central role in achieving a sustainable energy system. This calls for methods of analysing the dynamics of energy systems in view of technology change and policy instruments for effecting and accelerating technology change. In this thesis, such methods have been developed, applied, and assessed. Two types of methods have been considered, methods of analysing and projecting the dynamics of future technology change and methods of evaluating policy instruments effecting technology change, i.e. market transformation programmes. Two methods are focused on analysing the dynamics of future technology change; vintage models and experience curves. Vintage models, which allow for complex analysis of annual streams of energy and technological investments, are applied to the analysis of the time dynamics of electricity demand for lighting and air-distribution in Sweden. The results of the analyses show that the Swedish electricity demand for these purposes could decrease over time, relative to a reference scenario, if policy instruments are used. Experience curves are used to provide insight into the prospects of diffusion of wind turbines and photo voltaic (PV) modules due to cost reduction. The results show potential for considerable cost reduction for wind-generated electricity, which, in turn, could lead to major diffusion of wind turbines. The results also show that major diffusion of PV modules, and a reduction of PV generated electricity down to the level of conventional base-load electricity, will depend on large investments in bringing the costs down (through R D and D, market incentives and investments in niche markets) or the introduction of new generations of PV modules (e.g. high-efficiency mass-produced thin-film cells). Moreover, a model has been developed for the evaluation of market transformation programmes, i.e. policy instruments that effect technology change and the introduction and commercialisation of energy

  18. Smart City Energy Interconnection Technology Framework Preliminary Research

    Science.gov (United States)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  19. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  20. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  1. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  2. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  3. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  4. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  5. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  6. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  7. Commercialization of new energy technologies. Appendix A. Case study 1: central station electric power generation technologies

    International Nuclear Information System (INIS)

    1976-06-01

    The results of a survey on Technologies for Central Power Generation are presented. The central power generation technologies selected for consideration were: fusion; breeder reactors; solar electric (thermal); geothermal; and magnetohydrodynamics. The responses of industry executives who make key investment decisions concerning new energy technologies and who to identify the problems faced in the development and commercialization of new energy systems are presented. Evaluation of these responses led to the following recommendations: increase industry input into the R, D and D planning process; establish and advocate priorities for new technologies based on detailed analysis of a technology's value in terms of overall national goals; create a mechanism for a joint ERDA/industry appraisal of priorities and programs; increase level of federal funding or subsidy of new technology demonstrations; and focus the activities of the national laboratories on basic research and very early product development; and emphasize industry involvement in systems development

  8. Energy, environment and technological innovation

    Directory of Open Access Journals (Sweden)

    Fernando José Pereira da Costa

    2015-08-01

    Full Text Available The development problems can not be addressed without taking account of the environmental and energy issues, as well as the intimate relationship and the intense interaction between the two. In fact, the energy issue can not be analyzed separately from environmental issues, nor the advances in technological innovation, integrating dynamic-systemic way and so positioning address the issue of the development model to set the bulge the transition process experienced by the world since the seventies of the twentieth century. This transition, in turn, implies the passage of Paradigm of Fossil Fuels to Renewable Energy also called the Paradigm of renewable sources of energy, not just holding the energy problem, but towards to environmental and technological components. It is within this relatively slow and long process, instigator of high levels of volatility, turbulence inducing and motor of technological innovation, which is (re raises the question of the development model that defines how a new model/style development.

  9. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  10. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    renewable technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  11. Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data

    International Nuclear Information System (INIS)

    Baker, Erin; Bosetti, Valentina; Anadon, Laura Diaz; Henrion, Max; Aleluia Reis, Lara

    2015-01-01

    In this paper we standardize, compare, and aggregate results from thirteen surveys of technology experts, performed over a period of five years using a range of different methodologies, but all aiming at eliciting expert judgment on the future cost of five key energy technologies and how future costs might be influenced by public R&D investments. To enable researchers and policy makers to use the wealth of collective knowledge obtained through these expert elicitations we develop and present a set of assumptions to harmonize them. We also aggregate expert estimates within each study and across studies to facilitate the comparison. The analysis showed that, as expected, technology costs are expected to go down by 2030 with increasing levels of R&D investments, but that there is not a high level of agreement between individual experts or between studies regarding the technology areas that would benefit the most from R&D investments. This indicates that further study of prospective cost data may be useful to further inform R&D investments. We also found that the contributions of additional studies to the variance of costs in one technology area differed by technology area, suggesting that (barring new information about the downsides of particular forms of elicitations) there may be value in not only including a diverse and relatively large group of experts, but also in using different methods to collect estimates. - Highlights: • Harmonization of unique dataset on probabilistic evolution of key energy technologies. • Expectations about the impact of public R&D investments on future costs. • Highlighting the key uncertainties and a lack of consensus on cost evolution

  12. A Transforming Electricity System: Understanding the Interactions Between Clean Energy Technologies, Markets, and Policies

    Science.gov (United States)

    Mooney, David

    The U.S. electricity system is currently undergoing a dramatic transformation. State-level renewable portfolio standards, abundant natural gas at low prices, and rapidly falling prices for wind and solar technologies are among the factors that have ushered in this transformation. With objective, rigorous, technology-neutral analysis, NREL aims to increase the understanding of energy policies, markets, resources, technologies, and infrastructure and their connections with economic, environmental, and security priorities. The results of these analyses are meant to inform R&D, policy, and investment decisions as energy-efficient and renewable energy technologies advance from concept to commercial application to market penetration. This talk will provide an overview of how NREL uses high-fidelity data, deep knowledge of energy technology cost and performance, and advanced models and tools to provide the information needed to ensure this transformation occurs economically, while maintaining system reliability. Examples will be explored and will include analysis of tax credit impacts on wind and solar deployment and power sector emissions, as well as analysis of power systems operations in the Eastern Interconnection under 30% wind and solar penetration scenarios. Invited speaker number 47185.

  13. Energy technology and American democratic values

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.M.

    1988-01-01

    Today, the benefits of liberal democracy have increasingly been cast into doubt. The debate over alternative energy policies illustrates the problems associated with liberal democracy. For many, it is the realization that energy choices and the selection of social and political values amount to much the same thing. Simply put, energy policy decisions, and the concomitant energy technologies, carry implications of an ethical, social and political nature. The argument of the social and political effects of energy technology flows from the more general thesis that all forms of technological practice condition social and political relations. That is, technological systems, beyond performing the specific functions for which they were designed, act upon and influence social and political arrangements. Seen in this light, energy technologies are as important to the promotion and preservation of this country's political values as are its institutions and laws. Further, there is evidence to suggest that this country's cherished democratic value of freedom is slowly being eclipsed by the values attendant to corporate capitalism and its singular pursuit of growth. It is this dominance of economic values over political values which provides the environment within which the technological debate is waged. Ultimately, tracing the historic linkage between property and liberty, it is concluded that the preservation of our freedom require new thinking regarding the present configuration of ownership patterns. The questions surrounding energy policy serve to illuminate these concerns.

  14. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  15. Canada's clean energy technology and the Bay area market : a needs assessment

    International Nuclear Information System (INIS)

    2008-03-01

    This study was conducted to develop market intelligence related to clean energy technologies in Northern California, including both commercial and demonstration technologies. The study was developed as a tool for exploring engagement between Canadian and Californian businesses and partnering opportunities. The study examined technologies for solar power and photovoltaics; hydrogen and fuel cells; and waste-to-energy. A list of more than 150 organizations, government agencies, business associations, and utilities was prepared. The survey also included the establishment of contact points with large facilities, public spaces, bus fleets, and major capital projects. Fifty-nine interviews were also conducted as part of the study. Results of the study indicated that the biggest challenge concerning most individuals was the need to reduce energy consumption while maintaining reliability. Many interviewees expressed an interest in operating waste-to-energy facilities. Fifty interviewees indicated that they were planning to use or already used solar technologies. An analysis of clean energy needs was also included. The study indicated that many local governments are reluctant to embrace new, highly visible technologies. Only sophisticated organizations with unique energy demands have considered the use of fuel cell technologies. 1 fig

  16. Market penetration of energy supply technologies

    Science.gov (United States)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  17. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  18. System analysis and assessment of technological alternatives for Nordic H{sub 2} energy foresight

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Pursiheimo, E. [VTT, Espoo (Finland); Gether, K. [NTNU, Trondheim (Norway); Joergensen, K. [Risoe National Lab. (Denmark)

    2004-12-01

    The hydrogen scenarios developed during the Nordic Hydrogen Foresight project was analysed using a energy system model, which was developed during the project. The aim of the systems analysis was to analyse the technical and economical potential of hydrogen society in the Nordic countries in quantitative terms as well as the competitiveness of the selected hydrogen based systems. Visions and scenarios of the future energy systems in the Nordic area were defined in the workshops of the project. As a result of these workshops three scenarios were selected to outline the future of Nordic energy. The scenarios included different energy policies; scenarios for fossil fuel prices; and hydrogen energy demands, which varied from 6% to 18% of the total energy demand in 2030 for transport sector, and from 3% to 9% in heat and power production. In the roadmap workshops, the most important hydrogen based systems were selected, which were also included in the model. These include steam reforming of natural gas, electrolysis with renewable electricity, and biomass gasification for hydrogen production. For stationary applications, fuel cells and gas engines were selected for power and heat production. In our scenario calculations, biomass gasification and steam reforming seem to be the most competitive technologies for hydrogen production. The competitiveness of biomass gasification is greatly affected by the biomass fuel price, which is a local energy source. Electrolysis seems to be most competitive in decentralized systems, if the electricity price is low enough. For stationary applications, CHP fuel cells seem to be the most competitive in the long term, if the technological development and the decrease in investment costs follow the assumed scenario. The approximated Nordic market sizes in 2030 for the base scenarios varied from 1000 ME to 3000 MEuro for hydrogen production, from 1000 to 4000 MEuro for stationary applications and 4000 MEuro to 12.000 MEuro for hydrogen

  19. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  20. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2010-11-01

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO 2 emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  1. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2010-11-15

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO{sub 2} emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  2. Risk communications in nuclear energy as science and technology. Arrangement and analysis of academic findings and practical cases

    International Nuclear Information System (INIS)

    Toyoda, Satoshi

    2006-01-01

    Problems in communication among the government, enterprise, experts and so on and the society and people, now confront us in several areas of science and technology. In order to be accepted by the society, each area of science and technology has experienced common processes such as beginnings, business, society introduction, problem renovation and maturity. Each area can be positioned based on the degree of maturity, which helps to find solutions of the problems. Arrangement and analysis of academic findings and practical cases on risk communications in nuclear energy are described. (T. Tanaka)

  3. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  4. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  5. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  6. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  7. TIC and energy: Digital technologies and the environment; Understanding the energy challenges for technologies of information and communication; Data Centres; Energy savings and reduction of CO_2 emissions, objectives and action plan of the Orange Group

    International Nuclear Information System (INIS)

    Collet, Patrice; Gossart, Cedric; Garello, Rene; Richard, Philippe; Hauet, Jean-Pierre; Bourgoint, Jean-Claude; Zeddam, Ahmed

    2015-01-01

    This publication proposes a set of four articles which give an overview of the present situation of technologies of information and communication (TICs) in terms of energy consumption, and of their perspectives of evolution. More precisely, the authors propose an overview of negative and positive impacts of TICs on the environment (Digital technologies and the environment), discuss an analysis of energy consumption by the different components of the Internet (Understanding the energy challenges for technologies of information and communication), comment efforts which have been already achieved to reduce the energy consumed by data centre equipment (Data Centres), and present action developed and implemented by the Orange Group to manage its energy consumption in its networks and in its information system (Energy savings and reduction of CO_2 emissions, objectives and action plan of the Orange Group)

  8. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Student Outreach With Renewable Energy Technology

    Science.gov (United States)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide

  10. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  11. Energy Performance Contract models for the diffusion of green-manufacturing technologies in China: A stakeholder analysis from SMEs’ perspective

    International Nuclear Information System (INIS)

    Liu, Peng; Zhou, Yuan; Zhou, Dillon K.; Xue, Lan

    2017-01-01

    Small-and-medium-sized enterprises (SMEs) are significant to China's emission reduction programme. This research aims to improve our understanding of the challenge of diffusing green-manufacturing technologies among SMEs in China. Specifically, this study examines the Chinese Government's effort to facilitate reduction of energy consumption among SMEs through Energy Performance Contracts (EPCs) to incentivize domestic manufacturers to adopt energy efficient measures (EEMs) in order to reduce demand for energy and corresponding drop in emissions. The data is gathered from relevant EPC stakeholders in the National Motor Upgrading Demonstration Project and its implementation in Dongguan city, which is based on 30 in-depth interviews and 6 focus group discussions. Using stakeholder analysis, this study finds that guaranteed energy savings model is the favorite model in implementation, given the gained benefits outweigh committed resources, and the control capability overrides possible risks among the two core stakeholders. The outcomes of this study may allow the government to have a clear understanding of stakeholder perception of the different EPC models used in China so the design and deployment of these mechanisms can be improved. - Highlights: • Examine the barriers faced by green technologies when they are promoted to SMEs on a large scale. • Explain why green technology diffusion is thwarted when stakeholders cannot reach compromises. • Find that the guaranteed energy savings model is the best mechanism for upgrading SMEs. • Note that new EPC models and new policies are needed to increase stakeholders’ adoption rate.

  12. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  13. Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?

    International Nuclear Information System (INIS)

    McJeon, Haewon C.; Clarke, Leon; Kyle, Page; Wise, Marshall; Hackbarth, Andrew; Bryant, Benjamin P.; Lempert, Robert J.

    2011-01-01

    Advanced low-carbon energy technologies can substantially reduce the cost of stabilizing atmospheric carbon dioxide concentrations. Understanding the interactions between these technologies and their impact on the costs of stabilization can help inform energy policy decisions. Many previous studies have addressed this challenge by exploring a small number of representative scenarios that represent particular combinations of future technology developments. This paper uses a combinatorial approach in which scenarios are created for all combinations of the technology development assumptions that underlie a smaller, representative set of scenarios. We estimate stabilization costs for 768 runs of the Global Change Assessment Model (GCAM), based on 384 different combinations of assumptions about the future performance of technologies and two stabilization goals. Graphical depiction of the distribution of stabilization costs provides first-order insights about the full data set and individual technologies. We apply a formal scenario discovery method to obtain more nuanced insights about the combinations of technology assumptions most strongly associated with high-cost outcomes. Many of the fundamental insights from traditional representative scenario analysis still hold under this comprehensive combinatorial analysis. For example, the importance of carbon capture and storage (CCS) and the substitution effect among supply technologies are consistently demonstrated. The results also provide more clarity regarding insights not easily demonstrated through representative scenario analysis. For example, they show more clearly how certain supply technologies can provide a hedge against high stabilization costs, and that aggregate end-use efficiency improvements deliver relatively consistent stabilization cost reductions. Furthermore, the results indicate that a lack of CCS options combined with lower technological advances in the buildings sector or the transportation sector is

  14. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  15. Analysis of carbon mitigation technology to 2050 in Japan through integrated energy economic model

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Suzuki, Kengo; Nagatomi, Yu; Matsuo, Yuji; Suehiro, Shigeru

    2011-01-01

    This paper describes the outline of integrated energy economic model and calculated result concerning the outlook of energy and carbon dioxide emissions in Japan to 2050. The energy model developed in this paper is integrated one which consistently combines econometric model endogenously generating socio-economic outlook and bottom-up type technology model, MARKAL, identifying cost-minimizing optimal mix of various energy technologies. In reference scenario which imposes no carbon emissions constraint, CO 2 emission in 2050 will decrease by approximately 40% from the level of emissions in 2005. In carbon-constraints scenario, imposing emissions cap of 60% reduction by 2050 from the emissions in 2005, natural gas-fired power plant equipped with CCS and renewable energy are expected to expand its portion in power generation mix. In transportation sector on this scenario, clean energy vehicles such as electric vehicle (EV) and hydrogen fuel cell vehicle (FCV) will be deployed and contribute to mitigate CO 2 emissions. (author)

  16. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  17. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  18. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  19. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  20. Fiscal 1999 survey report on survey of long-term strategy on energy technology. Long-term energy technological strategy survey (Long-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (choki energy gijutsu senryaku chosa))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To enhance still more effectively the research and development of energy-related/environmental technologies, research and development strategies have to be worked out from a long-term view point and policy resources such as investment in research and development should be optimally distributed after clarifying and defining the course to follow toward the achievement of research and development goals. This project aims to conduct studies, and to show the course to follow in the future, towards the establishment of a long-term energy technological strategy by investigating energy systems for around 2050, interim energy systems at the intermediate stage, and innovative energy technologies for realizing such energy systems. In Chapter 1, the position of the survey and its purpose and prerequisites are shown. In Chapter 2, the history of social and economic conditions surrounding energy/environmental technologies and of energy situation up to the present time is compiled, and the outlook is analyzed and predicted. In Chapter 3, formulation of a long-term energy technological strategy is discussed. In Chapter 5, how to embody such a strategy is shown. (NEDO)

  1. Quantifying the benefits: Energy, cost, and employment impacts of advanced industrial technologies

    International Nuclear Information System (INIS)

    Sullivan, G.P.; Roop, J.M.; Schultz, R.W.

    1997-01-01

    This development effort was supported by the Technologies Partnerships Program established through the US Department of Energy's Office of Energy Efficiency and Renewable Energy via the Office of Industrial Technology (OIT). This program supports research, development, and demonstration of industrial technologies aimed at improving energy efficiency and productivity while reducing pollution, material waste, and operations/maintenance costs. The goal of this program is to develop cost-shared partnerships with industry, government and non-government organizations to foster improved efficiency, productivity, and pollution prevention technologies. This partnership program is believed to be one way that energy efficiency will be delivered to industry in the 21st Century. This paper reports on the development of the Industrial Technology Employment Analysis Model (ITEAM) which calculates economy-wide employment impacts of specific partnership program technologies, using data developed by the technology partner. ITEAM is a desk-top computer model that allows users to evaluate base-case partnership data and/or run sensitivity tests using its graphical-user-interface features. To demonstrate the capabilities of ITEAM, an analysis is presented for the chemicals industry. In addition, the following major industries have been analyzed and summary data are presented: aluminum, stone/clay/glass, forest products, chemicals, metal casting, steel, and petroleum. This paper addresses the development, function, and use of ITEAM. Included is a presentation of key assumptions along with user inputs and a discussion of sensitivities. The results of ITEAM runs for over 20 technology projects in 7 program areas are reported. The paper also explains how the project data are used to modify the 1987 I/O table to impact output and employment. The calculations are explained and the approach is rationalized. The argument for this approach rests on the proposition that improvements in efficiency

  2. Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Lubinda F. Walubita

    2018-02-01

    Full Text Available Road energy harvesting is an ingenious horizon for clean and renewable energy production. The concept is very compatible with current traffic trends and the ongoing depletion of natural resources. Yet, the idea of harvesting roadway energy is still in its genesis, and only a few real-time implementation projects have been reported in the literature. This review article summarizes the current state of the art in road energy harvesting technology, with a focus on piezoelectric systems, including an analysis of the impact of the technology from social and environmental standpoints. Based on an extensive desktop review study, this article provides a comprehensive insight into roadway energy harvesting technologies. Specifically, the article discusses the societal and environmental benefits of road energy harvesting technologies, as well as the challenges. The study outlined the meaningful benefits that positively align with the concept of sustainability. Overall, the literature findings indicate that the expansion of the roadway energy harvesting technology to a large practical scale is feasible, but such an undertaking should be wisely weighed from broader perspectives. Ultimately, the article provides a positive outlook of the potential contributions of road energy harvesting technologies to the ongoing energy and environmental challenges of human society.

  3. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  4. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  5. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  6. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  7. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  8. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  9. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  10. World energy, technology and climate policy outlook 2030. WETO 2030

    International Nuclear Information System (INIS)

    2003-01-01

    Starting from a set of clear key assumptions on economic activity, population and hydrocarbon resources, WETO describes in detail scenarios for the evolution of World and European energy systems, power generation technologies and impacts of climate change policy in the main world regions or countries.It presents a coherent framework to analyse the energy, technology and environment trends and issues over the period to 2030, focusing on Europe in a world context. Three of the key results of this work are: (1) in a Reference scenario, i.e.if no strong specific policy initiatives and measures are taken, world CO2 emissions are expected to double in 2030 and, with a share of 90%, fossil fuels will continue to dominate the energy system; (2) the great majority of the increase in oil production will come from OPEC countries and the EU will rely predominantly on natural gas imported from the CIS; and (3) as the largest growing energy demand and CO2 emissions originate from developing countries (mainly China and India), Europe will have to intensify its co-operation, particularly in terms of transfer of technologies. The analysis of long-term scenarios and a particular attention to the energy world context, is an important element for efficient energy, technology and environment policies towards a sustainable world

  11. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  12. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  13. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  14. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  15. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  16. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  17. Is technological change biased toward energy? A multi-sectoral analysis for the French economy

    International Nuclear Information System (INIS)

    Karanfil, Fatih; Yeddir-Tamsamani, Yasser

    2010-01-01

    Since the adoption and implementation of new technologies has an important influence on the structure and performance of the economy in both developed and developing countries, many research papers are devoted to the technology-economy nexus. Motivated by the fact that the impact of technical progress on the demand for different production factors may vary depending on the bias of the technological change, in this paper, by estimating a translog cost-share system and using state-space modeling technique, we investigate to what extent the direction of technical change is biased toward energy and away from other factors. By applying this methodology to the French economy for the period 1978-2006 the obtained results suggest that: first, technical change has a non-neutral impact on factor demands; second, capital-saving technical progress is present in the majority of the sectors studied; third, energy demand has increased in all sectors but electricity and gas. These findings may have important policy implications for environmental and energy issues in France.

  18. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  19. Technology and energy at school

    International Nuclear Information System (INIS)

    Hawkes, N.

    1994-01-01

    The teaching of technology and energy in schools requires more than simply the transfer of information. Public attitudes towards technology often contain unacknowledged contradictions, and research has shown that programmes for greater public understanding of science depend for their success on context, motivation, and on the source of the information. Exploration of the methods of science, its motivations and its limitations, should provide the basis for teaching nuclear energy in schools

  20. Commercialisation of Renewable Energy Technologies for Various Consumption Needs

    Energy Technology Data Exchange (ETDEWEB)

    Jiahua Pan [Chinese Academy of Social Sciences (China)

    2005-12-15

    Can renewable energy technologies meet various consumption needs? It may be argued that without commercial viability, renewable energy technologies cannot compete with conventional energy technologies in this respect. The following issues are to be examined in this paper: (1) the types of renewable energy technologies needed in relation to consumption needs; (2) whether these technologies are commercially viable; (3) the extent to which these technologies can supply the energy needed for industrialisation and economic development in developing countries; (4) policy implications of commercialising renewable energy technologies; and, (5) the role of Asia-Europe cooperation on technological development, diffusion and transfer. The evaluation will concentrate on market potential rather than technological potential, as some of the renewable energy technologies are yet to be commercial. This examination will be made in the context of the specific consumption needs of a major developing country like China in its current period of high economic growth rates and rapid industrialisation. Asia-Europe co-operation on renewable energy technologies can speed up the process of commercialisation through demonstration, direct investment, joint venture, Build-Operate-Transfer (BOT), financial aid and capacity building (both technological know-how and institutional)

  1. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    1997-01-01

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing [de

  2. Clean Energy Manufacturing Analysis Center Benchmark Report: Framework and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-23

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  3. Fiscal 1975 Sunshine Project research report. Technology assessment on hydrogen energy technology. Part 2; 1975 nendo suiso energy gijutsu no technology assessment seika hokokuksho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research assesses the impact of development of practical hydrogen energy technology on the economy, society and environment in Japan, and proposes some effective countermeasures, the required technical development target and a promising promotion system. The example of technology assessment assuming practical technology several tens years after is hardly found. Hydrogen energy technology is in the first stage among (1) initial planning stage, (2) technical research and development stage, (3) practical technology stage and (4) service operation stage. In the first fiscal year, as the first stage of determination of the communication route between society and technology, study was made on the concrete system image of practical technology. In this fiscal year, study was made entirely on preparation of the scenario for imaging the future economy and society concretely, modifying the planning of the hydrogen energy system. Through comparison of the scenario and system, the meaning and problem of the hydrogen energy technology were clarified. (NEDO)

  4. Analysis of the Russian Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  5. Renewable energy technology acceptance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Kardooni, Roozbeh; Yusoff, Sumiani Binti; Kari, Fatimah Binti

    2016-01-01

    Despite various policies, renewable energy resources have not been developed in Malaysia. This study investigates the factors that influence renewable energy technology acceptance in Peninsular Malaysia and attempts to show the impact of cost and knowledge on the perceived ease of use and perceived usefulness of renewable energy technology. The results show that cost of renewable energy has an indirect effect on attitudes towards using renewable energy through the associated impact on the perceived ease of use and perceived usefulness. The results also indicate that public knowledge in Peninsular Malaysia does not affect perceived ease of use, although the positive impact of knowledge on perceived usefulness is supported. Furthermore, our results show that the current business environment in Peninsular Malaysia does not support the adoption of renewable energy technology, and thus, renewable energy technology is not commercially viable in Peninsular Malaysia. Additionally, the population of Peninsular Malaysia associates the use of renewable energy with a high level of effort and therefore has a negative attitude towards the use of renewable energy technology. There is, therefore, a definite need to pay more attention to the role of public perception and awareness in the successes and failures of renewable energy policy. - Highlights: • Public acceptance is an essential element in the diffusion of renewable energy. • Perceived ease of use and perceived usefulness affect intention to use renewables. • It is important to reduce the cost of renewable energy, particularly for end users. • Renewable energy policies should address issues of public perception and awareness.

  6. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  7. The new energy technologies in Australia

    International Nuclear Information System (INIS)

    Le Gleuher, M.; Farhi, R.

    2005-06-01

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  8. Energy system analysis of CAES technologies in the Danish energy system with high penetration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    countries. However, plans to expand wind power locally and in the neighbouring countries could restrain the export option and create transmission congestion challenges. This results in a need to increase the flexibility of the local electricity system. Compressed Air Energy Storage (CAES) has been proposed...... effect on reducing excess electricity production, the storage capacity of CAES has to be increased significantly compared to current technology. It is thus concluded that, seen from a local energy system balance perspective, CAES has little potential for reducing excess electricity production...

  9. MEGASTAR: The meaning of growth. An assessment of systems, technologies, and requirements. [methodology for display and analysis of energy production and consumption

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.

  10. Energy-efficient technology in the iron and steel industry: Simulation of new technology adoption with items

    International Nuclear Information System (INIS)

    Roop, J.M.

    1997-01-01

    The Industrial Technology and Energy Modeling System (ITEMS)(referred to as ISTUM in Jaccard and Roop, 1990) is an end-use industrial modeling system that is technology based. Because it includes technologies in the process description of industry, it is possible to introduce new technologies to determine, based on economic and performance data, how rapidly these new technologies will penetrate the market (Hyman and Roop, 1996). As these new technologies penetrate the market, energy savings and, possibly, emissions reductions occur that can be tracked with the model as well. This report documents the use of ITEMS to investigate the impact of three new technologies under development with funding from the Department of Energy's Office of Industrial Technologies (OIT), that apply to the iron and steel industry. While the results of this application are interesting, this exercise points out how important it is to understand how the technologies work and how they make a difference. This report shows that ITEMS can be a useful tool in estimating market penetration of new technologies and the resulting energy savings, but these results are only as reliable as the data. If the model is to be used to compare technologies, the technical data concerning these technologies must be collected using the same set of assumptions and with the same vision of what characterizes a technology. While an effort has been made to understand how these technologies work, there is no assurance that the data used for this analysis were, indeed, collected using the same vision and the same set of assumptions. The report is organized into five additional sections. The next provides a brief overview of ITEMS and describes how the technical information about OIT projects is used in the model. The third section describes the three technologies that were introduced into ITEMS and reports the relevant data for those projects. The fourth section describes the iron and steel industry, as characterized

  11. Evolutionary Patterns of Renewable Energy Technology Development in East Asia (1990–2010

    Directory of Open Access Journals (Sweden)

    Yoonhwan Oh

    2016-07-01

    Full Text Available This study investigates the evolutionary patterns of renewable energy technology in East Asian countries—Japan, Korea, and China—as an emerging technology where the catch-up strategy is actively taking place. To reflect the quality of technology development activities, we assess each country’s research and development (R&D activities using patent citation analysis. The goal of this study is to overcome the limitations of prior research that uses quantitative information, such as R&D expenditures and number of patents. This study observes the process of technological catch-up and leapfrogging in the East Asian renewable energy sector. Furthermore, we find that each nation’s technology development portfolio differs depending on the composition share of technologies. Policymakers in emerging economies can use the findings to shape R&D strategies to develop the renewable energy sector and provide an alternative method of evaluating the qualitative development of technology.

  12. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  13. Automation technology saves 30% energy; Automatisierungstechnik spart 30% Energie ein

    Energy Technology Data Exchange (ETDEWEB)

    Klinkow, Torsten; Meyer, Michael [Wago Kontakttechnik GmbH und Co. KG, Minden (Germany)

    2013-04-01

    A systematic energy management is in more demand than ever in order to reduce the increasing energy costs. What used to be a difficult puzzle consisting of different technology components in the early days is today easier to solve by means of a standardized and cost-effective automation technology. With its IO system, Wago Kontakttechnik GmbH and Co. KG (Minden, Federal Republic of Germany) supplies a complete and coordinated portfolio for the energy efficiency.

  14. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  15. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  16. Determinants of the pace of global innovation in energy technologies.

    Science.gov (United States)

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time.

  17. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  18. Energy and the environment: Technology assessment and policy options

    International Nuclear Information System (INIS)

    Silveira, M.P.W.

    1990-01-01

    While the energy crisis of the 1970s stimulated technological innovation in developed countries, it often had the opposite effect in the third world. However, developing countries can be considered to have two types of energy systems: ''connected'' and ''disconnected''. The connected system is affected by changes in the price of commercial energy, but the disconnected system is usually rural and remote. Commercial forms of energy may be needed in the disconnected system, but they are largely unavailable. In some of the developing countries, new energy technologies have therefore been developed which adapt traditional technologies still existing in the disconnected sector. In this article some of the work of the United National Centre for Science and Technology for Development is described. Through its ATAS (Advance Technology Alert System) programme, international and regional workshops are held to discuss policy questions arising in regard to new technologies and developments. Workshops have been held in Moscow on new energy technologies in the industry subsystem (connected), in Guatemala City on new energy technologies and the disconnected system, and in Ottawa on new energy technologies, transportation and development. Initial assessments made by or through these workshops are outlined here. A fourth workshop will be held in June 1990 in Saarbrucken on energy technologies and climate change. (author). 3 figs

  19. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  20. Integrated building energy systems design considering storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Aki, Hirohisa (Lawrence Berkeley National Laboratory (United States)). e-mail: MStadler@lbl.gov; Siddiqui, Afzal (Dept. of Statistical Science at Univ. College London (United Kingdom))

    2009-07-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g. PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO{sub 2} emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO{sub 2} emissions. The problem is solved for a given test year at representative customer sites, e.g. nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Dept. of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO{sub 2} minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  1. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  2. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    Science.gov (United States)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  3. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  4. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  5. Status of emission release and associated problems in energy systems analysis

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Koyama, Shigeo; Ihara, Seijiro.

    1987-11-01

    OECD/IEA/ETSAP (Energy Technology System Analysis Project) has been started in March 1976. Since initiation of the projects, JAERI and ETL (Electrotechnical Laboratory) have been participating in the projects as operating agent of Japan. From last October, the ETSAP has initiated its Annex III programme, which pursues the problems laid down in energy-environment relationships. Main research objective of the programme is to investigate through the systems analysis ''how various environmental constrains would affect the pattern of fuel and technology use and the choice and timing of implementation of abatement technologies''. In this report, we describe the status of emission release in Japan and associated problems in energy system analysis which has been investigated at the start of these research programme mentioned above. (author)

  6. Canada's clean energy technology and the southern California market : a needs assessment

    International Nuclear Information System (INIS)

    2008-01-01

    This report presented a study whose purpose was to develop targeted market intelligence regarding the specific needs and plans of southern California-based organizations that are interested in procuring or using clean energy technologies for demonstration or commercial purposes. Industry Canada and the Canadian Consulate General in Los Angeles planned to utilize the study as a tool to explore business development or partnering opportunities between Canada/Canadian industry and California entities. The report described the study objective and provided a definition of clean energy technology. Clean energy was defined as any energy that causes little or no harm to the environment. The study scope was also presented. The study focused on opportunities in the following areas: solar power and photovoltaic technologies; hydrogen and fuel cells technologies; and thermochemical waste-to-energy systems. Context was discussed in terms of California's energy drivers, and California clean energy initiatives and experience. The results of a survey conducted with 350 organizations in southern California were also outlined for facilities and capital projects; fleets and mobile sources; and parks and public spaces. Last, the report presented an analysis of the California marketplace and solar power, hydrogen and fuel cells, and waste-to-energy. 14 refs

  7. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  8. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  9. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  10. Energy Technology Perspectives 2012: Executive Summary [Arabic version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  11. Energy Technology Perspectives 2012: Executive Summary [Portuguese version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  12. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  13. Overview of current development in electrical energy storage technologies and the application potential in power system operation

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Dooner, Mark; Clarke, Jonathan

    2015-01-01

    Highlights: • An overview of the state-of-the-art in Electrical Energy Storage (EES) is provided. • A comprehensive analysis of various EES technologies is carried out. • An application potential analysis of the reviewed EES technologies is presented. • The presented synthesis to EES technologies can be used to support future R and D and deployment. - Abstract: Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented

  14. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  15. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  16. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  17. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  18. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  19. Heterogeneous policies, heterogeneous technologies: The case of renewable energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2016-01-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main finding is that, compared to privatisation and unbundling, reducing entry barriers is a more significant driver of renewable energy innovation, but that its effect varies across technologies and is stronger in technologies characterised by potential entry of small, independent power producers. In addition, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, ratification of the Kyoto protocol, which determined a more stable and less uncertain policy framework, amplifies the inducement effect of both energy policy and market liberalisation. - Highlights: • We study the effect of market regulation and energy policy on renewable technologies. • Reducing entry barriers is a significant driver of renewable energy innovation. • The Kyoto protocol amplifies the effect of both energy policy and liberalisation. • These effects are heterogeneous across technologies and stronger for wind.

  20. Report on the FY 1999 results of the development of the wide area energy utilization network system - Eco/energy urban system. 2/2. Study of the systematization technology/evaluation technology out of the study of the energy system design technology (Study of the application method of element technology/system and trial calculation of the introduction effect); Koiki energy riyo network system kaihatsu (eco energy toshi system). 2/2. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu 1999 nendo seika hokokusho (zenkoku no netsu juyo no bunpu jokyo chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of smoothly introducing the equipment technology and system technology being studied in the development of element technology in the eco/energy urban project, the paper conducted the study of conditions/application method in applying the technology to the actual energy supply system, analysis of the introduction effect, arrangement of the subjects on technical development, etc. In the study, for the methanol/hydrogen base technology, heat pump technology, heat recovery technology, heat transport technology and heat power generation technology, the quantitative analysis was made in terms of the lifecycle energy consumption amount, lifecycle CO2 emission amount and lifecycle expenses. As to the methanol base system, the subject is the reduction in auxiliary power. Concerning the heat pump technology, the subject is the enlargement of simple equipment. As regards the heat recovery technology, the subject is the development of system with long useful year. Relating to the heat transport technology, subjects are the completion of the menu of large-diameter piping in the vacuum thermal insulation heat transport piping system, and reduction in conveyance power of heat medium. About the heat power generation technology, subjects are the stability/durability of the system. (NEDO).

  1. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  2. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  3. Engineering management technologies of increasing energy efficiency processes in the investment and construction projects

    Science.gov (United States)

    Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat

    2017-10-01

    The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.

  4. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  5. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Hoggett, Richard

    2014-01-01

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  6. On promotion of base technologies of atomic energy. Aiming at breakthrough in atomic energy technologies in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.).

  7. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  8. Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Kerui

    2014-01-01

    The importance of technology heterogeneity in estimating economy-wide energy efficiency has been emphasized by recent literature. Some studies use the metafrontier analysis approach to estimate energy efficiency. However, for such studies, some reliable priori information is needed to divide the sample observations properly, which causes a difficulty in unbiased estimation of energy efficiency. Moreover, separately estimating group-specific frontiers might lose some common information across different groups. In order to overcome these weaknesses, this paper introduces a latent class stochastic frontier approach to measure energy efficiency under heterogeneous technologies. An application of the proposed model to Chinese energy economy is presented. Results show that the overall energy efficiency of China's provinces is not high, with an average score of 0.632 during the period from 1997 to 2010. - Highlights: • We introduce a latent class stochastic frontier approach to measure energy efficiency. • Ignoring technological heterogeneity would cause biased estimates of energy efficiency. • An application of the proposed model to Chinese energy economy is presented. • There is still a long way for China to develop an energy efficient regime

  9. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  10. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  11. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  12. New technologies of the energy 1. The renewable energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2006-01-01

    This book, devoted to the renewable energies, is the first of three volumes taking stock on the new technologies of the energy situation. The first part presents the solar energy (thermal photovoltaic and thermodynamic), completed by a chapter on the wind energy. An important part is devoted to new hydraulic energies with the sea energies and the very little hydroelectricity and in particular the exploitation of the energy of the drinking water and wastes water pipelines. (A.L.B.)

  13. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    Science.gov (United States)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  14. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  15. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  16. Multi criteria analysis in the renewable energy industry

    CERN Document Server

    San Cristóbal Mateo, José Ramón

    2012-01-01

    Decision makers in the Renewable Energy sector face an increasingly complex social, economic, technological, and environmental scenario in their decision process. Different groups of decision-makers become involved in the process, each group bringing along different criteria therefore, policy formulation for fossil fuel substitution by Renewable Energies must be addressed in a multi-criteria context. Multi Criteria Analysis in the Renewable Energy Industry is a direct response to the increasing interest in the Renewable Energy industry which can be seen as an important remedy to many environmental problems that the world faces today. The multiplicity of criteria and the increasingly complex social, economic, technological, and environmental scenario makes multi-criteria analysis a valuable tool in the decision-making process for fossil fuel substitution. The detailed chapters explore the use of the Multi-criteria decision-making methods and how they provide valuable assistance in reaching equitable and accept...

  17. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  18. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  19. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  20. Cowichan Valley energy mapping and modelling. Report 3 - Analysis of potentially applicable distributed energy opportunities. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The third task built upon the findings of the previous two and undertook an analysis of potentially applicable distributed energy opportunities. These opportunities were analysed given a number of different parameters, which were decided upon in consultation with the CVRD. The primary output of this task was a series of cost figures for the various technologies, thus allowing comparison on a cents/kWh basis. All of the cost figures from this task have been entered into a tailor made Excel model. This 'technology cost' model is linked to the Excel scenario model utilised in task 4. As a result, as technology costs change, they can be updated accordingly and be reflected in the scenarios. Please note, that the technologies considered at present in the technology cost model are well-proven technologies, available in the market today, even though the output is being used for an analysis of development until 2050. Task 3 results are detailed in this report and both presents an initial screening for various local renewable energies, and provides the CVRD with the means of evaluating the costs and benefits of local energy productions versus

  1. Emerging energy technologies impacts and policy implications

    International Nuclear Information System (INIS)

    Grubb, M.

    1992-01-01

    Technical change is a key factor in the energy world. Failure to recognize the potential for technical change, and the pace at which it may occur, has limited the accuracy and usefulness of past energy projections. conversely, programs to develop and deploy advanced energy technologies have often proved disappointing in the face of technical and commercial obstacles. This book examines important new and emerging energy technologies, and the mechanisms by which they may develop and enter the market. The project concentrates on the potential and probable role of selected energy technologies-which are in existence and likely to be of rapidly growing importance over the next decade-and the way in which market conditions and policy environment may affect their implementation

  2. Energy poverty: A special focus on energy poverty in India and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Anjali; Monroy, Carlos Rodriguez [Department of Business Administration, School of Industrial Engineering, Technical University of Madrid, Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2011-02-15

    As a large percentage of the world's poor come from India, development in India is a key issue. After the establishment of how access to energy enhances development and the achievement of the millennium development goals, energy poverty has become a major issue. In India there is a great interest in addressing the subject of energy poverty, in order to reach development goals set by the Government. This will imply an increase in India's energy needs. In a climate of change and environmental consciousness, sustainable alternatives must be considered to address these issues. Renewable energy technologies could provide a solution to this problem. The Government of India has been focussing in implementing electricity policies as well as on promoting renewable energy technologies. The focus of this article is to bring to light the problems faced in India in terms of energy consumption as well as the hindrances faced by renewable-based electrification networks. Government policies aimed at addressing these issues, as well as the current state of renewable energy technologies in India are discussed, so as to analyse the possibility of a solution to the problems of finding a sustainable method to eradicate energy poverty in India. The research reveals that the Government of India has been unable to meet some of its unrealistic development goals, and in order to achieve the remaining goals it will have to take drastic steps. The Government will have to be more aggressive in the promotion of renewable energy technologies in order to achieve sustainable development in India. (author)

  3. Promoting clean energy technology entrepreneurship: The role of external context

    International Nuclear Information System (INIS)

    Malen, Joel; Marcus, Alfred A.

    2017-01-01

    This study examines how political, social and economic factors influence clean energy technology entrepreneurship (CETE). Government policies supporting clean energy technology development and the development of markets for clean energy create opportunities for CETE. However, the extent to which such opportunities lead to the emergence of new clean energy businesses depends on a favorable external context promoting CETE. This study employs a novel dataset combining indicators of the policy and social context of CETE with information on clean energy technology startup firms in the USA to provide empirical evidence that technological and market conditions supporting clean energy induce more extensive CETE under contexts where local attention to clean energy issues and successful firms commercializing clean energy technologies are more prominent. By establishing that CETE is contingent upon a supportive local environment as well as technology and market opportunities, the study holds relevance for policy makers and clean energy technology firms. - Highlights: • Influence of political, social and economic factors on clean energy technology entrepreneurship (CETE). • CETE more prominent with clean energy technology availability. • Greater when local attention interacts with technology availability and market opportunities. • Greater when local firms successfully commercialize technologies. • Novel dataset and Arellano-Bond dynamic panel estimation.

  4. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  5. Determinants of the Pace of Global Innovation in Energy Technologies

    Science.gov (United States)

    Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  6. Soft energy technology hope or illusion

    International Nuclear Information System (INIS)

    Seifritz, W.

    1980-01-01

    Both in the press and in TV, increasingly more voices are calling to turn away from large technology, especially to do without nuclear energy. Well-known representatives of this movement are A. Lovins in the USA, R. Jungk and K. Traube in the Federal Republic of Germany. They make attempts to convince the public that the future problems of energy supply can be solved by saving energy and utilizing alternative energy sources such as solar energy and wind energy. They fight against the 'hard' technology and its main representatives, the large industry because these, in their opinion, desise growth and material wealth at the cost of a healthy environment thus causing a progressing intellectual, cultural, and emotional impoverishment of mankind. Instead of these, they want to use a 'smooth' technology which is thought to lead to a deceuhalisation with more humanity, liberality, and justice. The author shows here that, as far as the potential and the effects of a utilization of alternative energy sources are concerned, these people wake expectations which cannot be fulfilled for technical reasons. But there is something even worse: These utopic expectations lead to an ideology which might result in destroying the fundaments of utilizing the doubtlessly existing potential of the alternative energy sources, especially the often praised renewability of solar energy utilization. (orig.) [de

  7. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  8. Assessing systemwide occupational health and safety risks of energy technologies

    International Nuclear Information System (INIS)

    Rowe, M.D.

    1982-01-01

    Input-output modelling is now being used to assess systemwide occupational and public health and safety risks of energy technologies. Some of the advantages and disadvantages of this method are presented and some of its important limitations are discussed. Its primary advantage is that it provides a standard method with which to compare technologies on a consistent basis without extensive economic analysis. Among the disadvantages are limited range of applicability, limited spectrum of health impacts, and inability to identify unusual health impacts unique to a new technology. (author)

  9. The multi-level perspective analysis: Indonesia geothermal energy transition study

    Science.gov (United States)

    Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  10. Canada's clean energy technology and the Bay area market : a needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    This study was conducted to develop market intelligence related to clean energy technologies in Northern California, including both commercial and demonstration technologies. The study was developed as a tool for exploring engagement between Canadian and Californian businesses and partnering opportunities. The study examined technologies for solar power and photovoltaics; hydrogen and fuel cells; and waste-to-energy. A list of more than 150 organizations, government agencies, business associations, and utilities was prepared. The survey also included the establishment of contact points with large facilities, public spaces, bus fleets, and major capital projects. Fifty-nine interviews were also conducted as part of the study. Results of the study indicated that the biggest challenge concerning most individuals was the need to reduce energy consumption while maintaining reliability. Many interviewees expressed an interest in operating waste-to-energy facilities. Fifty interviewees indicated that they were planning to use or already used solar technologies. An analysis of clean energy needs was also included. The study indicated that many local governments are reluctant to embrace new, highly visible technologies. Only sophisticated organizations with unique energy demands have considered the use of fuel cell technologies. 1 fig.

  11. Case Library Construction Technology of Energy Loss in Distribution Networks Considering Regional Differentiation Theory

    Directory of Open Access Journals (Sweden)

    Ze Yuan

    2017-11-01

    Full Text Available The grid structures, load levels, and running states of distribution networks in different supply regions are known as the influencing factors of energy loss. In this paper, the case library of energy loss is constructed to differentiate the crucial factors of energy loss in the different supply regions. First of all, the characteristic state values are selected as the representation of the cases based on the analysis of energy loss under various voltage classes and in different types of regions. Then, the methods of Grey Relational Analysis and the K-Nearest Neighbor are utilized to implement the critical technologies of case library construction, including case representation, processing, analysis, and retrieval. Moreover, the analysis software of the case library is designed based on the case library construction technology. Some case studies show that there are many differences and similarities concerning the factors that influence the energy loss in different types of regions. In addition, the most relevant sample case can be retrieved from the case library. Compared with the traditional techniques, constructing a case library provides a new way to find out the characteristics of energy loss in different supply regions and constitutes differentiated loss-reducing programs.

  12. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  13. Norwegian focus on new energy technology

    International Nuclear Information System (INIS)

    Bull-Hansen, Eivind

    2001-01-01

    Norsk Hydro Technology Ventures, a venture capital fund recently set up by Norsk Hydro, will raise equity capital to companies that are developing promising new projects on new energy technology or to investment funds promoting such projects. Norsk Hydro will withdraw from the investments when the projects have reached commercialization or are listed on the stock exchange. There is a well-developed market for venture capital in the energy sector and a strong international competition for investments in good projects. The sharp environmental focus on fossil fuels and climate gases has boosted the research on new energy technologies. Another and more important factor is the fact that modern society with its heavy dependence on the computer is vulnerable to power failure

  14. Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK.

    Science.gov (United States)

    Gove, Benedict; Williams, Leah J; Beresford, Alison E; Roddis, Philippa; Campbell, Colin; Teuten, Emma; Langston, Rowena H W; Bradbury, Richard B

    2016-01-01

    Renewable energy will potentially make an important contribution towards the dual aims of meeting carbon emission reduction targets and future energy demand. However, some technologies have considerable potential to impact on the biodiversity of the environments in which they are placed. In this study, an assessment was undertaken of the realistic deployment potential of a range of renewable energy technologies in the UK, considering constraints imposed by biodiversity conservation priorities. We focused on those energy sources that have the potential to make important energy contributions but which might conflict with biodiversity conservation objectives. These included field-scale solar, bioenergy crops, wind energy (both onshore and offshore), wave and tidal stream energy. The spatially-explicit analysis considered the potential opportunity available for each technology, at various levels of ecological risk. The resultant maps highlight the energy resource available, physical and policy constraints to deployment, and ecological sensitivity (based on the distribution of protected areas and sensitive species). If the technologies are restricted to areas which currently appear not to have significant ecological constraints, the total potential energy output from these energy sources was estimated to be in the region of 5,547 TWh/yr. This would be sufficient to meet projected energy demand in the UK, and help to achieve carbon reduction targets. However, we highlight two important caveats. First, further ecological monitoring and surveillance is required to improve understanding of wildlife distributions and therefore potential impacts of utilising these energy sources. This is likely to reduce the total energy available, especially at sea. Second, some of the technologies under investigation are currently not deployed commercially. Consequently this potential energy will only be available if continued effort is put into developing these energy sources/technologies

  15. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    list of evaluation criteria for assessing and prioritize hydrogen energy technologies in the sector of hydrogen ETRM with finite resources and R and D funds. The criteria are composed of economic impact, commercial potential, inner capacity, and technical spin-off. Hydrogen ETRM supplies primary energy technologies to be developed with a long-term view for the low carbon green growth. We suggest Korea's long-term direction and strategy for developing hydrogen energy technologies in the sector of hydrogen ETRM with the hydrogen economy. The main purpose of this research is to assess the priority of hydrogen energy technologies in the sector of hydrogen ETRM since we allocate and invest R and D budgets strategically as an extended research [1]. In this paper, we focus on the assessment of hydrogen energy technologies econometrically by using an integrated 2- stage approach, which is fuzzy analytic hierarchy (Fuzzy AHP) process and the data envelopment analysis (DEA) in the sector of hydrogen energy technologies. The research results suggest the most efficient hydrogen energy technology is selected by the multi-criteria decision making approach. In addition it also provides Korean hydrogen energy technology policymakers and decision makers with the right hydrogen energy technologies econometrically as they implement a strategic R and D plan. This extended abstract is composed as follows: Section 2 presents the fuzzy sets and numbers, Section 3 includes the Fuzzy AHP concepts. Section 4 presents the DEA approach. Section 5 shows the numerical examples. Finally, Section 6 presents the conclusions. (orig.)

  16. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  17. Performance of renewable energy technologies in the energy-environmental-economic continuum

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Birkenheier, T.L.

    1993-01-01

    Projected cost-performance data are used to calculate the Canadian commercial potential of selected renewable energy technologies to the year 2010. Based on projected market penetration, the extent to which renewable energy can contribute to environmental initiatives is also examined. The potential for renewable energy to contribute to the Canadian electricity supply is limited neither by the state of the technology nor the extent of the resource available. Barriers to acceptance of renewables include high initial capital costs, intermittent nature of much of the energy supply, land requirements, onerous requirements for environmental assessments and licensing, and lack of government policies which consider the externalities involved in new energy supply. Environmental benefits which will drive the adoption of renewables in Canada include the sustainable nature of renewable resources, low environmental impacts, and suitability for integrated resource planning. In addition, the cost performance of renewable technologies is improving rapidly. Under base-case scenarios, at current buyback rates, only small hydro and biomass of the five renewable technologies examined has significant commercial potential in Canada. At buyback rates that reflect currently projected avoided costs plus an additional 2 cents per kWh as an environmental premium, all five renewable technologies except for photovoltaics have appreciable commercial potential achievable by 2010. The quantity of electrical energy displaced under this latter scenario is estimated at 49 TWh/y, or 7% of the projected total generation in Canada. 2 figs., 2 tabs

  18. Cross-impacts analysis development and energy policy analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  19. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  20. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  1. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    , and zero brine discharge systems. Additional objectives of the CRP were to analyse the economics of various desalination projects. Such analysis was expected to generate feedbacks, new ideas and suggestions to improve the IAEA DEEP software. The outcome of the CRP was expected to enhance collaboration among researchers representing the nine Member States on various subjects related to seawater desalination using nuclear energy, including information exchange on feasibility studies and aspects of new technologies. The CRP was also to include the quest and analysis of potential new technologies that are expected to enhance the application of nuclear desalination, such as the re-use of waste heat from nuclear power plants and an update of the IAEA DEEP with new models to enhance its use, for example the addition of the model for bankable feasibility studies of desalination projects. The aim of this publication is to summarize the outputs from the Member States which participated in this CRP. The publication follows the same objectives and scope as those established for the CRP. It also presents the Member States’ results and highlights major advances, difficulties and recommendations in the area of seawater desalination using nuclear energy which are of importance to the nuclear communities at large and to scientists and engineers focusing on potential new technologies, technical considerations and economics of the overall nuclear power plant coupled to seawater desalination plants

  2. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  3. Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2014-07-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main findings show that lowering entry barriers is a more significant driver of renewable energy innovation than privatisation and un-bundling, but its effect varies across technologies, being stronger in technologies characterised by the potential entry of small, independent power producers. Additionally, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, the ratification of the Kyoto protocol - determining a more stable and less uncertain policy framework - amplifies the inducement effect of both energy policy and market liberalisation. (authors)

  4. Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Kryman, Matthew; Laine, Emily

    2015-01-01

    This study assesses the risk of energy accidents using an original historical dataset over the period 1874-2014, and it evaluates that risk across 11 energy systems: biofuels, biomass, coal, geothermal, hydroelectricity, hydrogen, natural gas, nuclear power, oil, solar energy, and wind energy. Our study shows how these energy systems collectively involved almost 1,100 accidents resulting in more than 210,000 human fatalities and almost $350 billion in property damages. Across the entire sample, the mean amount of property damage was $319 million and 196 fatalities per accident, though when reflected as a median the numbers substantially improve to $3 million in damages per accident and 0 fatalities. We found that wind energy is the most frequent to incur an accident within our sample, accounting for almost one third of accidents. Accidents at hydroelectric dams were the most fatal, accounting for 85 percent of fatalities. Nuclear power accidents are by far the most expensive, accounting for 70 percent of damages. We then utilize this data to test six hypotheses, drawn from the energy studies literature, related to energy systems, energy policy and regulation, and technological learning. - Highlights: • 1085 energy accidents have resulted in 211,529 human fatalities and $344.4 billion in property damages. • Wind energy is the most frequent to incur an accident. • Hydroelectric dam accidents tend to be the most fatal. • Nuclear energy accidents tend to be the most expensive. • Coal, natural gas, and oil are the least likely to incur an accident, when normalized to energy output.

  5. REVIEW OF ENERGY-SAVING TECHNOLOGIES IN MODERN HYDRAULIC DRIVES

    Directory of Open Access Journals (Sweden)

    Mykola Karpenko

    2017-12-01

    Full Text Available This paper focuses on review of modern energy­saving technologies in hydraulic drives. Described main areas of energy conservation in hydraulic drive (which in turn are divided into many under the directions and was established the popularity of them. Reviewed the comparative analysis of efficiency application of various strategies for energy saving in a hydraulic drive. Based on the review for further research a combined method of real­time control systems with energy­saving algorithms and regeneration unit – selected for maxing efficiency in hydraulic drive. Scientific papers (40 papers, what introduced in review, is not older than 15 years in the databases “Sciencedirect” and “Scopus”.

  6. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  7. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    Rigassi, R.; Eicher, H.; Steiner, P.; Ott, W.

    2005-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  8. Adoption and supply of a distributed energy technology

    Science.gov (United States)

    Strachan, Neil Douglas

    2000-12-01

    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made. Micro-turbines were found to be the lowest cost technology, especially at higher heat loads. Engines are also very competitive providing their NOx and CO emissions are controlled. A cost optimization program was used to develop an optimal green-field supply mix for Florida and New York. (Abstract shortened by UMI.)

  9. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  10. Assessment of Wave Energy in the South China Sea Based on GIS Technology

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-01-01

    Full Text Available China is now the world’s largest user of coal and also has the highest greenhouse gas emissions associated with the mining and use of coal. Under today’s enormous pressures of the growing shortage of conventional energy sources and the need for emission reductions, the search for clean energy is the most effective strategy to address the energy crisis and global warming. This study utilized satellite remote sensing technology, geographic information system (GIS technology, and simulated wave data for the South China Sea. The characteristic features of the wave energy were obtained by analysis through the wave resource assessment formula and the results were stored in a GIS database. Software for the evaluation of wave energy in the South China Sea was written. The results should provide accurate, efficient references for wave energy researchers and decision-makers. Based on a 24-year WW3 model simulation wave data and GIS technology, this study presented the characteristic of the wave energy in the SCS; results demonstrated that the SCS has the feasibility and viability for wave energy farming.

  11. Energy intensity developments in 40 major economies: Structural change or technology improvement?

    International Nuclear Information System (INIS)

    Voigt, Sebastian; De Cian, Enrica; Schymura, Michael; Verdolini, Elena

    2014-01-01

    This study analyzes energy intensity trends and drivers in 40 major economies using the WIOD database, a novel harmonized and consistent dataset of input–output table time series accompanied by environmental satellite data. We use logarithmic mean Divisia index decomposition to (1) attribute efficiency changes to either changes in technology or changes in the structure of the economy, (2) study trends in global energy intensity between 1995 and 2007, and (3) highlight sectoral and regional differences. For the country analysis we apply the traditional two factor index decomposition approach, while for the global analysis we use a three factor decomposition which includes the consideration of regional structural changes in the global economy. We first show that heterogeneity within each sector across countries is high. These general trends within sectors are dominated by large economies, first and foremost the United States. In most cases, heterogeneity is lower within each country across the different sectors. Regarding changes of energy intensity at the country level, improvements between 1995 and 2007 are largely attributable to technological change while structural change is less important in most countries. Notable exceptions are Japan, the United States, Australia, Taiwan, Mexico and Brazil where a change in the industry mix was the main driver behind the observed energy intensity reduction. At the global level we find that despite a shift of the global economy to more energy-intensive countries, aggregate energy efficiency improved mostly due to technological change

  12. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  13. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  14. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  15. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  16. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  17. Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label

    International Nuclear Information System (INIS)

    Zhou, Hui; Bukenya, James O.

    2016-01-01

    The paper examines the extent to which consumers' willingness-to-pay for energy-efficient room air conditioners may be altered by correcting the information inefficiency on the China Energy Label. The data are collected from a discrete choice experiment with two alternatives (variable-speed and constant-speed room air conditioners) characterized by attributes of brand, purchase price and energy grade. Three versions of the questionnaires with choice sets differing only in energy consumption indicators were distributed randomly to 1602 potential consumers in Nanjing, China and a sample of 1569 was obtained after dropping missing data. The analysis with multinomial and mixed logit models reveal that the price premium that consumers are willing to pay for a variable-speed room AC over a constant-speed room AC increases significantly when energy consumption information becomes comparable and additional energy-related information is provided. Furthermore, the impact of information on WTP varies under different energy-saving scenarios. It is suggested that China Energy Label should correct information inefficiency by adopting same energy indicators for room ACs with different technologies and providing energy consumption information based on different climate zones. - Highlights: • Choice experiments were carried out to examine the effect of information on WTP. • WTP for energy efficient technology increases if information is comparable. • WTP for energy efficient technology increases if more information is provided. • The impact of information on WTP is significant when energy saving is considerable. • Some demographics influence people's WTP.

  18. Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model

    International Nuclear Information System (INIS)

    Lee, Duk Hee; Park, Sang Yong; Hong, Jong Chul; Choi, Sang Jin; Kim, Jong Wook

    2013-01-01

    Highlights: ► A new methodology for improving energy system analysis models was proposed. ► The MARKAL model was integrated with the diffusion model. ► The new methodology was applied to green car technology. ► The ripple effect of green car technology on the energy system can be analyzed. -- Abstract: By 2020, Korea has set itself the challenging target of reducing nationwide greenhouse gas emissions by 30%, more than the BAU (Business as Usual) scenario, as the implementation goal required to achieve the new national development paradigm of green growth. To achieve such a target, it is necessary to diffuse innovative technologies with the capacity to drastically reduce greenhouse gas emissions. To that end, the ripple effect of diffusing innovative technologies on the energy and environment must be quantitatively analyzed using an energy system analysis model such as the MARKAL (Market Allocation) model. However, energy system analysis models based on an optimization methodology have certain limitations in that a technology with superior cost competitiveness dominates the whole market and non-cost factors cannot be considered. Therefore, this study proposes a new methodology for overcoming problems associated with the use of MARKAL models, by interfacing with a forecasting model based on the discrete-choice model. The new methodology was applied to green car technology to verify its usefulness and to study the ripple effects of green car technology on greenhouse gas reduction. The results of this study can be used as a reference when establishing a strategy for effectively reducing greenhouse gas emissions in the transportation sector, and could be of assistance to future studies using the energy system analysis model.

  19. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  20. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  1. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  2. Staff roster for 1979: National Center for Analysis of Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This publication is a compilation of resumes from the current staff of the National Center for Analysis of Energy Systems. The Center, founded in January 1976, is one of four areas within the Department of Energy and Environment at Brookhaven National Laboratory. The emphasis of programs at the Center is on energy policy and planning studies at the regional, national, and international levels, involving quantitative, interdisciplinary studies of the technological, economic, social, and environmental aspects of energy systems. To perform these studies the Center has assembled a staff of experts in the areas of science, technology, economics planning, health and safety, information systems, and quantitative analysis.

  3. TECHNOLOGICAL CHANGE during the ENERGY TRANSITION

    NARCIS (Netherlands)

    van der Meijden, Gerard; Smulders, Sjak

    2018-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth

  4. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  5. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Mulder, P.

    2003-01-01

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  6. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  7. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  8. The Global Experience of Deployment of Energy-Efficient Technologies in High-Rise Construction

    Science.gov (United States)

    Potienko, Natalia D.; Kuznetsova, Anna A.; Solyakova, Darya N.; Klyueva, Yulia E.

    2018-03-01

    The objective of this research is to examine issues related to the increasing importance of energy-efficient technologies in high-rise construction. The aim of the paper is to investigate modern approaches to building design that involve implementation of various energy-saving technologies in diverse climates and at different structural levels, including the levels of urban development, functionality, planning, construction and engineering. The research methodology is based on the comprehensive analysis of the advanced global expertise in the design and construction of energy-efficient high-rise buildings, with the examination of their positive and negative features. The research also defines the basic principles of energy-efficient architecture. Besides, it draws parallels between the climate characteristics of countries that lead in the field of energy-efficient high-rise construction, on the one hand, and the climate in Russia, on the other, which makes it possible to use the vast experience of many countries, wholly or partially. The paper also gives an analytical review of the results arrived at by implementing energy efficiency principles into high-rise architecture. The study findings determine the impact of energy-efficient technologies on high-rise architecture and planning solutions. In conclusion, the research states that, apart from aesthetic and compositional interpretation of architectural forms, an architect nowadays has to address the task of finding a synthesis between technological and architectural solutions, which requires knowledge of advanced technologies. The study findings reveal that the implementation of modern energy-efficient technologies into high-rise construction is of immediate interest and is sure to bring long-term benefits.

  9. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  10. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J. (ed.)

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  11. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  12. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology

    International Nuclear Information System (INIS)

    Dolan, T.; Cook, M.B.; Angus, A.J.

    2011-01-01

    Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. - Research highlights: → Diffusion of AD technology is less rapid in the UK than other EU countries. → UK AD is financially viable if the energy output is supported by government subsidy. → Sensitivity analysis highlights the financial need for a waste management gate fee. → Digestate by-product creates a significant financial uncertainty for AD investors.

  13. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, T. [School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Cook, M.B. [Design Group, Department of Design, Development, Environment and Materials, Open University, Walton Hall, Milton Keynes, Bucks (United Kingdom); Angus, A.J., E-mail: a.angus@cranfield.ac.uk [School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2011-06-01

    Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors. - Research highlights: {yields} Diffusion of AD technology is less rapid in the UK than other EU countries. {yields} UK AD is financially viable if the energy output is supported by government subsidy. {yields} Sensitivity analysis highlights the financial need for a waste management gate fee. {yields} Digestate by-product creates a significant financial uncertainty for AD investors.

  14. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  15. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  16. An energy analysis of ethanol from cellulosic feedstock. Corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden (Netherlands)

    2009-10-15

    The shift from fossil resources to renewables for energy and materials production has been the driving force for research on energy analysis and environmental impact assessment of bio-based production. This study presents a detailed energy analysis of corn stover based ethanol production using advanced cellulosic technologies. The method used differs from that in LCA and from major studies on the subject as published in Science in two respects. First, it accounts for all the co-products together and so mainly avoids the allocation problems which plague all LCA studies explicitly and other studies implicitly. Second, the system boundaries only involve the content of the energy products used in the system but not the production processes of these energy products, like refining and electricity production. We normalized the six Science studies to this unified method. The resulting values of the total energy product use in both agricultural production and biomass conversion to ethanol are lower than these literature values. LCA-type of values including energy conversion would systematically be higher, in our case study around 45%. The net energy value of cellulosic ethanol production is substantially higher than the ones of the corn-based technologies, and it is similar to incineration and gasification for electricity production. The detailed analysis of energy inputs indicates opportunities to optimize the system. This form of energy analysis helps establishing models for the analysis of more complex systems such as biorefineries. (author)

  17. Safety analysis and review system: a Department of Energy safety assurance tool

    International Nuclear Information System (INIS)

    Rosenthal, H.B.

    1981-01-01

    The concept of the Safety Analysis and Review System is not new. It has been used within the Department and its predecessor agencies, Atomic Energy Commission (AEC) and Energy Research and Development Administration (ERDA), for over 20 years. To minimize the risks from nuclear reactor and power plants, the AEC developed a process to support management authorization of each operation through identification and analysis of potential hazards and the measures taken to control them. As the agency evolved from AEC through ERDA to the Department of Energy, its responsibilities were broadened to cover a diversity of technologies, including those associated with the development of fossil, solar, and geothermal energy. Because the safety analysis process had proved effective in a technology of high potential hazard, the Department investigated the applicability of the process to the other technologies. This paper describes the system and discusses how it is implemented within the Department

  18. Technological Change during the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, J.A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  19. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  20. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  1. Systems analysis support to the waste management technology center

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; DePaoli, S.M.

    1988-01-01

    This paper describes a systems analysis concept being developed in support of waste management planning and analysis activities for Martin Marietta Energy Systems, Inc. (Energy Systems), sites. This integrated systems model serves as a focus for the accumulation and documentation of technical and economic information from current waste management practices, improved operations projects, remedial actions, and new system development activities. The approach is generic and could be applied to a larger group of sites. This integrated model is a source of technical support to waste management groups in the Energy Systems complex for integrated waste management planning and related technology assessment activities. This problem-solving methodology for low-level waste (LLW) management is being developed through the Waste Management Technology Center (WMTC) for the Low-Level Waste Disposal, Development, and Demonstration (LLWDDD) Program. In support of long-range planning activities, this capability will include the development of management support tools such as specialized systems models, data bases, and information systems. These management support tools will provide continuing support in the identification and definition of technical and economic uncertainties to be addressed by technology demonstration programs. Technical planning activities and current efforts in the development of this system analysis capability for the LLWDDD Program are presented in this paper

  2. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  3. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  4. MEGASTAR: The Meaning of Energy Growth: An Assessment of Systems, Technologies, and Requirements

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach that includes the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption for the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario. The total requirements and the energy subsystems for each scenario are assessed for their primary impacts in the areas of society, the environment, technology and the economy.

  5. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  6. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  7. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  8. Energy-Water Modeling and Analysis | Energy Analysis | NREL

    Science.gov (United States)

    Generation (ReEDS Model Analysis) U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather Modeling and Analysis Energy-Water Modeling and Analysis NREL's energy-water modeling and analysis vulnerabilities from various factors, including water. Example Projects Renewable Electricity Futures Study

  9. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  10. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  11. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  12. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  13. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  14. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K.

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices

  15. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  16. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    2008-01-01

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  17. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  18. Department of energy technology

    International Nuclear Information System (INIS)

    1983-04-01

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  19. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  20. Fire-protection research for energy technology: Fy 80 year end report

    Science.gov (United States)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  1. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  2. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  4. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  5. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  6. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Science.gov (United States)

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  7. The relationship between agricultural technology and energy demand in Pakistan

    International Nuclear Information System (INIS)

    Zaman, Khalid; Khan, Muhammad Mushtaq; Ahmad, Mehboob; Rustam, Rabiah

    2012-01-01

    The purpose of this study was two fold: (i) to investigate the casual relationship between energy consumption and agricultural technology factors, and (ii) electricity consumption and technological factors in the agricultural sector of Pakistan. The study further evaluates four alternative but equally plausible hypotheses, each with different policy implications. These are: (i) Agricultural technology factors cause energy demand (the conventional view), (ii) energy demand causes technological factors, (iii) There is a bi-directional causality between the two variables and (iv) Both variables are causality independent. By applying techniques of Cointegration and Granger causality tests on energy demand (i.e., total primary energy consumption and electricity consumption) and agricultural technology factors (such as, tractors, fertilizers, cereals production, agriculture irrigated land, high technology exports, livestock; agriculture value added; industry value added and subsides) over a period of 1975–2010. The results infer that tractor and energy demand has bi-directional relationship; while irrigated agricultural land; share of agriculture and industry value added and subsides have supported the conventional view i.e., agricultural technology cause energy consumption in Pakistan. On the other hand, neither fertilizer consumption and high technology exports nor energy demand affect each others. Government should form a policy of incentive-based supports which might be a good policy for increasing the use of energy level in agriculture. - Highlights: ► Find the direction between green technology factors and energy demand in Pakistan. ► The results indicate that there is a strong relationship between them. ► Agriculture machinery and energy demand has bi-directional relationship. ► Green technology causes energy consumption i.e., unidirectional relationship. ► Agriculture expansion is positive related to total primary energy consumption.

  8. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  9. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  10. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  11. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  12. Analysis on Japanese nuclear industrial technologies and their military implications

    International Nuclear Information System (INIS)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  13. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2017-12-01

    Full Text Available This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC and data from China during the period of 1995–2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  14. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China.

    Science.gov (United States)

    Jin, Lei; Duan, Keran; Shi, Chunming; Ju, Xianwei

    2017-12-04

    This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995-2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  15. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  16. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  17. Methane mitigation timelines to inform energy technology evaluation

    International Nuclear Information System (INIS)

    Roy, Mandira; Edwards, Morgan R; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane (CH 4 ) and carbon dioxide (CO 2 ) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH 4 -emitting technologies prior to an optimal switching year, followed by CH 4 -light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH 4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers. (letter)

  18. Perspectives of energy technologies: scenarios and strategies at the 2050 vista

    International Nuclear Information System (INIS)

    2008-01-01

    Every two years, the International Energy Agency (IEA) publishes the 'Energy Technology Perspectives' (ETP) report which analyses the foreseeable energy scenarios and strategies at the 2050 vista and stresses on the best available technologies. For the first time, the IEA describes in this study a scenario allowing to divide by two the CO 2 emissions at the world scale, i.e. compatible with the 'factor 4' scenario of industrialized countries. The study estimates the R and D needs and the necessary additional investments to meet the different tendentious and voluntaristic scenarios proposed by the IEA. This 15. session of the cycle of energy-climate conferences aimed at presenting, from the ETP 2008 study, a thorough examination of the present day situation and perspectives of existing or future 'clean' energy technologies through the analysis of several scenarios. An examination of the interpretation of these scenarios at the France and European levels is made in order to define what should be the trends of public policies and international cooperation. This document gathers the transparencies of the two presentations given during this conference. The first presentation by Pieter Boot, Director of the Office of Sustainable Energy Policy and Technology of IEA, makes a synthesis of the ETP study and presents the recommendations of the agency. The second presentation by Olivier Appert, President of the French institute of petroleum (IFP), gives a counterpoint of the first presentation by considering the financing and acceptance aspects, in particular from the French point of view. Finally a debate with the audience completes the presentations. (J.S.)

  19. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; McCleb, C.S.; Prono, J.K.

    1976-01-01

    Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in-flight laser irradiation of ammonia pellets are discussed

  20. Building Energy Monitoring and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  1. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  2. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  3. The energy consumption and environmental impacts of SCR technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zengying; Ma, Xiaoqian; Lin, Hai; Tang, Yuting [School of Electric Power, Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640 (China)

    2011-04-15

    Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NO{sub X} control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NO{sub X} emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NO{sub X} technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NO{sub X} was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET{sub 2000}) was smaller than that of flue gas emitted into atmosphere directly (164121 PET{sub 2000}) and SNCR technology (105225 PET{sub 2000}). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NO{sub X} emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NO{sub X} control for coal-fired power plants as well as industrial boilers. (author)

  4. Analysis of active piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yiliang CUI

    2018-02-01

    Full Text Available Most of the existing piezoelectric traps are designed for a narrow frequency range of vibration, but the surrounding environment has a very wide frequency range, and the frequency may also be subject to change, causing the problem of difficult to achieve energy capture or capture inefficiency. In order to solve problem, a new T-type piezoelectric cantilever is proposed as a capture energy structure in the paper. To begin with the aspects of structural design and circuit design, the static analysis, modal analysis and resonance analysis of the structure are carried out and the natural frequency and excitation frequency of the device are analyzed. The design and calculation of the power consumption and the loss of the components of the circuit are analyzed by the simulation and verification of the active capture energy circuit, and the active and passive techniques are compared and analyzed, the simulation of the active capture circuit is verified by analyzing the power consumption of the circuit and the maximum power obtained by the active technology is 5 times of that of the passive technology. And then the voltage-controlled active boundary control method can be used for interface circuit design, taking the initiative to use each piezoelectric transduction cycle triggered by the electrical boundary conditions to effectively increase the input piezoelectric pump energy, and then increase output power. The way of utilizing the active trapping of piezoelectric materials is innovated, which has a positive effect on the development of piezoelectric traps.

  5. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    Nitsch, J.; Langniss, O.

    1997-01-01

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products [de

  6. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  7. Endogenous implementation of technology gap in energy optimization models-a systematic analysis within TIMES G5 model

    International Nuclear Information System (INIS)

    Rout, Ullash K.; Fahl, Ulrich; Remme, Uwe; Blesl, Markus; Voss, Alfred

    2009-01-01

    Evaluation of global diffusion potential of learning technologies and their timely specific cost development across regions is always a challenging issue for the future technology policy preparation. Further the process of evaluation gains interest especially by endogenous treatment of energy technologies under uncertainty in learning rates with technology gap across the regions in global regional cluster learning approach. This work devised, implemented, and examined new methodologies on technology gaps (a practical problem), using two broad concepts of knowledge deficit and time lag approaches in global learning, applying the floor cost approach methodology. The study was executed in a multi-regional, technology-rich and long horizon bottom-up linear energy system model on The Integrated MARKAL EFOM System (TIMES) framework. Global learning selects highest learning technologies in maximum uncertainty of learning rate scenario, whereas any form of technology gap retards the global learning process and discourages the technologies deployment. Time lag notions of technology gaps prefer heavy utilization of learning technologies in developed economies for early reduction of specific cost. Technology gaps of any kind should be reduced among economies through the promotion and enactment of various policies by governments, in order to utilize the technological resources by mass deployment to combat ongoing climate change.

  8. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  9. The Impact of Sustainable Development Technology on a Small Economy-The Case of Energy-Saving Technology.

    Science.gov (United States)

    Chen, Xiding; Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-02-08

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology's displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  10. Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models

    International Nuclear Information System (INIS)

    Berglund, Christer; Soederholm, Patrik

    2006-01-01

    The main objective of this paper is to provide an overview and a critical analysis of the recent literature on incorporating induced technical change in energy systems models. Special emphasis is put on surveying recent studies aimed at integrating learning-by-doing into bottom-up energy systems models through so-called learning curves, and on analyzing the relevance of learning curve analysis for understanding the process of innovation and technology diffusion in the energy sector. The survey indicates that this model work represents a major advance in energy research, and embeds important policy implications, not the least concerning the cost and the timing of environmental policies (including carbon emission constraints). However, bottom-up energy models with endogenous learning are also limited in their characterization of technology diffusion and innovation. While they provide a detailed account of technical options-which is absent in many top-down models-they also lack important aspects of diffusion behavior that are captured in top-down representations. For instance, they often fail in capturing strategic technology diffusion behavior in the energy sector as well as the energy sector's endogenous responses to policy, and they neglect important general equilibrium impacts (such as the opportunity cost of redirecting R and D support to the energy sector). Some suggestions on how innovation and diffusion modeling in bottom-up analysis can be improved are put forward

  11. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  12. New energy technologies report

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  13. Energy analysis of power systems

    International Nuclear Information System (INIS)

    2004-01-01

    Next to economic viability, the holistic energy balance of electricity generation options' is a factor of major importance. All aspects of the energy balance, i. e. all expenditures and all revenues, are compared in a life cycle analysis. This turns out to be a complex task, especially because of the large number of input quantities to be determined, including the balancing limits to be taken into account. The article presents in detail the findings of analyses of energy balances for various types of nuclear power plants as well as electricity generation in fossil-fired power plants, and for renewable energies. The analyses and their databases are discussed. Moreover, the findings are presented for the energetic amortization periods and the amounts of CO 2 emissions specific to the respective generating technologies. (orig.)

  14. Perspectives of energy technologies: scenarios and strategies at the 2050 vista; Perspectives des technologies de l'energie: scenarios et strategies a l'horizon 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Every two years, the International Energy Agency (IEA) publishes the 'Energy Technology Perspectives' (ETP) report which analyses the foreseeable energy scenarios and strategies at the 2050 vista and stresses on the best available technologies. For the first time, the IEA describes in this study a scenario allowing to divide by two the CO{sub 2} emissions at the world scale, i.e. compatible with the 'factor 4' scenario of industrialized countries. The study estimates the R and D needs and the necessary additional investments to meet the different tendentious and voluntaristic scenarios proposed by the IEA. This 15. session of the cycle of energy-climate conferences aimed at presenting, from the ETP 2008 study, a thorough examination of the present day situation and perspectives of existing or future 'clean' energy technologies through the analysis of several scenarios. An examination of the interpretation of these scenarios at the France and European levels is made in order to define what should be the trends of public policies and international cooperation. This document gathers the transparencies of the two presentations given during this conference. The first presentation by Pieter Boot, Director of the Office of Sustainable Energy Policy and Technology of IEA, makes a synthesis of the ETP study and presents the recommendations of the agency. The second presentation by Olivier Appert, President of the French institute of petroleum (IFP), gives a counterpoint of the first presentation by considering the financing and acceptance aspects, in particular from the French point of view. Finally a debate with the audience completes the presentations. (J.S.)

  15. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  16. What drives innovation in renewable energy technology? Evidence based on patent counts

    Science.gov (United States)

    McCormick, Jesse

    America's future economic growth and international competitiveness depend on our capacity to innovate, particularly in emerging global markets. This paper analyzes the forces that drive innovation in one such market, renewable energy technologies, utilizing the theory of induced technological innovation. Specifically, this paper operationalizes the determinants of innovation to consist of: 1) private market forces, 2) public policy that influences price and market size, and 3) public policy that catalyzes R&D investment. Analysis is conducted using a negative binomial regression to determine which of the three foundational determinants has the greatest impact on renewable energy innovation. In so doing this paper builds off of work conducted by Johnstone et al. (2010). Innovation is measured using European Patent Office data on a panel of 24 countries spanning the period from 1978-2005. The implications of this study are straightforward; policies, not market forces, are responsible for driving innovation in renewable energy technologies. Market-oriented policies are effective for mature technologies, particularly hydro, and to a lesser extent wind and solar power. R&D-oriented policy is effective for a broader technology set. In short, the United States needs a comprehensive policy environment to support renewable energy innovation; market forces alone will not provide the pace and breadth of innovations needed. That environment can and should be strategically targeted, however, to effectively allocate scare resources.

  17. Computer technology: its potential for industrial energy conservation. A technology applications manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Today, computer technology is within the reach of practically any industrial corporation regardless of product size. This manual highlights a few of the many applications of computers in the process industry and provides the technical reader with a basic understanding of computer technology, terminology, and the interactions among the various elements of a process computer system. The manual has been organized to separate process applications and economics from computer technology. Chapter 1 introduces the present status of process computer technology and describes the four major applications - monitoring, analysis, control, and optimization. The basic components of a process computer system also are defined. Energy-saving applications in the four major categories defined in Chapter 1 are discussed in Chapter 2. The economics of process computer systems is the topic of Chapter 3, where the historical trend of process computer system costs is presented. Evaluating a process for the possible implementation of a computer system requires a basic understanding of computer technology as well as familiarity with the potential applications; Chapter 4 provides enough technical information for an evaluation. Computer and associated peripheral costs and the logical sequence of steps in the development of a microprocessor-based process control system are covered in Chapter 5.

  18. Fire-protection research for energy technology: FY 80 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

    1981-01-01

    This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes

  19. Energy Technology Investments: Maximizing Efficiency Through a Maritime Energy Portfolio Interface and Decision Aid

    Science.gov (United States)

    2012-02-09

    Investment (ROI) and Break Even Point ( BEP ). These metrics are essential for determining whether an initiative would be worth pursuing. Balanced...is Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy...Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy Efficiency 4

  20. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  1. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  2. Business Oriented Technological System Analysis (BOTSA) at Eindhoven University of Technology : an innovative learning method to foster entrepreneurship

    NARCIS (Netherlands)

    Wijnker, M.A.S.G.; van Kasteren, H.; Romijn, H.A.; Taufik, T.; Prabasari, I.; Rineksane, I.A.; Yana, R.; Widowati, R.; Putra Rosyidi, S.A.; Riyadi, S.; Harsanto, P.

    BOTSA is an innovative teaching method for students with technical background in the field of sustainable energy technologies and an interest in entrepreneurship. Two core features of this method, namely the connection between a technological analysis and a business case as well as the involvement

  3. Implications of renewable energy technologies in the Bangladesh power sector. Long-term planning strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Alam Hossain

    2010-10-04

    average and high GDP growth scenarios, the demand in 2035 shows an increase of about 11 and 16 times the base year value, respectively. The results of the MARKAL analysis show that Bangladesh will not be able to meet the future energy demand without importing energy. However, alternative policies like CO2 emission reduction by establishing a target, accelerated deployment of renewable energy technologies, or introduction of a carbon tax to promote efficient technologies reduce the burden of imported fuel, improve energy security and reduce environmental impacts. The model predicts that alternative policies will not result in significantly higher cumulative discounted total energy system costs. The system costs increase slightly over the base scenario. The alternative scenarios reduce imported fuel by up to 85 %. The analysis shows a substantially higher implementation of renewable energy technologies compared to the base scenario. Renewable energy technologies, especially solar photovoltaic, play an important role in achieving acceptable energy security. (orig.)

  4. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov (United States)

    : Smart Grid and Beyond John McDonald, Director, Technical Strategy and Policy Development, General Control Technologies Workshop Series In July 2015, NREL's energy systems integration team hosted workshops the Energy Systems Integration Facility (ESIF) and included a technology showcase featuring projects

  5. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  6. The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective?

    International Nuclear Information System (INIS)

    Zhang Jingchao; Kotani, Koji

    2012-01-01

    With the recent rapid economic growth, total energy demand in rural China has increased dramatically, and the energy structure is in the transition from non-commercial to commercial sources. Simultaneously, it is expected that households in rural areas will face energy shortages and additional environmental problems unless they have more access to renewable energy technologies. However, little is known about (i) the transition of energy use patterns and (ii) whether introduced technologies have been effective. To analyze these issues, we estimated the energy demands of rural households by using survey data taken from Beijing's ten suburban districts. The data contain information on both non-commercial and commercial energy use, key characteristics of the households and several renewable energy technologies. Our empirical analysis yielded three main results. First, the per capita income is a key factor in the per capita energy consumption. More specifically, the marginal increase (or marginal change) in per capita coal consumption strongly diminishes (or declines) as per capita income increases. Second, coal and liquefied petroleum gas (LPG) prices do not exhibit substitution effects, but an increase in these prices has strong negative effects on the use of these energy resources. Third, renewable energy technologies are identified to reduce coal consumption and to improve energy efficiency. Overall, these findings suggest a positive perspective: if the Chinese government were to design appropriate policies associated with renewable energy technologies and related energy prices, then coal consumption can be reduced in the near future, and the substitution to cleaner energy use will accelerate. Therefore, a smooth energy transition in rural China could be made in a more environmentally sustainable manner. - Highlights: ► Energy demands of non-commercial/commercial sources are examined in rural Beijing. ► Income and energy prices are key determinants of the energy

  7. Innovation of Energy Technologies: the role of taxes

    OpenAIRE

    Copenhagen Economics

    2011-01-01

    The study deals with the links between energy taxation and innovation and presents also new empirical evidence on the impact of energy taxes on patenting activities related to energy technologies. The study suggests that while taxation is a very effective driver of innovation, it can be usefully complemented with other public policy tools, such as public research grants and other technology policies.

  8. Electricity supply: Supporting analysis for the National Energy Strategy

    International Nuclear Information System (INIS)

    1991-01-01

    This report has been prepared by the Energy Information Administration at the request of the Department of Energy's Office of Policy, Planning and Analysis. The results are based on assumptions provided by the Department of Energy's Office of Conservation and Renewable Energy, the Office of Nuclear Energy, the Office of Fossil Energy, and the Office of Policy, Planning and Analysis. This report serves as an auxiliary document to the publication, Improving Technology: Modeling Energy Futures for the National Energy Strategy, prepared by the Energy Information Administration (EIA), to be used as input to the development of a National Energy Strategy. The excursions discussed in this report are not necessarily the policy options which will be selected for inclusion in the National Energy Strategy (NES). This report examines the effects of various supply side options for electric utilities. The three excursions presented are: (1) Effects of the Clean Air Act Amendments on Reducing SO 2 /NO x Emissions which evaluates the impacts of proposed legislation to amend the Clean Air Act (Title V of H.R. 3030 as amended on May 23, 1990); (2) Nuclear Life Extension/New Nuclear Orders which illustrates the impact of new nuclear power plant orders and the life extension of existing nuclear plants; and (3) Nuclear and Accelerated Fossil-Fueled Generating Technologies which portrays accelerated research and development of advanced fossil-fueled generating technologies, making them commercially available earlier, with the inclusion of the nuclear option. The baseline case of this report is an update and an extension of the base case projections in the Energy Information Administration (EIA) publication, the Annual Energy Outlook 1990 (AEO), extending that forecast an additional 20 years to 2030. It represents the baseline case as it was on July 1990. 29 refs., 9 figs., 19 tabs. (JF)

  9. Achievement report for fiscal 1976 on Sunshine Program. Technology assessment of hydrogen energy technologies III; 1976 nendo suiso energy gijutsu no technology assessment. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report contains the ultimate results of the 3-year research endeavor on 'Technology assessment of hydrogen energy technologies.' The scientists engaged in the project express their impressions at the conclusion of the research, stating: 'In the development of hydrogen energy technologies, what is the most important at the present stage is to define the formation of the energy more clearly - in what shape or at what place - so that various activities in this connection will be organized.' They say also: 'Although the type of research effort of looking into technological possibilities is quite important naturally, yet such should been carried out with a sense of purpose which is definite and concrete.' Before what are stated above may be complied with, of course, systems for development have to be arranged allowing the scientists to act in the above-suggested way. This report consists of a general discussion part and an itemized discussion part. The former summarizes the intention, aim, premise, contents, findings, opinions, etc., concerning the research work; and the latter carries a gist of the 'Hydrogen energy system concept (draft)' which constitutes the foundation on which the above-mentioned details are discussed in the former. (NEDO)

  10. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  11. Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Mostafa Shaaban

    2018-05-01

    Full Text Available Future electricity planning necessitates a thorough multi-faceted analysis of the available technologies in order to secure the energy supply for coming generations. To cope with worldwide concerns over sustainable development and meet the growing demands of electricity we assess the future potential technologies in Egypt through covering their technical, economic, environmental and social aspects. In this study we fill the gap of a lacking sustainability assessment of energy systems in Egypt where most of the studies focus mainly on the economic and technical aspects of planning future installation of power plants in Egypt. Furthermore, we include the stakeholder preferences of the indicators in the energy sector into our assessment. Moreover, we perform a sensitivity analysis through single dimension assessment scenarios of the technologies as well as a sustainable scenario with equal preferences of all dimensions of the sustainability. We employ two multi-criteria decision analysis (MCDA methodologies: the analytical hierarchy process for weighing the assessment criteria, and the weighted sum method for generating a general integrated sustainability index for each technology. The study investigates seven technologies: coal, natural gas, wind, concentrated solar power, photovoltaics, biomass and nuclear. The results reveal a perfect matching between the ranking of the technologies by the stakeholders and the sustainable scenario showing the highest ranking for natural gas and the lowest for nuclear and coal. There is a strong potential for renewable energy technologies to invade the electricity market in Egypt where they achieve the second ranking after natural gas. The Monte-Carlo approach gives photovoltaics a higher ranking over concentrated solar power as compared to the sample data ranking. The study concludes the importance of a multi-dimensional evaluation of the technologies while considering the preferences of the stakeholders in

  12. The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India

    Directory of Open Access Journals (Sweden)

    Stefan Nabernegg

    2017-03-01

    Full Text Available Industrial processes currently contribute 40% to global CO2 emissions and therefore substantial increases in industrial energy efficiency are required for reaching the 2 °C target. We assess the macroeconomic effects of deploying low carbon technologies in six energy intensive industrial sectors (Petroleum, Iron and Steel, Non-metallic Minerals, Paper and Pulp, Chemicals, and Electricity in Europe, China and India in 2030. By combining the GAINS technology model with a macroeconomic computable general equilibrium model, we find that output in energy intensive industries declines in Europe by 6% in total, while output increases in China by 11% and in India by 13%. The opposite output effects emerge because low carbon technologies lead to cost savings in China and India but not in Europe. Consequently, the competitiveness of energy intensive industries is improved in China and India relative to Europe, leading to higher exports to Europe. In all regions, the decarbonization of electricity plays the dominant role for mitigation. We find a rebound effect in China and India, in the size of 42% and 34% CO2 reduction, respectively, but not in Europe. Our results indicate that the range of considered low-carbon technology options is not competitive in the European industrial sectors. To foster breakthrough low carbon technologies and maintain industrial competitiveness, targeted technology policy is therefore needed to supplement carbon pricing.

  13. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  14. Energy saving analysis and management modeling based on index decomposition analysis integrated energy saving potential method: Application to complex chemical processes

    International Nuclear Information System (INIS)

    Geng, Zhiqiang; Gao, Huachao; Wang, Yanqing; Han, Yongming; Zhu, Qunxiong

    2017-01-01

    Highlights: • The integrated framework that combines IDA with energy-saving potential method is proposed. • Energy saving analysis and management framework of complex chemical processes is obtained. • This proposed method is efficient in energy optimization and carbon emissions of complex chemical processes. - Abstract: Energy saving and management of complex chemical processes play a crucial role in the sustainable development procedure. In order to analyze the effect of the technology, management level, and production structure having on energy efficiency and energy saving potential, this paper proposed a novel integrated framework that combines index decomposition analysis (IDA) with energy saving potential method. The IDA method can obtain the level of energy activity, energy hierarchy and energy intensity effectively based on data-drive to reflect the impact of energy usage. The energy saving potential method can verify the correctness of the improvement direction proposed by the IDA method. Meanwhile, energy efficiency improvement, energy consumption reduction and energy savings can be visually discovered by the proposed framework. The demonstration analysis of ethylene production has verified the practicality of the proposed method. Moreover, we can obtain the corresponding improvement for the ethylene production based on the demonstration analysis. The energy efficiency index and the energy saving potential of these worst months can be increased by 6.7% and 7.4%, respectively. And the carbon emissions can be reduced by 7.4–8.2%.

  15. Technology and the diffusion of renewable energy

    International Nuclear Information System (INIS)

    Popp, David; Hascic, Ivan; Medhi, Neelakshi

    2011-01-01

    We consider investment in wind, solar photovoltaic, geothermal, and electricity from biomass and waste across 26 OECD countries from 1991 to 2004. Using the PATSTAT database, we obtain a comprehensive list of patents for each of these technologies throughout the world, which we use to assess the impact of technological change on investment in renewable energy capacity. We consider four alternative methods for counting patents, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries. For each patent count, we create knowledge stocks representing the global technological frontier. We find that technological advances do lead to greater investment, but the effect is small. Investments in other carbon-free energy sources, such as hydropower and nuclear power, serve as substitutes for renewable energy. Comparing the effectiveness of our four patent counts, we find that both using only patents filed in multiple countries and weighting by family size improve the fit of the model.

  16. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  17. The impact of DOE building technology energy efficiency programs on U.S. employment, income, and investment

    International Nuclear Information System (INIS)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.; Anderson, David M.; Cort, Katherine A.

    2008-01-01

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) analyzes the macroeconomic impacts of its programs that are designed to increase the energy efficiency of the U.S. residential and commercial building stock. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirements and investment. In the scenario of the Fiscal Year (FY) 2005 Building Technologies (BT) program, the technologies and building practices being developed and promoted by the BT program have the potential to save about 2.9 x 10 15 Btu in buildings by the year 2030, about 27% of the expected growth in building energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation's future economy

  18. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  19. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  20. Energy and technology review

    International Nuclear Information System (INIS)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers

  1. Integrating the Technology Acceptance Model and Diffusion of Innovation: Factors Promoting Interest in Energy Efficient and Renewable Energy Technologies at Military Installations, Federal Facilities and Land-Grant Universities

    Science.gov (United States)

    Dudik, C. E. Jane

    2017-01-01

    Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…

  2. Energy consumption and income. A semiparametric panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Van, Phu [BETA, CNRS and Universite de Strasbourg, 61 avenue de la Foret Noire, F-67085 Strasbourg (France)

    2010-05-15

    This paper proposes a semiparametric analysis for the study of the relationship between energy consumption per capita and income per capita for an international panel dataset. It shows little evidence for the existence of an environmental Kuznets curve for energy consumption. Energy consumption increases with income for a majority of countries and then stabilizes for very high income countries. Neither changes in energy structure nor macroeconomic cycle/technological change have significant effect on energy consumption. (author)

  3. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  4. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Ken, E-mail: Ken.Willis@ncl.ac.uk [School of Architecture, Planning and Landscape, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom); Scarpa, Riccardo [Department of Economics, Waikato School of Management, University of Waikato, Hamilton (New Zealand); Gilroy, Rose; Hamza, Neveen [School of Architecture, Planning and Landscape, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Many countries are endeavouring to supply more of their energy from renewable resources. Such countries are also experiencing an aging population with a greater proportion of people aged {>=}65 years. This demographic shift may reduce the uptake of renewable energy, if older person households are less inclined to accept change and adopt new technologies. This paper assesses whether such households have different behavioural responses to energy efficiency compared to the rest of society and investigates whether micro-generation renewable energy technologies are less likely to be adopted by these households. It uses conditional logit and mixed logit models to investigate the impact of age of household on primary heating adoption, and also to assess the impact of older households on the installation of discretionary micro-generation technologies (solar thermal, solar voltaic, and wind power) to supplement existing heating and lighting systems. Results indicate that primary heating choice is not affected but that older person households are less inclined to adopt micro-generation technologies. - Highlights: > Heterogeneity exists in decisions on micro-generation technology installation. > Older person households are less inclined to adopt micro-generation technologies. > Micro-generation technologies fail a social cost-benefit analysis test.

  5. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption

    International Nuclear Information System (INIS)

    Willis, Ken; Scarpa, Riccardo; Gilroy, Rose; Hamza, Neveen

    2011-01-01

    Many countries are endeavouring to supply more of their energy from renewable resources. Such countries are also experiencing an aging population with a greater proportion of people aged ≥65 years. This demographic shift may reduce the uptake of renewable energy, if older person households are less inclined to accept change and adopt new technologies. This paper assesses whether such households have different behavioural responses to energy efficiency compared to the rest of society and investigates whether micro-generation renewable energy technologies are less likely to be adopted by these households. It uses conditional logit and mixed logit models to investigate the impact of age of household on primary heating adoption, and also to assess the impact of older households on the installation of discretionary micro-generation technologies (solar thermal, solar voltaic, and wind power) to supplement existing heating and lighting systems. Results indicate that primary heating choice is not affected but that older person households are less inclined to adopt micro-generation technologies. - Highlights: → Heterogeneity exists in decisions on micro-generation technology installation. → Older person households are less inclined to adopt micro-generation technologies. → Micro-generation technologies fail a social cost-benefit analysis test.

  6. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  7. Feed-in tariffs for promotion of energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Krajacic, Goran, E-mail: Goran.Krajacic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Duic, Neven, E-mail: Neven.Duic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Instituto Superior Tecnico, Lisbon (Portugal); Tsikalakis, Antonis, E-mail: atsikal@corfu.power.ece.ntua.g [National Technical University of Athens, Athens (Greece); Zoulias, Manos, E-mail: mzoulias@cres.g [Centre for Renewable Energy Sources and Savings (CRES), Pikermi (Greece); Caralis, George, E-mail: gcaralis@central.ntua.g [National Technical University of Athens, Athens (Greece); Panteri, Eirini, E-mail: panteri@rae.g [Regulatory Authority for Energy (RAE), Athens (Greece); Carvalho, Maria da Graca, E-mail: mariadagraca.carvalho@europarl.europa.e [Instituto Superior Tecnico, Lisbon (Portugal)

    2011-03-15

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: {yields} Feed-in tariffs will promote development and use of energy storage technologies. {yields} Energy storage effectively increases RES penetration. {yields} Pumped Hydro Storage: an efficient solution for RES integration in islands. {yields} Remuneration of Batteries and Inverters as a service can increase RES Penetration. {yields} Desalination, apart from water can help in more efficient RES integration.

  8. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  9. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  10. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  11. Quarterly Report to the New Energy and Industrial Technology Development Organization, Washington, D.C., by Analysis Review and Critique, dated August 23, 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-08-23

    Reports are made on U.S. Department of Energy activities relative to energy conservation, renewable energy, initiatives, Superconducting Super Collider, and national energy strategy. The Department in January 1990 announced an energy conservation/renewable energy research and development program comprising 11 initiatives, which are energy saving of more than 25% by relighting federal facilities, energy saving of more than 25% by relighting commercial buildings, integrated resource planning, accelerated building guidelines and standards relative to air-conditioning, etc., energy analysis and diagnostics for industrial facilities, energy production from municipal waste, manufacturing technology for photovoltaics, cost-competitive ethanol fuels, solar detoxification of hazardous waste, new laboratory building at SERI (Solar Energy Research Institute), and expanding hydropower contribution. Congress approved the Superconducting Super Collider project for fiscal 1990, and the accelerator is now proceeding to its construction phase. (NEDO)

  12. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  13. Exploring past energy changes and their implications for the pace of penetration of new energy technologies

    International Nuclear Information System (INIS)

    Lund, P.D.

    2010-01-01

    Possible growth paths for new electricity generation technologies are investigated on the basis of an empirical analysis of past penetration rates. Finding and understanding high market penetration scenarios is relevant to formulating climate change mitigation strategies. The analysis shows that under favorable growth conditions, photovoltaics and wind could produce 15% and 25%, respectively, of world electricity by 2050. Under the same assumptions nuclear power could increase to 41% of world electricity. But it is unlikely that all three technology paths could be realized up to these values simultaneously and therefore the penetration rates presented here should be considered as indicative only. The results show that under positive conditions, an embryonic technology could move as a preferred option into a mainstream energy source within half a century. The introduction of growth constraints reflecting, e.g., severe economic, technical, or political limitations could reduce the above numbers by a factor of up to 2-3. The results indicate a decline in the relative year-to-year growth of new technologies when they have higher market shares. A comparison of the results with other short-term and long-term technology scenarios shows satisfactory agreement.

  14. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Directory of Open Access Journals (Sweden)

    Xiding Chen

    2018-02-01

    Full Text Available We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  15. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Science.gov (United States)

    Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-01-01

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different. PMID:29419788

  16. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  17. Energy information systems (EIS): Technology costs, benefit, and best practice uses

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Lin, Guanjing; Piette, Mary Ann

    2013-11-26

    Energy information systems are the web-based software, data acquisition hardware, and communication systems used to store, analyze, and display building energy data. They often include analysis methods such as baselining, benchmarking, load profiling, and energy anomaly detection. This report documents a large-scale assessment of energy information system (EIS) uses, costs, and energy benefits, based on a series of focused case study investigations that are synthesized into generalizable findings. The overall objective is to provide organizational decision makers with the information they need to make informed choices as to whether or not to invest in an EIS--a promising technology that can enable up to 20 percent site energy savings, quick payback, and persistent low-energy performance when implemented as part of best-practice energy management programs.

  18. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  19. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  20. Deployment of energy efficient technologies in developing countries

    International Nuclear Information System (INIS)

    Koch, H.J.

    2000-01-01

    Efficient and reliable power generation and power distribution represent the engine for economic growth in developing countries. A vast majority of the population in these countries does not have access to electricity, and those that do are often faced with an unreliable power distribution system. Now is the ideal time to transfer efficient energy technologies which also adhere to environmental standards. There are a myriad of inexpensive ways to avoid energy losses, such as cogeneration, the addition of natural gas turbines to coal-fired heating boilers. Even power generation itself can be more efficient. These improvements would encourage the financing world to pay closer attention and invest more rapidly in projects aimed at improving efficient power generation. The International Energy Agency was created in 1974 with the participation of 25 countries, and its mandate was expanded to include the deployment of clean and efficient energy technologies in developing countries. Technology transfer involves more than the shipping of equipment combined with some expert assistance. It involves the active participation of several partners, from the private sector, governments, non-governmental organizations (NGO), and academic institutions. The objective is to empower the recipient population, thereby reducing the need for imports. It is a joint international effort where the results benefit all participants. The author also discussed the Climate Technology Initiative (CTI) with the aim of disseminating information concerning climate change in the hope of reducing global emissions of greenhouse gases. Discussions to assist countries in the examination of avenues open to them in the field of energy are also fostered. Training in energy efficient technologies represents an important aspect of the role of CTI. It applies to decision makers to help them establish appropriate guidelines and regulations with regard to these technologies. Sustainable development can be achieved

  1. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  2. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  3. The value function as a criterion of analysis in separation technologies

    International Nuclear Information System (INIS)

    Peculea, Marius

    2005-01-01

    Production costs of heavy water are described by two functions: φ(ε), the energy function which represents the variable costs and φ(τ), the technologic function which represents the stable costs. The Dirac value function related to the circulation in the separation cascade allows calculating φ(ε) and consequently the technologic function may be represented in relation to the specific separation process. This representation allows the qualitative analysis of different separation processes or, for a given process, provides the analysis of different technological solutions which were worked out. An example is given referring to the analysis of heavy water technologies of separation through the dual temperature process of H 2 O-H 2 S isotopic exchange

  4. A multilayered analysis of energy security research and the energy supply process

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Kajikawa, Yuya

    2014-01-01

    Highlights: • The analysis reveals that energy security research is highly multidisciplinary. • Diversification is important for ensuring security in the energy supply process. • A multilayered overview of the energy supply process is important for energy risk management. • Consumer lifestyle innovation will be a part of energy security in the future. - Abstract: After the Fukushima nuclear disaster, a reassessment of the energy system is needed in order to include such aspects as human security and resilience. More open and careful discussions are needed concerning the various risks and uncertainties of future energy options, both in Japan and globally. In this paper, we aim to offer a fundamental basis for discourse on energy security by analyzing the status and trends in academic publications on that issue. Our bibliometrics analysis indicates that research has shifted from promoting strategies for ensuring the self-sufficiency of the primary energy to diversification of the secondary energy supply chain by introducing energy networks consisting of an infrastructure established through international coordination. In the literature, the concept of energy security is ambiguous and allows for multiple interpretations. Our results illustrate the existence of highly multidisciplinary topics within energy security, which can be categorized into four perspectives: geopolitical, economic, policy related, and technological

  5. Polymer and Concentrator Photovoltaic Technologies - Energy Return Factors and Area Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Birger; Gustaf Zettergren

    2006-12-20

    Market diffusion of flat plate crystalline silicon photovoltaic (PV) technology has been induced by economical support schemes and has lead to reduced cost per produced kWh electricity. For further market penetration of the PV technology, a continued reduction of production cost is required. Two alternative approaches to achieve this are using less expensive materials or changing the active materials. The technologies of concentrator PV (CPV) systems and polymer PV (PPV) devices represent these two strategies. The potential energy performance of these technologies is studied in terms of the process primary energy requirements for manufacturing, how many times this energy is paid back during its lifetime and as the required land area for electricity generation. The study is an energy analysis incorporating the inherent uncertainties in technology development. Uncertainties are identified in data acquisition, in design choices, as induced by development and improvement, in performance and by different application scenarios. The future technology alternatives are defined in different ways for CPV and PPV. CPV parameters are derived from existing products and ideas for improvements and PPV parameters from the directions of research. This study shows that the invested energy in future CPV and PPV is potentially paid back up to about 90 and 170 times, respectively, under Arizona (CPV) and average European (PPV) solar irradiation conditions. However the result is highly dependent on configuration, inventory data and device performance. Thus, for certain design alternatives, data and performance, PPV production energy is far from paid back during its lifetime. For CPV the energy return factor is decreased to about 13 in the least beneficial case. Area efficiency is studied as the land area requirements for producing a net output electricity of 1 MWh during 25 years. With device efficiencies from 1 to 5 per cent and lifetimes from 1 to 5 years a PPV device requires from 2

  6. E4 - Energy efficient elevators and escalators. Barriers to and strategies for promoting energy-efficient lift and escalator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Duetschke, Elisabeth; Hirzel, Simon

    2010-02-25

    According to prior findings of the E4 project, considerable savings potential exists both for lifts and escalators that could be realized if appropriate technology is implemented. However, energy-efficient technology is slowly diffusing the market - a phenomenon that could be explained by barriers present in the market. A barrier is defined as a mechanism that inhibits a decision or behavior that appears to be both energy-efficient and economically efficient and thereby prevents investment in energy-efficient technologies. This document has two aims. First, it will identify influential barriers in the European lift and escalator market. This analysis is based on the literature as well as a study including interviews as well as group discussions with relevant stakeholders. Second, strategies and measures to overcome the barriers identified in the first step are outlined. Major barriers to the penetration of energy-efficient technologies identified in this paper include a lack of monitoring energy consumption of installations and a lack of awareness of as well as knowledge about energy-efficient technology. Thus, installations and components are usually chosen without a (comprehensive) assessment of their energy consumption and without considering life-cycle approaches. On top of this, split incentives are a regularly occurring barrier. Various stakeholders are influential in the decisionmaking process about an installation or its components. However, those who will later pay for the energy consumption often are not involved in this process. Moreover, it is important to keep in mind that the number of new lifts and escalators installed each year is relatively low compared to the existing stock. Thus, it is very important to discuss enhancement of energy efficiency also for the existing stock. Based on our analyses, several recommendations are developed in this paper that could contribute to a market transformation in the lift and escalator market. First of all, a

  7. Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China

    International Nuclear Information System (INIS)

    Du, Ping; Zheng, Li-Qun; Xie, Bai-Chen; Mahalingam, Arjun

    2014-01-01

    The building sector of China currently consumes 20% of the total energy consumption. Studies on barriers to the adoption of building energy-saving technologies are of great significance on implementing policies related to achieving energy-saving goals. This paper studied 15 barriers with the aid of information collected through questionnaires and semi-structured interviews. The respondents were 135 employees working in the Jing-jin-tang area. Based on the results of the factor analysis, the barriers were categorized into five groups: attitudes of stakeholders, policies and regulations, auxiliary resources, profitability, and adaptability of the technologies. Analysis of the entire sample showed that the stakeholders’ reluctance to use was the largest barrier, followed by high initial investment and low profitability. Further analysis showed that the occupation and designation of the respondents and the size of the enterprises that they served influenced their perspectives on the barriers. It was found that architects attributed more importance to the adoption of energy-saving technologies than contractors; barriers confronted by employees of large enterprises and small enterprises were different; managers perceived weaker barriers than frontline employees and were more optimistic about the prospect of building energy-saving technologies. Finally, policy recommendations were proposed based on these in-depth and targeted analyses. - Highlights: • Fifteen barriers to the adoption of energy-saving technologies are discussed. • Surveys are conducted in one of China's most technologically developed area. • The barriers are divided into 5 groups according to the results of factor analysis. • Barriers related to profitability greatly hamper the adoption of the technologies. • Comparative analyses show the background of respondents influence their viewpoints

  8. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  9. The adoption of energy efficiency enhancing technologies. Market Performance and Policy Strategies in Case of Heterogeneous Firms

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.; Nijkamp, P. [Department of Spatial Economics, Free University Amsterdam, Amsterdam (Netherlands)

    1997-07-01

    The adoption of energy-efficiency enhancing technologies by heterogeneous firms is analyzed. The fact that energy use does not only cause external environmental costs through pollution, but also directly affects the profitability of the firm and hence its behaviour on input and output markets is taken for granted. It is demonstrated that the consideration of such market processes may have important implications for the efficiency of environmental policies concerned with energy use. The analysis focuses in particular on the efficiency of the market-led adoption and diffusion process under various policy regimes. It is shown that the promotion of energy-efficiency enhancing technologies might have unexpected effects in that it could lead to an increase in energy use, while the use of energy taxes might actually reduce the attractiveness of energy-saving technologies. 22 refs.

  10. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  11. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  12. R and D 2005-2015. Energy efficient technologies - analysis; F og U 2005 - 2015. Energieffektive teknologier - analyse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Danish Energy Authority has initiated the making of a strategy that includes research and development efforts within energy efficient technologies in a 10-year perspective. The strategy prioritizes and describes the research and development efforts with a view to obtain the largest possible effect from public funds. Furthermore, the objective is to create synergy between activities and players. This report is part of the second phase of the strategy project. The objective of this phase is to: 1. Lay the groundwork for prioritization, 2. Perform overall priorities, and 3. Draw up road maps for future R and D efforts within energy efficient technologies. (BA)

  13. Current work in energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

  14. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  15. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  16. Energy and technology review

    International Nuclear Information System (INIS)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  17. Electric energy savings from new technologies. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.

  18. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  19. LEAP2000: tools for sustainable energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, C.; Lazarus, M.; Raskin, P. [SEU-Boston, Boston, MA (USA)

    2000-09-01

    LEAP2000 is a collaborative initiative, led by the Boston Center for the Stockholm Environment Institute, to create a new suite of analytical software and databases for integrated energy-environment analysis. The LEAP2000 software and the Technology and Environmental Database (TED) are described. 5 refs., 5 figs.

  20. Renewable energy systems the earthscan expert guide to renewable energy technologies for home and business

    CERN Document Server

    Jenkins, Dilwyn

    2013-01-01

    This book is the long awaited guide for anyone interested in renewables at home or work. It sweeps away scores of common misconceptions while clearly illustrating the best in renewable and energy efficiency technologies. A fully illustrated guide to renewable energy for the home and small business, the book provides an expert overview of precisely which sustainable energy technologies are appropriate for wide-spread domestic and small business application. The sections on different renewable energy options provide detailed descriptions of each technology along with case studies, installatio

  1. Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios

    International Nuclear Information System (INIS)

    Winkler, Harald; Hughes, Alison; Haw, Mary

    2009-01-01

    Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO 2 -eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

  2. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  4. University energy management improvement on basis of standards and digital technologies

    Directory of Open Access Journals (Sweden)

    Novikova Olga

    2018-01-01

    Full Text Available Nowadays to implement the energy management system it is important to fulfill not only the legal requirements but also to follow the set of recommendations prepared by international and national management standards. The purpose of this article is to prepare the concept and methodology for the optimization and improvement of the energy management system (EMS for Universities with implementation of legal requirements and recommendations from international and national management standards with the help of digital technologies. During the research the systematic analysis, complex approach, logical sampling and analogy were used. It is shown that this process should be done with the help of the process-based approach, in accordance with ISO 9001, and energy management ISO 50001. The authors developed the structure of the basic standard of energy management: "Guidelines for the energy management system". It is proved that the involvement of the technical senior students in the project of EMS improvement allows to expand their competencies for new technics and technologies. Cloud service Bitrix24 was chosen for IT-support of the project. During the study, a list of characteristics was used as a basis for creating a query to the technology department of the university. DBMS Microsoft Access was chosen for its creation. In addition, the possible results of initiating a single database containing all the information needed for accounting and control of energy supply were listed. Moreover, the possibility of automated energy management system implementation and its results were considered. The required actions described in this research can be implemented in any University, that will extend energy management to any University worldwide.

  5. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  6. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  7. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  8. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  9. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  10. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  11. GIS approach to the definition of capacity and generation ceilings of renewable energy technologies

    International Nuclear Information System (INIS)

    Dominguez Bravo, Javier; Garcia Casals, Xavier; Pinedo Pascua, Irene

    2007-01-01

    There are no discrepancies about the advantages of achieving a sustainable energy system based on locally available natural resources. However, supporters of green energy generation system were lacking some scientific and consistent study to defend their proposals. In order to have such a study, Greenpeace commissioned Technology Research Institute at the Pontificia Comillas University to carry out a study to assess ceilings for the potential and generation of renewable technologies in Spain. It demonstrates firstly a far greater renewable potential than the targets set by long term policies, and secondly, the viability of meeting the entire electricity demand projected for 2050. GIS was used to add the geographical dimension to the original project in order to generate a technical analysis linked to the specific constrictions imposed by territory (natural and anthropogenic) and not just designed to cover a certain demand. Therefore, GIS spatial analysis took into account local conditions producing a more accurate assessment than evaluations made upon 'virtual' electrical spaces. This approach could be applied to other small scale general studies in order to assess the maximum contribution of renewable energy sources to particular energy generation mix and to help set development policies supporting high participation of renewable technologies

  12. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  13. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  14. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  15. On the economic attractiveness of renewable energy technologies

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    The competitiveness of wind and solar power technologies is often evaluated in public debates by comparing levelized costs of electricity. This is, however, incorrect, as doing so neglects the economic value of technologies. Similarly, renewable energy support schemes are often designed to incentivize investors to only account for the marginal economic costs (MEC) but not for the marginal economic value (MEV el ) of renewable energy technologies, i.e., the revenue from selling electricity on the wholesale market during the unit's technical lifetime. In this paper, it is shown that the net marginal economic costs per kWh (NMEC) - defined as the difference between the MEC and the MEV el per kWh - should serve as the reference when discussing the economic attractiveness of renewable energy technologies. Moreover, renewable energy support schemes should incentivize investments in technologies and regions with the lowest net marginal economic costs per kWh (NMEC), as otherwise excess costs occur. This is demonstrated using the example of Germany and its technology- and region-specific wind and solar power targets for 2020. By applying a linear electricity system optimization model, Germany's technology- and region-specific wind and solar power targets for 2020 are found to cause excess costs of more than 6.6 bn Euro 2010 . These are driven by comparatively high NMEC (low economic attractiveness) of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.

  16. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  17. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  18. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  19. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  20. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.