WorldWideScience

Sample records for technology education mathematics

  1. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  2. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  3. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  4. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  5. Interactive whiteboard in mathematics education

    OpenAIRE

    Cendelín, Jan

    2013-01-01

    Title: Interactive whiteboard in mathematics education Author: Bc. Jan Cendelín Department:Department of Mathematics Education Supervisor: RNDr. Antonín Slavík, Ph.D., Department of Mathematics Education Abstract: The development of modern technology is very fast. Almost everyone uses the technology at work and at home as well. So it is not unexpected that the technology gets into education at schools. This thesis focuses on the education of modern mathematics, and especially on the use of th...

  6. Transition from Realistic to Real World Problems with the Use of Technology in Elementary Mathematical Education

    Science.gov (United States)

    Budinski, Natalija; Milinkovic, Dragica

    2017-01-01

    The availability of technology has a big impact on education, and that is the main reason for discussing the use of technologies in mathematical education in our paper. The availability of technology influences how mathematical contents could be presented to students. We present the benefits of learning mathematical concepts through real life…

  7. The Effectiveness of Educational Technology Applications for Enhancing Mathematics Achievement in K-12 Classrooms: A Meta-Analysis. Educator's Summary

    Science.gov (United States)

    Center for Research and Reform in Education, 2012

    2012-01-01

    This review summarizes research on the effects of technology use on mathematics achievement in K-12 classrooms. The main research questions included: (1) Do education technology applications improve mathematics achievement in K-12 classrooms as compared to traditional teaching methods without education technology?; and (2) What study and research…

  8. Trajectories of Mathematics and Technology Education Pointing to Engineering Design

    Science.gov (United States)

    Daugherty, Jenny L.; Reese, George C.; Merrill, Chris

    2010-01-01

    A brief examination and comparison of mathematics and technology education provides the background for a discussion of integration. In particular, members of each field have responded to the increasing pressures to better prepare students for the technologically rich, globally competitive future. Approaches based within each discipline are varied…

  9. New Technologies in Mathematics.

    Science.gov (United States)

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  10. Leadership Training in Science, Technology, Engineering and Mathematics Education in Bulgaria

    Science.gov (United States)

    Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra

    2011-01-01

    This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership…

  11. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    Science.gov (United States)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  12. Generations of Research on New Technologies in Mathematics Education

    Science.gov (United States)

    Sinclair, Nathalie

    2014-01-01

    This article traces some of the influential ideas and motivations that have shaped a large part of the research on the use of new technologies in mathematics education over the past 40 years. Particular attention is focused on Papert's legacy, Celia's Hoyles' transformation of it, and how both relate to the current research landscape that features…

  13. Mathematics Education for Engineering Technology Students – A Bridge Too Far?

    Directory of Open Access Journals (Sweden)

    Noraishiyah Abdullah

    2013-03-01

    Full Text Available Trying to decide what is best suited for someone or something is an ever enduring task let alone trying to prepare students with the right engineering mind. So ‘how do you build an engineer?’ if that is the right word. What is the right ingredient? Mathematics has been said as the most important foundation in engineers’ life. Curriculum has been developed and reviewed over the years to meet this target. This work explores how much or lack of it has the curriculum prepares the future technologist to face the world of engineering technology as far as mathematics is concerned. Analysis of mathematics lectures, interviews of engineering technologist students and engineering technology subject lecturer is undertaken. Understand what each contributes help in understanding the picture that the current education is painting. Based on the theory of learning, APOS theory helps in explaining how students bridge their knowledge of mathematics when it comes to solving engineering technology problems. The question is, is it a bridge too far? 

  14. Technology-integrated Mathematics Education at the Secondary School Level

    Directory of Open Access Journals (Sweden)

    Hamdi Serin

    2017-06-01

    Full Text Available The potential of technological devices to enrich learning and teaching of Mathematics has been widely recognized recently. This study is founded on a case study that investigates how technology-related Mathematics teaching can enhance learning of Mathematical topics. The findings indicate that when teachers integrate technology into their teaching practices, students’ learning of Mathematics is significantly promoted. It was seen that the use of effective presentations through technological devices highly motivated the students and improved their mathematics achievement. This highlights that the availability of technological devices, teacher beliefs, easy access to resources and most importantly teacher skills of using technological devices effectively are decisive factors that can provide learners better understanding of mathematical concepts.

  15. Integration of Technology in Elementary Pre-Service Teacher Education: An Examination of Mathematics Methods Courses

    Science.gov (United States)

    Mitchell, Rebecca; Laski, Elida

    2013-01-01

    Instructors (N = 204) of elementary mathematics methods courses completed a survey assessing the extent to which they stay informed about research related to effective uses of educational technology and the kinds and numbers of educational technologies they include in their courses. Findings indicate that, while they view educational technology…

  16. Digital technology in mathematics education : Why it works (or doesn't)

    NARCIS (Netherlands)

    Drijvers, P.H.M.

    2015-01-01

    The integration of digital technology confronts teachers, educators and researchers with many questions. What is the potential of ICT for learning and teaching, and which factors are decisive in making it work in the mathematics classroom? To investigate these questions, six cases from leading

  17. Enhancing Teacher Education in Primary Mathematics with Mobile Technologies

    Science.gov (United States)

    Schuck, Sandy

    2016-01-01

    A challenge of teacher education is to produce graduate primary school teachers who are confident and competent teachers of mathematics. Various approaches to primary school teacher education in mathematics have been investigated, but primary teacher education graduates still tend to be diffident in their teaching of mathematics. In an age where…

  18. Rockets: An Educator's Guide with Activities in Science, Mathematics, and Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This educational guide discusses rockets and includes activities in science, mathematics, and technology. It begins with background information on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry focus on Sir Isaac Newton's Three Laws of Motion. These laws explain…

  19. Third international handbook of mathematics education

    CERN Document Server

    Bishop, Alan; Keitel, Christine; Kilpatrick, Jeremy; Leung, Frederick

    2013-01-01

    This entirely new Third International Handbook of Mathematics Education comprises 31 chapters which have been written by a total of 84 different authors representing 26 nations, each a recognized expert in the field.   Comprised of four sections: Social, Political and Cultural Dimensions in Mathematics Education; Mathematics Education as a Field of Study; Technology in the Mathematics Curriculum; and International Perspectives on Mathematics Education, this Third Handbook offers essential reading for all persons interested in the future of mathematics education. The authors present challenging international perspectives on the history of mathematics education, current issues, and future directions.   What makes this Handbook unique is its structure. Each section covers past, present and future aspects of mathematics education.   The first chapter in each section identifies and analyzes historical antecedents The “middle” chapters draw attention to present-day key issues and themes The final chapter in ...

  20. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  1. Special Education Teachers' Views on Using Technology in Teaching Mathematics

    Science.gov (United States)

    Baglama, Basak; Yikmis, Ahmet; Demirok, Mukaddes Sakalli

    2017-01-01

    Individuals with special needs require support in acquiring various academic and social skills and mathematical skills are one of the most important skills in which individuals with special needs need to acquire in order to maintain their daily lives. Current approaches in education emphasize the importance of integrating technology into special…

  2. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  3. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  4. Uses of technology in lower secondary mathematics education : a concise topical survey

    NARCIS (Netherlands)

    Drijvers, P.H.M.; Ball, Lynda; Barzel, Barbel; Heid, M. Kathleen; Cao, Yiming; Maschietto, Michela

    2016-01-01

    This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness;

  5. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    Science.gov (United States)

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  6. ICT- The Educational Programs in Teaching Mathematics

    Directory of Open Access Journals (Sweden)

    Dance Sivakova

    2017-08-01

    Full Text Available The range of information and communication technology in teaching mathematics is unlimited. Despite numerous researches about the opportunities and application of the ICT in teaching mathematics and in the world, however, many aspects remain unexplored. This research comes to knowledge that will be applicable to the educational practice. The findings will serve as motivation for more frequent use of the ICT in teaching mathematics from first to fifth grade as a mean for improving of the educational process. Through application of the ICT in the educational programs in teaching mathematics the technological improved practice is investigated and discussed and it helps overcoming of the challenges that arise when trying to integrate the ICT in the educational curricula in mathematics. The biggest challenge are the findings about the possibilities of the application of the ICT in the educational programs in math from first to fifth grade as well as their dissemination, all aimed to improving of teaching mathematics from the first to the fifth grade. The application of the most ICT in the educational programs of mathematics affects the training of the students for easier adoption of the mathematical concepts and the mathematical procedures and in the easier identification and resolving problem situations.

  7. A Survey of Mathematics Education Technology Dissertation Scope and Quality: 1968-2009

    Science.gov (United States)

    Ronau, Robert N.; Rakes, Christopher R.; Bush, Sarah B.; Driskell, Shannon O.; Niess, Margaret L.; Pugalee, David K.

    2014-01-01

    We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality. Dissertation studies earned an average of 64.4% of the possible quality points across all methodology types, compared to studies in journals that averaged 47.2%.…

  8. CULTUROLOGICAL APPROACH AS METHODOLOGICAL BASIS OF MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Ye. A. Perminov

    2017-01-01

    Full Text Available Introduction. Today, in the era of a mathematization of science and total expansion of digital technologies, mass mathematical education becomes a necessary part of culture of every person. However, there are some serious obstacles to formation and development of general mathematical culture: insufficient understanding of its importance by society and the state; fragmentary-clipconsciousness, emerging among representatives of the younger generation under the influence of the Internet, and preventing formation of a complete picture of the modern world; traditional system of disjointed subjects and courses in school, secondary vocational and high school mathematics education; non-cognitive (automatic transferring of the approaches, principles, technologies and techniques into training which are not specific in order to master a course. Development of sociological, axiological and especially culturological aspects of mathematical methodology is required for the solution of the urgent problems of methodology in mathematical education.The aim of the publication is to discuss methodological aspects of culturological approach realization in mathematical education.Methodology and research methods. The theoretical scientific methods of the present article involve analysis and synthesis of the content of philosophical, mathematical, pedagogical, methodological literature and normative documents; comparative, culturological and logical types of analysis of mathematical education; systematic, competence-based, practice-oriented and personal-activity metho-dological approaches were used to understand the concept of mathematical education.Results and scientific novelty. The practicability and leading role of culturological approach to promoting mathematical knowledge is proved from historical, philosophical and pedagogical positions. It is stated that objective conceptualization of progressive ideas and new methods of mathematical science and mathematical

  9. STEM Education: What Does Mathematics Have to Offer?

    Science.gov (United States)

    Fitzallen, Noleine

    2015-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education in recent times could be perceived as business as usual or as an opportunity for innovation and change in mathematics classrooms. Either option presents challenges for mathematics educators who are expected to contribute to the foundations of a STEM literate…

  10. Working Together to Improve the Quality of Mathematics Education ...

    African Journals Online (AJOL)

    Prof

    Key words: Parents; mathematics education; perception; school climate; .... elementary school children, established that parents with higher college degrees ..... International Journal of Mathematical Education in Science and Technology,.

  11. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Nkere, Nsidi

    2016-01-01

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level…

  12. Governing the Modern, Neoliberal Child through ICT Research in Mathematics Education

    DEFF Research Database (Denmark)

    Valero, Paola; Knijnik, Gelsa

    2015-01-01

    Research on the pedagogical uses of ICT for the learning of mathematics formulates cultural thesis about the desired subject of education and society, and thereby contribute to fabricate the rational, Modern, self-regulated, entrepreneurial neoliberal child. Using the Foucauldian notion...... of governmentality, the section Technology in the mathematics curriculum in the Third International Mathematics Education Research Handbook is discursively analyzed. We problematize how mathematics education research on ICT devices pedagogical technologies that steer the conduct of children to become the desired...

  13. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  14. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    Science.gov (United States)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  15. E-learning materials in mathematics education

    OpenAIRE

    Fajfar, Tina

    2012-01-01

    When studying mathematics, most pupils and students need mathematical tools, along with the teachers' explanation. The updated curriculum for mathematics in primary and secondary education also recommends using materials connected to information and communication technology. Although e-learning materials are not directly mentioned in a curricula as a tool for learning mathematics, they should, nevertheless, be considered as a tool which can be used in a class with the help of a teacher or ind...

  16. Enhancing student engagement through the affordances of mobile technology: a 21st century learning perspective on Realistic Mathematics Education

    Science.gov (United States)

    Bray, Aibhín; Tangney, Brendan

    2016-03-01

    Several recent curriculum reforms aim to address the shortfalls traditionally associated with mathematics education through increased emphasis on higher-order-thinking and collaborative skills. Some stakeholders, such as the US National Council of Teachers of Mathematics and the UK Joint Mathematical Council, advocate harnessing the affordances of digital technology in conjunction with social constructivist pedagogies, contextual scenarios, and/or approaches aligned with Realistic Mathematics Education (RME). However, it can be difficult to create technology-mediated, collaborative and contextual activities within a conventional classroom setting. This paper explores how a combination of a transformative, mobile technology-mediated approach, RME, and a particular model of 21st century learning facilitates the development of mathematics learning activities with the potential to increase student engagement and confidence. An explanatory case study with multiple embedded units and a pre-experimental design was conducted with a total of 54 students in 3 schools over 25 hours of class time. Results from student interviews, along with pre-test/post-test analysis of questionnaires, suggest that the approach has the potential to increase student engagement with, and confidence in, mathematics. This paper expands on these results, proposing connections between aspects of the activity design and their impact on student attitudes and behaviours.

  17. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  18. Blended Learning, E-Learning and Mobile Learning in Mathematics Education

    Science.gov (United States)

    Borba, Marcelo C.; Askar, Petek; Engelbrecht, Johann; Gadanidis, George; Llinares, Salvador; Aguilar, Mario Sánchez

    2016-01-01

    In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in…

  19. TEACHING MATHEMATICS USING LECTURE CAPTURE TECHNOLOGY

    OpenAIRE

    Audi, Diana

    2017-01-01

    Technology in highereducation is dramatically changing and continuously giving a challenging timefor educators and institutions to provide the same level of innovativecontents, environment and interaction to a digital native generation which iswell powered with technology. It has been well observed and recognized thatvideo lectures technology can have positive impacts on student learning andsatisfaction however research on Mathematics intensive subjects have yet to befully explored. This expl...

  20. The concept of competence and its relevance for science, technology, and mathematics education

    DEFF Research Database (Denmark)

    Ropohl, Mathias; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    . In contrast to earlier ed-ucational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology, and mathematics...... education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and af-fective perspectives influenced by the need to assess students’ achievement of de-sired learning goals in relation to their interest and motivation, the perspectives of the concept...

  1. IMPROVING TEACHING MATHEMATICS USING MODERN INFORMATION TECHNOLOGIES IN FORMATION MATHEMATICAL COMPETENCE REQUIRED FUTURE SKIPPERS.

    Directory of Open Access Journals (Sweden)

    Elena Gudyreva

    2015-10-01

    Full Text Available The article is devoted to consideration of issues related to identifying the potential for teaching mathematics using network (Internet technology and the introduction of elements of distance learning into educational process of higher educational establishments of the sea profile, as well as achievement of formation of mathematical competence of students of the University generally, and of the University's Maritime profile, in particular. Based on the analysis of psychological and pedagogical literature highlights the factors that influence the increase of efficiency of independent work of students of higher educational institutions and on the formation of steady skills of self-education that ultimately leads to quality of formation of mathematical competence of a student. Specific features of teaching mathematics at the University of the sea profile. The description of the project (complex sites "KSMA. Higher mathematics navigators", who developed and used in the Kherson state Maritime Academy in the teaching of mathematics and the organization of individual techniques of distance learning, shows the simplicity and accessibility of working with complex sites, as well as the simplicity and accessibility of design "personal website", but in fact complex sites, by a teacher of any discipline of higher education. Shown, also a training process with the use of the project "KSMA. Higher mathematics navigators", analyzes the experience of teaching the course "Higher mathematics" in a higher educational institution of the marine profile with the use of a personal website, a teacher and shown positive results in students mastery of basic mathematical competencies.

  2. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  3. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  4. Adapting Technological Pedagogical Content Knowledge Framework to Teach Mathematics

    Science.gov (United States)

    Getenet, Seyum Tekeher

    2017-01-01

    The technological pedagogical content knowledge framework is increasingly in use by educational technology researcher as a generic description of the knowledge requirements for teachers using technology in all subjects. This study describes the development of a mathematics specific variety of the technological pedagogical content knowledge…

  5. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  6. Using Citation Analysis Methods to Assess the Influence of Science, Technology, Engineering, and Mathematics Education Evaluations

    Science.gov (United States)

    Greenseid, Lija O.; Lawrenz, Frances

    2011-01-01

    This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…

  7. The use of mobile technologies for mathematical engagement in informal learning environments

    OpenAIRE

    2014-01-01

    M.Ed. (Ict in Education) South African learners are underperforming in Mathematics. Annual National Assessments for grade 9 and grade 12 results in Mathematics are shocking according to the Ministry of Education. This study investigates informal learning as an alternative method of addressing underperformance in Mathematics in South African schools. Informal learning with the use of mobile technology enhances engagement in Mathematics learning. The participants of this study had access to ...

  8. Technology Use and Mathematics Teaching: Teacher Change as Discursive Identity Work

    Science.gov (United States)

    Chronaki, Anna; Matos, Anastasios

    2014-01-01

    Teacher change towards developing competences for technology use in mathematics teaching has been the focus of current educational reforms worldwide. However, a considerable amount of research denotes the extent to which teachers resist a full integration of technology in mathematics classrooms. The present paper is based on an ethnographic study…

  9. Opportunities and Challenges of Using Technology in Mathematics Education of Creative Technical Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This paper explores the opportunities and challenges of integrating technology to support mathematics teaching and learning in creative engineer- ing disciplines. We base our discussion on data from our research in the Media Technology department of Aalborg University Copenhagen, Denmark. Our ana...... analysis proposes that unlike in other engineering disciplines, technology in these disciplines should be used for contextualizing mathematics rather than in- troducing and exploring mathematical concepts....

  10. Mathematics computer-based training tool for pupils with special educational needs

    OpenAIRE

    Čeponienė, Lina

    2010-01-01

    Mathematics has a great influence on the development of world science and education, technology and human culture. Ukeje observes that without mathematics there is no science, without science there is no modern technology and without modern technology there is no modern society. In other words, mathematics is the precursor and the queen of science and technology and the indispensable single element in modern societal development. So, it plays a vital role in developing learners abilities to c...

  11. Prospective Turkish Primary Teachers' Views about the Use of Computers in Mathematics Education

    Science.gov (United States)

    Dogan, Mustafa

    2012-01-01

    The use of computers and technology in mathematics education affects students' learning, achievements, and affective dimensions. This study explores prospective Turkish primary mathematics teachers' views about the use of computers in mathematics education. The sample comprised of 129 fourth-year prospective primary mathematics teachers from two…

  12. UTILIZATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.Keywords: Technology, Mathematics Learning, Facebook, Attitude Toward ICT DOI: http://dx.doi.org/10.22342/jme.5.2.1498.138-147

  13. Teaching mathematics remotely: changed practices in distance education

    Science.gov (United States)

    Lowrie, Tom; Jorgensen, Robyn

    2012-09-01

    This investigation explored the challenges of creating meaningful mathematics practices for a community engaged in Distance Education (DE). Specifically, the study maps the influence of new technologies on the practices of a learning community where mathematics was taught remotely. The theoretical framework of this study utilised Bourdieu's work on practice to consider the changed nature of the field, in this case, remote education provision, over time. By using Bourdieu's notion of field, we are better able to understand the ways in which practices and discourses shape particular ways of working in rural education provision. The results of the study show that Field 1 was innovative and beyond the non-school world, while Field 2 lagged behind the technological resources of the non-school world.

  14. Open access web technology for mathematics learning in higher education

    Directory of Open Access Journals (Sweden)

    Mari Carmen González-Videgaray

    2016-05-01

    Full Text Available Problems with mathematics learning, “math anxiety” or “statistics anxiety” among university students can be avoided by using teaching strategies and technological tools. Besides personal suffering, low achievement in mathematics reduces terminal efficiency and decreases enrollment in careers related to science, technology and mathematics. This paper has two main goals: 1 to offer an organized inventory of open access web resources for math learning in higher education, and 2 to explore to what extent these resources are currently known and used by students and teachers. The first goal was accomplished by running a search in Google and then classifying resources. For the second, we conducted a survey among a sample of students (n=487 and teachers (n=60 from mathematics and engineering within the largest public university in Mexico. We categorized 15 high-quality web resources. Most of them are interactive simulations and computer algebra systems. ResumenLos problemas en el aprendizaje de las matemáticas, como “ansiedad matemática” y “ansiedad estadística” pueden evitarse si se usan estrategias de enseñanza y herramientas tecnológicas. Además de un sufrimiento personal, el bajo rendimiento en matemáticas reduce la eficiencia terminal y decrementa la matrícula en carreras relacionadas con ciencia, tecnología y matemáticas. Este artículo tiene dos objetivos: 1 ofrecer un inventario organizado de recursos web de acceso abierto para aprender matemáticas en la universidad, y 2 explorar en qué medida estos recursos se usan actualmente entre alumnos y profesores. El primer objetivo se logró con un perfil de búsqueda en Google y una clasificación. Para el segundo, se condujo una encuesta en una muestra de estudiantes (n=487 y maestros (n=60 de matemáticas e ingeniería de la universidad más grande de México. Categorizamos 15 recursos web de alta calidad. La mayoría son simulaciones interactivas y

  15. Quality of secondary preservice mathematics teacher education programs

    OpenAIRE

    Gómez, Pedro

    2005-01-01

    Characterizing the quality of teacher education programs and courses Supported by the Ministry of Science and Technology Working for three years Three universities working on secondary mathematics pre- service teacher education Almeria, Cantabria and Granada With a common model

  16. Utilization of Information and Communication Technologies in Mathematics Learning

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.

  17. Introduction to the papers of TWG16: Learning Mathematics with Technology and Other Resources

    NARCIS (Netherlands)

    Drijvers, P.H.M.; Faggiano, Eleonora; Geraniou, Eirini; Weigand, Hans-Georg

    2017-01-01

    The use of technology and other resources for mathematical learning is a current issue in the field of mathematics education and lags behind the rapid advances in Information and Communication Technology. Technological developments offer opportunities, which are not straightforward to exploit in

  18. Philosophical dimensions in mathematics education

    CERN Document Server

    Francois, Karen

    2007-01-01

    This book brings together diverse recent developments exploring the philosophy of mathematics in education. The unique combination of ethnomathematics, philosophy, history, education, statistics and mathematics offers a variety of different perspectives from which existing boundaries in mathematics education can be extended. The ten chapters in this book offer a balance between philosophy of and philosophy in mathematics education. Attention is paid to the implementation of a philosophy of mathematics within the mathematics curriculum.

  19. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  20. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    Science.gov (United States)

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  1. Problem Solving in the Digital Age: New Ideas for Secondary Mathematics Teacher Education

    Science.gov (United States)

    Abramovich, Sergei; Connell, Michael

    2017-01-01

    The paper reflects on an earlier research on the use of technology in secondary mathematics teacher education through the lenses of newer digital tools (Wolfram Alpha, Maple), most recent standards for teaching mathematics, and recommendations for the preparation of schoolteachers. New ideas of technology integration into mathematics education…

  2. Study on the Efficiency of Mathematics Distance Education

    Directory of Open Access Journals (Sweden)

    Abdollah Safavi

    2013-07-01

    Full Text Available In view of scientific and technological advancements, enthusiasm and need of the people for learning and the phenomenon of urban sprawl in many countries, especially advanced and industrial countries, distance education system has been used for many years as a method of teaching people in different locations and in different times without the student's needing to attend a class. Since it has been only a few years that this type of education has been used in the education system of the vast country of Iran and in view of special structure of mathematics and the importance and sensitiveness of its education, the present study was made to assess the success of students in this system of mathematics education. The statistical population of this research consists of 95 boy students from high schools of Tehran who were chosen by quasi-cluster method. 35 students in distance education system were chosen as experiment group and 60 students in traditional education system were chosen as control group. Using quasi-standard harmonious mathematics test and according to the results of descriptive statistics, Levene tests and independent samples test, this method of mathematics education was not found efficient for high school students of Tehran.

  3. Comparing Views of Primary School Mathematics Teachers and Prospective Mathematics Teachers about Instructional Technologies

    Directory of Open Access Journals (Sweden)

    Adnan Baki

    2009-11-01

    Full Text Available Technology is rapidly improving in both hardware and software side. As one of the contemporary needs people should acquire certain knowledge, skills, attitudes and habits to understand this technology, to adapt to it and to make use of its benefits. In addition, as in all domains of life, change and improvement is also unavoidable for educational field. As known, change and improvement in education depends on lots of factors. One of the most important factors is teacher. In order to disseminate educational reforms, teachers themselves should accept the innovation first (Hardy, 1998, Baki, 2002; Oral, 2004. There has been variety of studies investigating teacher and prospective teachers‟ competences, attitudes and opinions (Paprzychi, Vikovic & Pierson, 1994; Hardy, 1998; Kocasaraç, 2003; Lin, Hsiech and Pierson, 2004; Eliküçük, 2006; YeĢilyurt, 2006; Fendi, 2007; Teo, 2008; Arslan, Kutluca & Özpınar, 2009. As the common result of these studies indicate that teachers‟ interest towards using instructional technology have increased. Accordingly, most of the teachers began to think that using instructional technologies becomes inevitable for teachers. By reviewing the related literature, no studies have been come across comparing the opinions of teachers and teacher candidates about instructional technologies. In this study, it was aimed to investigate and compare the views of mathematics teachers with prospective mathematics teachers about ICT. It was considered that collecting opinions of teachers and teachers candidates about the instructional technologies, comparing and contrasting them will contribute to the field. To follow this research inquiry, a descriptive approach type; case study research design was applied. The reason for choosing such design is that the case study method permits studying one aspect of the problem in detail and in a short time (Yin, 2003; Çepni, 2007. The study was conducted with the total sample of 12. 3 of

  4. Financial Education Through Mathematics and IT Curricula: Pocket Money Management

    OpenAIRE

    Gortcheva, Iordanka

    2013-01-01

    Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013 Mathematics and IT classes in the Bulgarian school provide various opportunities for developing students’ logical, mathematical, and technological thinking. Being an important part of mathematical literacy, financial literacy can be systematically built in the frame of national mathematics and IT curricula. Following that objective, exemplary word problems ...

  5. The development of mathematics education as seen in mathematics education controversies in Japan

    OpenAIRE

    Makinae , Naomichi

    2016-01-01

    International audience; It can be said that mathematics education in Japan was started in 1872 when the school system was established. Since that establishment era, controversies have emerged time and again in mathematics education in Japan. Through these controversies, debates have been held on views on mathematics education such as how mathematics ought to be taught and what constitutes knowledge concerning numbers, quantities, and shapes that is desirable for students to acquire. In this ...

  6. The Philosophy of Mathematics Education

    DEFF Research Database (Denmark)

    mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards......This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical...... research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also...

  7. Mathematics Education ITE Students Examining the Value of Digital Learning Objects

    Science.gov (United States)

    Hawera Ngarewa; Wright, Noeline; Sharma, Sashi

    2017-01-01

    One issue in mathematics initial teacher education (ITE) is how to best support students to use digital technologies (DTs) to enhance their teaching of mathematics. While most ITE students are probably using DTs on a daily basis for personal use, they are often unfamiliar with using them for educative purposes in New Zealand primary school…

  8. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  9. Technology Education Teacher Supply and Demand--A Critical Situation

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics…

  10. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  11. INFORMATION TECHNOLOGY AS A MEANS TO CAPTURE THE STUDENTS OF THE COURSE "METHODS OF "MATHEMATICS" EDUCATIONAL TEACHING FIELD"

    Directory of Open Access Journals (Sweden)

    Skvortsova S.

    2014-11-01

    "Methods of teaching educational sector" Mathematics "" using computers, the authors use the term "information technology", follow the definition of information technologies M. Zhaldak, IT training Zakharova I. and see their possible implementation in class presentations through the use of lectures; at workshops – by presentations prepared by the teacher and presentations prepared by the students, and through the use of computer control tests; during independent work possible use of teaching aids in electronic media and educational computer tests.

  12. Technology-driven developments and policy implications for mathematics education

    NARCIS (Netherlands)

    Trouche, L.; Drijvers, P.H.M.|info:eu-repo/dai/nl/074302922; Gueudet, G.; Sacristan, A.I.

    2013-01-01

    The advent of technology has done more than merely increase the range of resources available for mathematics teaching and learning: it represents the emergence of a new culture—a virtual culture with new paradigms—which differs crucially from preceding cultural forms. In this chapter, the

  13. Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161

    Science.gov (United States)

    Chen, Xianglei

    2009-01-01

    Rising concern about America's ability to maintain its competitive position in the global economy has renewed interest in science, technology, engineering and mathematics (STEM) education. To understand who enters into and completes undergraduate programs in STEM fields, this report examined data from three major national studies: the 1995-96…

  14. INVOLVING STUDENTS IN RESEARCH AS A FORM OF INTEGRATION OF ENGINEERING WITH MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Viktor M. Fedoseyev

    2016-03-01

    Full Text Available Introduction: questions of integration of mathematical with engineering training in educational process of higher education institution are explored. The existing technologies of the integrated training are analyzed, and the project-oriented direction is distinguished. Research involving students as an organisational and methodical form of training bachelors of the technical speciali sations is discussed. Materials and Methods: results of article are based on researches of tendencies of development of technical and mathematical education, works on the theory and methodology of pedagogical integration, methodology of mathematics and technical science. Methods of historical and pedagogical research, analytical, a method of mathematical modeling were used. Results: the main content of the paper is to make discussion of experience in developing and using integrated educational tasks in real educational process. Discussion is based on a specific technological assignment including a number of mathematical tasks used as a subject of research for students. In the assignment a special place is allocated to the questions reflecting the interplay of a technical task with a mathematical method of research highlighting the objective significance of mathematics as a method to solve engineering problems. Discussion and Conclusions: the paper gives reasons to conditions for using research work with students as an organisational and methodical form of integrated training in mathematics. In realisation of educational technology it is logical to apply the method of projects. It is necessary to formulate a task as an engineering project: to set an engineering objective of research, to formulate specifications; to differentiate between engineering and mathematical tasks of the project, to make actual interrelations between them; the mathematical part of the project has to be a body of research; assessment of the project must be carried out not only accounting for

  15. The "Human Factor" in Pure and in Applied Mathematics. Systems Everywhere: Their Impact on Mathematics Education.

    Science.gov (United States)

    Fischer, Roland

    1992-01-01

    Discusses the impact that the relationship between people and mathematics could have on the development of pure and applied mathematics. Argues for (1) a growing interest in philosophy, history and sociology of science; (2) new models in educational and psychological research; and (3) a growing awareness of the human factor in technology,…

  16. Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education

    Science.gov (United States)

    Meletiou-Mavrotheris, Maria, Ed.; Mavrou, Katerina, Ed.; Paparistodemou, Efi, Ed.

    2015-01-01

    Despite increased interest in mobile devices as learning tools, the amount of available primary research studies on their integration into mathematics teaching and learning is still relatively small due to the novelty of these technologies. "Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education" presents…

  17. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  18. An Examination of Pre-Service Mathematics Teachers' Integration of Technology into Instructional Activities Using a Cognitive Demand Perspective and Levels of Technology Implementation

    Science.gov (United States)

    Akcay, Ahmet Oguz

    2016-01-01

    Technology has changed every aspect of our lives such as communication, shopping, games, business, and education. Technology has been used for decades in the teaching and learning environment in K-12 education and higher education, especially in mathematics education where the use of instructional technology has great potential. Today's students…

  19. Stirring the Pot: Supporting and Challenging General Education Science, Technology, Engineering, and Mathematics Faculty to Change Teaching and Assessment Practice

    Science.gov (United States)

    Stieha, Vicki; Shadle, Susan E.; Paterson, Sharon

    2016-01-01

    Evidence-based instructional practices (ebips) have been associated with positive student outcomes; however, institutions struggle to catalyze widespread adoption of these practices in general education science, technology, engineering, and mathematics (stem) courses. Further, linking ebips with integrated learning assessment is rarely discussed…

  20. The `M' in SMEC: a short history of the mathematics education presence

    Science.gov (United States)

    Malone, John A.

    2011-09-01

    In this paper I examine the history of the integration of mathematics education into the Science Education Centre, which had been established by physicist, John de Laeter, within the School of Science and Engineering at Curtin University in Perth, Australia. De Laeter's vision for science education was that teachers should have access to professional education that allowed them to extend their discipline and pedagogical knowledge using strategies that brought together theory and practice in ways that were meaningful for teachers. This model was expanded when mathematics education was also included, paving the way also for technology education. I present the history of this integration laying out the themes that are important for the continued educational effectiveness of the Science and Mathematics Education Centre (SMEC) and the role that mathematics education has played in this process. As the title suggests, this article focuses on the activities of the group of mathematics educators who have worked within the Science and Mathematics Education Centre of Curtin University since it was established 30 or so years ago and who have contributed to its reputation. The two streams operated then and now more-or-less independently in matters of student thesis topic choice but offered students opportunities for interaction that might not have been available if the "M" had not been incorporated into the Science Education Centre (SEC). This article's focus is on the mathematics educators who contributed to the Centre's success and reputation, highlighting the synergistic relationship between mathematics and science that helped to make SMEC a leading center for mathematics and science education.

  1. Critical Mathematics education: Past, present and future

    DEFF Research Database (Denmark)

    contribution to the shaping of those concerns in the international community of mathematics educators and mathematics education researchers. This book gathers contributions of researchers from five continents, for whom critical mathematics education has been an inspiration to think about many different topics...... such as the dialogical and political dimensions of teacher education, mathematical modeling, the philosophy of mathematics from social and political perspectives, teaching practices in classrooms, the connection between mathematics and society, the scope and limits of critical thinking in relation to mathematics......Critical mathematics education brings together a series of concerns related to mathematics and its role in society, the practices of teaching and learning of mathematics in educational settings, and the practices of researching mathematics education. The work of Ole Skovsmose has provided a seminal...

  2. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  3. An invitation to critical mathematics education

    DEFF Research Database (Denmark)

    Skovsmose, Ole

    An Invitation to Critical Mathematics Education deals with a range of crucial topics. Among these are students’ foreground, landscapes of investigation, and mathematics in action. The book is intended for a broad audience: educators, students, teachers, policy makers, anybody interested...... in the further development of mathematics education. The book discusses concerns and preoccupation. This way it provides an invitation into critical mathematics education....

  4. Educating mathematics teacher educators

    DEFF Research Database (Denmark)

    Højgaard, Tomas; Jankvist, Uffe Thomas

    2014-01-01

    The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension......; the two mathematical topics of differential equations and stochastics, this being the second dimension; and finally a third dimension the purpose of which is to deepen the two others by means of a didactical perspective....

  5. Innovation in mathematics education: beyond the technology

    Directory of Open Access Journals (Sweden)

    Salvador Llinares

    2013-06-01

    Full Text Available Relationships between mathematical competence and mathematics teaching innovation do emerge the need for new practices of mathematics teaching. One of the aspects of this new practice is the interaction patterns in the classroom characterizing the mathematical discourse. From these perspectives, the relation between innovation and new mathematics practices defines different contexts for professional development of mathematics teacher.

  6. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    OpenAIRE

    Stoet, G; Geary, DC

    2018-01-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. P...

  7. Science, Technology, Engineering, and Mathematics (STEM) Education Issues and Legislative Options

    National Research Council Canada - National Science Library

    Kuenzi, Jeffrey J; Matthews, Christine M; Mangan, Bonnie F

    2006-01-01

    There is growing concern that the United States is not preparing a sufficient number of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM...

  8. New Avenues for History in Mathematics Education: Mathematical Competencies and Anchoring

    DEFF Research Database (Denmark)

    Jankvist, U. T.; Kjeldsen, T. H.

    2011-01-01

    . The first scenario occurs when history is used as a ‘tool’ for the learning and teaching of mathematics, the second when history of mathematics as a ‘goal’ is pursued as an integral part of mathematics education. We introduce a multiple-perspective approach to history, and suggest that research on history......The paper addresses the apparent lack of impact of ‘history in mathematics education’ in mathematics education research in general, and proposes new avenues for research. We identify two general scenarios of integrating history in mathematics education that each gives rise to different problems...... in mathematics education follows one of two different avenues in dealing with these scenarios. The first is to focus on students’ development of mathematical competencies when history is used a tool for the learning of curriculum-dictated mathematical in-issues. A framework for this is described. Secondly, when...

  9. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  10. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...

  11. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  12. Sustaining Integrated Technology in Undergraduate Mathematics

    Science.gov (United States)

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  13. Exploring student teachers' perceptions of the influence of technology in learning and teaching mathematics

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2015-11-01

    Full Text Available Rapid global technological developments have affected all facets of life, including the teaching and learning of mathematics. This qualitative study was designed to identify the ways in which technology was used and to explore the nature of this use by a group of 52 mathematics student teachers. The participants were pre-service Mathematics students who were enrolled for a Mathematics module at a South African university. The research instruments were an open question and a semi-structured interview schedule. Saxe's framework was used to analyse the data. Some benefits of mathematics software were found to be the provision of different representations, dynamic visualisation of concepts and variation in mathematical situations. It was also found that students used technology more often in their own learning than in their teaching, because the schools did not have many resources. It is recommended that the education department prioritise the provision of specialist mathematics software that can be used to improve learning outcomes in mathematics.

  14. A Literature Review: The Effect of Implementing Technology in a High School Mathematics Classroom

    Science.gov (United States)

    Murphy, Daniel

    2016-01-01

    This study is a literature review to investigate the effects of implementing technology into a high school mathematics classroom. Mathematics has a hierarchical structure in learning and it is essential that students get a firm understanding of mathematics early in education. Some students that miss beginning concepts may continue to struggle with…

  15. Science, Technology, Engineering, and Mathematics Education: Strategic Planning Needed to Better Manage Overlapping Programs across Multiple Agencies. Report to Congressional Requesters. GAO-12-108

    Science.gov (United States)

    Scott, George A.

    2012-01-01

    Science, technology, engineering, and mathematics (STEM) education programs help to enhance the nation's global competitiveness. Many federal agencies have been involved in administering these programs. Concerns have been raised about the overall effectiveness and efficiency of STEM education programs. GAO examined (1) the number of federal…

  16. Mathematics Education and Language Diversity

    DEFF Research Database (Denmark)

    Moschkovich, Judit; Planas, Nuria

    This book examines multiple facets of language diversity and mathematics education. It features renowned authors from around the world and explores the learning and teaching of mathematics in contexts that include multilingual classrooms, indigenous education, teacher education, blind and deaf...

  17. Difference, inclusion, and mathematics education

    DEFF Research Database (Denmark)

    Figueiras, Lourdes; Healy, Lulu; Skovsmose, Ole

    2016-01-01

    The round-table discussion on Difference, Inclusion and Mathematics Education was in included in the scientific programme of VI SIPEM in recognition and celebration of the emerging body of research into the challenges of building a culture of mathematics education which values and respects...... the diversity of learners in different educational contexts – in Brazil and beyond. This paper presents the contributions to the discussion, which focus on the problematisation of the term “inclusion”, explorations of how the practices of previously marginalized students can bring new resources to the teaching...... and learning of mathematics and reflections upon the potentially discriminatory nature of the structures which currently mould school mathematics. The paper aims to serve as material for the developing research agenda of the thirteenth working group of the Brazilian Society of Mathematics Education, which met...

  18. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  19. STEM and Technology Education: International State-of-the-Art

    Science.gov (United States)

    Ritz, John M.; Fan, Szu-Chun

    2015-01-01

    This paper reports the perceptions of 20 international technology education scholars on their country's involvement in science, technology, engineering, and mathematics (STEM) education. Survey research was used to obtain data. It was found that the concept of STEM education is being discussed differently by nations. Some consider STEM education…

  20. An approach critical in mathematics education: Opportunities and interaction theory-practice-through critical mathematics education

    Directory of Open Access Journals (Sweden)

    Itamar Miranda da Silva

    2011-06-01

    Full Text Available This paper discusses the possibilities of articulation of theory-and-practice in the teaching, by means of critical mathematics education as a proposal for the teacher facing the challenges of daily life in the classroom. The discussion is based on the literature through which was estudied and analyzed several books, articles and dissertations on the subject, as well as our experiences and reflections resulting from the process of teacher education we experienced. From the readings and analysis was possible to construct a teaching proposal that suggests to address critical mathematics education as an alternative link between theory and practice and to assign to the teaching of mathematics a greater dynamism, with the prospect of developing knowledge and pedagogical practices that contribute to a broader training, which prepares for citizenship and for being critical students and teachers in the training process. Conjectures were raised about possible contributions of critical mathematics education as a differentiated alternative as opposed to reproductivist teaching. We believe therefore that this article could help with the reflections on the importance of mathematics education in teacher education which enables the realization that beyond disciplinary knowledge (content, are necessary pedagogical knowledge, curriculum and experiential to address the problems that relate to the teaching of mathematics

  1. Meaning in mathematics education

    CERN Document Server

    Valero, Paola; Hoyles, Celia; Skovsmose, Ole

    2005-01-01

    What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.

  2. Gaming Research for Technology Education

    Science.gov (United States)

    Clark, Aaron C.; Ernst, Jeremy

    2009-01-01

    This study assesses the use of gaming to teach Science, Technology, Engineering, and Mathematics (STEM) in public education. The intent of the investigation was to identify attitudes about gaming and its use in education, as well as the need to utilize gaming as a platform to serve as an integrator of STEM subject matter. Participants included…

  3. The Incorporation of Micro-Computer Technology into School Mathematics: Some Suggestions for Middle and Senior Mathematics Courses.

    Science.gov (United States)

    Newton, Bill

    1987-01-01

    Argues that the use of computer technologies in secondary schools should change the nature of mathematics education. Urges the rethinking of the uses of traditional paper-and-pencil computations. Suggests some computer applications for elementary algebra and for problem solving in arithmetic and calculus. (TW)

  4. The CMETS Program: Grounding Middle Grade Mathematics and Technology Professional Development in Research-Based Best Practice

    Science.gov (United States)

    Guerrero, Shannon; Dugdale, Sharon

    2009-01-01

    The past few decades have seen middle school teachers in the United States hit especially hard by contradictory messages about the use and importance of technology in support of their standards-based mathematics teaching. This paper considers this dichotomy with respect to the California Mathematics Education Technology Site (CMETS), a…

  5. Symbolising the Real of Mathematics Education

    Science.gov (United States)

    Pais, Alexandre

    2015-01-01

    This text, occasioned by a critical reading of Tony Brown's new book "Mathematics Education and Subjectivity," aims at contributing to the building of a sociopolitical approach to mathematics education based on Lacanian psychoanalysis and Slavoj Žižek's philosophy. Brown has been bringing into the field of mathematics education the work…

  6. Mathematical Modeling: A Bridge to STEM Education

    Science.gov (United States)

    Kertil, Mahmut; Gurel, Cem

    2016-01-01

    The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…

  7. Teachers’ beliefs about the discipline of mathematics and the use of technology in the classroom

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Thomas Jankvist, Uffe; Sánchez Arguilar, Mario

    2016-01-01

    In the article, three Danish secondary level mathematics teachers’ beliefs about the use of technological tools in the teaching of mathematics and their beliefs about mathematics as a scientific discipline are identified and classified - and the process also aspects of their beliefs about...... the teaching and learning of mathematics. The potential relationships between these sets of beliefs are also explored. Results show that the teachers not only manifest different beliefs about the use of technology and mathematics as a discipline, but that one set of beliefs can influence the other set...... of beliefs. The article concludes with a discussion of the research findings and their validity as well as their implications for both practice and research in mathematics education....

  8. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    Science.gov (United States)

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  9. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  10. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  11. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  12. Preparing Mathematics Teachers for Technology-Rich Environments

    Science.gov (United States)

    Sturdivant, Rodney X.; Dunham, Penelope; Jardine, Richard

    2009-01-01

    This article describes key elements for faculty development programs to prepare mathematics teachers for technology-rich environments. We offer practical examples from our experiences in teaching mathematics with technology and in teaching others to incorporate technology-based pedagogies. We address challenges faced by faculty using technology,…

  13. A Study of Visualization for Mathematics Education

    Science.gov (United States)

    Daugherty, Sarah C.

    2008-01-01

    Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.

  14. Research in collegiate mathematics education VII

    CERN Document Server

    Hitt, Fernando; Thompson, Patrick W

    2010-01-01

    The present volume of Research in Collegiate Mathematics Education, like previous volumes in this series, reflects the importance of research in mathematics education at the collegiate level. The editors in this series encourage communication between mathematicians and mathematics educators, and as pointed out by the International Commission of Mathematics Instruction (ICMI), much more work is needed in concert with these two groups. Indeed, editors of RCME are aware of this need and the articles published in this series are in line with that goal. Nine papers constitute this volume. The first

  15. 9th International Congress on Mathematical Education

    CERN Document Server

    Hashimoto, Yoshihiko; Hodgson, Bernard; Lee, Peng; Lerman, Stephen; Sawada, Toshio

    2004-01-01

    Mathematics as a discipline has a long history, emerging from many cultures, with a truly universal character. Mathematicians throughout the world have a fundamentally common understanding of the nature of mathematics and of its central problems and methods. Research mathematicians in any part of the world are part of a cohesive intellectual community that communicates fluently. Mathematics education in contrast has a variable and culturally based character, and this is certainly true of educational organization and practice. Educational research is both an applied social science and a multidisciplinary domain of theoretical scholarship. Among organizations devoted to mathematics education, The International Commission on Mathematical Instruction (ICMI) is distinctive because of its close ties to the mathematics community. The great challenges now facing mathematics education around the world demand a deeper and more sensitive involvement of disciplinary mathematicians than we now have, both in the work of ed...

  16. Preservice Agricultural Education Teachers' Mathematics Ability

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady

    2012-01-01

    The purpose of this study was to examine the mathematics ability of the nation's preservice agricultural education teachers. Based on the results of this study, preservice teachers were not proficient in solving agricultural mathematics problems, and agricultural teacher education programs require basic and intermediate mathematics as their…

  17. Adaptation of mathematical educational content in e-learning resources

    Directory of Open Access Journals (Sweden)

    Yuliya V. Vainshtein

    2017-01-01

    Full Text Available Modern trends in the world electronic educational system development determine the necessity of adaptive learning intellectual environments and resources’ development and implementation. An upcoming trend in improvement the quality of studying mathematical disciplines is the development and application of adaptive electronic educational resources. However, the development and application experience of adaptive technologies in higher education is currently extremely limited and does not imply the usage flexibility. Adaptive educational resources in the electronic environment are electronic educational resources that provide the student with a personal educational space, filled with educational content that “adapts” to the individual characteristics of the students and provides them with the necessary information.This article focuses on the mathematical educational content adaptation algorithms development and their implementation in the e-learning system. The peculiarity of the proposed algorithms is the possibility of their application and distribution for adaptive e-learning resources construction. The novelty of the proposed approach is the three-step content organization of the adaptive algorithms for the educational content: “introductory adaptation of content”, “the current adaptation of content”, “estimative and a corrective adaptation”. For each stage of the proposed system, mathematical algorithms for educational content adaptation in adaptive e-learning resources are presented.Due to the high level of abstraction and complexity perception of mathematical disciplines, educational content is represented in the various editions of presentation that correspond to the levels of assimilation of the course material. Adaptation consists in the selection of the optimal edition of the material that best matches the individual characteristics of the student. The introduction of a three-step content organization of the adaptive

  18. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  19. The working out of architectural concept for a new type public building — multi-information and education center by using information technologies and mathematical models

    Directory of Open Access Journals (Sweden)

    Михаил Владимирович Боровиков

    2012-12-01

    Full Text Available Architectural concept of multifunctional information and educational center and its implementation is given in the author's project. Advanced information technology and mathematical models used in the development of the author project.

  20. Difference, inclusion, and mathematics education

    DEFF Research Database (Denmark)

    Figueiras, Lourdes; Healy, Lulu; Skovsmose, Ole

    2016-01-01

    The round-table discussion on Difference, Inclusion and Mathematics Education was in included in the scientific programme of VI SIPEM in recognition and celebration of the emerging body of research into the challenges of building a culture of mathematics education which values and respects the di...

  1. Mathematics education and students with learning disabilities: introduction to the special series.

    Science.gov (United States)

    Rivera, D P

    1997-01-01

    The prevalence of students with mathematics learning disabilities has triggered an interest among special education researchers and practitioners in developing an understanding of the needs of this group of students, and in identifying effective instructional programming to foster their mathematical performance during the school years and into adulthood. Research into the characteristics of students with mathematics learning disabilities is being approached from different perspectives, including developmental, neurological and neuropsychological, and educational. This diversity helps us develop a broader understanding of students' learning needs and difficulties. Special education assessment practices encompass a variety of approaches, including norm-referenced, criterion-referenced, and nonstandardized procedures, depending on the specific assessment questions professionals seek to answer. Students' mathematical knowledge and conceptual understanding must be examined to determine their strengths and weaknesses, curriculum-based progress, and use of cognitive strategies to arrive at mathematical solutions. Research findings have identified empirically validated interventions for teaching mathematics curricula to students with mathematics learning disabilities. Research studies have been grounded in behavioral theory and cognitive psychology, with an emergent interest in the constructivist approach. Although research studies have focused primarily on computational performance, more work is being conducted in the areas of story-problem solving and technology. These areas as well as other math curricular skills require further study. Additionally, the needs of adults with math LD have spurred educators to examine the elementary and secondary math curricula and determine ways to infuse them with life skills instruction accordingly. As the field of mathematics special education continues to evolve, special educators must remain cognizant of the developments in and

  2. Technological pedagogical content knowledge of prospective mathematics teachers regarding evaluation and assessment

    Directory of Open Access Journals (Sweden)

    Ercan Atasoy

    2016-04-01

    Full Text Available The ‘technology integrated assessment process’ is an innovative method to capture and determine students’ understanding of mathematics. This assessment process is claimed to provide a singular dynamism for teaching and learning activities and it is also claimed to be of the most important elements of instruction in the educational system. In this sense, this study aims to investigate technological pedagogical content knowledge (TPACK of prospective mathematics teachers regarding the ‘evaluation’ and ‘assessment’ process. To achieve this aim, the method of qualitative research was conducted with 20 teachers. Video records and lesson plans were collected and a Mathematics Teacher TPACK Development Model was utilized to reveal themes and key features of the data. The findings revealed that, although the majority of teachers stated that they would like to use technology-integrated tools in the assessment and evaluation processes, they strongly preferred to use traditional assessment and evaluation techniques, such as pen and paper activities, multiple-choice questions in virtual environments, etc. Hence, the evidence suggests that teachers would be unable to use appropriately the technological assessment process in order to reveal students’ understanding of mathematics. As seen from the teachers’ lectures, they perceived that technology would be suitable for evaluation and assessment but in a limited way.

  3. Mathematics education, democracy and development: Exploring connections

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2012-12-01

    Full Text Available Mathematics education and its links to democracy and development are explored in this article, with specific reference to the case of South Africa. This is done by engaging four key questions. Firstly, the question of whether mathematics education can be a preparation for democracy and include a concern for development, is discussed by drawing on conceptual tools of critical mathematics education and allied areas in a development context. Secondly, the question of how mathematics education is distributed in society and participates in shaping educational possibilities in addressing its development needs and goals is used to examine the issues emerging from mathematics performance in international studies and the national Grade 12 examination; the latter is explored specifically in respect of the South African mathematics curriculum reforms and teacher education challenges. Thirdly, the question of whether a mathematics classroom can be a space for democratic living and learning that equally recognises the importance of issues of development in contexts like South Africa, as a post-conflict society still healing from its apartheid wounds, continuing inequality and poverty, is explored through pedagogies of conflict, dialogue and forgiveness. Finally the question of whether democracy and development can have anything to do with mathematics content matters, is discussed by appropriating, as a metaphor, South Africa’s Truth and Reconciliation Commission’s framework of multiple ‘truths’, to seek links within and across the various forms and movements in mathematics and mathematics education that have emerged in the past few decades.

  4. Research trends in mathematics teacher education

    CERN Document Server

    Lo, Jane-Jane; Zoest, Laura RVan

    2014-01-01

    Research on the preparation and continued development of mathematics teachers is becoming an increasingly important subset of mathematics education research. Such research explores the attributes, knowledge, skills and beliefs of mathematics teachers as well as methods for assessing and developing these critical aspects of teachers and influences on teaching.Research Trends in Mathematics Teacher Education focuses on three major themes in current mathematics teacher education research: mathematical knowledge for teaching, teacher beliefs and identities, and tools and techniques to support teacher learning. Through careful reports of individual research studies and cross-study syntheses of the state of research in these areas, the book provides insights into teachers' learning processes and how these processes can be harnessed to develop effective teachers. Chapters investigate bedrock skills needed for working with primary and secondary learners (writing relevant problems, planning lessons, being attentive to...

  5. NATO Advanced Research Workshop on Exploiting Mental Imagery with Computers in Mathematics Education

    CERN Document Server

    Mason, John

    1995-01-01

    The advent of fast and sophisticated computer graphics has brought dynamic and interactive images under the control of professional mathematicians and mathematics teachers. This volume in the NATO Special Programme on Advanced Educational Technology takes a comprehensive and critical look at how the computer can support the use of visual images in mathematical problem solving. The contributions are written by researchers and teachers from a variety of disciplines including computer science, mathematics, mathematics education, psychology, and design. Some focus on the use of external visual images and others on the development of individual mental imagery. The book is the first collected volume in a research area that is developing rapidly, and the authors pose some challenging new questions.

  6. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    Science.gov (United States)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  7. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  8. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  9. Improving science, technology and mathematics education in Nigeria

    African Journals Online (AJOL)

    The study assessed the impact of a World Bank Assisted Project “STEP-B” on ... of ICT, human resources and Educational Technology infrastructure in Post Basic ... technique based on gender, course, department, unit and job prescription.

  10. Prospects of Cloud Computing as Safe Haven for Improving Mathematics Education in Nigeria Tertiary Institutions

    OpenAIRE

    Iji, Clement Onwu; Abah, Joshua Abah

    2016-01-01

    International audience; Historically, mathematics education has been bedeviled by the deployment of instructional strategies that seriously stunt the growth of students. Methodologies and approaches of instructional delivery in tertiary institutions have raised the need for technological augmentation for both students and mathematics educators. Cloud computing yield itself to this quest by strengthening individualized learning via unrestricted access to infrastructure, platforms, content, and...

  11. Mathematics Education in Singapore - an Insider's Perspective

    OpenAIRE

    Kaur, Berinderjeet

    2014-01-01

    Singapore's Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012 that have shaped the present School Mathematics Curricula in Singapore are direct consequences of developments in the Education System of Singapore dur...

  12. Mathematical potential of special education students

    OpenAIRE

    Peltenburg, M.C.

    2012-01-01

    This PhD research was aimed at investigating the mathematical potential of special education (SE) students. SE students often have a severe delay in their mathematical development compared to peers in regular education. However, there are indications that SE students could attain more and that there might be unused talent in SE students. In the research project, two mathematical domains were chosen as a topic of investigation. One topic is part of the mathematics curriculum in SE and is gener...

  13. Research in collegiate mathematics education VI

    CERN Document Server

    Selden, Annie; Harel, Guershon; Hauk, Shandy

    2006-01-01

    The sixth volume of Research in Collegiate Mathematics Education presents state-of-the-art research on understanding, teaching, and learning mathematics at the postsecondary level. The articles advance our understanding of collegiate mathematics education while being readable by a wide audience of mathematicians interested in issues affecting their own students. This is a collection of useful and informative research regarding the ways our students think about and learn mathematics. The volume opens with studies on students' experiences with calculus reform and on the effects of concept-based

  14. The New Technologies in Mathematics: A Personal History of 30 Years

    Science.gov (United States)

    de la Villa, Agustín; García, Alfonsa; García, Francisco; Rodríguez, Gerardo

    2017-01-01

    A personal overview about the use of new technologies for teaching and learning mathematics is given in this paper. We analyse the introduction of Computer Algebra Systems with learning purposes, reviewing different frameworks and didactical resources, some of them generated according the philosophy of the European Area of Higher Education.…

  15. Mathematical Education for Geographers

    Science.gov (United States)

    Wilson, Alan

    1978-01-01

    Outlines mathematical topics of use to college geography students identifies teaching methods for mathematical techniques in geography at the University of Leeds; and discusses problem of providing students with a framework for synthesizing all content of geography education. For journal availability, see SO 506 593. (Author/AV)

  16. Technological pedagogical content knowledge and teaching practice of mathematics trainee teachers

    Science.gov (United States)

    Tajudin, Nor'ain Mohd.; Kadir, Noor Zarinawaty Abd.

    2014-07-01

    This study aims to identify the level of technological pedagogical content knowledge (TPCK) of mathematics trainee teachers at Universiti Pendidikan Sultan Idris (UPSI) and explore their teaching practices during practical training at school. The study was conducted in two phases using a mix-method research. In the first phase, a survey method using a questionnaire was carried out on 156 trainee teachers of Bachelor of Mathematics Education (AT14) and Bachelor of Science (Mathematics) with Education (AT48). The instrument used was a questionnaire that measures the level of content knowledge, pedagogy, technology and TPCK of mathematics. Data were analyzed using descriptive statistics, namely the mean. While in the second phase, the interview method involved four trainee teachers were performed. The instrument used was the semi-structured interview protocol to assess the trainee teacher's TPCK integration in their teaching practice. Data were analyzed using the content analysis. The findings showed that the level of knowledge of TPCK among trainee teachers was moderate with overall mean score of 3.60. This level did not show significant differences between the two programs with mean scores of 3.601 for the AT14 group and 3.603 for the AT48 group. However, there was a difference for gender classification such that the female trainees had mean score of 3.58 and male trainees with mean score of 3.72. Although students' TPCK level was moderate, the level of content knowledge (CK), technological knowledge (TK) and pedagogical knowledge (PK), showed a higher level with overall mean scores of 3.75, 3.87 and 3.84 respectively. The findings also showed that in terms of content knowledge, trainee teacher's learning mathematics background was good, but the knowledge of mathematics was limited in the curriculum, philosophy and application aspect. In terms of pedagogical content knowledge, all respondents tend to use lecture and discussion methods in teaching Trigonometry topic

  17. Vital directions for mathematics education research

    CERN Document Server

    Leatham, Keith R

    2013-01-01

    In this book, experts discuss vital issues in mathematics education and what they see as viable directions for research in mathematics education to address them. Their recommendations take the form of overarching principles and ideas that cut across the field.

  18. Metaphor Perceptions of Pre-Service Teachers towards Mathematics and Mathematics Education in Preschool Education

    Science.gov (United States)

    Keles, Oguz; Tas, Isil; Aslan, Durmus

    2016-01-01

    The aim of this study was to identify the thoughts of pre-service teachers, who play an important role in the early preschool experience of children in mathematics, towards the concepts of mathematics and education of mathematics with the help of metaphors. The study group of the research consists of a total of 227 pre-service teachers at the…

  19. Mathematics Education: For Whom?

    OpenAIRE

    Mesquita, Mônica

    2009-01-01

    To rethink about our role as researchers of the mathematics education pro- cess could be a way to think about the relation between for what and why mathematics education exists. Some thoughts, that grew from my inner dia- logues as a researcher, teacher, student, and mother that I am, were devel- oped within practices inside multiple systems in which I was engaged, bring- ing some questions that became a paper from the necessity for sharing them in the Discussion Group 3 of the ICME environment

  20. Research in Mathematics Education

    Science.gov (United States)

    Schoenfeld, Alan H.

    2016-01-01

    As one of the three Rs, "'rithmetic" has always been central to education and education research. By virtue of that centrality, research in mathematics education has often reflected and at times led trends in education research. This chapter provides some deep background on epistemological and other issues that shape current research,…

  1. Research in collegiate mathematics education V

    CERN Document Server

    Selden, Annie; Harel, Guershon; Hitt, Fernando

    2003-01-01

    This fifth volume of Research in Collegiate Mathematics Education presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. The articles in RCME are peer-reviewed for two major features: (1) advancing our understanding of collegiate mathematics education, and (2) readability by a wide audience of practicing mathematicians interested in issues affecting their own students. This is not a collection of scholarly arcana, but a compilation of useful and informative research regarding the ways our students think about and learn mathematics.

  2. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    Directory of Open Access Journals (Sweden)

    Effandi Zakaria

    2017-02-01

    Full Text Available This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30$ namely, the Realistic Mathematics Approach group (PMR and the control group $(n = 31$ namely, the traditional group. This study was conducted for six weeks. The instruments used in this study were the achievement test and the attitudes towards mathematics questionnaires. Data were analyzed using SPSS. To determine the difference in mean achievement and attitudes between the two groups, data were analyzed using one-way ANOVA test. The result showed significant differences between the Realistic Mathematics Approach and the traditional approach in terms of achievement. The study showed no significant difference between the Realistic Mathematics Approach and the traditional approach in term of attitudes towards mathematics. It can be concluded that the use of realistic mathematics education approach enhanced students' mathematics achievement, but not attitudes towards mathematics. The Realistic Mathematics Education Approach encourage students to participate actively in the teaching and learning of mathematics. Thus, Realistic Mathematics Education Approach is an appropriate methods to improve the quality of teaching and learning process.

  3. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    Science.gov (United States)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  4. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  5. A Preservice Mathematics Teacher's Beliefs about Teaching Mathematics with Technology

    Science.gov (United States)

    Belbase, Shashidhar

    2015-01-01

    This paper analyzed a preservice mathematics teacher's beliefs about teaching mathematics with technology. The researcher used five semi-structured task-based interviews in the problematic contexts of teaching fraction multiplications with JavaBars, functions and limits, and geometric transformations with Geometer's Sketchpad, and statistical data…

  6. Positioning Mathematics Education Researchers to Influence Storylines

    Science.gov (United States)

    Herbel-Eisenmann, Beth; Sinclair, Nathalie; Chval, Kathryn B.; Clements, Douglas H.; Civil, Marta; Pape, Stephen J.; Stephan, Michelle; Wanko, Jeffrey J.; Wilkerson, Trena L.

    2016-01-01

    The NCTM Research Committee identifies key influences on mathematics education that are largely outside the domain of the academic world in which most mathematics education researchers live. The groups that are identified--including the media, companies and foundations, and other academic domains--affect the public's perception of mathematics and…

  7. Mathematics Teacher Education: A Model from Crimea.

    Science.gov (United States)

    Ferrucci, Beverly J.; Evans, Richard C.

    1993-01-01

    Reports on the mathematics teacher preparation program at Simferopol State University, the largest institution of higher education in the Crimea. The article notes the value of investigating what other countries consider essential in mathematics teacher education to improve the mathematical competence of students in the United States. (SM)

  8. Mathematics Education Problems and Attempts to Solve Them in Nowadays Lithuanian School

    Directory of Open Access Journals (Sweden)

    Malaukytė Ieva

    2017-07-01

    Full Text Available The decreasing number of the Lithuanian residents has strong impact on the educational system: the number of pupils is decreasing, the schools are getting closed. School is considered to be the provider of educational services, so it is necessary to search, how to preserve and attract clients – pupils. The growing competition induces search for distinctiveness among the schools. According to the theory of generations of William Strauss and Neil Howe, now we have to educate representatives of generation Z, who do not like violence, restrictions, want to be distinctive and are open to the world of technologies. The teacher faces the challenge when s/he wants to convey mathematical skills to these pupils. The profile teaching followed by training based on individual curricula provided more choices for the pupils. This freedom led to the dead-end of mathematical literacy and forced to return to a compulsory national final exam of Mathematics and to change the indexes for the persons entering studies of the first cycle and integrated studies. In the article, mathematics achievements and situation in schools in Lithuania as well as the measures taken to improve mathematical literacy in the country are described.

  9. Inquiry-based Learning in Mathematics Education

    DEFF Research Database (Denmark)

    Dreyøe, Jonas; Larsen, Dorte Moeskær; Hjelmborg, Mette Dreier

    From a grading list of 28 of the highest ranked mathematics education journals, the six highest ranked journals were chosen, and a systematic search for inquiry-based mathematics education and related keywords was conducted. This led to five important theme/issues for inquiry-based learning...

  10. Mentoring in mathematics education

    CERN Document Server

    Hyde, Rosalyn

    2013-01-01

    Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:

  11. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  12. Driven by History: Mathematics Education Reform

    Science.gov (United States)

    Permuth, Steve; Dalzell, Nicole

    2013-01-01

    The advancement of modern societies is fueled by mathematics, and mathematics education provides the foundation upon which future scientists and engineers will build. Society dictates how mathematics will be taught through the development and implementation of mathematics standards. When examining the progression of these standards, it is…

  13. Mixed Methods Evaluation of Statewide Implementation of Mathematics Education Technology for K-12 Students

    Science.gov (United States)

    Brasiel, Sarah; Martin, Taylor; Jeong, Soojeong; Yuan, Min

    2016-01-01

    An extensive body of research has demonstrated that the use in a K-12 classroom of technology, such as the Internet, computers, and software programs, enhances the learning of mathematics (Cheung & Slavin, 2013; Cohen & Hollebrands, 2011). In particular, growing empirical evidence supports that certain types of technology, such as…

  14. Mathematical potential of special education students

    NARCIS (Netherlands)

    Peltenburg, M.C.|info:eu-repo/dai/nl/269423575

    2012-01-01

    This PhD research was aimed at investigating the mathematical potential of special education (SE) students. SE students often have a severe delay in their mathematical development compared to peers in regular education. However, there are indications that SE students could attain more and that there

  15. Alternate Trajectories: Women Moving into Mathematics Education

    Science.gov (United States)

    Toney, Allison F.

    2014-01-01

    While only about one-third of each year's doctoral graduates in mathematics are women, about two-thirds of the doctoral graduates in mathematics education are women. This article reports on the results of a qualitative investigation into the nature of the graduate school-related experiences of women in collegiate mathematics education doctoral…

  16. The 3rd International Conference on Mathematics, Science and Education 2016

    International Nuclear Information System (INIS)

    2017-01-01

    The 3 rd International Conference of Mathematics, Science, and Education (ICMSE) 2016 on Semarang, 3-4 September 2016 organized by Faculty of Mathematics and Natural Science, Semarang State University. ICMSE2016 provides a platform to the researchers, experts and practitioners from academia, governments, NGOs, research institutes, and industries to meet and share cutting-edge progress in the fields of mathematics and natural science. It is reflected in this year theme “Contribution of Mathematics and Science Research for Sustainable Life in Facing Global Challenge”. The scope of this conference are Mathematics, Biology, Chemistry, and Physics,We thank to the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the conference proceedings. In particular, we would like to place on record our thanks to the expert reviewers who have spared their time reviewing the papers. We also highly appreciate the assistance offered by many volunteers in the preparation of the conference proceedings, and of course to the sponsors assisting in funding this conference, especially Research, Technology and Higher Education Ministry of Indonesia for supporting this conference.The committee selected 71 papers from 129 papers presented in this forum to be published in Journal of Physics: Conference Series (Institute of Physics Publisher) indexed by Scopus. We hope that this program will further stimulate research in Mathematics, Science, and Education; share research interest and information; and create a forum of collaboration and build trust relationship. We feel honored and privileged to serve the best recent developments in the field of Mathematics and Science Education to you through this exciting program.Chairperson,Dr. Margareta RahayuningsihCOMMITTEEInternational Scientific Advisory BoardEdy Cahyono ( Chemistry Department, State University of Semarang )Rahim Sahar ( Department of Physics, Universiti Teknologi

  17. Using Technology to Promote Mathematical Discourse Concerning Women in Mathematics

    Science.gov (United States)

    Phy, Lyn

    2008-01-01

    This paper discusses uses of technology to facilitate mathematical discourse concerning women in mathematics. Such a topic can be introduced in various traditional courses such as algebra, geometry, trigonometry, probability and statistics, or calculus, but it is not included in traditional textbooks. Through the ideas presented here, you can…

  18. THE CONCEPT OF THE EDUCATIONAL COMPUTER MATHEMATICS SYSTEM AND EXAMPLES OF ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    M. Lvov

    2014-11-01

    Full Text Available The article deals with the educational computer mathematics system, based in Kherson State University and resulted in more than 8 software tools to orders of the Ministry of Education, Science, Youth and Sports of Ukraine. The exact and natural sciences are notable among all disciplines both in secondary schools and universities. They form the fundamental scientific knowledge, based on precise mathematical models and methods. The educational process for these courses should include not only lectures and seminars, but active forms of studying as well: practical classes, laboratory work, practical training, etc. The enumerated peculiarities determine specific intellectual and architectural properties of information technologies, developed to be used in the educational process of these disciplines. Whereas, in terms of technologies used in the implementation of the functionality of software, they are actually the educational computer algebra system. Thus the algebraic programming system APS developed in the Institute of Cybernetics of the National Academy of Sciences of Ukraine led by Academician O.A. Letychevskyi in the 80 years of the twentieth century is especially important for their development.

  19. Mathematical modeling courses for Media technology students

    DEFF Research Database (Denmark)

    Timcenko, Olga

    2009-01-01

    This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...

  20. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  1. Solving for Irrational Zeros: Whiteness in Mathematics Teacher Education

    Science.gov (United States)

    Warburton, Trevor Thayne

    2015-01-01

    For many, mathematics and social justice are perceived as incompatible. Several mathematics education researchers have noted resistance to social justice among mathematics teachers. However, mathematics education has a consistently negative impact on the education of students of color. This study seeks to better understand the nature of this…

  2. Constructivism and mathematics education in Ghana | Fletcher ...

    African Journals Online (AJOL)

    Mathematics is a subject found in every school Curriculum in almost every country. Here in Ghana, mathematics is a compulsory subject in both the basic education (i.e. primary and junior secondary) and senior secondary curricula. This paper argues that in spite of the desire of mathematics educators in Ghana to pursue a ...

  3. Multilingualism in indigenous mathematics education: an epistemic matter

    Science.gov (United States)

    Parra, Aldo; Trinick, Tony

    2017-12-01

    An investigation into an aspect of indigenous education provides the opportunity to forefront an epistemological discussion about mathematical knowledge. This paper analyses indigenous peoples' educational experiences in Colombia and Aotearoa/New Zealand of mathematics education, focusing on, among other things, sociolinguistic issues such as language planning. In these experiences, researchers, teachers and local communities, working together, elaborated their respective languages to create a corpus of lexicon that has enabled the teaching of Western mathematics. An analysis using decolonial theory is made, showing how this corpus development works to enable the teaching of [Western] mathematics resulted in investigations into culture, language and mathematics that revealed an interplay among knowledge and power. Such analysis raises issues about the epistemology of mathematics and the politics of knowledge, analogous with current discussions on multilingualism in mathematics education and in ethnomathematics. The paper concludes that mathematics educators can explore and take advantage of the sociolinguistic and epistemological issues that arise when an indigenous language is elaborated in a short period of time in comparison to other languages which have been developed incrementally over hundreds of years and thus much more difficult to critique.

  4. Mathematicians' and Math Educators' Views on "Doing Mathematics"

    Science.gov (United States)

    Brandt, Jim; Lunt, Jana; Meilstrup, Gretchen Rimmasch

    2016-01-01

    Educators often argue that mathematics should be taught so that the students in the course are actually "doing mathematics." Is there a consensus among mathematicians and mathematics educators as to the meaning of "doing mathematics?" In an effort to answer this question, we administered a survey to hundreds of university-level…

  5. Inhibiting Intuitive Thinking in Mathematics Education

    Science.gov (United States)

    Thomas, Michael O. J.

    2015-01-01

    The papers in this issue describe recent collaborative research into the role of inhibition of intuitive thinking in mathematics education. This commentary reflects on this research from a mathematics education perspective and draws attention to some of the challenges that arise in collaboration between research fields with different cultures,…

  6. Compendium for Research in Mathematics Education

    Science.gov (United States)

    Cai, Jinfa, Ed.

    2017-01-01

    This volume, a comprehensive survey and critical analysis of today's issues in mathematics education, distills research to build knowledge and capacity in the field. The compendium is a valuable new resource that provides the most comprehensive evidence about what is known about research in mathematics education. The 38 chapters present five…

  7. Mathematics Education in Singapore--An Insider's Perspective

    Science.gov (United States)

    Kaur, Berinderjeet

    2014-01-01

    Singapore's Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012…

  8. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  9. Characterising the Perceived Value of Mathematics Educational Apps in Preservice Teachers

    Science.gov (United States)

    Handal, Boris; Campbell, Chris; Cavanagh, Michael; Petocz, Peter

    2016-01-01

    This study validated the semantic items of three related scales aimed at characterising the perceived worth of mathematics-education-related mobile applications (apps). The technological pedagogical content knowledge (TPACK) model was used as the conceptual framework for the analysis. Three hundred and seventy-three preservice students studying…

  10. Mathematics for electronic technology

    CERN Document Server

    Howson, D P

    1975-01-01

    Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

  11. INVESTIGATING AND COMMUNICATING TECHNOLOGY MATHEMATICS PROBLEM SOLVING EXPERIENCE OF TWO PRESERVICE TEACHERS

    Directory of Open Access Journals (Sweden)

    Ana Kuzle

    2012-04-01

    Full Text Available In this paper, I report on preservice teachers’ reflections and perceptions on theirproblem-solving process in a technological context. The purpose of the study was to to investigatehow preservice teachers experience working individually in a dynamic geometry environment andhow these experiences affect their own mathematical activity when integrating content (nonroutineproblems and context (technology environment. Careful analysis of participants’ perceptionsregarding their thinking while engaged in problem solving, provided an opportunity to explorehow they explain the emergence of problem solving when working in a dynamic geometryenvironment. The two participants communicated their experience both through the lenses ofthemselves as problem solvers and as future mathematics educators. Moreover, the results of thestudy indicated that problem solving in a technology environment does not necessarily allow focuson decision-making, reflection, and problem solving processes as reported by previous research.

  12. Pursuing excellence in mathematics education essays in honor of Jeremy Kilpatrick

    CERN Document Server

    Silver, Edward

    2014-01-01

    ​Chapters in this book recognize the more than forty years of sustained and distinguished lifetime achievement in mathematics education research and development of Jeremy Kilpatrick. Including contributions from a variety of skilled mathematics educators, this text honors Jeremy Kilpatrick, reflecting on his groundbreaking papers, book chapters, and books - many of which are now standard references in the literature - on mathematical problem solving, the history of mathematics education, mathematical ability and proficiency, curriculum change and its history, global perspectives on mathematics education, and mathematics assessment. Many chapters also offer substantial contributions of their own on important themes, including mathematical problem solving, mathematics curriculum, the role of theory in mathematics education, the democratization of mathematics, and international perspectives on the professional field of mathematics education.​.

  13. Assessing Journal Quality in Mathematics Education

    Science.gov (United States)

    Nivens, Ryan Andrew; Otten, Samuel

    2017-01-01

    In this Research Commentary, we describe 3 journal metrics--the Web of Science's Impact Factor, Scopus's SCImago Journal Rank, and Google Scholar Metrics' h5-index--and compile the rankings (if they exist) for 69 mathematics education journals. We then discuss 2 paths that the mathematics education community should consider with regard to these…

  14. Governing the Modern, Neoliberal Child through ICT Research in Mathematics Education

    Science.gov (United States)

    Valero, Paola; Knijnik, Gelsa

    2015-01-01

    Research on the pedagogical uses of ICT for the learning of mathematics formulates cultural thesis about the desired subject of education and society, and thereby contribute to fabricate the rational, Modern, self­-regulated, entrepreneurial neoliberal child. Using the Foucauldian notion of governmentality, the section Technology in the…

  15. Handbook on the history of mathematics education

    CERN Document Server

    Schubring, Gert

    2014-01-01

    This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars,  not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history...

  16. Using Mobile Technology to Encourage Mathematical Communication in Maori-Medium Pangarau Classrooms

    Science.gov (United States)

    Allen, Piata

    2017-01-01

    Maori-medium pangarau classrooms occupy a unique space within the mathematics education landscape. The language of instruction is an endangered minority language and many teachers and learners in Maori-medium pangarau classrooms are second language (L2) learners of te reo Maori. Mobile technology could be used in Maori-medium pangarau classrooms…

  17. International Mathematical Internet Olympiad

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2012-10-01

    Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.

  18. What Is Our First Philosophy in Mathematics Education?

    Science.gov (United States)

    Ernest, Paul

    2012-01-01

    What are the theoretical foundations of mathematics education? Recently disciplines other than mathematics and psychology have grown in importance, including philosophy. But which branch of philosophy is the most fundamental for mathematics education? In this article, I consider the claims of five branches of philosophy to be our "first…

  19. Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives through Embodiment in Mathematics Education

    Science.gov (United States)

    Sung, Woonhee; Ahn, Junghyun; Black, John B.

    2017-01-01

    A science, technology, engineering, and mathematics-influenced classroom requires learning activities that provide hands-on experiences with technological tools to encourage problem-solving skills (Brophy et al. in "J Eng Educ" 97(3):369-387, 2008; Mataric et al. in "AAAI spring symposium on robots and robot venues: resources for AI…

  20. Science Education in Nigeria: An Examination of People's Perceptions about Female Participation in Science, Mathematics and Technology

    Science.gov (United States)

    Ogunjuyigbe, Peter O.; Ojofeitimi, Ebenezer O.; Akinlo, Ambrose

    2006-10-01

    The paper brings to focus people's perception about female involvement in science, mathematics and technology (SMT). Data for the study were obtained from a survey conducted in March, 2005 in two Local Government Areas of Osun state, Southwest Nigeria. The paper reveals that: (i) about 57% of household heads, 45.6% of mothers and 57.6% of the children are of the opinion that both boys and girls are given equal right to SMT education (ii) social forces play an important role in determining people's attitude to SMT (iii) though, parents and stakeholders perceptions about girls' participation in some professions is changing, however, socio-cultural and economic factors still determine which sex to encourage to read SMT.

  1. Humans-with-media and the reorganization of mathematical thinking information and communication technologies, modeling, visualization and experimentation

    CERN Document Server

    Borba, Marcelo C; Villarreal, Monica E

    2005-01-01

    This book offers a new conceptual framework for reflecting on the role of information and communication technology in mathematics education. Discussion focuses on how computers, writing and oral discourse transform education at an epistemological as well as a political level. Building on examples, research and theory, the authors propose that knowledge is not constructed solely by humans, but by collectives of humans and technologies of intelligence.

  2. Educational Borrowing and Mathematics Curriculum: Realistic Mathematics Education in the Dutch and Indonesian Primary Curriculum

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2018-02-01

    Full Text Available Since the late 1990s, Indonesian mathematics educators have considered Realistic Mathematics Education (RME, the Dutch approach to mathematics instruction, to be the basis for educational reform. In the National curriculum development, RME has, therefore, been reviewed as among the theoretical references to the curriculum goals and content. In the present study, an analysis of the consistency between RME and the curriculum descriptors and contents in Indonesia is presented. This is supplemented with some comparisons to that in the Netherlands. Findings in this study revealed that while most of RME principles are reflected in the Indonesian curriculum, the descriptions were often very general and less explicit compared to the Dutch curriculum. They were also limited by the content-based approach as well as by the centralized decision making process of the contents to be taught which have been pre-determined at the national level. This study suggests future research to see how the curriculum may influence teachers’ enactment of RME at classroom level.

  3. Coding as a Trojan Horse for Mathematics Education Reform

    Science.gov (United States)

    Gadanidis, George

    2015-01-01

    The history of mathematics educational reform is replete with innovations taken up enthusiastically by early adopters without significant transfer to other classrooms. This paper explores the coupling of coding and mathematics education to create the possibility that coding may serve as a Trojan Horse for mathematics education reform. That is,…

  4. Mathematics education and comparative historical studies

    Directory of Open Access Journals (Sweden)

    Wagner RODRIGUES VALENTE

    2013-11-01

    Full Text Available This paper has as its aims: to characterize the area of research «history of mathematics education» and to defend the idea that mathematics education has constituted a privileged research theme within the field of comparative historical studies. To achieve these aims, the text includes references to a review of the literature concerning comparative studies, the analysis of two fundamental moments focused on attempts to internationalize the mathematics curriculum, both of which occurred during the 20th century, and, to end, a case study emanating from an international cooperation between researchers in Brazil and Portugal.

  5. Mathematics education and the dignity of being

    Directory of Open Access Journals (Sweden)

    Paola Valero

    2012-11-01

    Full Text Available On the grounds of our work as researchers, teacher educators and teachers engaging with a socio-political approach in mathematics education in Colombia, we propose to understand democracy in terms of the possibility of constructing a social subjectivity for the dignity of being. We address the dilemma of how the historical insertion of school mathematics in relation to the Colonial project of assimilation of Latin American indigenous peoples into the episteme of the Enlightenment and Modernity is in conflict with the possibility of the promotion of a social subjectivity in mathematics classrooms. We illustrate a pedagogical possibility to move towards a mathematics education for social subjectivity with our work in reassembling the notion of geometrical space in the Colombian secondary school mathematics curriculum with notions of space from critical geography and the problem of territorialisation, and Latin American epistemology with the notion of intimate space as an important element of social subjectivity.

  6. Broadening the role of theory in mathematics education research

    DEFF Research Database (Denmark)

    Pais, Alexandre; Stentoft, Diana; Valero, Paola

    2010-01-01

    In C. Bergsten, E. Jablonka and T. Wedege (Eds), Mathematics and mathematics education: Cultural and social dimensions. Proceedings of MADIF7, The Seventh Mathematics Education Research Seminar, Stockholm, January 26-27, 2010. Linköping: SMDF....

  7. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    Science.gov (United States)

    Stoet, Gijsbert; Geary, David C

    2018-04-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women's engagement with STEM subjects.

  8. Researching Research: Mathematics Education in the Political

    Science.gov (United States)

    Pais, Alexandre; Valero, Paola

    2012-01-01

    We discuss contemporary theories in mathematics education in order to do research on research. Our strategy consists of analysing discursively and ideologically recent key publications addressing the role of theory in mathematics education research. We examine how the field fabricates its object of research by deploying Foucault's notion of…

  9. Mathematics. [SITE 2002 Section].

    Science.gov (United States)

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Teachers' Learning of Mathematics in the Presence of Technology: Participatory Cognitive Apprenticeship" (Mara Alagic); (2) "A Fractal Is a Pattern in Your Neighborhood" (Craig N. Bach); (3)…

  10. Formative experience mediated by virtual learning environment: science and mathematics teachers’ education in the amazon region

    Directory of Open Access Journals (Sweden)

    France Fraiha Martins

    2012-06-01

    Full Text Available This article reports results of a qualitative research, in the narrative modality. We investigated the formative experiences of teachers of Mathematics and Science through distance learning in the Amazon region, experienced in a course through the Virtual Learning Environment (VLE. We investigated under what conditions this education experience was a catalyst for teachers’ reflections on the Amazonian context of teaching science and mathematics. By using Discursive Textual Analysis some categories e merged: graduating in the Amazon region: obstacles and confrontations; AVA and Technologies: meaning (s of the education experience and the impact of the experience in the perceptions of teachers’ practices and training. The analysis of the results reveals the obstacles to the training in this context. The dynamics experienced by the use of VLE technologies and of the teachers reverberated methodological insights regarding the use of technology in teaching practices, indicating also the VLE as an alternative of (self education on the Amazon reality

  11. Rethinking the mathematics curriculum

    CERN Document Server

    Hoyles, Celia; Woodhouse, Geoffrey

    1998-01-01

    At a time when political interest in mathematics education is at its highest, this book demonstrates that the issues are far from straightforward. A wide range of international contributors address such questions as: What is mathematics, and what is it for? What skills does mathematics education need to provide as technology advances? What are the implications for teacher education? What can we learn from past attempts to change the mathematics curriculum? Rethinking the Mathematics Curriculum offers stimulating discussions, showing much is to be learnt from the differences in culture, national expectations, and political restraints revealed in the book. This accessible book will be of particular interest to policy makers, curriculum developers, educators, researchers and employers as well as the general reader.

  12. Integrating HIV & AIDS education in pre-service mathematics education for social justice

    Directory of Open Access Journals (Sweden)

    Linda van Laren

    2011-01-01

    Full Text Available Since 1999, many South African education policy documents have mandated integration of HIV & AIDS education in learning areas/disciplines. Policy document research has shown that although South African politicians and managers have produced volumes of eloquent and compelling legislation regarding provision for HIV & AIDS education, little of this is translated into action. The impact of HIV & AIDS permeates the social, economic and political arenas in South Africa. Integration of HIV & AIDS education across disciplines can serve as a strategy to further the ideals of social justice. This paper focuses on how integration in the teaching and learning of Mathematics Education provides opportunities to take action for social justice. The inquiry explores the following question: How can the myth that there is 'nothing we can do' about HIV & AIDS, which is linked to social justice issues, be addressed through integration of HIV & AIDS education in Mathematics pre-service teacher education? Drawing on self-study, the work of a Mathematics teacher educator who worked with pre-service teachers to integrate HIV & AIDS education at a higher education institution is described. By considering integration of HIV & AIDS education in Mathematics Education and taking action it is possible to develop strategies which directly relate to social justice.

  13. Digital curriculum resources in mathematics education: foundations for change

    OpenAIRE

    Pepin, B.; Choppin, J.; Ruthven, K.; Sinclair, N.

    2017-01-01

    In this conceptual review paper we draw on recent literature with respect to digital curriculum resources (DCR); we briefly outline and explain selected theoretical frames; and we discuss issues related to the design, and the use (by teachers and students) of digital curricula and e-textbooks in mathematics education. The results of our review show the following. Firstly, whilst there are some contrasting tendencies between research on instructional technology and research on DCR, these studi...

  14. The Education of Mathematics

    Directory of Open Access Journals (Sweden)

    Abu Darda

    2016-01-01

    Full Text Available The objective of mathematics education is not only preparingmathematicians but making well-informed citizens. This is a broad generalterms for objective of the teaching of mathematics. And, this might beimplemented as “accurate thorough knowledge” or “original logicalthinking”. So, teaching mathematics is not the conversation andtransmission of mathematical knowledge, but on the aim of preparing wellinformedcitizens trained in independent, critical thinking.By the mathematics, sciences become simple, clearer, and easier to bedeveloped. The mathematics is often applied for solving any problem ofother field of sciences, either in the physics such as astronomy, chemistry,technique; or social sciences such as economy, demography, and assurance.Those all need an analysis reading ability.Mathematical skill, therefore, relates strongly with the analysisreading ability in the human intellectual structure. This study is about therelationship between them. And, result of the study shows us as below:Both Mathematical skill and analysis reading ability possess the “high type”of thinking operation. Both also involve the same content of the abstractintelligent, i.e. symbolic and semantic contents. Last but not least, both alsouse the same product of thinking, i.e. units, classes, relations, and systems.Both can be transformed and have an implication.

  15. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  16. Towards a Transformative Epistemology of Technology Education

    Science.gov (United States)

    Morrison-Love, David

    2017-01-01

    Technology Education offers an authentic and invaluable range of skills, knowledge, capabilities, contexts and ways of thinking for learners in the 21st century. However, it is recognised that it occupies a comparatively less defined and more fragile curricular position than associated, but longer established, subjects such as Mathematics and…

  17. Students with ‘Special Rights' for mathematics education

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Gervasoni, Ann

    2011-01-01

    The issues of equity and quality have been central to international debates on mathematics in research, policy, curriculum and teaching. This book covers a wide variety of topics in the research and practice of mathematics education, demonstrating how equity and quality are inherently political...... equity and quality within various educational contexts and with a variety of marginalized populations. Written by teachers, researchers and academics from all over the world, this book represents a powerful response to the international call for quality education of all students in mathematics around...... terms whose political bedrock is obscured by them being taken for granted. Mapping Equity and Quality in Mathematics Education is broken into four parts. Section 1 addresses the constructs of equity and quality from a variety of theoretical perspectives and outlines new directions to approach...

  18. EDUCATION AND NATIONAL SECURITY: SYSTEM DEFICIENCIES OF MATHEMATICAL EDUCATION IN RUSSIA AND THE USA

    Directory of Open Access Journals (Sweden)

    M. A. Choshanov

    2013-01-01

    Full Text Available The paper looks at the mathematical education in Russian schools regarded not long ago as fundamental and based on developing students' mental abilities. However, the analysis of the Trends in International Mathematics and Science Study (TIMSS 2011 demonstrates the non-consistent results in mathematical achievements of young Russians over the last fifteen years referring to the decreasing rate of successfully solved high level problems. The author disapproves of mechanical duplication of any foreign experience contradicting the Russian realities. Meanwhile, a lot of people in the USA and elsewhere abroad realize that national security is closely related to the human capital, which directly depends on education. The publication considers the limitations of mathematical education both in Russia and the USA from the national security stand point.The author gives the comparative analysis of the system errors in mathematical education of the USA, and singles out the ones to be avoided: the residual investment into the human capital, rising gap between the school mathematics and mathematical science, degrading fundamentality of mathematical education, test drills instead of in-depth training, non-consistency of school reorganization, reduced academic hours, etc. In the author’s opinion, the negative foreign experience should be considered in order to meet the time requirements and preserve a unique Russian brand of the high quality mathematical education

  19. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    Science.gov (United States)

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  20. National STEM School Education Strategy: A Comprehensive Plan for Science, Technology, Engineering and Mathematics Education in Australia

    Science.gov (United States)

    Education Council, 2015

    2015-01-01

    There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…

  1. Effects of a Technology-Friendly Education Program on Pre-Service Teachers' Perceptions and Learning Styles

    Science.gov (United States)

    Kim, Dong-Joong; Choi, Sang-Ho

    2016-01-01

    A technology-friendly teacher education program can make pre-service teachers more comfortable with using technology from laggard to innovator and change their learning styles in which they prefer the use of technology in teaching. It is investigated how a technology-friendly mathematics education program, which provided 49 pre-service teachers an…

  2. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  3. Researching as an Enactivist Mathematics Education Researcher

    Science.gov (United States)

    Brown, Laurinda

    2015-01-01

    This paper focusses on how researching is done through reflections about, or at a meta-level to, the practice over time of an enactivist mathematics education researcher. How are the key concepts of enactivist theory ("ZDM Mathematics Education," doi: 10.1007/s11858-014-0634-7, 2015) applied? This paper begins by giving an…

  4. An intentionality-interpretation of meaning in mathematics education

    DEFF Research Database (Denmark)

    Skovsmose, Ole

    2015-01-01

    explore this interpretation with respect to mathematics education by addressing imaginations, possibilities, obstructions, hopes, fears, stereotypes and preconceptions. I relate meaning in mathematics education to far away horizons of students’ life worlds, to negotiations, to political issues...

  5. Elementary General and Special Education Teachers' Mathematics Skills and Efficacy

    Science.gov (United States)

    Flores, Margaret M.; Thornton, Jennifer; Franklin, Toni M.; Hinton, Vanessa M.; Strozier, Shaunita

    2014-01-01

    The purpose of this study was to extend the literature regarding elementary teachers' beliefs about mathematics instruction to include special education teachers by surveying special education and general education teachers' mathematics teaching efficacy. In addition, the researchers' surveyed teachers' mathematics skills. The participants (n =…

  6. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  7. University Mathematics Education, Competencies and the Fighting of Syllabusitis

    DEFF Research Database (Denmark)

    Højgaard, Tomas

    2016-01-01

    Syllabusitis is a name for a disease that consists of identifying the mastering of a subject with proficiency related to a syllabus. In this paper I argue that using a set of mathematical competencies as the hub of mathematics education can be a means to fight syllabusitis. The introduction and t...... proven to be a crucial element when attempting to put the competency idea into educational practice, and exemplify how that can be done when it comes to mathematics education at university level.......Syllabusitis is a name for a disease that consists of identifying the mastering of a subject with proficiency related to a syllabus. In this paper I argue that using a set of mathematical competencies as the hub of mathematics education can be a means to fight syllabusitis. The introduction...

  8. A Framework for Examining Teachers' Noticing of Mathematical Cognitive Technologies

    Science.gov (United States)

    Smith, Ryan; Shin, Dongjo; Kim, Somin

    2017-01-01

    In this paper, we propose the mathematical cognitive technology noticing framework for examining how mathematics teachers evaluate, select, and modify mathematical cognitive technology to use in their classrooms. Our framework is based on studies of professional and curricular noticing and data collected in a study that explored how secondary…

  9. Educational Development and Developmental Research in Mathematics Education

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.

    1994-01-01

    In light of anticipated changes in mathematics education, an alternative for the well- known "research-development-diffusion" model is presented. It is based on an integration of curriculum research and design embedded in "educational development." In this context curriculum development is described

  10. Development of Analytical Thinking Ability and Attitudes towards Science Learning of Grade-11 Students through Science Technology Engineering and Mathematics (STEM Education) in the Study of Stoichiometry

    Science.gov (United States)

    Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree

    2016-01-01

    The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…

  11. TUTOR SUPPORT OF TEACHING MATHEMATICS WITH INFORMATION AND COMMUNICATION TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2017-10-01

    Full Text Available The paper describes the tutor activity in the process of mathematics teaching support on the basis of the use of information and communication technologies (ICT. The author has analysed the available Internet resources and mobile applications in mathematics, which are classified according to their functional purposes into groups: systems of mass open courses, platforms for adaptive learning, video channels, mathematical online simulators, online tasks, mathematical games, mathematical portals, online platforms, mathematical sites, mathematical online platforms, mathematical services, mobile applications in mathematics (simulators, games, generators of example, assistant programs, training complexes, calculators. In accordance with the student age categories mathematical information and communication technologies are divided into three groups: for elementary school students, secondary school students and high school students. The basic ICT tools for teaching mathematics are outlined. The algorithm for constructing tutorial classes with their application is presented.

  12. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  13. Experiences of African American Young Women in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Kolo, Yovonda Ingram

    African American women are underrepresented in science, technology, engineering, and mathematics (STEM) fields throughout the United States. As the need for STEM professionals in the United States increases, it is important to ensure that African American women are among those professionals making valuable contributions to society. The purpose of this phenomenological study was to describe the experiences of African American young women in relation to STEM education. The research question for this study examined how experiences with STEM in K-10 education influenced African American young women's academic choices in their final years in high school. The theory of multicontextuality was used to provide the conceptual framework. The primary data source was interviews. The sample was composed of 11 African American young women in their junior or senior year in high school. Data were analyzed through the process of open coding, categorizing, and identifying emerging themes. Ten themes emerged from the answers to research questions. The themes were (a) high teacher expectations, (b) participation in extra-curricular activities, (c) engagement in group-work, (d) learning from lectures, (e) strong parental involvement, (f) helping others, (g) self-efficacy, (h) gender empowerment, (i) race empowerment, and (j) strategic recruitment practices. This study may lead to positive social change by adding to the understanding of the experiences of African American young women in STEM. By doing so, these findings might motivate other African American young women to pursue advanced STEM classes. These findings may also provide guidance to parents and educators to help increase the number of African American women in STEM.

  14. Perspectives on instructor modeling in mathematics teacher education

    OpenAIRE

    Brown, Cassondra

    2009-01-01

    Teachers' instructional practices are greatly shaped by their own learning experiences as students in K-12 and college classrooms, which for most teachers was traditional, teacher-centered instruction. One of the challenges facing mathematics education reform is that, traditional teaching is in contrast to reform student- centered instruction. If teachers learn from their experiences as mathematics students, mathematics teacher educators are encouraged to model practices they would like teach...

  15. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    Science.gov (United States)

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  16. Effects of Mathematics Innovation and Technology on Students Performance in Open and Distance Learning

    Science.gov (United States)

    Israel, Oginni 'Niyi

    2016-01-01

    This study investigated the effect of mathematics innovation and technology on students' academic performance in open and distance learning. Quasi -- experimental research design was adopted for the study. The population for the study consisted of all the 200 level primary education students at the National Open University of Nigeria (Ekiti and…

  17. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    Science.gov (United States)

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  18. Construction of mathematical knowledge using graphic calculators (CAS) in the mathematics classroom

    Science.gov (United States)

    Hitt, Fernando

    2011-09-01

    Mathematics education researchers are asking themselves about why technology has impacted heavily on the social environment and not in the mathematics classroom. The use of technology in the mathematics classroom has not had the expected impact, as it has been its use in everyday life (i.e. cell phone). What about teachers' opinions? Mathematics teachers can be divided into three categories: those with a boundless overflow (enthusiasm) who want to use the technology without worrying much about the construction of mathematical concepts, those who reject outright the use of technology because they think that their use inhibits the development of mathematical skills and others that reflect on the balance that must exist between paper-pencil activities and use of technology. The mathematics teacher, by not having clear examples that support this last option about the balance of paper-pencil activities and technology, opt for one of the extreme positions outlined above. In this article, we show the results of research on a methodology based on collaborative learning (ACODESA) in the training of mathematics teachers in secondary schools and implementation of activities in an environment of paper-pencil and CAS in the mathematics classroom. We also note that with the development of technology on the use of electronic tablets and interactive whiteboards, these activities will take on greater momentum in the near future.

  19. Problematising Mathematics Education

    Science.gov (United States)

    Begg, Andy

    2015-01-01

    We assume many things when considering our practice, but our assumptions limit what we do. In this theoretical/philosophical paper I consider some assumptions that relate to our work. My purpose is to stimulate a debate, a search for alternatives, and to help us improve mathematics education by influencing our future curriculum documents and…

  20. Elementary Education Pre-Service Teachers' Development of Mathematics Technology Integration Skills in a Technology Integration Course

    Science.gov (United States)

    Polly, Drew

    2015-01-01

    Preparing pre-service teachers to effectively integrate technology in the classroom requires rich experiences that deepen their knowledge of technology, pedagogy, and content and the intersection of these aspects. This study examined elementary education pre-service teachers' development of skills and knowledge in a technology integration course…

  1. Real and Virtual Robotics in Mathematics Education at the School-University Transition

    Science.gov (United States)

    Samuels, Peter; Haapasalo, Lenni

    2012-01-01

    LOGO and turtle graphics were an influential movement in primary school mathematics education in the 1980s and 1990s. Since then, technology has moved forward, both in terms of its sophistication and pedagogical potential; and learner experiences, preferences and ways of thinking have changed dramatically. Based on the authors' previous work and a…

  2. Mathematics Education as a Practice: A Theoretical Position

    Science.gov (United States)

    Grootenboer, Peter; Edwards-Groves, Christine

    2013-01-01

    In this paper we will examine mathematics education using practice theory. We outline the theoretical and philosophical ideas that have been developed, and in particular, we discuss the "sayings," "doings," and "relatings" inherent in the teaching and learning practices of mathematics education. This theorising is…

  3. Mathematics and communication skills using educational software in math classes

    Directory of Open Access Journals (Sweden)

    Marjolis Laffita-Cuza

    2017-04-01

    Full Text Available The current transformations conceive among others, to form in the race of Mathematics-Physics a professor who imparts indistinctly the subjects of Mathematics and Physics in the upper secondary education from the third year of this race which requires putting more emphasis in the orientation of those Subjects to achieve greater professionalism. The present paper approaches from the theoretical aspects the essential aspects in the educational process of the learning of mathematics for the Mathematics-Physics career of the university of pedagogical sciences such as mathematical communicative competences and the use of educational software, all in function of achieving A greater development of student's mathematical logical thinking.

  4. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    Science.gov (United States)

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  5. Mathematics education as a network of social practices

    DEFF Research Database (Denmark)

    Valero, Paola

    2010-01-01

    Based on an analysis of mathematics education research as an academic field and on current social, political and economic transformations in many European countries, I would argue for the need to rethink and enlarge definitions and views of mathematics education as a scientific field of study in ...

  6. Five Women in Science, Technology, Engineering, and Mathematics Majors: A Portraiture of Their Lived Experiences

    Science.gov (United States)

    Torcivia, Patrice Prusko

    2012-01-01

    Numerous studies have addressed science, technology, engineering and mathematics (STEM) and their relation to education and gender ranging from elementary school pedagogy to career choices for traditional-aged college students. Little research has addressed nontraditional female students returning to the university to in the STEM fields. This…

  7. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    Science.gov (United States)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  8. Integrated Spreadsheets as a Paradigm of Type II Technology Applications in Mathematics Teacher Education

    Science.gov (United States)

    Abramovich, Sergei

    2016-01-01

    The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…

  9. STEM Education and Leadership: A Mathematics and Science Partnership Approach

    OpenAIRE

    Twyford, John; Järvinen, Esa-Matti

    2010-01-01

    The issue of attracting more young people to choose careers in science, technology, engineering, and mathematics (STEM) has become critical for the United States. Recent studies by businesses, associations, and education have all agreed that the United States’ performance in the STEM disciplines have placed our nation in grave risk of relinquishing its competitive edge in the marketplace (e.g., Rising above the gathering storm, 2007). A Congressional Research Service (2006) report stated that...

  10. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  11. The Integration of technology in teaching mathematics

    Science.gov (United States)

    Muhtadi, D.; Wahyudin; Kartasasmita, B. G.; Prahmana, R. C. I.

    2017-12-01

    This paper presents the Transformation of Technological Pedagogical and Content Knowledge (TPACK) of three pre-service math teacher. They participate in technology-based learning modules aligned with teaching practice taught school and became characteristic of teaching method by using the mathematical software. ICT-based learning environment has been the demands in practice learning to build a more effective approach to the learning process of students. Also, this paper presents the results of research on learning mathematics in middle school that shows the influence of design teaching on knowledge of math content specifically.

  12. Experiences of Student Mathematics-Teachers in Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Karatas, Ilhan

    2011-01-01

    Computer technology in mathematics education enabled the students find many opportunities for investigating mathematical relationships, hypothesizing, and making generalizations. These opportunities were provided to pre-service teachers through a faculty course. At the end of the course, the teachers were assigned project tasks involving…

  13. Technological pedagogical content knowledge in South African mathematics classrooms: A secondary analysis of SITES 2006 data

    Directory of Open Access Journals (Sweden)

    Verona Leendertz

    2013-12-01

    Full Text Available This article reports on a secondary data analysis conducted on the South African mathematics teachers’ dataset of the Second Information Technology in Education Study (SITES 2006. The sample consisted of a stratified sample of 640 mathematics teachers from 504 randomly selected computer-using and non–computer-using schools that completed the SITES 2006 teachers’ questionnaire, which investigated their pedagogical use of Information Communication Technology (ICT. The purpose of the current investigation was to investigate the level of Technological Pedagogical Content Knowledge (TPACK of mathematics teachers, and how TPACK attributes contribute towards more effective Grade 8 mathematics teaching in South African schools, using the TPACK conceptual framework. The findings are presented according to the three clusters identified through the association between the main variables of the TPACK model and other variables on the SITES 2006 teachers’ questionnaire: (1 impact of ICT use, (2 teacher practices and (3 barriers. A Cramér V of between 0.3 and 0.4 was considered to signal a medium effect that tended towards practically significant association, and a Cramér V of 0.4 or larger was considered to signal a large effect with practically significant association. The results indicate that the TPACK of mathematics teachers contributes towards more effective Grade 8 mathematics teaching in South African schools.

  14. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  15. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    Science.gov (United States)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  16. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  17. Adaptation of the Science, Technology, Engineering, and Mathematics Career Interest Survey (STEM-CIS) into Turkish

    Science.gov (United States)

    Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli

    2016-01-01

    Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…

  18. The Effect of Realistic Mathematics Education Approach on Students' Achievement And Attitudes Towards Mathematics

    OpenAIRE

    Effandi Zakaria; Muzakkir Syamaun

    2017-01-01

    This study was conducted to determine the effect of Realistic Mathematics Education Approach on mathematics achievement and student attitudes towards mathematics. This study also sought determine the relationship between student achievement and attitudes towards mathematics. This study used a quasi-experimental design conducted on 61 high school students at SMA Unggul Sigli. Students were divided into two groups, the treatment group $(n = 30)$ namely, the Realistic Mathematics Approach group ...

  19. Students’ Critical Mathematical Thinking Skills and Character:Experiments for Junior High School Students through Realistic Mathematics Education Culture-Based

    Directory of Open Access Journals (Sweden)

    Anderson L. Palinussa

    2013-01-01

    Full Text Available This paper presents the findings of a quasi-experimental with pre-test-post-test design and control group that aims to assess students’ critical mathematical thinking skills and character through realistic mathematics education (RME culture-based. Subjects of this study were 106 junior high school students from two low and medium schools level in Ambon. The instruments of the study are: students’ early math skills test, critical thinking skills mathematical test and perception scale of students’character. Data was analyzed by using t-test and Anova. The study found that: 1 Achievements and enhancement of students’ critical mathematical thinking skills who were treated with by realistic mathematics education is better then students’ skills were treated by conventional mathematics education. The differences are considered to: a overall students, b the level of early math skills, and c schools’ level; 2 Quality of students’ character who were treated by realistic mathematics education is better then students’ character who were treated by conventional mathematics education The differences are considered to: a overall students, b the level of early math skills, and c schools’ level  Keywords: Critical Thinking, Students’ Character, Realistic Mathematics Education Culture-Based DOI: http://dx.doi.org/10.22342/jme.4.1.566.75-94

  20. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Journal Home > African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  1. DEVELOPING EVALUATION INSTRUMENT FOR MATHEMATICS EDUCATIONAL SOFTWARE

    Directory of Open Access Journals (Sweden)

    Wahyu Setyaningrum

    2012-02-01

    Full Text Available The rapid increase and availability of mathematics software, either for classroom or individual learning activities, presents a challenge for teachers. It has been argued that many products are limited in quality. Some of the more commonly used software products have been criticized for poor content, activities which fail to address some learning issues, poor graphics presentation, inadequate documentation, and other technical problems. The challenge for schools is to ensure that the educational software used in classrooms is appropriate and effective in supporting intended outcomes and goals. This paper aimed to develop instrument for evaluating mathematics educational software in order to help teachers in selecting the appropriate software. The instrument considers the notion of educational including content, teaching and learning skill, interaction, and feedback and error correction; and technical aspects of educational software including design, clarity, assessment and documentation, cost and hardware and software interdependence. The instrument use a checklist approach, the easier and effective methods in assessing the quality of educational software, thus the user needs to put tick in each criteria. The criteria in this instrument are adapted and extended from standard evaluation instrument in several references.   Keywords: mathematics educational software, educational aspect, technical aspect.

  2. Implementing a 'European' appoach to mathematics education in Indonesia through teacher education

    NARCIS (Netherlands)

    Zulkardi, Z.; Nieveen, N.M.; van den Akker, Jan; de Lange, Jan

    2002-01-01

    This paper reports on the results of a four-year study called CASCADE-IMEI that is a learning environment (LE) in the form of a face-to-face course and a web site (www.clix.to/zulkardi ) which aims to introduce Realistic Mathematics Education (RME), Dutch approach to mathematics education, as an

  3. Developing Digital Technologies for Undergraduate University Mathematics

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    Our research effort presented in this paper relates with developing digital tools for mathematics education at undergraduate university level. It focuses specifically on studies where mathematics is not a core subject but it is very important in order to cope with core subjects. For our design, we...... requirements for the development of digital tools that support mathematics teaching and learning at university level....... during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student feedback inspire the next round of design...

  4. Teaching mathematics in Indonesian primary schools : using ralistic mathematics education (RME)-approach

    NARCIS (Netherlands)

    Fauzan, Ahmad; Slettenhaar, Dick; Plomp, T.

    2002-01-01

    This paper presents a case study about employing Realistic Mathematics Education (RME)-approach to teach mathematics in Indonesian primary schools. Many obstacles, such as the very dependent attitude of the pupils, the pupils who were not used to working in groups, lack of reasoning capability and

  5. Mathematics Education in Singapore – An Insider’s Perspective

    Directory of Open Access Journals (Sweden)

    Berinderjeet Kaur

    2014-07-01

    Full Text Available Singapore’s Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012 that have shaped the present School Mathematics Curricula in Singapore are direct consequences of developments in the Education System of Singapore during the same period. The curriculum, teachers, leaners and the learning environment may be said to contribute towards Singapore’s performance in international benchmark studies such as TIMSS and PISA.

  6. Mathematics education giving meaning to Social Science students

    DEFF Research Database (Denmark)

    Andersson, Annica; Valero, Paola

    Compulsory mathematics for social science students is problematic. We discuss the case of a group of students in Sweden who met a mathematics course inspired on the ideas of critical mathematics education and ethnomathematics. The evidence collected about students' experiences on this course...

  7. Amidst Multiple Theories of Learning in Mathematics Education

    Science.gov (United States)

    Simon, Martin A.

    2009-01-01

    Currently, there are more theories of learning in use in mathematics education research than ever before (Lerman & Tsatsaroni, 2004). Although this is a positive sign for the field, it also has brought with it a set of challenges. In this article, I identify some of these challenges and consider how mathematics education researchers might think…

  8. Research in Mathematics Education and Language

    Science.gov (United States)

    Planas, Núria

    2016-01-01

    A synthesis of reasons for the production of this monograph is presented with a focus on contemporary research in the context of the Ninth Congress of the European Society for Research in Mathematics Education. Within the domain of mathematics and language, three lines of concern are addressed: (1) classroom discourse, (2) language diversity, and…

  9. Financial Literacy: Mathematics and Money Improving Student Engagement

    Science.gov (United States)

    Attard, Catherine

    2018-01-01

    The low levels of student engagement with mathematics has been of significant concern in Australia for some time (Attard, 2013). This is a particularly important issue in mathematics education given the current attention to science, technology, engineering and mathematics (STEM) education to ensure "the continued prosperity of Australia on…

  10. Mathematical Modeling Activities as a Useful Tool for Values Education

    Science.gov (United States)

    Doruk, Bekir Kursat

    2012-01-01

    Values education is crucial since it is one of the factors to reach success in education in broader sense and in mathematics education in particular sense. It is also important for educating next generations of societies. However, previous research showed that expected importance for values education was not given in Mathematics courses. In a few…

  11. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    Science.gov (United States)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  12. Mobile learning to improve mathematics teachers mathematical competencies

    Science.gov (United States)

    Hendrayana, A.; Wahyudin

    2018-01-01

    The role of teachers is crucial to the success of mathematics learning. One of the learning indicator is characterized by the students’ improved mathematical proficiency. In order to increase that, it is necessary to improve the teacher’s mathematical skills first. For that, it needs an innovative way to get teachers close to easily accessible learning resources through technology. The technology can facilitate teachers to access learning resources anytime and anywhere. The appropriate information technology is mobile learning. Innovations that can make teachers easy to access learning resources are mobile applications that can be accessed anytime and anywhere either online or offline. The research method was research development method. In preliminary analysis, subjects consist of teachers and lecturers in professional teacher education program. The results that the teachers ready to adopt mobile-learning for the improvement of their skills.

  13. Mathematical competencies and the role of mathematics in physics education: A trend analysis of TIMSS Advanced 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Trude Nilsen

    2013-10-01

    Full Text Available As students advance in their learning of physics over the course of their education, the requirement of mathematical applications in physics-related tasks increases, especially so in upper secondary school and in higher education. Yet there is little empirical work (particularly large-scale or longitudinal on the application of mathematics in physics education compared with the research related to the conceptual knowledge of physics. In order to clarify the nature of mathematics in physics education, we developed a theoretical framework for mathematical competencies pertinent to various physics tasks based on theoretical frameworks from mathematics and physics education. We used this synthesis of frameworks as a basis to create a model for physics competence. The framework also served as a tool for analyzing and categorizing trend items from the international large-scale survey, TIMSS Advanced 1995 and 2008. TIMSS Advanced assessed students in upper secondary school with special preparation in advanced physics and mathematics. We then investigated the changes in achievements on these categorized items across time for nations who participated in both surveys. The results from our analysis indicate that students whose overall physics achievement declined struggled the most with items requiring mathematics, especially items requiring them to handle symbols, such as manipulating equations. This finding suggests the importance of collaboration between mathematics and physics education as well as the importance of traditional algebra for physics education.

  14. NATO Advanced Research Workshop on The Design of Mathematical Modelling Courses for Engineering Education

    CERN Document Server

    Moscardini, Alfredo

    1994-01-01

    As the role of the modern engineer is markedly different from that of even a decade ago, the theme of engineering mathematics educa­ tion (EME) is an important one. The need for mathematical model­ ling (MM) courses and consideration of the educational impact of computer-based technology environments merit special attention. This book contains the proceeding of the NATO Advanced Research Workshop held on this theme in July 1993. We have left the industrial age behind and have entered the in­ formation age. Computers and other emerging technologies are penetrating society in depth and gaining a strong influence in de­ termining how in future society will be organised, while the rapid change of information requires a more qualified work force. This work force is vital to high technology and economic competitive­ ness in many industrialised countries throughout the world. Within this framework, the quality of EME has become an issue. It is expected that the content of mathematics courses taught in schools o...

  15. Perspectives on mathematical practices bringing together philosophy of mathematics, sociology of mathematics, and mathematics education

    CERN Document Server

    van Kerkhove, Bart

    2007-01-01

    Philosophy of mathematics today has transformed into a very complex network of diverse ideas, viewpoints, and theories. Sometimes the emphasis is on the ""classical"" foundational work (often connected with the use of formal logical methods), sometimes on the sociological dimension of the mathematical research community and the ""products"" it produces, then again on the education of future mathematicians and the problem of how knowledge is or should be transmitted from one generation to the next. The editors of this book felt the urge, first of all, to bring together the widest variety of aut

  16. An exploration of preservice teachers’ educational values of mathematics in relation to gender and attitudes toward mathematics in Nigeria

    Directory of Open Access Journals (Sweden)

    Adeneye Olarewaju Awofala

    2018-04-01

    Full Text Available The study investigated educational values of mathematics in relation to gender and attitudes toward mathematics among 480 Nigerian preservice mathematics teachers from four universities in Southwest, Nigeria using the quantitative research method within the blueprint of the descriptive survey design. Data collected were analysed using the descriptive statistics of frequency, percentage, mean, and standard deviation and inferential statistics of independent samples t-test, Pearson moment correlation, and multiple regression analysis. Findings revealed that preservice mathematics teachers showed high level of educational value of mathematics. There were significant possible correlations among preservice mathematics teachers’ practical value, aesthetic value, cultural value, social value, moral value, disciplinary value, recreational value, and attitudes toward mathematics. While gender differences in some dimensions of educational value of mathematics (practical value, disciplinary value, social value, and cultural value are no longer important and are declining there are subtle gender differences in attitudes toward mathematics and educational values of mathematics in this study. In addition, 73.7% of the variance in preservice teachers’ attitudes toward mathematics was accounted for by the eight predictor variables (gender, practical or utilitarian value, disciplinary value, cultural value, social value, moral value, aesthetic value and recreational value taken together. Based on this baseline study, it was thus, recommended that future studies in Nigeria should investigate the educational value of mathematics of in-service teachers with varied ethnicity and socio-economic background so as to generalise the results of this study.

  17. Mathematics as an Im/Pure Knowledge System: Symbiosis, (W)Holism and Synergy in Mathematics Education

    Science.gov (United States)

    Luitel, Bal Chandra

    2013-01-01

    The problem of culturally decontextualised mathematics education faced by Nepali students, teachers and teacher educators has often been oriented by the view of the nature of "mathematics as a body of pure knowledge," which gives rise to an exclusive emphasis on an ideology of singularity, epistemology of objectivism, language of…

  18. Investigating Alignment between Elementary Mathematics Teacher Education and Graduates' Teaching of Mathematics for Conceptual Understanding

    Science.gov (United States)

    Jansen, Amanda; Berk, Dawn; Meikle, Erin

    2017-01-01

    In this article, Amanda Jansen, Dawn Berk, and Erin Meikle investigate the impact of mathematics teacher education on teaching practices. In their study they interviewed six first-year teachers who graduated from the same elementary teacher education program and who were oriented toward teaching mathematics conceptually. They observed each teacher…

  19. Exploring Kuwaiti mathematics: student-teachers' beliefs toward using Logo and mathematics education

    OpenAIRE

    Sulaiman, NAJ

    2011-01-01

    The main objective of this study is to explore the effect of one taught course, a Logo module, on Kuwaiti elementary mathematics student-teachers’ beliefs about Information and Communication Technology (ICT) and Logo. The Logo module incorporated ICT, in particular the Logo programming language, as a cognitive tool, that supports the constructivist perspective for mathematics instruction. The Logo module comprised of 24-sessions (deducted from the hours of the Methods of Teaching Mathematics ...

  20. New directions for situated cognition in mathematics education

    CERN Document Server

    Winbourne, Peter; Winbourne, Peter

    2008-01-01

    This book draws together a range of papers by experienced writers in mathematics education who have used the concept of situated cognition in their research within recent years. Thus it provides an up-to-date overview of developments and applications to which other researchers can refer and which will inspire future research. It is appropriate to review the field now and collect a range of papers which all relate to situated cognition and show how its application to mathematics education has matured and become usefully embedded in our approach to central issues about learning mathematics.

  1. Mathematics Education Research in South Africa 2007-2015: Review and Reflection

    Science.gov (United States)

    Adler, Jill; Alshwaikh, Jehad; Essack, Regina; Gcsamba, Lizeka

    2017-01-01

    This article reports a review of research in mathematics education in South Africa published in local and international journals in the period 2007-2015. The purpose of the review was to describe the landscape of mathematics education research in the country over the past (almost) decade. Findings indicate that the mathematics education research…

  2. Establishing a mathematical Lesson Study culture in Danish teacher education

    DEFF Research Database (Denmark)

    Skott, Charlotte Krog; Østergaard, Camilla Hellsten

    Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences......Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences...

  3. The Emergence of Mathematical Structures

    Science.gov (United States)

    Hegedus, Stephen John; Moreno-Armella, Luis

    2011-01-01

    We present epistemological ruptures that have occurred in mathematical history and in the transformation of using technology in mathematics education in the twenty-first century. We describe how such changes establish a new form of digital semiotics that challenges learning paradigms and mathematical inquiry for learners today. We focus on drawing…

  4. Simulation technology achievement of students in physical education classes.

    Directory of Open Access Journals (Sweden)

    Тіmoshenko A.V.

    2010-06-01

    Full Text Available Technology of evaluation of progress was studied during employments by physical exercises. Possibility of the use of design method was probed in an educational process during determination of progress of students. The value of mathematical models in pedagogical activity in the field of physical culture and sport is certain. Mathematical models are offered for the evaluation of success of student young people during employments swimming. Possibility of development of models of evaluation of success is rotined on sporting games, track-and-field, gymnastics.

  5. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  6. The Effects of an Educational Video Game on Mathematical Engagement

    Science.gov (United States)

    Chang, Mido; Evans, Michael A.; Kim, Sunha; Norton, Anderson; Deater-Deckard, Kirby; Samur, Yavuz

    2016-01-01

    In an effort to maximizing success in mathematics, our research team implemented an educational video game in fifth grade mathematics classrooms in five schools in the Eastern US. The educational game was developed by our multi-disciplinary research team to achieve a hypothetical learning trajectory of mathematical thinking of 5th grade students.…

  7. Pre-Service Teachers' Mathematics Content Knowledge: Implications for How Mathematics Is Taught in Higher Education

    Science.gov (United States)

    Lowrie, Tom; Jorgensen, Robyn

    2016-01-01

    This investigation explored pre-service teachers' mathematics content knowledge (MCK) and beliefs associated with mathematics education practices. An Exploratory Factor Analysis, conducted on a beliefs and attitudes questionnaire, produced three common attitude factors associated with (1) inquiry-based teaching; (2) how mathematics knowledge is…

  8. Standards for Technological Literacy and STEM Education Delivery through Career and Technical Education Programs

    Science.gov (United States)

    Asunda, Paul A.

    2012-01-01

    At a minimum, employers rely on career and technical education (CTE) and workforce training systems to supply workers able to perform in their jobs. In CTE classes that seek to integrate science, technology, engineering, and mathematics (STEM) concepts, it falls to the instructors to design and sequence the learning experiences that will promote…

  9. Mathematics education practice in Nigeria: Its impact in a post-colonial era

    Science.gov (United States)

    Enime, Noble O. J.

    This qualitative research method of study examined the impacts of the Nigerian pre-independence era Mathematics Education Practice on the Post-Colonial era Mathematics Education Practice. The study was designed to gather qualitative information related to Pre-independence and Postcolonial era data related to Mathematics Education Practice in Nigeria (Western, Eastern and the Middle Belt) using interview questions. Data was collected through face to face interviews. Over ten themes emerged from these qualitative interview questions when data was analyzed. Some of the themes emerging from the sub questions were as follows. "Mentally mature to understand the mathematics" and "Not mentally mature to understand the mathematics", "mentally mature to understand the mathematics, with the help of others" and "Not Sure". Others were "Contented with Age of Enrollment" and "Not contented with Age of Enrollment". From the questions of type of school attended and liking of mathematics the following themes emerged: "Attended UPE (Universal Primary Education) and understood Mathematics", and "Attended Standard Education System and did not like Mathematics". Connections between the liking of mathematics and the respondents' eventual careers were seen through the following themes that emerged. "Biological Sciences based career and enjoyed High School Mathematics Experience", "Economics and Business Education based career and enjoyed High School Mathematics Experience" and five more themes. The themes, "Very helpful" and "Unhelpful" emerged from the question concerning parents and students' homework. Some of the themes emerging from the interviews were as follows: "Awesome because of method of Instruction of Mathematics", "Awesome because Mathematics was easy", "Awesome because I had a Good Teacher or Teachers" and four other themes, "Like and dislike of Mathematics", "Heavy work load", "Subject matter content" and "Rigor of instruction". More emerging themes are presented in this

  10. Theory-practice Dichotomy in Mathematics Teacher Education: An ...

    African Journals Online (AJOL)

    Theory-practice Dichotomy in Mathematics Teacher Education: An Analysis of Practicum ... Zimbabwe Journal of Educational Research ... practices in primary teacher education continue to create dichotomous gaps in this relationship.

  11. Support of Study on Engineering Technology from Physics and Mathematics

    OpenAIRE

    Mynbaev, Djafar K.; Cabo, Candido; Kezerashvili, Roman Ya.; Liou-Mark, Janet

    2008-01-01

    An approach that provides students with an ability to transfer learning in physics and mathematics to the engineering-technology courses through e-teaching and e-learning process is proposed. E-modules of courses in mathematics, physics, computer systems technology, and electrical and telecommunications engineering technology have been developed. These modules being used in the Blackboard and Web-based communications systems create a virtual interdisciplinary learning community, which helps t...

  12. Establishing Mathematics for Teaching within Classroom Interactions in Teacher Education

    Science.gov (United States)

    Ryve, Andreas; Nilsson, Per; Mason, John

    2012-01-01

    Teacher educators' processes of establishing "mathematics for teaching" in teacher education programs have been recognized as an important area for further research. In this study, we examine how two teacher educators establish and make explicit features of mathematics for teaching within classroom interactions. The study shows how the…

  13. Aequilibrium prudentis: on the necessity for ethics and policy studies in the scientific and technological education of medical professionals.

    Science.gov (United States)

    Anderson, Misti Ault; Giordano, James

    2013-04-23

    The importance of strong science, technology, engineering, and mathematics education continues to grow as society, medicine, and the economy become increasingly focused and dependent upon bioscientific and technological innovation. New advances in frontier sciences (e.g., genetics, neuroscience, bio-engineering, nanoscience, cyberscience) generate ethical issues and questions regarding the use of novel technologies in medicine and public life. In light of current emphasis upon science, technology, engineering, and mathematics education (at the pre-collegiate, undergraduate, graduate, and professional levels), the pace and extent of advancements in science and biotechnology, the increasingly technological orientation and capabilities of medicine, and the ways that medicine - as profession and practice - can engage such scientific and technological power upon the multi-cultural world-stage to affect the human predicament, human condition, and perhaps nature of the human being, we argue that it is critical that science, technology, engineering, and mathematics education go beyond technical understanding and directly address ethical, legal, social, and public policy implications of new innovations. Toward this end, we propose a paradigm of integrative science, technology, ethics, and policy studies that meets these needs through early and continued educational exposure that expands extant curricula of science, technology, engineering, and mathematics programs from the high school through collegiate, graduate, medical, and post-graduate medical education. We posit a synthetic approach that elucidates the historical, current, and potential interaction of scientific and biotechnological development in addition to the ethico-legal and social issues that are important to educate and sustain the next generation of medical and biomedical professionals who can appreciate, articulate, and address the realities of scientific and biotechnological progress given the shifting

  14. Special Educators and Mathematics Phobia: An Initial Qualitative Investigation

    Science.gov (United States)

    Humphrey, Michael; Hourcade, Jack J.

    2010-01-01

    Special educators are uniquely challenged to be content experts in all curricular areas, including mathematics, because students in their caseloads may require academic instruction in any area. However, special educators with math phobia may be limited in their ability to provide effective instruction to their students with mathematical deficits…

  15. Mathematics Capital in the Educational Field: Bourdieu and Beyond

    Science.gov (United States)

    Williams, Julian; Choudry, Sophina

    2016-01-01

    Mathematics education needs a better appreciation of the dominant power structures in the educational field: Bourdieu's theory of capital provides a good starting point. We argue from Bourdieu's perspective that school mathematics provides capital that is finely tuned to generationally reproduce the social structures that serve to keep the…

  16. Creating opportunities to learn in mathematics education: a sociocultural perspective

    Science.gov (United States)

    Goos, Merrilyn

    2014-09-01

    The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.

  17. Сontrol systems using mathematical models of technological objects ...

    African Journals Online (AJOL)

    Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...

  18. Discourses of power in mathematics education research: Concepts and possibilities for action

    DEFF Research Database (Denmark)

    Valero, Paola

    2008-01-01

    Mathematics education is powerful. This is an assertion that appears often in mathematics education research papers. However, the meaning of the assertion is far from being clear. An analysis of different ways of talking about power in relation to mathematics education, in research literature, is...

  19. Development of Mathematics Competences in Higher Education Institutions

    Directory of Open Access Journals (Sweden)

    Anda Zeidmane

    2013-03-01

    Full Text Available The changes in society require revision of the content of higher education. Mathematics as a classical subject has played an important part in higher education until now, especially in engineering education. The introduction of mathematics IT programmes  (MathCad, MathLab, Matematica, Maple… in labour market caused the reduction of the practical application of the classical mathematics, therefore it is important to draw attention to the development of mathematical competences. The theoretical part of the paper deals with the notion of competence, its aspects and types, considers the question of the essence of  mathematics, examines general competences driven teaching of mathematics, describes organisational model underlying the curriculum in mathematics that is based on the division of the content of mathematics into levels. The paper describes the main issues of the development of teaching of mathematics discussed by European mathematicians (SEFI Math Working Group.  The paper presents the results of the ERDF project “Cross-border network for adapting mathematical competences in the socio-economic development (MatNet”, which

  20. Rethinking Mathematics Teaching in Liberia: Realistic Mathematics Education

    Science.gov (United States)

    Stemn, Blidi S.

    2017-01-01

    In some African cultures, the concept of division does not necessarily mean sharing money or an item equally. How an item is shared might depend on the ages of the individuals involved. This article describes the use of the Realistic Mathematics Education (RME) approach to teach division word problems involving money in a 3rd-grade class in…

  1. Discrete mathematics in deaf education: a survey of teachers' knowledge and use.

    Science.gov (United States)

    Pagliaro, Claudia M; Kritzer, Karen L

    The study documents what deaf education teachers know about discrete mathematics topics and determines if these topics are present in the mathematics curriculum. Survey data were collected from 290 mathematics teachers at center and public school programs serving a minimum of 120 students with hearing loss, grades K-8 or K-12, in the United States. Findings indicate that deaf education teachers are familiar with many discrete mathematics topics but do not include them in instruction because they consider the concepts too complicated for their students. Also, regardless of familiarity level, deaf education teachers are not familiar with discrete mathematics terminology; nor is their mathematics teaching structured to provide opportunities to apply the real-world-oriented activities used in discrete mathematics instruction. Findings emphasize the need for higher expectations of students with hearing loss, and for reform in mathematics curriculum and instruction within deaf education.

  2. 'Whys' and 'Hows' of using philosophy in mathematics education

    DEFF Research Database (Denmark)

    Jankvist, Uffe Thomas; Iversen, Steffen Møllegaard

    2014-01-01

    The article elaborates and exemplifies a potential categorization of the reasons for using philosophy, in particular the philosophy of mathematics, in mathematics education and approaches to doing so—the so-called ‘whys’ and ‘hows’. More precisely, the ‘whys’ are divided into the two categories...... of ‘philosophy as a tool’ for teaching and learning mathematics, and ‘philosophy as a goal’, referring to a stance of considering it a purpose in itself to teach students certain aspects regarding the philosophy of mathematics. A division of the ‘hows’ into three different categories is offered: illumination...... approaches; modules approaches; and philosophy-based approaches. A major part of the article is spent on providing illustrative exemplifications of each of these approaches by referring to already implemented uses of philosophy of mathematics in mathematics education as well as by suggesting new ones....

  3. Opening the research text critical insights and in(ter)ventions into mathematics education

    CERN Document Server

    de Freitas, Elizabeth

    2008-01-01

    In this chapter we interrogate the debate between mathematicians and mathematics educators. This debate is widely recognized in the United States, for instance, where the term 'math wars' is often used in reference to the heated disagreements between mathematicians and mathematics edu- tors. Such recognition might suggest that this topic itself has relevance both for the academy and for educational policy pertaining to mathematics edu- tion. We propose to locate this debate, unavoidably, whenever and wherever mathematics education is written. Our aim is to show how the debate itself gives rise to the inscription mathematics education. Indeed, we contend that 'mathematics education' cannot be defined outside of, or prior to, the debate, for it is precisely through the debate that it is constituted as a domain for 1 deliberation. The debate is more primordial than any epistémè or domain implied by it. In other words, we argue that mathematics and mathematics education do not exist epistemically prior to the d...

  4. Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice

    Science.gov (United States)

    Milner-Bolotin, Marina

    2016-01-01

    This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…

  5. Critical issues in mathematics education major contributions of Alan Bishop

    CERN Document Server

    Presmeg, Norma C; Presmeg, Norma C

    2008-01-01

    Here are presented the contributions of Professor Alan Bishop within the mathematics education research community. Six critical issues in the development of mathematics education research are reviewed and the current developments in each area are discussed.

  6. Teaching mathematics online in the European Area of Higher Education: an instructor's point of view

    Science.gov (United States)

    Juan, Angel A.; Steegmann, Cristina; Huertas, Antonia; Martinez, M. Jesus; Simosa, J.

    2011-03-01

    This article first discusses how information technologies are changing the way knowledge is delivered at universities worldwide. Then, the article reviews some of the most popular learning management systems available today and some of the most useful online resources in the areas of Mathematics and Statistics. After that, some long-term experiences regarding the teaching of online courses in those areas at the Open University of Catalonia are discussed. Finally, the article presents the results of a large-scale survey performed in Spain that aims to reflect instructors' opinions and feelings about potential benefits and challenges of teaching mathematics online, as well as the role of emergent technologies in the context of the European Area of Higher Education. Therefore, this article contributes to the existing literature as an additional reference point, one based on our long-term experience in a large-scale online environment, for discussions involving mathematical e-learning.

  7. Using multimedia cases for educating the primary school mathematics teacher educator: a design study

    NARCIS (Netherlands)

    Dolk, M.L.A.M.; Hertog, den J.B.; Gravemeijer, K.P.E.

    2002-01-01

    The overarching goal of this chapter is to better understand how multimedia video case studies can support the professionalization of primary-school-mathematics teacher educators. We investigate the use of multimedia cases to support teacher educators in learning to mathematize and didactize and to

  8. Teaching mathematics to non-mathematicians

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga

    2017-01-01

    Over the past years, a number of engineering programs have arisen that transcend the division between technical, scientific and art-related disciplines. Media Technology at Aalborg University, Denmark is such an engineering program. In relation to mathematics education, this new development has...... changed the way mathematics is applied in practice and is taught in these disciplines. This paper discusses a doctoral dissertation that investigated and assessed interventions to increase student motivation and engagement in mathematics among Media Technology students. The results of this dissertation...

  9. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  10. Understanding why women are under-represented in Science, Technology, Engineering and Mathematics (STEM within Higher Education: a regional case study

    Directory of Open Access Journals (Sweden)

    Michael Christie

    Full Text Available Abstract Participation rates of women in Science, Technology, Engineering and Mathematics (STEM is comparatively low and their attrition rates high. An obvious solution is to attract more women to study such subjects. In 2016 the authors undertook research to find out why so few women enrolled in STEM subjects and investigate ways of increasing their recruitment and retention in this area. The informants in our study were enrolled in a tertiary preparation course as well as nursing and education programs. A critique of the literature was used to develop a survey that informed focus group and interview schedules which were used in collecting data. Our study found that many of the factors that hindered women from applying for STEM courses twenty years ago still apply today and recommends actions that can help increase recruitment of women into STEM and assist their retention and graduation in those areas of tertiary education.

  11. Teaching Mathematical Problem Solving to Middle School Students in Math, Technology Education, and Special Education Classrooms

    Science.gov (United States)

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Rueda, Enrique; Hung, Ya-Hui; Danneker, Jeanne

    2004-01-01

    This study compared two approaches for teaching sixth-grade middle school students to solve math problems in math, technology education, and special education classrooms. A total of 17 students with disabilities and 76 students without disabilities were taught using either enhanced anchored instruction (EAI) or text-based instruction coupled with…

  12. I Thought This Was a Study on Math Games: Attribute Modification in Children’s Interactions with Mathematics Apps

    Directory of Open Access Journals (Sweden)

    Stephen I Tucker

    2017-05-01

    Full Text Available Technology is an increasingly important component of education. Children’s mathematical interactions with technology have become a focus of mathematics education research, but less research has investigated constructs that contribute to these mathematical interactions. Attributes of children and technology play a key role in mathematical interactions and both children and technology can modify attributes during these interactions. Grounded in the Artifact-Centric Activity Theory and linked to recent developments in research on technology in mathematics education, this qualitative study extended an earlier exploratory study to investigate attribute modification. In particular, this study examined patterns of attribute modification evident during fifth grade students’ mathematical interactions with two mathematics virtual manipulative touchscreen tablet apps. Results included three categories related to attribute modification: (1 reactive attribute modification (linear progression or repeated repetition; (2 unperceived attributes and opportunities for proactive modification; and (3 proactive modification (seeking equilibrium, seeking disequilibrium, or seeking equilibrium and disequilibrium. Findings have implications for designers, teachers, and researchers of educational technology.

  13. Politics of Meaning in Mathematics Education

    DEFF Research Database (Denmark)

    Skovsmose, Ole

    2016-01-01

    By a politics of meaning I refer to the social, economic, cultural and religious conditions for experiencing meaning. I refer as well to the layers of visons, assumptions, presumptions and preconceptions that might construct something as being meaningful. By addressing different politics of meani...... of such factors. Politics of meaning can be analysed with reference to sexism, racism, instrumentalism, the school mathematics tradition, critical mathematics education, and the banality of expertise....

  14. Can Scientific Research Answer the "What" Question of Mathematics Education?

    Science.gov (United States)

    van den Heuvel-Panhuizen, Marja

    2005-01-01

    This paper problematizes the issue of how decisions about the content of mathematics education can be made. After starting with two examples where research in mathematics education resulted in different choices on the content of primary school teaching, I explore where and how, in the scientific enterprise within the domain of education, issues of…

  15. Mathematical knowledge for teaching: Making the tacit more explicit in mathematics teacher education

    Science.gov (United States)

    Abdullah, Mohd Faizal Nizam Lee; Vimalanandan, Lena

    2017-05-01

    Teaching practice during school based experiences, afford an opportunity for pre service teachers to put into practice their knowledge for teaching mathematics. Like all knowledge, Mathematical Knowledge for Teaching (MKT) is held in both tacit and explicit form, making it especially difficult to study and map during instruction. This study investigates the tacit and explicit nature of MKT held by pre service teachers in a Malaysian Teacher Education Program and how it impacts the Mathematical Quality of their instruction (MQI). This study of three mathematics pre-service teachers (PSTs), utilised videos of mathematics lessons, reflective debriefs and interviews. The findings suggest that factors such as reflecting, peer-sharing, conferencing with mentors and observing support in making tacit knowledge more explicit during planning and instruction. Implications for preparation of mathematics teachers capable of high Mathematical Quality of Instruction are also discussed.

  16. Intersectional Analysis in Critical Mathematics Education Research: A Response to Figure Hiding

    Science.gov (United States)

    Bullock, Erika C.

    2018-01-01

    In this chapter, I use figure hiding as a metaphor representing the processes of exclusion and suppression that critical mathematics education (CME) seeks to address. Figure hiding renders identities and modes of thought in mathematics education and mathematics education research invisible. CME has a commitment to addressing figure hiding by…

  17. Students with ‘Special Rights' for mathematics education

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Gervasoni, Ann

    2011-01-01

    insights and implications from research on the special needs of different "equity groups," illuminating the way in which a "one-size-fits-all" approach tends to limit quality education to only dominant groups. And Section 4 contains lessons learned by researchers and practitioners who attempted to manage......The issues of equity and quality have been central to international debates on mathematics in research, policy, curriculum and teaching. This book covers a wide variety of topics in the research and practice of mathematics education, demonstrating how equity and quality are inherently political...... terms whose political bedrock is obscured by them being taken for granted. Mapping Equity and Quality in Mathematics Education is broken into four parts. Section 1 addresses the constructs of equity and quality from a variety of theoretical perspectives and outlines new directions to approach...

  18. Toward an Analysis of Video Games for Mathematics Education

    Science.gov (United States)

    Offenholley, Kathleen

    2011-01-01

    Video games have tremendous potential in mathematics education, yet there is a push to simply add mathematics to a video game without regard to whether the game structure suits the mathematics, and without regard to the level of mathematical thought being learned in the game. Are students practicing facts, or are they problem-solving? This paper…

  19. Mathematics education for social justice

    Science.gov (United States)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more

  20. Technological Literacy Education and Technological and Vocational Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2010-01-01

    Technology education in Taiwan is categorized into the following two types: (1) technological literacy education (TLE)--the education for all people to become technological literates; and (2) technological specialty education (TSE)--the education for specific people to become technicians and professionals for technology-related jobs. This paper…

  1. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  2. Elective Drama Course in Mathematics Education: An Assessment of Pre-Service Teachers

    Science.gov (United States)

    Sagirli, Meryem Özturan

    2014-01-01

    This study aimed to evaluate a newly introduced elective course "Drama in Mathematics Education" into mathematics education curriculum from the viewpoints of pre-service mathematics teachers. A case study was employed in the study. The study group consisted of 37 pre-service mathematics teachers who were enrolled in a Turkish state…

  3. Bioinformatics education in high school: implications for promoting science, technology, engineering, and mathematics careers.

    Science.gov (United States)

    Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.

  4. Challenging Transitions and Crossing Borders: Preparing Novice Mathematics Teacher Educators to Support Novice K-12 Mathematics Teachers

    Science.gov (United States)

    Yow, Jan A.; Eli, Jennifer A.; Beisiegel, Mary; McCloskey, Andrea; Welder, Rachael M.

    2016-01-01

    Sixty-nine recently graduated doctoral students in mathematics education completed a survey to determine their perceptions of transitioning from a doctoral program into an academic position at an institution of higher education. Research literature for novice mathematics school teachers was also reviewed to document their experiences transitioning…

  5. CLOUD TECHNOLOGIES IN MANAGEMENT AND EDUCATIONAL PROCESS OF UKRAINIAN TECHNICAL UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    Yu. Tryus

    2014-06-01

    Full Text Available This study analyzes opportunities for using cloud technologies in higher education in Ukraine. On the basis of principles of the system approach, it examines the main task of cloud technologies, strategic and tactical goals of cloud computing at the technical universities, as well as problems that arise in their implementation in the educational process. The paper discusses the main trends in the use of cloud technologies in higher technical education, analyzes cloud services used by leading technical universities in Ukraine in management and learning. The typical structure of a Technical University is considered with public, private, and hybrid clouds. The experience of Cherkasy State Technological University in the use of cloud technologies at management and learning is presented. Considerations are particularly given to distance support, mobile, and blending learning, virtualization mechanism to support the students learning at natural, mathematical sciences and engineering through the utilization of individual desktops.

  6. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human

    2009-09-01

    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  7. The power of mathematics education in the 18th century

    NARCIS (Netherlands)

    Kruger, J.H.J.

    2014-01-01

    In the Dutch Republic in the 18th century mathematics was considered very important for many professions. However there were hardly any national or regional educational institutes which provided mathematics education. Three orphanages in different towns received a large inheritance under condition

  8. Critical analysis of the policy practice of mathematics education in ...

    African Journals Online (AJOL)

    Ensuring a smooth mathematics education programme requires the formulation and implementation of appropriate instructional policies. This study is a survey of some practices of the instructional policies and their influence on mathematics education. Completed Basic School Annual Census (CBSAC) forms and ...

  9. Exploring the Educative Power of an Experienced Mathematics Teacher Educator-Researcher

    Science.gov (United States)

    Yang, Kai-Lin; Hsu, Hui-Yu; Lin, Fou-Lai; Chen, Jian-Cheng; Cheng, Ying-Hao

    2015-01-01

    This paper aims to explore the educative power of an experienced mathematics teacher educator-researcher (MTE-R) who displayed his insights and strategies in teacher professional development (TPD) programs. To this end, we propose a framework by first conceptualizing educative power based on three constructs--communication, reasoning, and…

  10. Connecting mathematics learning through spatial reasoning

    Science.gov (United States)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  11. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    Science.gov (United States)

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  12. Grade R educators voluntarily share their mathematics practices: Authentic realities in South Africa showcased

    Directory of Open Access Journals (Sweden)

    Faith Tlou

    2017-12-01

    Full Text Available In South Africa’s reception classes (Grade R, the harsh reality is that the sector is beset by serious challenges. As part of a broader professional development study, this article focuses on the actual operations of Grade R educators as they conduct mathematics lessons using video technology to record their teaching. An observation tool adapted from Clements and Sarama is used to determine the quality of mathematics instruction, and to provide recommendations for bridging the gaps observed. Fourteen Grade R classes were video-recorded as part of the bigger project, with the educators themselves selecting three lessons per class to showcase their practices. For this article, the authors employed a qualitative approach guided by Vygotsky’s conceptual development of knowledge theory. A thematic analysis was conducted, mediated by the lesson observation instrument. The findings indicate that Grade R educators lack structure and purpose in their instructional activities. Even when sound content knowledge is demonstrated, the instruction tends to be teacher-centred.

  13. Psychological effects and epistemological education through mathematics "abstraction" and "construction"

    Directory of Open Access Journals (Sweden)

    Aurel Pera

    2015-10-01

    Full Text Available This study is part of a broader research which will be found in future work, Psychology and epistemology of mathematical creation, complementary work of experimental research psychology mathematics, whose investigative approach, promoting the combination type cross section paradigms and quantitative methods and qualitative and comparative method and the analytic-synthetic, based on the following idea: to make learning as efficient, contents and methods must be appropriate to the individual particularities of the pupils, a measure of the balance between converging and diverging dosing tasks as a promising opening to the transition from education proficiency in math performance. At this juncture, mathematical existence as ontological approach against the background of a history of "abstraction" mathematical and theoretical observations on the abstraction, realization and other mathematical thought processes, explanatory approach fulfills the context in which s mathematics constituted an important factor in psychological and methodological perspective, in a context of maximizing the educational effectiveness that depends on the quality of the methods used in teaching, focused on knowledge of the general principles of psycho-didactics not only mathematical and mental organization individual student or knowledge of the factors that make possible psycho-educational learning process.

  14. Revisiting Mathematical Problem Solving and Posing in the Digital Era: Toward Pedagogically Sound Uses of Modern Technology

    Science.gov (United States)

    Abramovich, S.

    2014-01-01

    The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…

  15. Technology across the Curriculum. Proceedings of the Annual Conference of the Texas Computer Education Association (8th, Dallas, Texas, February 24-27, 1988).

    Science.gov (United States)

    Texas Computer Education Association, Lubbock.

    The theme of this computer education conference was "Technology across the Curriculum." These proceedings include papers on the application of educational technologies in school administration, business education, computer science education, mathematics, science, social studies, English and language arts, elementary education, gifted and…

  16. The Role of Mathematics Learning Centres in Engineering Education.

    Science.gov (United States)

    Fuller, Milton

    2002-01-01

    Points out the diminishing demand for mathematics undergraduate programs and the strong trend in engineering education to make greater use of computer coursework such as Mathcad, Matlab, and other software systems for the mathematical and statistical components of engineering programs. Describes the changing role of mathematics learning centers…

  17. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  18. Boundary crossing and brokering between disciplines in pre-service mathematics teacher education

    Science.gov (United States)

    Goos, Merrilyn; Bennison, Anne

    2017-12-01

    In many countries, pre-service teacher education programs are structured so that mathematics content is taught in the university's mathematics department and mathematics pedagogy in the education department. Such program structures make it difficult to authentically interweave content with pedagogy in ways that acknowledge the roles of both mathematicians and mathematics educators in preparing future teachers. This article reports on a project that deliberately fostered collaboration between mathematicians and mathematics educators in six Australian universities in order to investigate the potential for learning at the boundaries between the two disciplinary communities. Data sources included two rounds of interviews with mathematicians and mathematics educators and annual reports prepared by each participating university over the three years of the project. The study identified interdisciplinary boundary practices that led to integration of content and pedagogy through new courses co-developed and co-taught by mathematicians and mathematics educators, and new approaches to building communities of pre-service teachers. It also developed an evidence-based classification of conditions that enable or hinder sustained collaboration across disciplinary boundaries, together with an empirical grounding for Akkerman and Bakker's conceptualisation of transformation as a mechanism for learning at the boundary between communities. The study additionally highlighted the ambiguous nature of boundaries and implications for brokers who work there to connect disciplinary paradigms.

  19. Open Primary Education School Students' Opinions about Mathematics Television Programmes

    Science.gov (United States)

    Yenilmez, Kursat

    2008-01-01

    The purpose of this study was to determine open primary education school students' opinions about mathematics television programmes. This study indicated that to determine differences among open primary education school students' opinions about mathematics television programmes point of view students' characteristics like gender, age, grade,…

  20. Characterising the perceived value of mathematics educational apps in preservice teachers

    Science.gov (United States)

    Handal, Boris; Campbell, Chris; Cavanagh, Michael; Petocz, Peter

    2016-03-01

    This study validated the semantic items of three related scales aimed at characterising the perceived worth of mathematics-education-related mobile applications (apps). The technological pedagogical content knowledge (TPACK) model was used as the conceptual framework for the analysis. Three hundred and seventy-three preservice students studying primary school education from two public and one private Australian universities participated in the study. The respondents examined three different apps using a purposively designed instrument in regard to either their explorative, productive or instructive instructional role. While construct validity could not be established due to a broad range of variability in responses implying a high degree of subjectivity in respondents' judgments, the qualitative analysis was effective in establishing content validity.

  1. Leveling of Critical Thinking Abilities of Students of Mathematics Education in Mathematical Problem Solving

    Science.gov (United States)

    Rasiman

    2015-01-01

    This research aims to determine the leveling of critical thinking abilities of students of mathematics education in mathematical problem solving. It includes qualitative-explorative study that was conducted at University of PGRI Semarang. The generated data in the form of information obtained problem solving question and interview guides. The…

  2. Educational innovation, learning technologies and Virtual culture potential'

    Directory of Open Access Journals (Sweden)

    David Riley

    2002-12-01

    Full Text Available Learning technologies are regularly associated with innovative teaching but will they contribute to profound innovations in education itself? This paper addresses the question by building upon Merlin.Donald's co-evolutionary theory of mind, cognition and culture. He claimed that the invention of technologies for storing and sharing external symbol systems, such as writing, gave rise to a 'theoretic culture' with rich symbolic representations and a resultant need for formal education. More recently, Shaffer and Kaput have claimed that the development of external and shared symbol-processing technologies is giving rise to an emerging 'virtual culture'. They argue that mathematics curricula are grounded in theoretic culture and should change to meet the novel demands of 'virtual culture' for symbol-processing and representational fluency. The generic character of their cultural claim is noted in this paper and it is suggested that equivalent pedagogic arguments are applicable across the educational spectrum. Hence, four general characteristics of virtual culture are proposed, against which applications of learning technologies can be evaluated for their innovative potential. Two illustrative uses of learning technologies are evaluated in terms of their 'virtual culture potential' and some anticipated questions about this approach are discussed towards the end of the paper.

  3. Research Commentary: The Promise of Qualitative Metasynthesis for Mathematics Education

    Science.gov (United States)

    Thunder, Kateri; Berry, Robert Q., III.

    2016-01-01

    Mathematics education has benefited from qualitative methodological approaches over the past 40 years across diverse topics. Although the number, type, and quality of qualitative research studies in mathematics education has changed, little is known about how a collective body of qualitative research findings contributes to our understanding of a…

  4. Gender Issues in Education for Science and Technology: Current Situation and Prospects for Change.

    Science.gov (United States)

    Acker, Sandra; Oatley, Keith

    1993-01-01

    Prevailing explanations for the underrepresentation of females in mathematics, science, and technology in school and the workplace are reviewed, and disadvantageous features of higher education and the workplace are discussed. Educational innovation in the area of gender equity is considered, and questions are raised for further research. (SLD)

  5. Developing a learning environment on realistic mathematics education for Indonesian student teachers

    NARCIS (Netherlands)

    Zulkardi, Z.

    2002-01-01

    The CASCADE-IMEI study was started to explore the role of a learning environment (LE) in assisting mathematics student teachers learning Realistic Mathematics Education (RME) as a new instructional approach in mathematics education in Indonesia. The LE for this study has been developed and evaluated

  6. Snips and Snails and Puppy Dogs' Tails: Genderism and Mathematics Education

    Science.gov (United States)

    Esmonde, Indigo

    2011-01-01

    This paper contrasts public discussions about the educational troubles of boys and girls to consider what a gender equitable mathematics education might look like. Both public discussions and mathematics education research typically do not carefully define or theorize gender, tend to essentialize gender, and have narrow or unclear definitions of…

  7. Comparing Tablets and PCs in teaching Mathematics: An attempt to improve Mathematics Competence in Early Childhood Education

    OpenAIRE

    Papadakis, Stamatis; Kalogiannakis, Michail; Zaranis, Nicholas

    2016-01-01

    The present study investigates and compares the influence of using computers and tablets, in the development of mathematical competence in early childhood education. For the implementation of the survey, we conducted a 14 weeks intervention, which included one experimental and one control group. Children in both groups were taught Mathematics according to Greek curriculum for early childhood education in conjunction with the use either of the same educational software, which depending on the ...

  8. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  9. Research in collegiate mathematics education III

    CERN Document Server

    Arcavi, A; Kaput, Jim; Dubinsky, Ed; Dick, Thomas

    1998-01-01

    Volume III of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem solving. Included here are three different articles analyzing aspects of Schoenfeld's undergraduate problem-solving instruction. The articles provide new detail and insight on a well-known and widely discussed course taught by Schoenfeld for many years. Understanding concepts. These articles fe

  10. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... on senior high school students' proficiency in solving linear equation word problems ... from parents and teachers' influence on students' mathematics-related self-beliefs ...

  11. ICT use in the teaching of mathematics: Implications for professional development of pre-service teachers in Ghana. Education and information technologies

    NARCIS (Netherlands)

    Agyei, D.D.; Agvei, Douglas D.; Voogt, Joke

    2011-01-01

    Included in the contemporary mathematics curricula in Ghana is the expectation that mathematics teachers will integrate technology in their teaching. However, importance has not been placed on preparing teachers to use ICT in their instruction. This paper reports on a study conducted to explore the

  12. An examination of the factors related to women's degree attainment and career goals in science, technology, and mathematics

    Science.gov (United States)

    Nitopi, Marie

    During the last 30 years, women have made tremendous advances in educational attainment especially in post-secondary education. Despite these advances, recent researchers have revealed that women continue to remain underrepresented in attainment of graduate degrees in the sciences. The researcher's purpose in this study was to extend previous research and to develop a model of variables that significantly contribute to persistence in and attainment of a graduate degree and an eventual career in the science, mathematics, or technology professions. Data were collected from the Baccalaureate and Beyond Longitudinal Study (B&B:93/03). Variables in the categories of demographics, academics, finances, values and attitudes toward educational experiences, and future employment were analyzed by t tests and logistic regressions to determine gender differences in graduate degree attainment and career goals by male and female who majored in science, technology and mathematics. Findings supported significant gender differences in expectations for a graduate degree, age at baccalaureate degree attainment, number of science and engineering credits taken, and the value of faculty interactions. Father's education had a significant effect on degree attainment. Women and men had similar expectations at the beginning of their educational career, but women tended to fall short of their degree expectations ten years later. A large proportion of women dropped out of the science pipeline by choosing different occupations after degree completion. Additionally, women earned fewer science and math credits than men. The professions of science and technology are crucial for the nation's economic growth and competitiveness; therefore, additional researchers should focus on retaining both men and women in the STEM professions.

  13. Student-Teachers in Higher Education Institutions' (HEIs) Emotional Intelligence and Mathematical Competencies

    Science.gov (United States)

    Eustaquio, William Rafael

    2015-01-01

    As manifested by various studies conducted, the present state of Mathematics education in the teaching-learning process is relatively declining and the existing effort to identify emotional intelligence and mathematics competencies of Mathematics major student-teachers at Higher Education Institutions in Isabela is an attempt to help alleviate the…

  14. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    Science.gov (United States)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  15. Reframing Research on Methods Courses to Inform Mathematics Teacher Educators' Practice

    Science.gov (United States)

    Kastberg, Signe E.; Tyminski, Andrew M.; Sanchez, Wendy B.

    2017-01-01

    Calls have been made for the creation of a shared knowledge base in mathematics teacher education with the power to inform the design of scholarly inquiry and mathematics teacher educators' (MTEs) scholarly practices. Focusing on mathematics methods courses, we summarize and contribute to literature documenting activities MTEs use in mathematics…

  16. Mathematics Efficacy and Professional Development Needs of Wyoming Agricultural Education Teachers

    Science.gov (United States)

    Haynes, J. Chris; Stripling, Christopher T.

    2014-01-01

    School-based agricultural education programs provide contextualized learning environments for the teaching of core academic subject matter. This study sought to examine the mathematics efficacy and professional development needs of Wyoming agricultural education teachers related to teaching contextualized mathematics. Wyoming agricultural…

  17. Prospective Teachers’ Tendencies to Utilize From the Facilities of Contemporary Educational Technology

    Directory of Open Access Journals (Sweden)

    Gizem SAYGILI

    2016-07-01

    Full Text Available In terms of effectiveness and efficiency, it is important to determine the views of prospective teachers related to taking advantage of the facilities of contemporary educational technology. This study which aims to identify prospective teachers’ attitudes towards computer-assisted learning was conducted with 140 prospective teachers (86 female, 54 male who have been attending pedagogical formation education at Süleyman Demirel University in the 2013 academic year. In this study, in eight different fields of prospective teachers' attitudes towards computer assisted education were examined with different variables such as gender, major and graduation year. As a data collection tool, the "Computer Assisted Education Attitude Scale" was used in order to determine the tendencies of prospective teachers towards the use of computer-assisted learning in different fields such as physical sciences, social sciences, health sciences, fine arts, theology, mathematics and Turkish language. In the statistical analysis, frequency analysis, descriptive statistics, nonparametric statistical technics were used. As a result of the analysis it was identified that teachers participating our study exhibited substandard attitudes towards computer-assisted education. In computer-assisted education, female prospective teachers had higher attitude level than men prospective teachers. In addition, attitude scores of participants of mathematics, health sciences, fine arts and science was higher than the participants of the Turkish language, foreign languages, social sciences and theology departments. There were statistically significant difference between attitude scores of participants of different disciplines. Results of the research findings are expected to contribute to the widespread use of instructional technology, and are expected to lead to applications in other fields.Keywords: Teaching Profession, Education, Technology, Computer-Assisted Education, Attitude

  18. Journal Quality in Mathematics Education

    Science.gov (United States)

    Williams, Steven R.; Leatham, Keith R.

    2017-01-01

    We present the results of 2 studies, a citation-based study and an opinion-based study, that ranked the relative quality of 20 English-language journals that exclusively or extensively publish mathematics education research. We further disaggregate the opinion-based data to provide insights into variations in judgment of journal quality based on…

  19. MATHEMATICS PRACTICES AND THEIR EFFECTS ON FIRST-TO-FOURTH-GRADE TEACHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Marta Cristina Cezar Pozzobon

    2012-12-01

    Full Text Available Grounded on Foucauldian studies, we have attempted to understand how mathematics practices have produced effects on first-to-fourth-grade mathematics teachers. We have argued that such effects go beyond the borders of the pedagogical and the contents of this knowledge area, becoming part of a “general policy” of truth that comprehends the conceptions of scientific knowledge, mathematics and teaching of a particular time. The materials here considered were produced in a High School course in the 1990’s. We have realized that the practices of mathematics education in that period could be assessed from three emphases: a education to teach mathematics through the “concrete”, the “logical knowledge” and the “abstract”, showing mathematics teaching practices from a constructivist, science-oriented perspective, b “globalized teaching”, and c “emphasis on reality”. This has enabled us to problematize the mathematical education of first-to-fourth grade teachers produced in those practices.

  20. Connecting Mathematics Learning through Spatial Reasoning

    Science.gov (United States)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  1. Exploring rural high school learners' experience of mathematics ...

    African Journals Online (AJOL)

    School of Education Studies, University of the Free State, Qwaqwa Campus, South Africa ... City Press (2012) reports that one in six Grade 12 mathematics learners scored less ...... Eurasia Journal of Mathematics, Science and Technology.

  2. Undergraduate Students' Perceptions of the Mathematics Courses Included in the Primary School Teacher Education Program

    Science.gov (United States)

    Serin, Mehmet Koray; Incikabi, Semahat

    2017-01-01

    Mathematics educators have reported on many issues regarding students' mathematical education, particularly students who received mathematics education at different departments such as engineering, science or primary school, including their difficulties with mathematical concepts, their understanding of and preferences for mathematical concepts.…

  3. Local Instruction Theories as Means of Support for teachers in Reform Mathematics Education

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.

    2004-01-01

    This article focuses on a form of instructional design that is deemed fitting for reform mathematics education. Reform mathematics education requires instruction that helps students in developing their current ways of reasoning into more sophisticated ways of mathematical reasoning. This implies

  4. Starting a Conversation about Open Data in Mathematics Education Research

    Science.gov (United States)

    Logan, Tracy

    2015-01-01

    This position paper discusses the role of open access research data within mathematics education, a relatively new initiative across the wider research community. International and national policy documents are explored and examples from both the scientific and social science paradigms of mathematical sciences and mathematics education…

  5. The Use of GBL to Teach Mathematics in Higher Education

    Science.gov (United States)

    Naik, Nitin

    2017-01-01

    Innovation in learning and teaching is an everyday requirement in contemporary higher education (HE), especially in challenging subjects such as mathematics. Teaching mathematics to students with limited experience of formal mathematical instruction is a good example of a demanding pedagogical undertaking where innovatory practice can help HE…

  6. Problem solving as a challenge for mathematics education in The Netherlands

    NARCIS (Netherlands)

    Doorman, M.; Drijvers, P.; Dekker, T.; Heuvel-Panhuizen, T. van; Lange, J. de; Wijers, M.

    2007-01-01

    This paper deals with the challenge to establish problem solving as a living domain in mathematics education in The Netherlands. While serious attempts are made to implement a problem-oriented curriculum based on principles of realistic mathematics education with room for modelling and with

  7. ICT use in science and mathematics teacher education in Tanzan: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, A.; Fisser, P.; Pieters, J.; Voogt, J.

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  8. ICT Use in Science and Mathematics Teacher Education in Tanzania: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, Ayoub; Fisser, Petra; Pieters, Julius Marie; Voogt, Joke

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  9. NEW TEACHING MATHEMATICS TEACHING EFFECTIVENESS OF THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES

    OpenAIRE

    Zhanys Aray Boshanqyzy; Nurkasymova Saule Nurkasymovna

    2017-01-01

    The possibilities of computer technologies in improving the quality of teaching mathematics and its application in the 7th grade students studied the impact on the development of mathematical thinking. Teachers and pupils kanşalıktı methodology to apply this technology meñgergendikteri tested and determined to improve the methods of teaching mathematics in the scientific literature of the main ideas, 7th grade, based on the best practices in the teaching of mathematics and taking into account...

  10. Primary school mathematics teachers' ideas, beliefs, and practices ...

    African Journals Online (AJOL)

    kofi.mereku

    African Journal of Educational Studies in Mathematics and Sciences Vol. 12, 2016. 45 ... The study explored Ghanaian primary school mathematics teachers' ideas, beliefs and ...... Journal of science and technology, 24(2), 106 -115. Palmer ...

  11. ABOUT THREE PROCESSES IN MATHEMATICS EDUCATION FOR SOLIDARITY ECONOMY ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Renata Cristina Geromel Meneghetti

    2013-07-01

    Full Text Available This paper focuses on Mathematics Education in the context of Solidarity Economy and aims to approach our performance, aiming to answer demands of Mathematics Education of the three Solidarity Economy Enterprises (SEE: a cooperative cleaning, of a women carpenter’s group and a group manufacturing homemade soap. Based on the Ethnomathematics, a pedagogical intervention with these SEE was performed, in which we seek to work the Mathematics within the cultural context of these enterprises through problem situations related to their daily work. The research followed a qualitative research through action research. As a result we found that the approach applied has contributed to changes some attitudes, it was favorable to the learning of concepts and also the socioeconomic reintegration, in the direction of a posture more critical and emancipatory. The interventions were inserted in the Non Formal Education, and we point out that realize this type of education can indeed contribute to the ideals of Education in the Solidarity Economy as a way include those who have been socially excluded by formal education provided at school.

  12. The Dependency of Engineering Technology Student’s towards the Usage of Calculator in Mathematics

    Directory of Open Access Journals (Sweden)

    Hussin Nor Hafizah

    2017-01-01

    Full Text Available Calculators are one of the important technology used to solve mathematical computations. It also can be the tool for learning mathematics if it is used appropriately. However, too much depends on calculator can be harmful to students ability to solve simple mathematical problem. The purpose of this study is to examine the dependency of students in Faculty of Engineering Technology (FTK, Universiti Teknikal Malaysia Melaka, on the usage of calculator to solve the mathematical problems. A sample of 383 first year Engineering Technology (ET students’ taking mathematics subject are selected from five different course. Students were examined based on the results of Mathematic Competency Test and the survey from a questionnaire that covers questions regarding the students’ enjoyment on the usage of calculator and the usefulness of calculator in mathematic activities. The investigation yield a result showing that the students has a high dependency on using calculator to solve mathematical problem.

  13. Lesson study in prospective mathematics teacher education: didactic and paradidactic technology in the post-lesson reflection

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    2016-01-01

    This paper presents a detailed analysis of the post-lesson reflection, carried out in the context of eight cases of lesson study conducted by teams of Danish, lower secondaryprospective teachers and their supervisors. The participants, representing different institutions, were all new to the less...... and concern to the whole profession of mathematics teachers and the analysis adds to our insight into the potential of lesson study in prospective education as a meeting place where pertinent actors contribute to the expansion and dissemination of shared professional knowledge......This paper presents a detailed analysis of the post-lesson reflection, carried out in the context of eight cases of lesson study conducted by teams of Danish, lower secondaryprospective teachers and their supervisors. The participants, representing different institutions, were all new to the lesson...... study format. Nevertheless, it is demonstrated how their interaction shape the development of discourse about mathematical learning. The anthropological theory of the didactic is employed as the theoretical approach to analyse the mathematical and primarily didactical praxeologies developed...

  14. Didactic trajectory of research in mathematics education using research-based learning

    Science.gov (United States)

    Charitas Indra Prahmana, Rully; Kusumah, Yaya S.; Darhim

    2017-10-01

    This study aims to describe the role of research-based learning in design a learning trajectory of research in mathematics education to enhance research and academic writing skills for pre-service mathematics teachers. The method used is a design research with three stages, namely the preliminary design, teaching experiment, and retrospective analysis. The research subjects are pre-service mathematics teacher class of 2012 from one higher education institution in Tangerang - Indonesia. The use of research-based learning in designing learning trajectory of research in mathematics education plays a crucial role as a trigger to enhancing math department preservice teachers research and academic writing skills. Also, this study also describes the design principles and characteristics of the learning trajectory namely didactic trajectory generated by the role of research-based learning syntax.

  15. Research on Team-teaching in Mathematics Education

    OpenAIRE

    重松, 敬一; 井戸野, 佐知子; 勝美, 芳雄

    1995-01-01

    Recently, there are many classes in which at least two teachers teach mathematics in elementary and lower secondary schools. We call that kind of teaching team-teaching. In some countries, it is called co-operative teaching. In this paper, we investigate the concept of team-teaching in mathematics education implementing a questionnaire, interviews or observing classroom lessons. Today, team-teaching has been administratively systematized. For example, additive teachers are sent to local schoo...

  16. Nordic Science and Technology Entrepreneurship Education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  17. A Categorization Model for Educational Values of the History of Mathematics. An Empirical Study

    Science.gov (United States)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-11-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the history of mathematics by combining the objectives of high school mathematics curriculum in China. This framework includes six dimensions: the harmony of knowledge, the beauty of ideas or methods, the pleasure of inquiries, the improvement of capabilities, the charm of cultures, and the availability of moral education. The results show that this framework better explained the all-educational values of the history of mathematics that all teaching cases showed. Therefore, the framework can guide teachers to better integrate the history of mathematics into teaching.

  18. Teachers' Attitudes towards Mathematics in Early Childhood Education

    Science.gov (United States)

    Thiel, Oliver

    2010-01-01

    In Germany during the past few years the nursery school (for ages three-six) is increasingly regarded as an educational institution rather than a childcare centre. This is reflected in the increasing number of curricula for young children, which include mathematics as a domain of learning skills. In the past mathematics has not been part of the…

  19. MATHEMATICS COURSES AND NEW EMERGING DESIGN TOOL AN OVERVIEW OF ARCHITECTURAL EDUCATION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Aswin Indraprastha

    2008-01-01

    Full Text Available Since the beginning, mathematics courses are inherent within architecture education. In Indonesia, the legacy from Dutch education system has influenced most of the architectural schools and this courses stand as one of basic engineering courses for architecture education system. This situation has been remaining well adopted until recently, some of architectural schools are tailoring mathematics to shape with contemporary challenges particularly regards to the digital tools. This paper aims to present brief information about mathematics courses in architectural schools in Indonesia, the importance of mathematics in learning digital design tools and propose thoughts to upgrade mathematics content in architectural education towards new emerging design tools.

  20. Where Are All the Talented Girls? How Can We Help Them Achieve in Science Technology Engineering and Mathematics?

    Directory of Open Access Journals (Sweden)

    Monica MEADOWS

    2016-12-01

    Full Text Available Women’s participation in science, technology, engineering and mathematics (STEM courses and careers lags behind that of men. Multiple factors contribute to the underrepresentation of women and girls in STEM. Academic research suggests three areas, which account for the under representation of girls in STEM: social and environmental factors, the school climate and the influence of bias. In order to engage and to retain girls in STEM, educators need to: eliminate bias in the classroom, change school culture, introduce female role models, help girls assess their abilities accurately and develop talent in areas related to science, technology, engineering, and mathematics. Educators should encourage young girls to ask questions about the world, to problem solve, and to develop creativity through play and experimentation. Women have made impressive gains in science and engineering but remain a distinct minority in many science and engineering fields. Creating environments that support girls’ and women’s achievements and interests in science and engineering will encourage more girls and women to pursue careers in these vital fields.

  1. An Objectivist Critique of Relativism in Mathematics Education

    Science.gov (United States)

    Rowlands, Stuart; Graham, Ted; Berry, John

    Many constructivists tag as `absolutist' references to mathematics as an abstract body of knowledge, and stake-out the moral high-ground with the argument that mathematics is not only utilised oppressively but that mathematics is, in-itself, oppressive. With much reference to Ernest's (1991) Philosophy of Mathematics Education this tag has been justified on the grounds that if mathematics is a social-cultural creation that is mutable and fallible then it must be social acceptance that confers the objectivity of mathematics. This paper argues that mathematics, albeit a social-cultural creation that is mutable and fallible, is a body of knowledge the objectivity of which is independent of origin or social acceptance. Recently, Ernest (1998) has attempted to express social constructivism as a philosophy of mathematics and has included the category of logical necessity in his elaboration of the objectivity of mathematics. We argue that this inclusion of logical necessity not only represents a U-turn, but that the way in which Ernest has included this category is an attempt to maintain his earlier position that it is social acceptance that confers the objectivity of mathematics.

  2. Felix Klein and the NCTM's Standards: A Mathematician Considers Mathematics Education.

    Science.gov (United States)

    McComas, Kim Krusen

    2000-01-01

    Discusses the parallels between Klein's position at the forefront of a movement to reform mathematics education and that of the National Council of Teachers of Mathematics' (NCTM) Standards. Draws a picture of Klein as an important historical figure who saw equal importance in studying pure mathematics, applying mathematics, and teaching…

  3. How to Introduce Mathematic Modeling in Industrial Design Education

    NARCIS (Netherlands)

    Langereis, G.R.; Hu, J.; Feijs, L.M.G.; Stillmann, G.A.; Kaiser, G.; Blum, W.B.; Brown, J.P.

    2013-01-01

    With competency based learning in a project driven environment, we are facing a different perspective of how students perceive mathematical modelling. In this chapter, a model is proposed where conventional education is seen as a process from mathematics to design, while competency driven approaches

  4. The integration of Mathematics, Science and Technology in early childhood education and the foundation phase: The role of the formation of the professional identities of beginner teachers

    Directory of Open Access Journals (Sweden)

    Marie Botha

    2015-02-01

    Full Text Available This article focuses on the professional identity formation of six beginner teachers (three in early childhood education and three in the foundation phase, involved in the teaching of Mathematics, Science and Technology (MST. Attention is in particular being paid to the role of professional identity in how they applied innovative teaching methods such as enquiry-based teaching. The study is based on the personal narratives of the six teachers, regarding their own learning experiences in MST, the impact of their professional training at an institution of higher education, as well as their first experiences as MST teachers in the workplace. A qualitative research design was applied and data was obtained through visual (photo collages and written stories, observation and interviews. Whilst all the teachers held negative attitudes towards Mathematics, this situation was turned around during their university training. The three teachers in early childhood education experienced their entrance to the profession as positive, due mainly to the support of colleagues in their application of innovative teaching methods. Two teachers in the foundation phase, however, experienced the opposite. The findings emphasise the complex processes in the moulding of a professional teacher identity and how teaching practices are influenced by these processes.

  5. Science Curiosity as a Correlate of Academic Performance in Mathematics Education: Insights from Nigerian Higher Education

    OpenAIRE

    Abakpa , Benjamin ,; Abah , Joshua ,; Okoh Agbo-Egwu , Abel

    2018-01-01

    International audience; This study investigated the relationship between the science curiosity levels of undergraduate of mathematics education in a Nigerian higher educational institution and their academic grade point averages. The study employed a correlational survey research design on a random sample of 104 mathematics education students. The Science Curiosity Scale – Comparative Self Report was adapted to measure the students' distinctive appetite for consuming science-related media for...

  6. Videogames as an incipient research object inMathematics Education

    OpenAIRE

    Albarracín, Lluís; Hernández-Sabaté, Aura; Gorgorió, Núria

    2017-01-01

    [EN] This article presents a review of research made in the eld of mathematics education onthe use of video games in the classroom. These investigations have focused on four areas:impact in academic performance focused on mathematical contents, speci c mathematicalcontents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving. Finally, we propose two research new approachesthat have not been explored so far, like ...

  7. Applying contemporary philosophy in mathematics and statistics education : The perspective of inferentialism

    NARCIS (Netherlands)

    Schindler, Maike; Mackrell, Kate; Pratt, Dave; Bakker, A.

    2017-01-01

    Schindler, M., Mackrell, K., Pratt, D., & Bakker, A. (2017). Applying contemporary philosophy in mathematics and statistics education: The perspective of inferentialism. In G. Kaiser (Ed.). Proceedings of the 13th International Congress on Mathematical Education, ICME-13

  8. Understanding technology use and constructivist strategies when addressing Saudi primary students' mathematics difficulties.

    OpenAIRE

    Alabdulaziz, M.; Higgins, S.

    2017-01-01

    This paper will investigate the relationship between technology use and the use of constructivist strategies when addressing Saudi primary students' mathematics difficulties. Semi-structured interviews and observations were used for the purpose of this research, which were undertaken with three mathematics teachers from school A which used technology, and the other three from school B, which did not use technology. We found that technology can support constructivist approach when teaching and...

  9. Views of Elementary School Pre-Service Teachers About the Use of Educational Mathematics Games in Mathematics Teaching

    Directory of Open Access Journals (Sweden)

    Hasan Topçu

    2014-08-01

    Full Text Available The aim of this study was to reveal the opinions of elementary school pre-service teachers about the usage of educational mathematics games in elementary mathematics teaching. In this study, case study that, one of qualitative research methods, was used. Data were collected by utilizing a semi-structured interview form to these elementary school pre-service teachers and analyzed using by content analysis method. A total of 10 junior pre-service teachers enrolled in undergraduate programs of elementary teaching attended to this research. In conclusion, these pre-service teachers indicated that educational computer games would provide benefits such as making students’ learning more permanent, visualizing concepts, making students love mathematics, learning by entertaining, reinforcing what has been learnt and developing thinking skills. Nevertheless, these elementary school pre-service teachers stated the limitations about educational computer games such as causing addiction and physical damages, being time-consuming, requiring special equipment and software and making class management difficult. Besides, it was revealed that the pre-service teachers demonstrated positive attitudes towards the use of games in courses while that they did not feel themselves competent in terms of application.Key Words:    Educational computer games, mathematics teaching, elementary school pre-service teachers

  10. Proposal of a pedagogical model for mathematics teacher education

    Directory of Open Access Journals (Sweden)

    Alfonso Jiménez Espinosa

    2011-01-01

    Full Text Available This research-based article reflects on mathematics teacher education, and proposes a pedagogical model for this purpose, called Gradual Research Pedagogical Model (MPGI. This model considers the central curricular elements of any academic education process: student, teacher and contents, with evaluation as transversal element for analysis and feedback. The training of future teachers is constituted by three moments, each with its specific emphasis: the first is “contextualization”, which aims at having the student understand his or her new academic role, and identify and overcome his or her academic weak points, the second is “knowledge foundation”, which offers basic education in the fields of mathematics and pedagogy, as well as sensibilization towards social issues, opening up the student’s possibilities as leader and agent of change, and lastly, “knowledge immersion”, which is centered on research and the identification and study of topics and problems of the mathematical discipline as well as the pedagogical field.

  11. What Is the Relationship between Technology and Mathematics Teaching Anxiety?

    Science.gov (United States)

    Tatar, Enver; Zengin, Yilmaz; Kagizmanli, Türkan Berrin

    2015-01-01

    The aim of this study is to determine the relationship between pre-service teachers' perceptions regarding technology use in mathematics teaching and their computer literacy levels as well as their mathematics teaching anxiety. The nonexperimental correlational research, which is included in the quantitative research approach, was used in the…

  12. The Relationship between Big Data and Mathematical Modeling: A Discussion in a Mathematical Education Scenario

    Science.gov (United States)

    Dalla Vecchia, Rodrigo

    2015-01-01

    This study discusses aspects of the association between Mathematical Modeling (MM) and Big Data in the scope of mathematical education. We present an example of an activity to discuss two ontological factors that involve MM. The first is linked to the modeling stages. The second involves the idea of pedagogical objectives. The main findings…

  13. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  14. Criticising with Foucault: Towards a Guiding Framework for Socio-Political Studies in Mathematics Education

    Science.gov (United States)

    Kollosche, David

    2016-01-01

    Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the…

  15. History, applications, and philosophy in mathematics education

    DEFF Research Database (Denmark)

    Jankvist, Uffe Thomas

    2013-01-01

    on the observation that a use of history, applications, and philosophy as a 'goal' is best realized through a modules approach, the article goes on to discuss how to actually design such teaching modules. It is argued that a use of primary original sources through a so-called guided reading along with a use......The article first investigates the basis for designing teaching activities dealing with aspects of history, applications, and philosophy of mathematics in unison by discussing and analyzing the different 'whys' and 'hows' of including these three dimensions in mathematics education. Based...... of student essay assignments, which are suitable for bringing out relevant meta-issues of mathematics, is a sensible way of realizing a design encompassing the three dimensions. Two concrete teaching modules on aspects of the history, applications, and philosophy of mathematics-HAPh-modules-are outlined...

  16. "Whys" and "Hows" of Using Philosophy in Mathematics Education

    Science.gov (United States)

    Jankvist, Uffe Thomas; Iversen, Steffen Møllegaard

    2014-01-01

    The article elaborates and exemplifies a potential categorization of the reasons for using philosophy, in particular the philosophy of mathematics, in mathematics education and approaches to doing so-the so-called "whys" and "hows". More precisely, the "whys" are divided into the two categories of "philosophy as…

  17. Epistemological bases OF THE RELATIONSHIP between culture and mathematics education

    Directory of Open Access Journals (Sweden)

    Neivaldo Oliveira Silva

    2011-06-01

    Full Text Available Our main intention with this theoretical construct is to understand the mathematics education embedded in the social context to which it belongs and where different groups are present with their beliefs, knowledge, practices that, in turn, are the result of a historical process, in which changes occur and affect most of the different fields ofIcnowledge.In the theoretical construction, we start from a more general picture of the world and society, focusing on the historical and social changes and, at the same time, in changes in the scope of mathematical knowledge. We do this through a historical analysis and, along the way, we seek to understand culture, Mathematics and Mathematics Education, as fields or dimensions present in this broader context of historical changes, and seek to establish relationships between thesefields or areas of knowledge, in the context of their productions. ln seeking to understand "culture", we try not to lose sight of the social dynamics that are established in the contacts between different groups, each with characteristics that involve traditions, artistic manifestations, culinary language, but surrounded by a society that results from a globalization process getting stronger. It is in this broader context that we seek to understand mathematics, as a field of knowledge, making an analysis that goes from its origin as well as its implications with reality and society, so that to the end, we present and discuss the Ethnomathematics as a possible alternative to do or to understand the articulation pointed out. Finally, we extend the discussion to understand the mathematics education, in view of its social integration, and the socialization perspective of the mathematical knowledge. We realized that mathematics education, seen as a field of knowledge and considering the need for socialization of this knowledge, is also the result of practices developed and a comprehensive process of change that has been occurring in

  18. The Effect of the Success in Teaching Geometry of Basic Level Education Mathematics

    Science.gov (United States)

    Yavuz, Ayse; Aydin, Bünyamin; Avci, Musa

    2016-01-01

    The purpose of this study was to investigate primary and secondary mathematics teachers' candidates' effect of the success in geometry education. The sample of the study consists of students first and last class preservice primary mathematics teachers which are enrolled program education at department of mathematics and students first and last…

  19. Classroom-Based Professional Expertise: A Mathematics Teacher's Practice with Technology

    Science.gov (United States)

    Bozkurt, Gulay; Ruthven, Kenneth

    2017-01-01

    This study examines the classroom practice and craft knowledge underpinning one teacher's integration of the use of GeoGebra software into mathematics teaching. The chosen teacher worked in an English secondary school and was professionally well regarded as an accomplished user of digital technology in mathematics teaching. Designed in accordance…

  20. Videogames as an incipient research object inMathematics Education

    Directory of Open Access Journals (Sweden)

    Lluís Albarracín

    2017-01-01

    Full Text Available This article presents a review of research made in the field of mathematics education on the use of video games in the classroom. These investigations have focused on four areas: impact in academic performance focused on mathematical contents, specific mathematical contents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving.  Finally,  we  propose  two  research  new  approaches that  have  not  been  explored  so  far,  like  the  use  of  commercial  videogames  for  mathematical  activities  or  the  use  of  simulation  games  as  environment  to  promote  mathematical modeling.

  1. Teachers' Pedagogical Mathematical Awareness in Swedish Early Childhood Education

    Science.gov (United States)

    Björklund, Camilla; Barendregt, Wolmet

    2016-01-01

    Revised guidelines for Swedish early childhood education that emphasize mathematics content and competencies in more detail than before raise the question of the status of pedagogical mathematical awareness among Swedish early childhood teachers. The purpose of this study is to give an overview of teachers' current pedagogical mathematical…

  2. Mathematics Teacher Educators' Perceptions and Use of Cognitive Research

    Science.gov (United States)

    Laski, Elida V.; Reeves, Todd D.; Ganley, Colleen M.; Mitchell, Rebecca

    2013-01-01

    Instructors ("N"?=?204) of elementary mathematics methods courses completed a survey assessing the extent to which they value cognitive research and incorporate it into their courses. Instructors' responses indicated that they view cognitive research to be fairly important for mathematics education, particularly studies of domain-specific topics,…

  3. Implications for Science and Mathematics Education of Current Philosophies of Education.

    Science.gov (United States)

    Hopkins, Richard L.

    1981-01-01

    Differing philosophies of education associated with John Dewey, Robert Maynard Hutchins, Jerome Bruner, and A. S. Neill are outlined. Implications of each philosophy for mathematics and science teaching are suggested. (MP)

  4. Prospective and Current Secondary Mathematics Teachers' Criteria for Evaluating Mathematical Cognitive Technologies

    Science.gov (United States)

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2017-01-01

    As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study…

  5. Mathematics Anxiety and Prevention Strategy: An Attempt to Support Students and Strengthen Mathematics Education

    Directory of Open Access Journals (Sweden)

    Aweke Shishigu

    2018-02-01

    Full Text Available In the process of reaching a medium income country, science, mathematics and technology have become an emphasis of Ethiopia. But, currently, students' interest to study mathematics and ability in mathematics is declining. This study therefore aimed to investigate the prevalence of mathematics anxiety and its effect on students' current mathematics achievement. Additionally, by grounding on the literature, some strategies supposed to reduce the negative effects of math anxiety were identified for practice. The study was conducted on five randomly selected public secondary schools of East Shoa Zone in Oromia region. Math anxiety was measured using a validated instrument called Math Anxiety Rating Scale (MARS, whereas students' current mathematics achievement was measured using achievement test. Structural model was developed to examine causal relationship of the variables treated in the study. The finding revealed that there was a significant negative relationship between mathematics anxiety and achievement. There was also a statistically significant gender difference in mathematics anxiety and current math achievement, with effect size small and typical respectively. Based on the findings of the study, imperative implication for practice and future research were made.

  6. Technology use among Ghanaian Senior High School mathematics ...

    African Journals Online (AJOL)

    kofi.mereku

    mathematics teachers and to also uncover the factors influencing their technology use ... the World Links for Development (WorLD)programme was introduced in ... students critical thinking skills and to foster their higher order cognitive abilities ...

  7. Mathematics education and the information society

    NARCIS (Netherlands)

    Gravemeijer, K.P.E.; Damlamian, A.; Rodigues, J.F.; Sträßer, R.

    2013-01-01

    Starting point for this chapter is that societal changes ask for adaptations of a foundational mathematics curriculum for all. This chapter especially looks at the effects of information technology and globalization on the job market and employability with an eye on its consequences for the goals of

  8. Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics

    Science.gov (United States)

    Arroyo, Ivon; Burleson, Winslow; Tai, Minghui; Muldner, Kasia; Woolf, Beverly Park

    2013-01-01

    We provide evidence of persistent gender effects for students using advanced adaptive technology while learning mathematics. This technology improves each gender's learning and affective predispositions toward mathematics, but specific features in the software help either female or male students. Gender differences were seen in the students' style…

  9. The role of technology in fostering creativity in the teaching and learning of mathematics

    Directory of Open Access Journals (Sweden)

    Balarabe Yushau

    2005-10-01

    Full Text Available The paper looks at interrelationships between creativity and technology in the teaching and learning of mathematics. It suggests that a proper use of various technologies especially computers in the teaching and learning of mathematics has the potential of helping learners to develop their creativity. The technologies can provide an atmosphere under which mathematical skills can be extended beyond the ability to calculate or reproduce problems and enable learners to investigate, analyse and interpret problems at hand. Furthermore, with computers learners can use an experimental approach to deal with mathematical problems, which can lead to conjecture, pattern finding, examples and counter examples. In fact, if used effectively, computational aids can help in improving learners’ intellectual ability and hence mathematical achievement while fostering the requisite creativity not found in the traditional approach.

  10. Educational Cloud Services and the Mathematics Confidence, Affective Engagement, and Behavioral Engagement of Mathematics Education Students in Public University in Benue State, Nigeria

    Science.gov (United States)

    Iji, Clement Onwu; Abah, Joshua Abah; Anyor, Joseph Wuave

    2018-01-01

    This study investigated the impact of cloud services on mathematics education students' mathematics confidence, affective engagement, and behavioral engagement in public universities in Benue State, Nigeria. Ex-post facto research design was adopted for the study. The instrument for the study was the researcher-developed Cloud Services Mathematics…

  11. The shanai, the pseudosphere and other imaginings: envisioning culturally contextualised mathematics education

    Science.gov (United States)

    Luitel, Bal Chandra; Taylor, Peter Charles

    2007-07-01

    Adopting a self-conscious form of co-generative writing and employing a bricolage of visual images and literary genres we draw on a recent critical auto/ethnographic inquiry to engage our readers in pedagogical thoughtfulness about the problem of culturally decontextualised mathematics education in Nepal, a country rich in cultural and linguistic diversity. Combining transformative, critical mathematics and ethnomathematical perspectives we develop a critical cultural perspective on the need for a culturally contextualized mathematics education that enables Nepalese students to develop (rather than abandon) their cultural capital. We illustrate this perspective by means of an ethnodrama which portrays a pre-service teacher's point of view of the universalist pedagogy of Dr. Euclid, a semi-fictive professor of undergraduate mathematics. We deconstruct the naivety of this conventional Western mathematics pedagogy arguing that it fails to incorporate salient aspects of Nepali culture. Subsequently we employ metaphorical imagining to envision a culturally inclusive mathematics education for enabling Nepalese teachers to (i) excavate multiple mathematical knowledge systems embedded in the daily practices of rural and remote villages across the country, and (ii) develop contextualized pedagogical perspectives to serve the diverse interests and aspirations of Nepali school children.

  12. Regaining the Edge in Urban Education: Mathematics and Sciences.

    Science.gov (United States)

    Gallon, Dennis P., Ed.

    In order to remain competitive in the world economy, the United States must develop and improve mathematics and science education. Given that the future workforce in this country will be comprised largely of women and minorities, groups traditionally not entering mathematics and science careers, special recruitment and retention efforts must be…

  13. Mathematical Strengths and Weaknesses of Preservice Agricultural Education Teachers

    Science.gov (United States)

    Stripling, Christopher T.; Roberts, T. Grady; Stephens, Carrie A.

    2014-01-01

    The purpose of this study was to describe the mathematics ability of preservice agricultural education teachers related to each of the National Council of Teachers of Mathematics (NCTM) content/process areas and their corresponding sub-standards that are cross-referenced with the National Agriculture, Food and Natural Resources Career Cluster…

  14. Mathematics Education in Multilingual Contexts for the Indigenous Population in Latin America

    DEFF Research Database (Denmark)

    Parra, Aldo; Mendes, Jackeline; Valero, Paola

    2016-01-01

    In Latin America, there is a considerable Indigenous population whose participation in the educational system has been systematically obstructed by the imposition of Spanish and Portuguese, the languages of the colonial powers. The historical process of Indigenous education was rooted in the colo...... the development of mathematical registers and language revitalization as central issues within the mathematics education of Indigenous people....

  15. Integrating Universal Design and Response to Intervention in Methods Courses for General Education Mathematics Teachers

    Science.gov (United States)

    Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.

    2014-01-01

    Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…

  16. Helping Early Childhood Educators to Understand and Assess Young Children's Mathematical Minds

    Science.gov (United States)

    Ginsburg, Herbert P.

    2016-01-01

    This issue of "ZDM Mathematics Education" focuses on the formative assessment of young children's mathematical thinking, with an emphasis on computer-based approaches drawing upon on cognitive and educational research. The authors discuss several different assessment methods, including clinical interviewing, observation, and testing,…

  17. Mathematics education and the dignity of being

    DEFF Research Database (Denmark)

    Valero, Paola; García, Gloria; Camelo, Francisco

    2012-01-01

    On the grounds of our work as researchers, teacher educators and teachers engaging with a socio-political approach in mathematics education in Colombia, we propose to understand democracy in terms of the possibility of constructing a social subjectivity for the dignity of being. We address the di...... of territorialisation, and Latin American epistemology with the notion of intimate space as an important element of social subjectivity....

  18. Influences of Technology Integrated Professional Development Course on Mathematics Teachers

    Science.gov (United States)

    Kul, Umit

    2018-01-01

    The aim of this study was to explore the degree to which a professional development (PD) program designed using GeoGebra influences a group of Turkish middle school teachers' beliefs in relation to mathematics and role of GeoGebra in mathematics education. In order to collect the required data, the PD course was established to provide six teachers…

  19. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  20. International Conference on Research and Education in Mathematics

    CERN Document Server

    Srivastava, Hari; Mursaleen, M; Majid, Zanariah

    2016-01-01

    This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.

  1. Developing a Mathematics Education Quality Scale

    Science.gov (United States)

    Ciftci, S. Koza; Karadag, Engin

    2016-01-01

    The aim of this study was to evaluate students' perceptions of the quality of mathematics education and to develop a reliable and valid measurement tool. The research was conducted with 638 (first study) and 407 (second study) secondary school students in Eskisehir, Turkey. Item discrimination, structural validity (exploratory factor analysis and…

  2. About the Effectiveness of the Training Technology Model of Trigonometry Teaching for the Mathematical Profile Students

    Directory of Open Access Journals (Sweden)

    N. I. Popov

    2013-01-01

    Full Text Available The paper is devoted to trigonometry teaching in higher school as a part of the elementary mathematics course with a complex hierarchical structure. Due to the complicated content of the given discipline,each of its modules can be divided into separate themes; though, the teacher should emphasize their interrelations, as well as the links with the coordinate method, geometry and mathematical analysis.The recommended training technology model allows the teacher to build up and control the training process, and achieve good results in accordance with the assigned tasks. In the course of the model approbation, theauthor developed the e-learning resource and identification method for selecting the key mathematical examples and exercises for each theme and module. The analysis of students’ tests and questionnaires conducted for several years proves the effectiveness of the designed model for the senior university students of mathematical profile. Based on the research findings, the author developed the educational methodology complex for the Basics of Trigonometry course.

  3. Secondary Mathematics Pre-Service Teachers' Processes of Selection and Integration of Technology

    Science.gov (United States)

    Uzan, Erol

    2017-01-01

    This study investigated secondary mathematics pre-service teachers' (PSTs) knowledge of resources in terms of digital technologies, and explored the processes of both selection and integration of technology into their lesson plans. This study employed a case study design. Participants were six secondary mathematics PSTs who enrolled in a methods…

  4. Advancements in Research on Creativity and Giftedness in Mathematics Education: Introduction to the Special Issue

    Science.gov (United States)

    Singer, Florence Mihaela; Sheffield, Linda Jensen; Leikin, Roza

    2017-01-01

    Creativity and giftedness in mathematics education research are topics of an increased interest in the education community during recent years. This introductory paper to the special issue on Mathematical Creativity and Giftedness in Mathematics Education has a twofold purpose: to offer a brief historical perspective on the study of creativity and…

  5. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  6. Learning to teach mathematics with technology: A survey of professional development needs, experiences and impacts

    Science.gov (United States)

    Bennison, Anne; Goos, Merrilyn

    2010-04-01

    The potential for digital technologies to enhance students' mathematics learning is widely recognised, and use of computers and graphics calculators is now encouraged or required by secondary school mathematics curriculum documents throughout Australia. However, previous research indicates that effective integration of technology into classroom practice remains patchy, with factors such as teacher knowledge, confidence, experience and beliefs, access to resources, and participation in professional development influencing uptake and implementation. This paper reports on a large-scale survey of technology-related professional development experiences and needs of Queensland secondary mathematics teachers. Teachers who had participated in professional development were found to be more confident in using technology and more convinced of its benefits in supporting students' learning of mathematics. Experienced, specialist mathematics teachers in large metropolitan schools were more likely than others to have attended technology-related professional development, with lack of time and limited access to resources acting as hindrances to many. Teachers expressed a clear preference for professional development that helps them meaningfully integrate technology into lessons to improve student learning of specific mathematical topics. These findings have implications for the design and delivery of professional development that improves teachers' knowledge, understanding, and skills in a diverse range of contexts.

  7. Mathematics and Astronomy: Inquire Based Scientific Education at School

    Science.gov (United States)

    de Castro, Ana I. Gómez

    2010-10-01

    Mathematics is the language of science however, in secondary and high school education students are not made aware of the strong implications behind this statement. This is partially caused because mathematical training and the modelling of nature are not taught together. Astronomy provides firm scientific grounds for this joint training; the mathematics needed is simple, the data can be acquired with simple instrumentation in any place on the planet and the physics is rich with a broad range of levels. In addition, astronomy and space exploration are extremely appealing to young (14-17 years old) students helping to motivate them to study science doing science, i.e. to introduce Inquiry Based Scientific Education (IBSE). Since 1997 a global consortium is being developed to introduce IBSE techniques in secondary/high school education on a global scale: the Global Hands-On Universe association (www.globalhou.org) making use of the astronomical universe as a training lab. This contribution is a brief update on the current activities of the HOU consortium. Relevant URLS: www.globalhou.org, www.euhou.net, www.houspain.com.

  8. Values Education in the Mathematics Classroom: Subject Values, Educational Values and One Teacher's Articulation of Her Practice

    Science.gov (United States)

    Bills, Liz; Husbands, Chris

    2005-01-01

    The issue of values has been a longstanding concern of mathematics education research. Attempts have been made to analyze the specifically mathematical values which characterize the practice of mathematics teachers. In this paper we draw on one teacher's articulation of her practice to explore values issues in the teaching of mathematics, drawing…

  9. Strategies Used to Teach Mathematics to Special Education Students from the Teachers' Perspective

    Science.gov (United States)

    Brown, Desline A.

    2016-01-01

    The perspectives of special education teachers on the strategies used to teach mathematics to special education students were examined in this dissertation. Three central research questions that guided the study are: (a) What were New York special education teachers' opinions about the methods they use to teach mathematics to special education…

  10. Shortage of Mathematics Teachers in Thai Basic Education Level

    Science.gov (United States)

    Puncreobutr, Vichian; Rattanatumma, Tawachai

    2016-01-01

    The objective of this study was to identify the reasons for shortage of Mathematics teachers at Thai Basic Education level. This research is both quantitative and qualitative in nature. For the purpose of study, survey was conducted with senior high school students, in order to find out their willingness to pursue mathematics in Bachelor of…

  11. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  12. Bridging a gap between theory and practice in mathematics teacher education

    DEFF Research Database (Denmark)

    Jóelsdóttir, Lóa Björk; Errebo-Hansen, Dorthe; Westphael, Henning

    Bridging the dichotomy of theory and practices has long been a key issue of the research in teacher education both in general and within mathematics education (Østergaard, 2016). In the15th ICMI Study (Even & Ball, 2009) there is brief discussion of this dichotomy in (Ponte et al, 2009) but mainly...... the perspective is either on students learning from practice or students learning in an educational programme, which we see as an example of the dichotomy between theory and practices often seen in research of mathematics teacher education. In studies, focusing on bridging the gap often it is seen being...

  13. Classroom Climate among Teacher Education Mathematics Students

    Directory of Open Access Journals (Sweden)

    Polemer M. Cuarto

    2015-11-01

    Full Text Available Classroom climate has gained prominence as recent studies revealed its potentials as an effective mediator in the various motivational factors as well as an antecedent of academic performance outcome of the students. This descriptive-correlational study determined the level of classroom climate dimensions among teacher education students specializing in Mathematics at Mindoro State College of Agriculture and Technology. Employing a self-structured questionnaire adapted to the WIHIC (What Is Happening In this Class questionnaire, the surveyed data were treated statistically using Pearson’s r. Result showed that there was high level of classroom climate among the respondents in their Mathematics classes in both teacher-directed and student-directed dimensions specifically in terms of equity, teacher support, cohesiveness, involvement, responsibility and task orientation. Also, it revealed that equity and teacher support were both positively related to the students-directed classroom climate dimensions. With these results, teachers are seen to be very significant determinants of the climate in the classroom. Relevant to this, the study recommended that faculty should develop effective measures to enhance classroom climate dimensions such as equity and teacher support to address the needs of diverse studentsdespite large size classes. Moreover, faculty should provide greater opportunitiesfor the students to achieve higher level of responsibility, involvement, cohesiveness, and task orientation as these could motivate them to develop positive learning attitude, perform to the best of their ability, as well as maximize their full potential in school.

  14. Prevalence of Mixed Methods Research in Mathematics Education

    Science.gov (United States)

    Ross, Amanda A.; Onwuegbuzie, Anthony J.

    2012-01-01

    In wake of federal legislation such as the No Child Left Behind Act of 2001 that have called for "scientifically based research in education," this study examined the possible trends in mixed methods research articles published in 2 peer-reviewed mathematics education journals (n = 87) from 2002 to 2006. The study also illustrates how…

  15. International comparative studies in mathematics education: are we obsessed with the international rankings of measured educational outcomes?

    Science.gov (United States)

    Tsai, Tsung-Lung; Li, Hui-Chuan

    2017-11-01

    Over the past few decades, researchers, policy makers, educators and the general public, who have an interest in mathematics education in different countries, pay a great deal of attention to the results from international comparative studies. Of great interest to the international studies is the results of Eastern students consistently achieving higher marks among the participating countries. In recent years, we have seen a climate of intense global economic competition and a growing belief in the key role of education, which have persuaded governments to become increasingly obsessed with the international rankings of measured educational outcomes. Accordingly, educational policy is increasingly driven by national attempts to "copy" the perceived advantage associated with the educational strategies and techniques of other countries. In this note, we present a discussion of the benefits and criticisms of one of these international comparative studies: Trends in International Mathematics and Science Study (TIMSS) studies. In so doing, we attempt to call attention to a continuously growing culture of "teaching to the test" in mathematics education.

  16. Education Technology Transformation

    Science.gov (United States)

    Kennedy, Mike

    2012-01-01

    Years ago, as personal computers and other technological advancements began to find their way into classrooms and other educational settings, teachers and administrators sought ways to use new technology to benefit students. The potential for improving education was clear, but the limitations of the available education technology made it difficult…

  17. The Unit of Analysis in Mathematics Education: Bridging the Political-Technical Divide?

    Science.gov (United States)

    Ernest, Paul

    2016-01-01

    Mathematics education is a complex, multi-disciplinary field of study which treats a wide range of diverse but interrelated areas. These include the nature of mathematics, the learning of mathematics, its teaching, and the social context surrounding both the discipline and applications of mathematics itself, as well as its teaching and learning.…

  18. "Theory at the Crossroads": Mapping Moments of Mathematics Education Research onto Paradigms of Inquiry

    Science.gov (United States)

    Stinson, David W.; Walshaw, Margaret

    2017-01-01

    In this essay, traveling through the past half-century, the authors illustrate how mathematics education research shifted, theoretical, beyond its psychological and mathematical roots. Mapping four historical moments of mathematics education research onto broader paradigms of inquiry, the authors make a case for the field to take up a theoretical…

  19. A case study of pedagogy of mathematics support tutors without a background in mathematics education

    Science.gov (United States)

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors' provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.

  20. Music-Themed Mathematics Education as a Strategy for Improving Elementary Preservice Teachers' Mathematics Pedagogy and Teaching Self-Efficacy

    Science.gov (United States)

    An, Song A.; Tillman, Daniel A.; Paez, Carlos R.

    2015-01-01

    This study investigated the effects upon elementary preservice teachers' mathematics teaching self-efficacy and interdisciplinary lesson design strategies, which resulted from an educational intervention that emphasized integrated music-mathematics instruction. The participating elementary preservice teachers (n = 152) were recruited for this…

  1. Approaches to qualitative research in mathematics education examples of methodology and methods

    CERN Document Server

    Bikner-Ahsbahs, Angelika; Presmeg, Norma

    2014-01-01

    This volume documents a range of qualitative research approaches emerged within mathematics education over the last three decades, whilst at the same time revealing their underlying methodologies. Continuing the discussion as begun in the two 2003 ZDM issues dedicated to qualitative empirical methods, this book presents astate of the art overview on qualitative research in mathematics education and beyond. The structure of the book allows the reader to use it as an actual guide for the selection of an appropriate methodology, on a basis of both theoretical depth and practical implications. The methods and examples illustrate how different methodologies come to life when applied to a specific question in a specific context. Many of the methodologies described are also applicable outside mathematics education, but the examples provided are chosen so as to situate the approach in a mathematical context.

  2. Science, technology, engineering, and mathematics (STEM) participation among college students with an autism spectrum disorder.

    Science.gov (United States)

    Wei, Xin; Yu, Jennifer W; Shattuck, Paul; McCracken, Mary; Blackorby, Jose

    2013-07-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed.

  3. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    Science.gov (United States)

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  4. Modelling and applications in mathematics education the 14th ICMI study

    CERN Document Server

    Galbraith, Peter L; Niss, Mogens

    2007-01-01

    The book aims at showing the state-of-the-art in the field of modeling and applications in mathematics education. This is the first volume to do this. The book deals with the question of how key competencies of applications and modeling at the heart of mathematical literacy may be developed; with the roles that applications and modeling may play in mathematics teaching, making mathematics more relevant for students.

  5. Mathematics on the Move: Using Mobile Technologies to Support Student Learning (Part 2)

    Science.gov (United States)

    Attard, Catherine; Northcote, Maria

    2012-01-01

    Continuing the series of articles on teaching mathematics with technology, this article furthers the authors' exploration of the use of a range of mobile technologies to enhance teachers' practices in the primary mathematics classroom. In Part 1 of this article, the authors explored the use of the iPod Touch and iPad. In Part 2, they explore…

  6. FEATURES OF FOREIGN STUDENTS PRE-UNIVERSITY MATHEMATICAL TRAINING

    Directory of Open Access Journals (Sweden)

    Наталья Александровна Пыхтина

    2017-12-01

    Full Text Available The aim of improving the international competitiveness of the higher education Russian system at the global level by increasing the number of foreign students leads to the fact, that pre-university training is becoming essential for next years at higher educational programmes.Pre-university mathematical training of international students contributes to the scientific style formation of speech skills, which is so useful in higher educational institute. This article highlights some of the features of foreign students pre-university mathematical training.Design of “Mathematics” course methodical ware for preparatory departments of higher educational institutions is an important element of the educational process. Features of mathematics teaching are shown by the example of such important for foreign students pre-university mathematical training branch of mathematics like the set theory.The article also gives consideration to such aspects of mathematics teaching for foreign students as the inclusion of text mathematical problems in the “Mathematics” course programme for helping to achieve lexical skills and abilities, as well as the organization of individual work of the students with the use of information and communication technologies.The paper refers to the collection of exercises and tasks for the “Mathematics” course for foreign citizens studying at the preparatory departments of higher educational institutions, it additionally gives the themes of the course.

  7. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  8. A Categorization Model for Educational Values of the History of Mathematics: An Empirical Study

    Science.gov (United States)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-01-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the…

  9. An Analysis of the New 9-Year Basic Education Mathematics Curriculum in Nigeria

    Science.gov (United States)

    Awofala, Adeneye O. A.

    2012-01-01

    The intention of this paper is to describe and reflect on the changes in the new 9-year basic education mathematics curriculum in Nigeria. The paper is divided into four major themes: history of curriculum development in mathematics education at the basic education level in Nigeria, the motivations for the revision of the primary and junior…

  10. Educational standardization and gender differences in mathematics achievement: A comparative study.

    Science.gov (United States)

    Ayalon, Hanna; Livneh, Idit

    2013-03-01

    We argue that between-country variations in the gender gap in mathematics are related to the level of educational system standardization. In countries with standardized educational systems both genders are exposed to similar knowledge and are motivated to invest in studying mathematics, which leads to similar achievements. We hypothesize that national examinations and between-teacher uniformity in covering major mathematics topics are associated with a smaller gender gap in a country. Based on Trends of International Mathematical and Science Study (TIMSS) 2003, we use multilevel regression models to compare the link of these two factors to the gender gap in 32 countries, controlling for various country characteristics. The use of national examinations and less between-teacher instructional variation prove major factors in reducing the advantage of boys over girls in mathematics scores and in the odds of excelling. Factors representing gender stratification, often analyzed in comparative gender-gap research in mathematics, are at most marginal in respect of the gap. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  12. Technology-Supported Mathematics Environments: Telecollaboration in a Secondary Statistics Classroom

    Science.gov (United States)

    Staley, John; Moyer-Packenham, Patricia; Lynch, Monique C.

    2005-01-01

    The Internet, an exciting and radically different medium infiltrating pop culture, business, and education, is also a powerful educational tool with teaching and learning potential for mathematics. Web-based instructional tools allow students and teachers to actively and interactively participate in the learning process (Lynch, Moyer, Frye & Suh,…

  13. The Importance of Theoretical Frameworks and Mathematical Constructs in Designing Digital Tools

    Science.gov (United States)

    Trinter, Christine

    2016-01-01

    The increase in availability of educational technologies over the past few decades has not only led to new practice in teaching mathematics but also to new perspectives in research, methodologies, and theoretical frameworks within mathematics education. Hence, the amalgamation of theoretical and pragmatic considerations in digital tool design…

  14. Enhancing Science and Mathematics Education for Child Care Providers and Preschool Teachers.

    Science.gov (United States)

    White, Jennifer Meux; Hosoume, Kimi

    The Lawrence Hall of Science (LHS), University of California at Berkeley has completed a 3-year project to develop a science and mathematics education course and science curriculum for early childhood educators. This project was in response to the need for improving the science and mathematics knowledge and teaching skills of adults who work with…

  15. Mathematics Education as a Proving-Ground for Information-Processing Theories.

    Science.gov (United States)

    Greer, Brian, Ed.; Verschaffel, Lieven, Ed.

    1990-01-01

    Five papers discuss the current and potential contributions of information-processing theory to our understanding of mathematical thinking as those contributions affect the practice of mathematics education. It is concluded that information-processing theories need to be supplemented in various ways to more adequately reflect the complexity of…

  16. TEACHING MATHEMATICAL DISCIPLINES AT THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    V. Ya. Gelman

    2018-01-01

    Full Text Available Introduction.In programs of training of students of medical specialties, Mathematics is a subject of basic education, i.e. non-core discipline. However, studying Mathematics is extremely important for future physicians, as recently there has been an impetuous development of mathematization in the field of health care. Today, a set of the new medical devices, the equipment and high technologies are being developed based on the mathematical modeling, analysis and forecasting. Mathematical methods are widely applied to diagnostics, development of life-support systems and the description of various biological processes both at the molecular level,  and at the level of a whole organism, its systems, bodies and tissues. The solution of many medical tasks in the field of taxonomy, genetics, and organization of medical service is impossible without knowledge of mathematics. Unfortunately, along with the evident importance of mathematical preparation for a medical profession, its need is poorly realized not only by junior students, but even by some teachers of specialized departments of medical schools.The aim of the publication is to discuss the problems that arise in the teaching of mathematical disciplines to students at a medical school and to suggest possible solutions to these problems.Methodology and research methods. The study is based on the use of modeling of the educational process. The methods of analysis, generalization and the method of expert assessments were applied in the course of the research.Results and scientific novelty. The aspects of mathematical preparation at the university are considered on the basis of the application of the multiplicative model of training quality. It is shown that the main students’ learning difficulties in Mathematics are connected with the following factors: the initial level of mathematical preparation of students and their motivation; outdated methods of Mathematics teaching and academic content

  17. An institutional approach to university mathematics education:

    DEFF Research Database (Denmark)

    Winsløw, Carl; Barquero, Berta; De Vleeschouwer, Martine

    2014-01-01

    University mathematics education (UME) is considered, in this paper, as a kind of didactic practice – characterised by institutional settings and by the purpose of inducting students into mathematical practices. We present a research programme – the anthropological theory of the didactic (ATD......) – in which this rough definition can be made much more precise; we also outline some cases of ATD-based research on UME. Three cases are presented in more detail. The first is a theoretical and empirical study of the topic of dual vector spaces, as it appears in undergraduate courses on linear algebra...... for engineering students....

  18. Integration of the development of mathematical concepts and music education in preschool education by means of songs

    OpenAIRE

    Maričić, Sanja; Ćalić, Maja

    2015-01-01

    Starting from the fact that in early education the process of learning should be understood in its totality, as a system of activities in which the subject fields are interwoven and woven into every segment of a child's life together with other children and adults in preschool, the authors of the work point out the integration of the development of mathematical concepts and music education. Music education is viewed as a context which can contribute to the acquisition of mathematical concepts...

  19. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  20. Online mathematics education: E-math for first year engineering students

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Schmidt, Karsten

    2012-01-01

    We consider the technology enhanced learning of first year engineering mathematics and in particular the application of E-learning objects and principles in the course Mathematics 1 which has a yearly intake of 750 students at the technical University of Denmark. We show that with non-linear mult...

  1. The academic merits of modelling in higher mathematics education: A case study

    NARCIS (Netherlands)

    Perrenet, J.; Adan, I.

    2010-01-01

    Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively

  2. The academic merits of modelling in higher mathematics education : a case study

    NARCIS (Netherlands)

    Perrenet, J.C.; Adan, I.J.B.F.

    2010-01-01

    Modelling is an important subject in the Bachelor curriculum of Applied Mathematics at Eindhoven University of Technology in the Netherlands. Students not only learn how to apply their knowledge to solve mathematical problems posed in non-mathematical language, but also they learn to look actively

  3. Mathematics Reform Curricula and Special Education: Identifying Intersections and Implications for Practice

    Science.gov (United States)

    Sayeski, Kristin L.; Paulsen, Kim J.

    2010-01-01

    In many general education classrooms today, teachers are using "reform" mathematics curricula. These curricula emphasize the application of mathematics in real-life contexts and include such practices as collaborative, group problem solving and student-generated algorithms. Students with learning disabilities in the area of mathematics can…

  4. In Defense of Mathematics and Its Place in Anarchist Education

    Science.gov (United States)

    Wolfmeyer, Mark

    2012-01-01

    This article reclaims mathematics from the measures of profit and control by first presenting an anarchist analysis of mathematics' status quo societal uses and pedagogic activities. From this analysis, a vision for an anarchist math education is developed, as well as suggestions for how government school practitioners sympathetic to anarchism can…

  5. Socially Response-Able Mathematics Education: Implications of an Ethical Approach

    Science.gov (United States)

    Atweh, Bill; Brady, Kate

    2009-01-01

    This paper discusses an approach to mathematics education based on the concept of ethical responsibility. It argues that an ethical approach to mathematics teaching lays the theoretical foundations for social justice concerns in the discipline. The paper develops a particular understanding of ethical responsibility based on the writings of Emanuel…

  6. Increasing Awareness of Practice through Interaction across Communities: The Lived Experiences of a Mathematician and Mathematics Teacher Educator

    Science.gov (United States)

    Bleiler, Sarah K.

    2015-01-01

    Collaborations between mathematicians and mathematics teacher educators are increasingly being expected, and realized, within the context of mathematics teacher education. Most research related to collaborative efforts between members of the mathematics and mathematics education communities has focused on the products, rather than the process of…

  7. Effective Mathematics Teaching in Finnish and Swedish Teacher Education Discourses

    Science.gov (United States)

    Hemmi, Kirsti; Ryve, Andreas

    2015-01-01

    This article explores effective mathematics teaching as constructed in Finnish and Swedish teacher educators' discourses. Based on interview data from teacher educators as well as data from feedback discussions between teacher educators and prospective teachers in Sweden and Finland, the analysis shows that several aspects of the recent…

  8. BASIS OF FORMATION OF SOFTWARE-MATHEMATICAL SUPPORT IN TASKS OF IT EDUCATION

    Directory of Open Access Journals (Sweden)

    Natalya V. Zorina

    2018-03-01

    Full Text Available In the article problems and tasks of software development and mathematical support of the basic business processes of the university are considered on the example of IT education. The necessity of using analytical methods in the development of mathematical software for the IT systems of modern universities, it also lists a number of urgent tasks that can be addressed with the help of the proposed framework. The paper describes the research hypothesis, the purpose, methodology and stages of research, as well as the achieved results. The research material represents a priori (retrospective and a posteriori (current educational data. These data are obtained from publicly available sources and contain information on educational activities in the form of the results of experimental observations on a representative sample of students. For a formal description of the data obtained, a representation based on the mathematical apparatus of set theory and algebraic structures was used. An authorial method for classifying the identified sources of educational information on three significant grounds is proposed. The analysis of business processes reflecting the interaction of students among themselves and the interaction of the student and teacher in the learning process is carried out. A modified model of the architecture of the management system of the teaching process of the university is proposed on this business processes. This model is based on the basis of business processes of collaboration and cooperation during the implementation of educational activities. It reflects the changes that have been occurred in the past five years due to the active introduction of digital communication and interactive interaction. The list of available tools for development using data analysis methods is given, their advantages and disadvantages are listed. The choice of the tool, IDE and programming language to analyze the data module as part of the framework is

  9. New York State Technology Education: History, the Current State of Affairs, and the Future

    Science.gov (United States)

    Dettelis, Phil

    2011-01-01

    Since the early 1980s, technology education has undergone several changes, incorporating new philosophies, new courses, and even a new name. This discipline, which is historically rooted in industrial arts, has endeavored to carve out a niche based on preparing students for careers, hands-on applications of mathematics and science, critical…

  10. A Review of Literature Published in 1973 on Mathematics Education in the Community Junior College.

    Science.gov (United States)

    Gimmestad, Beverly, Swadener, Marc

    Twenty-eight reports, articles, and papers published in 1973 which concern mathematics education in the community junior college are reviewed. Much of this literature was found in "The Two-Year College Mathematics Journal,""The American Mathematical Monthly," or among Educational Resources Information Center (ERIC) reports. The references are…

  11. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    Science.gov (United States)

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  12. Conference on "Mathematical Technology of Networks"

    CERN Document Server

    2015-01-01

    Bringing together leading researchers in the fields of functional analysis, mathematical physics and graph theory, as well as natural scientists using networks as a tool in their own research fields, such as neuroscience and machine learning, this volume presents recent advances in functional, analytical, probabilistic, and spectral aspects in the study of graphs, quantum graphs, and complex networks. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures. All papers were presented at the conference "Mathematical Technology of Networks," held December 4–7, 2013 at the Zentrum für interdisziplinäre Forschung (ZiF) in Bielefeld, Germany, and are supplemented with detailed figures illustrating both abstract concepts as well as their real-world applications. Dynamical models on graphs or random graphs a...

  13. Mathematics for Gifted Students in an Arts- and Technology-Rich Setting

    Science.gov (United States)

    Gadanidis, George; Hughes, Janette; Cordy, Michelle

    2011-01-01

    In this paper we report on a study of a short-term mathematics program for grade 7-8 gifted students that integrated open-ended mathematics tasks with the arts (poetry and drama) and with technology. The program was offered partially online and partially in a classroom setting. The study sought to investigate (a) students' perceptions of their…

  14. Guidebook to excellence, 1994: A directory of federal resources for mathematics and science education improvement

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this Guidebook to Excellence is to assist educators, parents, and students across the country in attaining the National Education Goals, particularly Goal 4: By the year 2000, US students will be first in the world in science and mathematics achievement. The Guidebook will help make the education community aware of the Federal Government`s extensive commitment to mathematics and science education. Sixteen Federal agencies collaborated with the Eisenhower National Clearinghouse to produce this publication. Although the Guidebook contains valuable information for anyone involved in mathematics and science education, its focus is on the elementary and secondary levels.

  15. Validation of an instrument for mathematics enhancement teaching efficacy of Pacific Northwest agricultural educators

    Science.gov (United States)

    Jansen, Daniel J.

    Teacher efficacy continues to be an important area of study in educational research. This study tested an instrument designed to assess the perceived efficacy of agricultural education teachers when engaged in lessons involving mathematics instruction. The study population of Oregon and Washington agricultural educators utilized in the validation of the instrument revealed important demographic findings and specific results related to teacher efficacy for the study population. An instrument was developed from the assimilation of three scales previously used and validated in efficacy research. Participants' mathematics teaching efficacy was assessed using a portion of the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and personal mathematics efficacy was evaluated by the mathematics self-belief instrument which was derived from the Betz and Hackett's Mathematics Self-Efficacy Scale. The final scale, the Teachers' Sense of Efficacy Scale (TSES) created by Tschannen-Moran and Woolfolk Hoy, examined perceived personal teaching efficacy. Structural equation modeling was used as the statistical analyses tool to validate the instrument and examine correlations between efficacy constructs used to determine potential professional development needs of the survey population. As part of the data required for validation of the Mathematics Enhancement Teaching Efficacy instrument, demographic information defining the population of Oregon and Washington agricultural educators was obtained and reported. A hypothetical model derived from teacher efficacy literature was found to be an acceptable model to verify construct validity and determine strength of correlations between the scales that defined the instrument. The instrument produced an alpha coefficient of .905 for reliability. Both exploratory and confirmatory factor analyses were used to verify construct and discriminate validity. Specifics results related to the survey population of agricultural educators

  16. Forces for Change in Mathematics Education—: The Case of TIMSS

    Directory of Open Access Journals (Sweden)

    Donald S. Macnab

    2000-02-01

    Full Text Available The results of the Third International Study in Mathematics and Science Education (TIMSS were published in 1996/7. Since that time the participating countries have reacted in a variety of ways to the comparative performance of their students. This article investigates the diverse effects these reactions have had on mathematics curricula and teaching methodologies in a selection of these countries, within the context of a wider analysis of the motivations which determine change in education.

  17. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  18. Employment of an Informal Educational Mathematical Facility to Lower Math Anxiety and Improve Teacher and Student Attitudes Towards Understanding Mathematics

    Science.gov (United States)

    Adams, Vicki

    2012-01-01

    Students do not pursue careers in science, technology, engineering, or mathematics (STEM) because of a lack of ability, but rather a lack of positive experiences with mathematics. Research has concluded that attitudes in math directly influence success in mathematics. As many as 75% of high school graduates in the United States suffer from mild to…

  19. REJECTION TO LEARNING OF MATHEMATICS BECAUSE OF VIOLENCE IN THE TECHNOLOGICAL BACCALAUREATE

    Directory of Open Access Journals (Sweden)

    Francisco Caballero-Jiménez

    2016-01-01

    Full Text Available This paper corresponds the first theoretical and applied results in the thesis of the author and director, and aims to make a conceptual review of school education and its importance in society and the study of mathematics and as these are rejected and stigmatized. In turn, we study, how it manifests itself direct, structural and cultural violence in learning math to finally propose peace education as alternative in order to influence the rejection and stigma regarding mathematics, trying to improve their learning.

  20. Incorporating the iPad2 in the Mathematics Classroom: Extending the Mind into the Collective

    Directory of Open Access Journals (Sweden)

    Armando Paulino Preciado Babb

    2012-04-01

    Full Text Available Doubtlessly, mathematics is one of the most important subjects in education from K to 12 levels especially for students interested in eventually pursuing undergraduate studies in the fields of science and technology. As it has been argued in mathematics education research, not only the content, but also the form in which students learn is important for mathematics learning. Particularly, an inquiry approach permeates through the mathematics curriculum of several countries around the world. Additionally, the use of technology to learn mathematics has been increasing in the last decades, requiring teachers and professionals in education to constantly explore and learn new possibilities or affordances in the classroom. The purpose of this paper is to initiate a discussion about the possible and complex forms of interaction among students, teacher, mathematical tasks, and the electronic tablet (iPad2 in an inquiry learning environment. An experience from a grade 10 classroom is used as a context to exemplify these interactions.

  1. INFORMATIONAL-METHODICAL SUPPORT OF THE COURSE «MATHEMATICAL LOGIC AND THEORY OF ALGORITHMS»

    Directory of Open Access Journals (Sweden)

    Y. I. Sinko

    2010-06-01

    Full Text Available In this article the basic principles of training technique of future teachers of mathematics to foundations of mathematical logic and theory of algorithms in the Kherson State University with the use of information technologies are examined. General description of functioning of the methodical system of learning of mathematical logic with the use of information technologies, in that variant, when information technologies are presented by the integrated specialized programmatic environment of the educational purpose «MatLog» is given.

  2. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  3. Ways of Thinking, Ways of Seeing Mathematical and other Modelling in Engineering and Technology

    CERN Document Server

    Dillon, Chris

    2012-01-01

    This fascinating book examines some of the characteristics of technological/engineering models that are likely to be unfamiliar to those who are interested primarily in the history and philosophy of science and mathematics, and which differentiate technological models from scientific and mathematical ones. Themes that will be highlighted include: • the role of language: the models developed for engineering design have resulted in new ways of talking about technological systems • communities of practice: related to the previous point, particular engineering communities have particular ways of sharing and developing knowledge • graphical (re)presentation: engineers have developed many ways of reducing quite complex mathematical models to more simple representations • reification: highly abstract mathematical models are turned into ‘objects’ that can be manipulated almost like components of a physical system • machines: not only the currently ubiquitous digital computer, but also older analogue dev...

  4. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  5. Activist Environmental Education and Moral Philosophy

    Science.gov (United States)

    Burns, David Patrick; Norris, Stephen P.

    2012-01-01

    In this article the authors respond to a recent special issue of the "Canadian Journal of Science, Mathematics and Technology Education" (Alsop & Bencze, 2010) in which the role of environmental activism in science, mathematics, and technology education (SMTE) was addressed. Although they applaud this Special Issue's invitation to begin a new…

  6. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad......Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded...... in the academic institutions. Thus, there is a need of comprehensive technology support system to cater the demands of all educational actors. Cloud Computing is one such comprehensive and user-friendly technology support environment that is the need of an hour. Cloud computing is the emerging technology that has...

  7. The Future for Mathematics Subject Associations

    Science.gov (United States)

    Pope, Sue

    2012-01-01

    Subject associations have developed, over the years, to serve the interests of the mathematics education community. We live in changing times, and education is often at the forefront of such change. So, to remain contemporary, relevant, and to have a regard for the future in a world influenced by technology, it is suggested that there is a need…

  8. Measuring and factors influencing mathematics teachers' technological pedagogical and content knowledge (TPACK) in three southernmost provinces, Thailand

    Science.gov (United States)

    Adulyasas, Lilla

    2017-08-01

    Technology becomes an important role in teaching and learning mathematics nowadays. Integrating technology in the classroom helps students have better understanding in many of mathematics concepts. One of the major framework for assessing the knowledge of integrating technology with the pedagogy and content in the classroom is Technological Pedagogical and Content Knowledge (TPACK) framework. This study aimed to measure mathematics teachers' TPACK in three southernmost provinces, Thailand and to study on factors influencing their TPACK. A quantitative study was carried out with 210 secondary level mathematics teachers in the three southernmost provinces, Thailand which were random by two stage sampling technique. Data were collected by using a questionnaire to identify the level of mathematics teachers' TPACK and the factors influencing their TPACK. Descriptive statistics, Pearson product moment correlation and multiple regression analysis were used for analysing data. Findings reveal that the mean score of mathematics teachers' TPACK is 3.33 which is in the medium level and the three factors which have positive correlation at .05 level of significant with the level of TPACK are teaching experience factor, individual specialization factor and personal & organization factor. However, there are only two factors influencing mathematics teachers' TPACK. The two factors are individual specialization factor and personal & organization factors. These give better understanding on mathematics teachers' knowledge in integrating technology with the pedagogy and content which will be the important information for improving mathematics teachers' TPACK.

  9. Being a Mathematics Teacher Educator in China: Challenges and Strategic Responses

    Science.gov (United States)

    Wu, Yingkang; Hwang, Stephen; Cai, Jinfa

    2017-01-01

    In this exploratory study, we developed a portrait of the challenges and strategic responses of secondary mathematics teacher educators (MTEs) in Chinese universities. The MTEs reported encountering more challenges when teaching pedagogical courses and supervising student teachers than when teaching college mathematics courses and teaching…

  10. Experience in presenting short courses in waste management technologies for secondary science and mathematics teachers

    International Nuclear Information System (INIS)

    Toth, W.J.; Smith, T.H.; Garcia, M.M.; Ferguson, J.E.

    1991-01-01

    The Department of Energy (DOE) and its Idaho National Engineering Laboratory (INEL) are developing educational programs that will help avert projected shortages in scientific and engineering manpower. One approach to this end is to help teachers become better prepared to teach topics that enthuse more students. INEL developed and offered a Short Course in Waste Management Technologies for Secondary Science and Mathematics Teachers. Short Course has two purposes: (1) to provide secondary-level science and mathematics teachers with training and information that will be useful to them in the classroom, and (2) to provide information on a topic of widespread interest in today's society, i.e., the management of hazardous and radioactive wastes and the restoration and preservation of the environment. This paper describes the development of the Short Course and summarizes some of the lessons learned in the preparation and presentation of such courses. 2 refs., 2 tabs

  11. The Triangulation Algorithmic: A Transformative Function for Designing and Deploying Effective Educational Technology Assessment Instruments

    Science.gov (United States)

    Osler, James Edward

    2013-01-01

    This paper discusses the implementation of the Tri-Squared Test as an advanced statistical measure used to verify and validate the research outcomes of Educational Technology software. A mathematical and epistemological rational is provided for the transformative process of qualitative data into quantitative outcomes through the Tri-Squared Test…

  12. Discrete Mathematics in Deaf Education: A Survey of Teachers' Knowledge and Use

    Science.gov (United States)

    Pagliaro, C.; Kritzer, K. L.

    2005-01-01

    The study documents what deaf education teachers know about discrete mathematics topics and determines if these topics are present in the mathematics curriculum. Survey data were collected from 290 mathematics teachers at center and public school programs serving a minimum of 120 students with hearing loss, grades K-8 or K-12, in the United…

  13. Artificial Intelligence, Computational Thinking, and Mathematics Education

    Science.gov (United States)

    Gadanidis, George

    2017-01-01

    Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

  14. Contributions from sociology of science to mathematics education in Brazil: logic as a system of beliefs

    Science.gov (United States)

    de Andrade, Thales Haddad Novaes; Vilela, Denise Silva

    2013-09-01

    In Brazil, mathematics education was associated with Jean Piaget's theory. Scholars in the field of education appropriated Piaget's work in different ways, but usually emphasized logical aspects of thought, which probably lead to an expansion of mathematics education influenced by psychology. This study attempts to extend the range of interlocutions and pose a dialogue between the field of mathematics education in Brazil and the sociology of science proposed by David Bloor. The main point of Bloor's theory is that logical-mathematical knowledge is far from being true and universal and is socially conditioned. In particular we will be discussing the first principle of the strong program, which deals with conditions that generate beliefs promoted by education policies in Brazil, such as the MEC/USAID treaties. In this case the "naturalization of logic" was stimulated by a widespread diffusion of both Piaget studies and the Modern Mathematics Movement.

  15. Influence of Strengthening Mathematics and Science in Secondary Education (SMASSE) in Service Education and Training(INSET) on the Attitude of Students towards Mathematics Perfomance in Public Secondary Schools of Rangwe Division, Homa-Bay Sub County-Kenya

    Science.gov (United States)

    Wafubwa, Ruth Nanjekho

    2015-01-01

    The general performance in mathematics in Kenya has been declining over the past years. This prompted the researchers to investigate the influence of Strengthening Mathematics and Science in Secondary Education (SMASSE) In Service Education and Training (INSET) on students' attitudes towards mathematics performance in public secondary schools of…

  16. Aspects of Theories, Frameworks and Paradigms in Mathematics Education Research

    Science.gov (United States)

    Stoilescu, Dorian

    2016-01-01

    This article discusses major theoretical debates and paradigms from the last decades in general education and their specific influences in mathematics education contexts. Behaviourism, cognitive science, constructivism, situated cognition, critical theory, place-based learning, postmodernism and poststructuralism and their significant aspects in…

  17. An Alternative to Piagetian Psychology for Science and Mathematics Education

    Science.gov (United States)

    Novak, Joseph D.

    1978-01-01

    Reviews the basic precepts of the learning theories of Piaget and Ausubel. Although Piaget is credited for his contributions to educational psychology, the author supports Ausubel's theory of meaningful learning as more significant for future contributions in science and mathematics education. (CP)

  18. Perceptions and needs of South African Mathematics teachers ...

    African Journals Online (AJOL)

    Hennie

    Keywords: internet; mathematics education; online; quality material; resources; teachers' perceptions; ... technology related to administration and processes .... According to the UTAUT model, .... Social Sciences (SPSS), software version 22.0.

  19. Air Force-Wide Needs for Science, Technology, Engineering, and Mathematics (STEM) Academic Degrees

    Science.gov (United States)

    2014-01-01

    anthropology (0190), mathematical statistics (1529), general math (AFIT faculty only), metallurgy (1321), and actuarial science (1510). 97 Tier II. Few...linking or frEE DownloAD At www.rand.org C O R P O R A T I O N Research Report Air Force–Wide Needs for Science , Technology, Engineering, and...00-00-2014 4. TITLE AND SUBTITLE Air Force-Wide Needs for Science , Technology, Engineering, and Mathematics (STEM) Academic Degrees 5a. CONTRACT

  20. From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education

    Directory of Open Access Journals (Sweden)

    Andy M. Connor

    2015-05-01

    Full Text Available This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.

  1. A critique on the role of social justice perspectives in mathematics education

    DEFF Research Database (Denmark)

    Dahl, Bettina

    2008-01-01

    This review of the monograph, International Perspectives on Social Justice in Mathematics Education, is not a chapter-by-chapter summary of each of the 14 chapters per se, but rather, revolves around three overarching themes.......This review of the monograph, International Perspectives on Social Justice in Mathematics Education, is not a chapter-by-chapter summary of each of the 14 chapters per se, but rather, revolves around three overarching themes....

  2. Implementation of Technology in an Elementary Mathematics Lesson: The Experiences of Pre-Service Teachers at One University

    Science.gov (United States)

    Herron, Julie

    2010-01-01

    This study examined pre-service teachers' responses to implementing technology into elementary mathematics lessons. Instructional Architect (IA) was the web-base technology used by the pre-service teachers. Four themes emerged from the data: (a) insights into technology, (b) struggles with technology, (c) access to the mathematics and (d) learning…

  3. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  4. Research on the Development of Middle School Mathematics Pre-Service Teachers' Perceptions Regarding the Use of Technology in Teaching Mathematics

    Science.gov (United States)

    Akkaya, Recai

    2016-01-01

    This study aimed to investigate the changes in teacher perceptions regarding the use of technology subsequent to the training about technology integration in mathematics teaching. A training program that included combined technology, pedagogy and content knowledge was prepared and implemented on pre-service teachers with this aim. Exploratory…

  5. Mathematical model for the technological system of working a thin coal bed

    Energy Technology Data Exchange (ETDEWEB)

    Isayev, V V

    1979-01-01

    The principle for constructing a mathematical model of working a thin coal bed using the adaptation criterion is examined. Intersecting parameters of the medium and the unit are presented. Based on these parameters, dependences are presented for the adaptation criterion and its maximization. A general mathematical model is presented for the technological system of unmanned extraction of a thin bed D/sub 5/ under conditions of the mine ''Dolinskaya'' of the Karaganda Basin. The work results can be used to plan technological systems for working thin coal beds.

  6. Mathematics Teachers' Use of Information and Communication Technologies: An International Comparison

    Science.gov (United States)

    Kiru, Elisheba W.

    2018-01-01

    There is an urgent need to understand how often teachers use information and communication technologies (ICT) in mathematics instruction. This information can provide vital links that can help stakeholders make connections about ICT use in mathematics instruction and student learning experiences with ICT. Scholars in the field have reported on the…

  7. Cultural Diversity in Mathematics (Education): CIEAEM 51.

    Science.gov (United States)

    Ahmed, Afzal; Williams, Honor; Kraemer, Jean Marie

    The 51st meeting of the Commission Internationale pour L'Etude et L'Amelioration de L'Ensignment des Mathematiques (CIEAEM) was held July, 1999 at Chichester, UK and facilitated the collaboration of delegates from over 30 countries providing a variety of perspectives on the theme OCultural Diversity in Mathematics Education'. The papers in this…

  8. The Use of Computers in Mathematics Education: A Paradigm Shift from "Computer Assisted Instruction" towards "Student Programming"

    Science.gov (United States)

    Aydin, Emin

    2005-01-01

    The purpose of this study is to review the changes that computers have on mathematics itself and on mathematics curriculum. The study aims at investigating different applications of computers in education in general, and mathematics education in particular and their applications on mathematics curriculum and on teaching and learning of…

  9. The Impact of In-Service Technology Training Programmes on Technology Teachers

    Science.gov (United States)

    Gumbo, Mishack; Makgato, Moses; Muller, Helene

    2012-01-01

    The aim of this paper is to assess the impact the Advanced Certificate in Education (ACE) in-service technology training program has on technology teachers' knowledge and understanding of technology. The training of technology teachers is an initiative toward teachers' professional development within the mathematics, science, and technology sphere…

  10. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  11. Modelling the Intention to Use Technology for Teaching Mathematics among Pre-Service Teachers in Serbia

    Science.gov (United States)

    Teo, Timothy; Milutinovic, Verica

    2015-01-01

    This study aims to examine the variables that influence Serbian pre-service teachers' intention to use technology to teach mathematics. Using the technology acceptance model (TAM) as the framework, we developed a research model to include subjective norm, knowledge of mathematics, and facilitating conditions as external variables to the TAM. In…

  12. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  13. Effects of Game Technology on Elementary Student Learning in Mathematics

    Science.gov (United States)

    Shin, Namsoo; Sutherland, LeeAnn M.; Norris, Cathleen A.; Soloway, Elliot

    2012-01-01

    This paper reports the effects of game technology on student learning in mathematics as investigated in two data sets collected from slightly different subjects. In the first, 41 second graders (7 or 8 years old) from two classes used either a technology-based game or a paper-based game for 5 weeks. For the next 13 weeks, both classes used a…

  14. Learning at the Boundaries: Collaboration between Mathematicians and Mathematics Educators within and across Institutions

    Science.gov (United States)

    Bennison, Anne; Goos, Merrilyn

    2016-01-01

    Collaboration between mathematicians and mathematics educators may provide a means of improving the quality of pre-service teacher education for prospective teachers of mathematics. Some preliminary findings of a project that investigates this type of interdisciplinary collaboration, both within and across institutions, are reported on in this…

  15. Science, Technology, Engineering, and Mathematics (STEM) Education Reform to Enhance Security of the Global Cyberspace

    Science.gov (United States)

    2014-05-01

    towards cloud computing technologies and capabilities demand needs for developing new tools that work in ensemble to handle security challenges. A...programs with the schools and/or hire from their pool of students. Therefore, no real STEM standards exist at the tertiary and beyond levels of education ...successful in cyber operations and network security related jobs much early on into the new STEM education model pipeline. Subjects such as computer

  16. African-American Women's Experiences in Graduate Science, Technology, Engineering, and Mathematics Education at a Predominantly White University: A Qualitative Investigation

    Science.gov (United States)

    Alexander, Quentin R.; Hermann, Mary A.

    2016-01-01

    In this phenomenological investigation we used qualitative research methodology to examine the experiences of 8 African American women in science, technology, engineering, and mathematics (STEM) graduate programs at 1 predominantly White university (PWU) in the South. Much of the current research in this area uses quantitative methods and only…

  17. Advancing Inclusive Mathematics Education: Strategies and Resources for Effective IEP Practices

    Science.gov (United States)

    Tan, Paulo

    2017-01-01

    Personal experiences promoting inclusive mathematics education for my own child have mostly been met with staunch resistance on the part of educators, and a resulting breakdown in collaborative efforts during individualized education program (IEP) meetings. However, I found that utilizing certain strategies and introducing innovative mathematics…

  18. Using GeoGebra for Mathematics Education at University Undergraduate Level

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    Our research effort presented in this talk relates with developing digital tools for mathematics education at undergraduate university level. It focuses specifically on studies where mathematics is not a core subject but it is very important in order to cope with core subjects. For our design, we...... feedback inspire the next round of design requirements for the development of digital tools that support mathematics teaching and learning at university level....... conducted observations of teachers and students during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student...

  19. Teaching using moodle in mathematics education

    Science.gov (United States)

    Handayanto, A.; Supandi, S.; Ariyanto, L.

    2018-05-01

    The aim of this study is to determine the effect of Learning Modeling System (LMS) Moodle in learning. The population is taken from all students of Mathematics Education, University of PGRI Semarang. The sample was randomly selected from five different course groups. The initial score is taken from the semester test, and the final score is taken through the semester test after the five groups are taught using Moodle. The results of both test results are compared to find out the increase in learning outcomes. Meanwhile, the student's attitude toward learning is taken through his mathematical disposition through questionnaire. The results show that there was a significant increase in exam results on the final exam of the semester. This result is supported by student learning interest which increases on average after using LMS Moodle taken from disposition data.

  20. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... The level of detail varies; some disciplines produce manuscripts that comprise discrete .... Duplicate publication, sometimes called self-plagiarism, occurs when an author ...