WorldWideScience

Sample records for technology education lab

  1. Physics Education Technology (PhET) Virtual Lab Activities for Distance Learning Courses

    Science.gov (United States)

    Callaway, Thomas

    2012-03-01

    The Physics Education Technology (PhET) simulations offer a great set of tools to present simulations of physics phenomena in the classroom. This presentation describes the use of PhET to develop virtual lab assignments that supplement hands-on lab activities for a distance learning class in conceptual physics.

  2. A virtual computer lab for distance biomedical technology education

    Science.gov (United States)

    Locatis, Craig; Vega, Anibal; Bhagwat, Medha; Liu, Wei-Li; Conde, Jose

    2008-01-01

    Background The National Library of Medicine's National Center for Biotechnology Information offers mini-courses which entail applying concepts in biochemistry and genetics to search genomics databases and other information sources. They are highly interactive and involve use of 3D molecular visualization software that can be computationally taxing. Methods Methods were devised to offer the courses at a distance so as to provide as much functionality of a computer lab as possible, the venue where they are normally taught. The methods, which can be employed with varied videoconferencing technology and desktop sharing software, were used to deliver mini-courses at a distance in pilot applications where students could see demonstrations by the instructor and the instructor could observe and interact with students working at their remote desktops. Results Student ratings of the learning experience and comments to open ended questions were similar to those when the courses are offered face to face. The real time interaction and the instructor's ability to access student desktops from a distance in order to provide individual assistance and feedback were considered invaluable. Conclusion The technologies and methods mimic much of the functionality of computer labs and may be usefully applied in any context where content changes frequently, training needs to be offered on complex computer applications at a distance in real time, and where it is necessary for the instructor to monitor students as they work. PMID:18366629

  3. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  4. A Discussion of Thin Client Technology for Computer Labs

    CERN Document Server

    Martínez-Mateo, Jesús; Pérez-Rey, David

    2010-01-01

    Computer literacy is not negotiable for any professional in an increasingly computerised environment. Educational institutions should be equipped to provide this new basic training for modern life. Accordingly, computer labs are an essential medium for education in almost any field. Computer labs are one of the most popular IT infrastructures for technical training in primary and secondary schools, universities and other educational institutions all over the world. Unfortunately, a computer lab is expensive, in terms of both initial purchase and annual maintenance costs, and especially when we want to run the latest software. Hence, research efforts addressing computer lab efficiency, performance or cost reduction would have a worldwide repercussion. In response to this concern, this paper presents a survey on thin client technology for computer labs in educational environments. Besides setting out the advantages and drawbacks of this technology, we aim to refute false prejudices against thin clients, identif...

  5. Understanding and developing “Technological Literacy” through Living Labs in teacher vocational education

    DEFF Research Database (Denmark)

    Brok, Lene Storgaard; Schrøder, Vibeke

    2012-01-01

    The Technucation Project’s main challenges is, to transmit knowledge gained in everyday practice in the country’s schools to the teacher training colleges in a form that can foster curiosity, dialogue, and learning with regard to working and interacting with technologies. This Working Paper sums up...

  6. Technology Rich Biology Labs: Effects of Misconceptions.

    Science.gov (United States)

    Kuech, Robert; Zogg, Gregory; Zeeman, Stephan; Johnson, Mark

    This paper describes a study conducted on the lab sections of the general biology course for non-science majors at the University of New England, and reports findings of student misconceptions about photosynthesis and the mass/carbon uptake during plant growth. The current study placed high technology analytic tools in the hands of introductory…

  7. Technology Roadmap: Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Pattharaporn Suntharasaj

    2010-04-01

    Full Text Available With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. This paper develops a roadmap for a hypothetical company (XI which is seeking to be successful in this market. The roadmapping process starts with gathering data through literature research and expert opinions, and progress through defining the market/product/technology layers, linking and integrating these layers, and finally creating a labon-a-chip for disease diagnostics technology roadmap.

  8. eLabEL: technology-supported living labs in primary care.

    NARCIS (Netherlands)

    Vermeulen, J.; Huygens, M.W.J.; Swinkels, I.; Oude Nijeweme-d'Hollosy, W.; Velsen, L. van; Jansen, Y.; Witte, L.P. de

    2015-01-01

    Abstract— Telecare technologies and eHealth applications can support patients and care professionals. However, these technologies are currently not being implemented in primary care. The eLabEL project aims to contribute to a solution for this problem by establishing Living Labs in which patients, h

  9. eLabEL: technology-supported living labs in primary care

    NARCIS (Netherlands)

    Vermeulen, Joan; Huygens, Martine; Witte, de Luc P.; Swinkels, Ilse; Oude Nijeweme-d'Hollosy, Wendy; Velsen, van Lex; Jansen, Yvonne

    2015-01-01

    Telecare technologies and eHealth applications can support patients and care professionals. However, these technologies are currently not being implemented in primary care. The eLabEL project aims to contribute to a solution for this problem by establishing Living Labs in which patients, healthcare

  10. Shandong University Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education of China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In 1995, the Key Lab of Liquid Structure and Heredity of Metals was set up by the approval of Shandong province, but the research work on the liquid structure and heredity of materials started in the last three decades. In 2000, combining the lab of engineering ceramic and the institute of joining technology in Shandong University, the lab was established as Key Lab of Liquid Structure and Heredity of Materials, by the approval of the Ministry of Education.

  11. Teaching Lab Science Courses Online: Resources for Best Practices, Tools, and Technology

    Science.gov (United States)

    Jeschofnig, Linda; Jeschofnig, Peter

    2011-01-01

    "Teaching Lab Science Courses Online" is a practical resource for educators developing and teaching fully online lab science courses. First, it provides guidance for using learning management systems and other web 2.0 technologies such as video presentations, discussion boards, Google apps, Skype, video/web conferencing, and social media…

  12. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    Jong, de Ton; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  13. Provisioning Remote Lab Support for IT Programs in Distance Education

    Directory of Open Access Journals (Sweden)

    Lakshmanan Senthilkumar

    2012-05-01

    Full Text Available In the recent past Internet has become the de-facto communication network. It is being prominently used by Telecommunication, Television and other such networks as a carrier network. The current Internet technology has matured enough to support both Non-Real Time and Real-Time Streaming applications. Recently, even the speed of the access network through which an end user accesses the Internet has also increased substantially. All these have given way to newer Applications for being ported on to the Internet. A similar attempt has been made here to extend the Networking Lab infrastructure to students who have enrolled for their higher education through Distance mode. These students who are spread across the country are able to access the Network Lab to perform their Lab Exercises Live on Network devices as part of their Practical Course.

  14. Technical and didactic problems of virtual lab exercises in biochemistry and biotechnology education

    DEFF Research Database (Denmark)

    May, Michael; Skriver, Karen; Dandanell, Gert

    methods. With web technologies we can now design exercises for remote or virtual labs, but we should not expect to improve student learning simply by recreating old didactic problems in new media. Unfortunately studies of the efficiency of different lab types (hands-on, virtual, and remote labs) suffer...... from a lack of conceptual analysis of what actually constitutes virtual labs. A clarification of these conceptual issues is suggested as part of a Danish research and development project on virtual lab exercises in biochemistry, molecular biology and biotechnology education. The main outcome...

  15. CELSTEC Learning Labs: Mobile App Development for Education and Training

    NARCIS (Netherlands)

    Specht, Marcus

    2011-01-01

    Specht, M. (2011). CELSTEC Learning Labs: Mobile App Development for Education and Training. Presentation given in Workshop at CELSTEC Learning Lab for Bluetea. February, 21, 2011, Heerlen, The Netherlands.

  16. CELSTEC Learning Labs: Mobile App Development for Education and Training

    NARCIS (Netherlands)

    Specht, Marcus

    2011-01-01

    Specht, M. (2011). CELSTEC Learning Labs: Mobile App Development for Education and Training. Presentation given in Workshop at CELSTEC Learning Lab for Bluetea. February, 21, 2011, Heerlen, The Netherlands.

  17. UniMAP e-Lab for Electrical Engineering Technology: Future Online Laboratory Classes

    Directory of Open Access Journals (Sweden)

    Daud Mohd Hisam

    2016-01-01

    Full Text Available This paper will describe a proposed design and approaches to the future provision of laboratory experience using communication and control technology. This approach provides broad access for students who can not attend conventional laboratory to laboratory work. The experimental system online (e-Lab is under development for the students to carry out various experiments in engineering and technology education assessment system. In the field of engineering technology, one important element is laboratory work, although there are limitations in terms of space laboratories, distance learning provision. UniMAP e-Lab project aims to address many of the existing constraints. Beyond the educational goals, UniMAP e-Lab system enables experimental knowledge in a particular field of engineering technology and experimental results of the research are disseminated and exploited effectively. Solution design of hardware and software as well as the characteristics of education discussed.

  18. Technical and didactic problems of virtual lab exercises in biochemistry and biotechnology education

    DEFF Research Database (Denmark)

    May, Michael; Skriver, Karen; Dandanell, Gert

    It is well-known that “cook-book exercises” in science and engineering education do not fully realize the learning objectives ascribed to them. Students do learn basic lab skills, but highly instructed exercises do not (by themselves) support theoretical understanding or appreciation of scientific...... methods. With web technologies we can now design exercises for remote or virtual labs, but we should not expect to improve student learning simply by recreating old didactic problems in new media. Unfortunately studies of the efficiency of different lab types (hands-on, virtual, and remote labs) suffer...... from a lack of conceptual analysis of what actually constitutes virtual labs. A clarification of these conceptual issues is suggested as part of a Danish research and development project on virtual lab exercises in biochemistry, molecular biology and biotechnology education. The main outcome...

  19. Personalised learning spaces and federated online labs for STEM Education at School

    NARCIS (Netherlands)

    Gillet, Dennis; Jong, de T.; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning

  20. Lab on a chip technologies for algae detection: a review.

    Science.gov (United States)

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies.

  1. Lab-scale Technology for Biogas Production from Lignocellulose Wastes

    Directory of Open Access Journals (Sweden)

    Lukáš Krátký

    2012-01-01

    Full Text Available Currently-operating biogas plants are based on the treatment of lignocellulose biomass, which is included in materials such as agriculture and forestry wastes, municipal solid wastes, waste paper, wood and herbaceous energy crops. Lab-scale biogas technology was specially developed for evaluating the anaerobic biodegrability and the specific methane yields of solid organic substrates. This technology falls into two main categories – pretreatment equipments, and fermentation equipments. Pretreatment units use physical principles based on mechanical comminution (ball mills, macerator orhydrothermal treatment (liquid hot water pretreatment technology. The biochemical methane potential test is used to evaluate the specific methane yields of treated or non-treated organic substrates. This test can be performed both by lab testing units and by lab fermenter.

  2. Lab-on-a-chip technologies for stem cell analysis.

    Science.gov (United States)

    Ertl, Peter; Sticker, Drago; Charwat, Verena; Kasper, Cornelia; Lepperdinger, Günter

    2014-05-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of analyzing cell cultures under physiologically relevant conditions. In the present review, we address recent lab-on-a-chip developments for stem cell analysis. We highlight in particular the tangible advantages of microfluidic devices to overcome most of the challenges associated with stem cell identification, expansion and differentiation, with the greatest advantage being that lab-on-a-chip technology allows for the precise regulation of culturing conditions, while simultaneously monitoring relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of stem cell cultures are presented and their potential future applications discussed.

  3. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  4. Dancing Around My Technology Classroom Box (My Second RET Lab)

    Science.gov (United States)

    Carter, Terry

    2010-01-01

    The laboratory the author had been assigned for his RET (Research Experience for Teachers) at Vanderbilt University is new and different from the one he had previously experienced. This summer he was assigned to the Microfluidics and Lab-on-a-chip laboratory to help research dielectrophoresis. As this is an emerging technology, there was not a lot…

  5. Teaching Strategies Mediated by Technologies in the EduLab Model: The Case of Mathematics and Natural Sciences

    Science.gov (United States)

    Oliveira, Ana; Pombo, Lúcia

    2017-01-01

    The EduLab model is a "new" educational model that integrates technologies in educational contexts comprising full equipped classrooms with attractive and easy-to-use technological resources. This model tries to promote a dynamic and more effective teaching and learning process. For this purpose, the model provides teachers training and…

  6. Lab-on-a-chip technology for continuous glucose monitoring.

    Science.gov (United States)

    Gravesen, Peter; Raaby Poulsen, Kristian; Dirac, Holger

    2007-05-01

    The demand for continuous glucose monitoring systems is greater than ever. The microelectromechanical systems (MEMS) approach has the advantage of being relatively easy to upscale to a commercial level; the preferred MEMS technique would be to run several detectors at once and, through the improved statistics, get a both more accurate and more reliable device than is currently available. Lab-on-a-chip technology may be seen as a further development of MEMS technology for analytical sensors. Lab-on-a-chip systems may be used to obtain improvements on several important characteristics of a sensor system: remove or decrease cross-sensitivity, improve sensor stability, improve accuracy, and/or improve response time compared to similar laboratory-equipment methods.

  7. Nanofluidic Lab-On-Chip Technology for DNA Identification

    Science.gov (United States)

    2013-09-30

    technical 3. DATES COVERED (From - To) May 2012 - Jun 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanofluidic LaB-ON-Chip Technology for DNA...AVAILABILITY STATEMENT Publicly available. 3-0/ 3/Oo3o%J - 14. ABSTRACT In this project we have investigated the potential of nanofluidic lab-on...chip nanofluidic platforms may enable rapid and inexpensive, characterization and analysis of DNA biomarkers. Advantages include overall ease of

  8. Using collaborative technologies in remote lab delivery systems for topics in automation

    Science.gov (United States)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  9. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  10. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  11. Study of Introductory Geology lab sections for education majors

    Science.gov (United States)

    Baldwin, Kathryn A.

    This study began with a concern that many elementary teachers hold negative attitudes toward science, lack the confidence to teach science, and/or do not feel qualified to teach science. This quasi-experimental study examined preservice teachers' beliefs regarding teaching science pre and post semester in an Introductory Geology course. Data for the study was collected for three semesters from preservice teachers enrolled in an Introductory Geology lab designed for elementary education majors. After obtaining informed consent, the Science Teaching Efficacy Belief Instrument Form B (STEBI-B), and a course survey, were administered during the first and last lab class sessions. Paired t-tests were performed to examine changes in Personal Science Teaching Efficacy (PSTE), Science Teaching Outcome Expectancy (STOE), feelings of success in the course, and comfort level with science topics. Surveys were paired using a code provided by the preservice teachers at the top of the survey. In addition, written responses regarding the experience of the elementary education majors' lab section were also examined. Results of this study indicate a significant difference in Personal Science Teaching Efficacy (PSTE), feelings of success for lab, feelings of success in lecture, and comfort level with science topics. No significant differences were found in Science Teaching Outcome Expectancy (STOE) or feelings of success in the course overall. Written comments suggest preservice teachers found their experience in the education majors' lab to be better than other students in the course. The reasons the preservice teachers believed their experience to be better was: they were with like majors, obtained lesson plans and ideas, the material presented was relevant to their future careers as teachers, the Teaching Assistant characteristics, and a smaller class size. This study indicates that it is possible for changes in preservice teachers' science teaching self-efficacy and comfort level

  12. To explore the use of LabSQL database access technology in LabVIEW%LabVIEW中利用LabSQL对数据库访问技术的探讨

    Institute of Scientific and Technical Information of China (English)

    张璐

    2015-01-01

    与传统的编程方式相比,LabVIEW更加简单易学并且应用十分广泛。LabVIEW运用了图形化的编程语言,并且提供了丰富的库函数与图形界面组件,有效缩短了开发周期。但LabVIEW自身并不具备访问数据库的功能,这就需要用到其他的辅助技术来访问数据库。本文分析了常用的几种LabVIEW数据库访问方法,并对LabSQL这种辅助方法进行了详细阐述,以此体现利用LabSQL进行数据库访问的优势。%Compared with the traditional way of programming,LabVIEW is easy to learn and very wide application.LabVIEW uses a graphical programming language,and provides a graphical interface component library functions and rich,shorten the development cycle.But LabVIEW itself does not have access to the database function,which requires the use of assistive technology to access the database in other.This paper analyzes several commonmethods of access to LabVIEW database,and the LabSQL the auxiliary method in detail,which can embody the advantages of using LabSQL to access database.

  13. Key Lab.of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The Key Lab.of Electromagnetic Processing of Materials, Ministry of Education,Northeastern University (Lab.of EPM)is established on the base of United Researching Centre of Shanghai Baosteel Group Corporation (Baosteel)-Northeasten University.

  14. Magnetic Tools for Lab-on-a-chip Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pekas, Nikola Slobodan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This study establishes a set of magnetics-based tools that have been integrated with microfluidic systems. The overall impact of the work begins to enable the rapid and efficient manipulation and detection of magnetic entities such as particles, picoliter-sized droplets, or bacterial cells. Details of design, fabrication, and theoretical and experimental assessments are presented. The manipulation strategy has been demonstrated in the format of a particle diverter, whereby micron-sized particles are actively directed into desired flow channels at a split-flow junction by means of integrated microelectromagnets. Magnetic detection has been realized by deploying Giant Magnetoresistance (GMR) sensors--microfabricated structures originally developed for use as readout elements in computer hard-drives. We successfully transferred the GMR technology to the lab-on-a-chip arena, and demonstrated the versatility of the concept in several important areas: real-time, integrated monitoring of the properties of multiphase droplet flows; rapid quantitative determination of the concentration of magnetic nanoparticles in droplets of ferrofluids; and high-speed detection of individual magnetic microparticles and magnetotactic bacteria. The study also includes novel schemes for hydrodynamic flow focusing that work in conjunction with GMR-based detection to ensure precise navigation of the sample stream through the GMR detection volume, therefore effectively establishing a novel concept of a microfabricated magnetic flow cytometer.

  15. Towards the Realization of the ICT Education Living Lab – The TechTeachers.co.za Success Story

    Directory of Open Access Journals (Sweden)

    Albertus A. K. Buitendag

    2015-06-01

    Full Text Available This paper presents the success story of the intuitive vision of an Information and Communication Technology (ICT high school educator in South Africa. The growth and evolution of a Community of Practice towards a full-fledged living lab is investigated. A grounded theory study analyses the living lab concept and highlights some of the current challenges secondary high school ICT education face within the South African educational landscape. Some of the concepts, ideas, best practices, and lessons learned in the establishment and running of two web based technologies to support secondary school ICT subjects is discussed. The researchers present a motivation for the use of living labs to address some of the issues identified and highlights how the existing platforms fits into bigger design.

  16. Personalised Learning Spaces and Federated Online Labs for STEM Education at School: Supporting Teacher Communities and Inquiry Learning

    OpenAIRE

    Gillet, Denis; Jong, Ton de; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning spaces. The learning spaces are offered through a single European social media portal supporting simultaneously teacher communities and student learning activities. This paper presents the general ...

  17. Personalised Learning Spaces and Federated Online Labs for STEM Education at School : Supporting Teacher Communities and Inquiry Learning

    OpenAIRE

    Gillet, Denis; Jong, Ton de; Sotiriou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning spaces. The learning spaces are offered through a single European social media portal supporting simultaneously teacher communities and student learning activities. This paper presents the general ...

  18. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  19. Education Technology Success Stories

    Science.gov (United States)

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  20. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    Science.gov (United States)

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  1. Living labs an arena for development and testing Ambient Assisted living technology

    DEFF Research Database (Denmark)

    Lassen, Anna Marie; Bangshaab, Jette

    2016-01-01

    Background: This gives an example of Living labs as an arena for development/testing Ambient Assisted Living technology (AAL-technology). The selected Living lab is part of an EU-supported development project in collaboration with practice and concerns a Living lab that has developed...... an implementation model for an AAL-technology – toilets with douche and drying. (2) Method: The study involves Living lab as location for technology development/testing as well as user-driven approaches to obtain initial data. (1) Moreover, the study is based on process interviews, qualitative research interviews...... everyday activities. Conclusion: Based on staff and end user interviews, the study were able to conclude that independence is the main motivation for using AAL-technology. Application to Practice: The results are now used at the municipality level in several areas. The project has provided a more user...

  2. Embedded System and Robotic Education in a Blended Learning Environment Utilizing Remote and Virtual Labs in the Cloud, Accompanied by ‘Robotic HomeLab Kit’

    Directory of Open Access Journals (Sweden)

    Sven Seiler

    2012-12-01

    Full Text Available It is impossible to imagine everyday life without embedded devices and robotic applications, as they are utilized in almost every nowadays technical product. And there is a frantic need of well-educated developers, designers and programmers to handle and further evolve this existing technology. The domain itself is in a big change because the borders of pure ICT and embedded system are fusing and according to this process new methods for teaching these disciplines are necessary. It is important that ICT education will become more and more to real systems education, instead of just computer software programming, but in most curricula these two domains are still separated. The paper addresses a novel and implemented solution for teaching and learning of Robotics and embedded systems, while setting in remote labs and modern Internet technology into overall learning process. The proposed concept builds the bridge for a simple and logical study process by utilizing ICT for controlling and understanding real word processes and situations. The introduced blended learning concept covers several educational levels, starting from first and second level education up to university education and life-long learning. The solution is covered with hands-on mobile hardware kits, collaborative e-tools and remote labs. The focus in this paper is on the integration of the overall concept and an evaluation of the given courses.

  3. Lab4CE: A Remote Laboratory for Computer Education

    Science.gov (United States)

    Broisin, Julien; Venant, Rémi; Vidal, Philippe

    2017-01-01

    Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and…

  4. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  5. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad...

  6. Virtualization in education: Information Security lab in your hands

    Science.gov (United States)

    Karlov, A. A.

    2016-09-01

    The growing demand for qualified specialists in advanced information technologies poses serious challenges to the education and training of young personnel for science, industry and social problems. Virtualization as a way to isolate the user from the physical characteristics of computing resources (processors, servers, operating systems, networks, applications, etc.), has, in particular, an enormous influence in the field of education, increasing its efficiency, reducing the cost, making it more widely and readily available. The study of Information Security of computer systems is considered as an example of use of virtualization in education.

  7. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  8. Delivering Collaborative Web Labs as a Service for Engineering Education

    OpenAIRE

    Bochicchio, Mario A.; Antonella Longo

    2012-01-01

    As Internet speed grows up and academic networks reach more users, engineering schools take interest in online laboratories as a mean to increase the spectrum of offered services and to reduce costs by sharing expensive lab equipments. In this perspective, online labs must comply both with the scientific and pedagogic requirements coming from the lab users (students, researchers, …) and with the requirements coming from the administrative and technical staff in charge to manage and deliver th...

  9. Lessons of Educational Technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2006-01-01

    Full Text Available Reception of the book "Lessons of Educational Technology." The book contains materials work in certain aspects relevant to the formation of a teacher who is able to meet the challenges of society 'knowledge.

  10. ADS Labs: Supporting Information Discovery in Science Education

    Science.gov (United States)

    Henneken, E. A.

    2013-04-01

    The SAO/NASA Astrophysics Data System (ADS) is an open access digital library portal for researchers in astronomy and physics, operated by the Smithsonian Astrophysical Observatory (SAO) under a NASA grant, successfully serving the professional science community for two decades. Currently there are about 55,000 frequent users (100+ queries per year), and up to 10 million infrequent users per year. Access by the general public now accounts for about half of all ADS use, demonstrating the vast reach of the content in our databases. The visibility and use of content in the ADS can be measured by the fact that there are over 17,000 links from Wikipedia pages to ADS content, a figure comparable to the number of links that Wikipedia has to OCLC's WorldCat catalog. The ADS, through its holdings and innovative techniques available in ADS Labs, offers an environment for information discovery that is unlike any other service currently available to the astrophysics community. Literature discovery and review are important components of science education, aiding the process of preparing for a class, project, or presentation. The ADS has been recognized as a rich source of information for the science education community in astronomy, thanks to its collaborations within the astronomy community, publishers and projects like ComPADRE. One element that makes the ADS uniquely relevant for the science education community is the availability of powerful tools to explore aspects of the astronomy literature as well as the relationship between topics, people, observations and scientific papers. The other element is the extensive repository of scanned literature, a significant fraction of which consists of historical literature.

  11. Technology and Educational Structure

    Science.gov (United States)

    Boocock, Sarane S.

    2012-01-01

    Most current debate on instructional technology is characterized either by grandiose speculation on the salvation of education through automation (without specification of "what" and "how" technological innovations will actually be introduced in specific classroom situations, and how the changes will be financed), or by jargon-filled hairsplitting…

  12. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  13. Genomics Education in Practice: Evaluation of a Mobile Lab Design

    Science.gov (United States)

    Van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Buizer-Voskamp, Jacobine E.; Speksnijder, Annelies; Waarlo, Arend Jan

    2010-01-01

    Dutch genomics research centers have developed the "DNA labs on the road" to bridge the gap between modern genomics research practice and secondary-school curriculum in the Netherlands. These mobile DNA labs offer upper-secondary students the opportunity to experience genomics research through experiments with laboratory equipment that…

  14. The Educational Technology Myth

    Science.gov (United States)

    Stansfield, David

    2012-01-01

    If one wants to teach youth to think, one has to restrain himself from doing all their thinking for them. One has to refrain from specifying in advance what they are going to think. Yet, this is just what educational technologists are consistently guilty of doing. Educational technology is committed to excluding the possibility of anything new or…

  15. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    Science.gov (United States)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  16. Technical and didactic problems of virtual lab exercises in biochemistry and biotechnology education

    DEFF Research Database (Denmark)

    May, Michael; Skriver, Karen; Dandanell, Gert

    from a lack of conceptual analysis of what actually constitutes virtual labs. A clarification of these conceptual issues is suggested as part of a Danish research and development project on virtual lab exercises in biochemistry, molecular biology and biotechnology education. The main outcome...

  17. Fieldwork Report for the Nucleic Acid Technology Lab

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie

    The development of new technologies requires an understanding of the social issues technologies would confront when deployed. Such is the case of e-Science solutions like the Mini-Grid, whose future users are molecular biologists. The successful adoption of the Mini-Grid requires its design...

  18. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.

    Science.gov (United States)

    Hongzhou, Cui; Shuping, Guo; Wenju, Wang; Li, Li; Lulu, Wei; Linjun, Deng; Jingmin, Li; Xiaoli, Ren; Li, Bai

    2017-02-01

    In recent years, molecular biology has proven to be a great asset in our understanding of mechanisms in genodermatoses. However, bench to bedside translation research lags far behind. Advances in lab-on-a-chip technologies enabled programmable, reconfigurable, and scalable manipulation of a variety of laboratory procedures. Sample preparation, microfluidic reactions, and continuous monitoring systems can be integrated on a small chip. These advantages have attracted attention in various fields of clinical application including diagnosis of inherited skin diseases. This review lists an overview of the underlying genes and mutations and describes prospective application of lab-on-a-chip technologies as solutions to challenges for point-of-care genodematoses diagnosis.

  19. Multi-Level Security for Automotive–RFID Based Technology with Lab VIEW Implementation

    Directory of Open Access Journals (Sweden)

    Priya Darshini .V

    2013-03-01

    Full Text Available Security has become a prominent parameter for all the electronic gadgets. This proposed paper aims at securing the automotive and also preventing the unauthorized persons from accessing it. The technologies such as Radio Frequency Identification (RFID, thumb registration system and face recognition will be applied for the security measures. This proposed system will also be implemented in LabVIEW using Educational Laboratory Virtual Instrumentation Suite II (ELVIS. Initially, the RFID system will be authenticated .The importance of this system is that, it gets verification from the Road Transportation Office (RTO.The user will require an authentication to get proceed to the thumb registration module by which the efficiency of the thumb is enhanced using Pattern Matching Algorithm (PMA. Face recognition system is a technique which will be used after the thumb registration system. At last, this system allows the user to drive the car. For emergency, a key insertion slot will be placed in the system through which the user can insert the key. During this emergency mode of operation the camera captures the driver’s image and sends it to the owner’s mobile as Multimedia Messaging Service (MMS. The owner will provide the authentication password; this in turn allows the user to drive the vehicle. Global System for Mobile communication (GSM module is also kept inbuilt for tracking purpose. Among the different technologies proposed, RFID technique is briefly discussed in this paper.

  20. Technology to combat poaching: from the lab to the park

    CSIR Research Space (South Africa)

    Ramadeen, P

    2015-10-01

    Full Text Available South Africa is home to an estimated 80% of the world's rhino population. This presentation discusses technologies to combat poaching, from laboratories to safeguard experimentation that can be taken to South African National Parks....

  1. VirexLab a Virtual Reality Educational System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The VirexLab, the centerpiece of this Tietronix proposal offers significant innovation to NASA and to the Marshall Space Flight Center, implementing the Biological...

  2. A Low-Cost Remote Lab for Internet Services Distance Education

    Directory of Open Access Journals (Sweden)

    James Sissom

    2006-08-01

    Full Text Available Academic departments seeking to reach students via distance education course offerings find that some on-line curricula require a traditional hands-on lab model for student evaluation and assessment. The authors solve the problem of providing distance education curriculum and supporting instruction lab components by using a low-cost remote lab. The remote lab is used to evaluate student performance in managing web services and website development, solving security problems, patch management, scripting and web server management. In addition, the authors discuss assessment and evaluation techniques that will be used to determine instructional quality and student performance. Discussed are the remote lab architecture, use of disk images and utilization of Windows 2003 Internet Information Service, and Linux Red Hat 9.0 platforms.

  3. Tablet Technologies and Education

    OpenAIRE

    Heidi L. Schnackenberg

    2013-01-01

    Recently, tablet technologies have grown tremendously in popularity. They lend themselves to a myriad of learning modalities and therefore may be well suited to use in schools and universities. While teachers work to find useful applications for tablets, students have already begun using them at home and, in secondary and higher education, in classes. Unfortunately, sometimes when students use tablets for courses they play with “apps,” rather than using the technology as a useful and powerful...

  4. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  5. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  6. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  7. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  8. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  9. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  10. Technology and Nursing Education.

    Science.gov (United States)

    Neighbors, Marianne; Eldred, Evelyn E.

    1993-01-01

    A study to isolate some of the complex skills that nurses are expected to perform in current practice identified 54 skills and surveyed 167 staff nurses and 53 nurse executives to classify the expected level of performance for a new graduate. Results indicated that educators bear responsibility for learning about technology and incorporating it…

  11. LabVIEW与VB混合编程技术%Mixed Programming Technology between LabVIEW and VB

    Institute of Scientific and Technical Information of China (English)

    刘广敏

    2006-01-01

    针对LabVIEW与VB混合编程问题,提出了两种方法--VB直接调用LabVIEW生成的可执行文件和VB调用LabVIEW生成的动态链接库文件,并以具体的例子说明了两种方法的实现过程.结果表明这两种方法能有效地实现LabVIEW与VB混合编程.

  12. Lab-on-a-chip technologies for single-molecule studies.

    Science.gov (United States)

    Zhao, Yanhui; Chen, Danqi; Yue, Hongjun; French, Jarrod B; Rufo, Joseph; Benkovic, Stephen J; Huang, Tony Jun

    2013-06-21

    Recent developments on various lab-on-a-chip techniques allow miniaturized and integrated devices to perform on-chip single-molecule studies. Fluidic-based platforms that utilize unique microscale fluidic behavior are capable of conducting single-molecule experiments with high sensitivities and throughputs, while biomolecular systems can be studied on-chip using techniques such as DNA curtains, magnetic tweezers, and solid-state nanopores. The advances of these on-chip single-molecule techniques lead to next-generation lab-on-a-chip devices, such as DNA transistors, and single-molecule real-time (SMRT) technology for rapid and low-cost whole genome DNA sequencing. In this Focus article, we will discuss some recent successes in the development of lab-on-a-chip techniques for single-molecule studies and expound our thoughts on the near future of on-chip single-molecule studies.

  13. Dissemination of information about the technologies of the Vision Research Lab through the World Wide Web

    Science.gov (United States)

    Dorais, Christopher M.

    2004-01-01

    The Vision Research Lab at NASA John Glenn Research Center is headed by Dr. Rafat Ansari. Dr. Ansari and other researchers have developed technologies that primarily use laser and fiber optics to non-invasively detect different ailments and diseases of the eye. One of my goals as a LERCIP intern and ACCESS scholar for the 2004 summer is to inform other NASA employees, researchers and the general public about these technologies through the development of a website. The website incorporates the theme that the eye is a window to the body. Thus by investigating the processes of the eye, we can better understand and diagnosis different ailments and diseases. These ailments occur in not only earth bound humans, but astronauts as well as a result of exposure to elevated levels of radiation and microgravity conditions. Thus the technologies being developed at the Vision Research Lab are invaluable to humans on Earth in addition to those astronauts in space. One of my first goals was to research the technologies being developed at the lab. The first several days were spent immersing myself in the various articles, journals and reports about the theories behind Dynamic Light Scattering, Laser Doppler Flowmetry, Autofluoresence, Raman Spectroscopy, Polarimetry and Oximetry. Interviews with the other researchers proved invaluable to help understand these theories as well gain hands on experience with the devices being developed using these technologies. The rest of the Vision Research Team and I sat down and discussed how the overall website should be presented. Combining this information with the knowledge of the theories and applications of the hardware being developed, I worked out different ideas to present this information. I quickly learned Paint Shop Pro 8 and FrontPage 2002, as well as using online tutorials and other resources to help design an effective website. The Vision Research Lab website incorporates the anatomy and physiology of the eye, different diseases

  14. 12 GeV detector technology at Jefferson Lab

    Science.gov (United States)

    Leckey, John P.; GlueX Collaboration

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  15. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana U.

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  16. 12 GeV detector technology at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  17. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.

    Science.gov (United States)

    Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-09-07

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.

  18. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.

    Science.gov (United States)

    Nguyen, Nam-Trung; Shaegh, Seyed Ali Mousavi; Kashaninejad, Navid; Phan, Dinh-Tuan

    2013-11-01

    Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.

  19. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    Science.gov (United States)

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  20. Lateral Thinking and Technology Education.

    Science.gov (United States)

    Waks, Shlomo

    1997-01-01

    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  1. LabVIEW面向对象编程技术%LabVIEW Object-Oriented Programming Technology

    Institute of Scientific and Technical Information of China (English)

    陈海生; 邓锐

    2008-01-01

    在测控领域,LabVIEW由于其简单、灵活的特点而受到广泛的应用,然而使用LabVIEW构建大型的测控软件时,在团队合作、后期维护方面就显出其不足,甚至一个很小的改动都可能导致灾难性的后果.为此,LabVIEW 8.2中推出了LabVIEW面向对象编程技术,以解决此问题.

  2. Exploring Virtual Reality for Classroom Use: The Virtual Reality and Education Lab at East Carolina University.

    Science.gov (United States)

    Auld, Lawrence W. S.; Pantelidis, Veronica S.

    1994-01-01

    Describes the Virtual Reality and Education Lab (VREL) established at East Carolina University to study the implications of virtual reality for elementary and secondary education. Highlights include virtual reality software evaluation; hardware evaluation; computer-based curriculum objectives which could use virtual reality; and keeping current…

  3. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.

    Science.gov (United States)

    Han, Song-I; Han, Ki-Ho

    2013-01-01

    As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.

  4. Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

    Science.gov (United States)

    Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin

    2014-01-01

    Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.

  5. Exploration of mobile educational technology

    OpenAIRE

    Hosny, W.

    2007-01-01

    Recent advances in mobile and wireless technology could be utilised to enhance the delivery of educational programmes. The use of this technology is known as “Mobile Education”. Mobile education technology provides unique opportunities for educators to flexibly deliver their educational material to learners via mobile services anywhere at any time. Moreover, the material delivered could be adapted to the learners’ needs and preferences. Examples of mobile devices which could be used in mobile...

  6. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  7. Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research

    Science.gov (United States)

    Monaco, Lisa

    2003-01-01

    Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.

  8. Disruptive Technologies in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2012-01-01

    This paper analyses the role of "disruptive" innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally…

  9. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  10. Improving Technology and Engineering Education

    Science.gov (United States)

    Tech Directions, 2013

    2013-01-01

    Improving Technology and Engineering Education for All Students: A Plan of Action is the theme of this year's International Technology and Engineering Educators Association (ITEEA) annual conference, which meets March 7-9 in Columbus, OH. The theme is aligned with ITEEA's 2012-15 Strategic Plan: Investing in People as Educational Change Agents.…

  11. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  12. Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Sung-Yong Park

    2011-01-01

    Full Text Available Droplet-based (digital microfluidics has been demonstrated in many lab-on-a-chip applications due to its free cross-contamination and no dispersion nature. Droplet manipulation mechanisms are versatile, and each has unique advantages and limitations. Recently, the idea of manipulating droplets with light beams either through optical forces or light-induced physical mechanisms has attracted some interests, since light can achieve 3D addressing, carry high energy density for high speed actuation, and be patterned and dynamically reconfigured to generate a large number of light beams for massively parallel manipulation. This paper reviews recent developments of various optical technologies for droplet manipulation and their applications in lab-on-a-chip.

  13. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pløn W.; Plomp, Tjeerd

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  14. From Bell Labs to Silicon Valley: A Saga of Technology Transfer, 1954-1961

    Science.gov (United States)

    Riordan, Michael

    2009-03-01

    Although Bell Telephone Laboratories invented the transistor and developed most of the associated semiconductor technology, the integrated circuit or microchip emerged elsewhere--at Texas Instruments and Fairchild Semiconductor Company. I recount how the silicon technology required to make microchips possible was first developed at Bell Labs in the mid-1950s. Much of it reached the San Francisco Bay Area when transistor pioneer William Shockley left Bell Labs in 1955 to establish the Shockley Semiconductor Laboratory in Mountain View, hiring a team of engineers and scientists to develop and manufacture transistors and related semiconductor devices. But eight of them--including Gordon Moore and Robert Noyce, eventually the co-founders of Intel--resigned en masse in September 1957 to start Fairchild, bringing with them the scientific and technological expertise they had acquired and further developed at Shockley's firm. This event marked the birth of Silicon Valley, both technologically and culturally. By March 1961 the company was marketing its Micrologic integrated circuits, the first commercial silicon microchips, based on the planar processing technique developed at Fairchild by Jean Hoerni.

  15. Science Lab Report Writing in Postsecondary Education: Mediating Teaching and Learning Strategies between Students and Instructors

    Science.gov (United States)

    Kalaskas, Anthony Bacaoat

    The lab report is a genre commonly assigned by lab instructors and written by science majors in undergraduate science programs. The teaching and learning of the lab report, however, is a complicated and complex process that both instructors and students regularly contend with. This thesis is a qualitative study that aims to mediate the mismatch between students and instructors by ascertaining their attitudes, beliefs, and values regarding lab report writing. In this way, this thesis may suggest changes to teaching and learning strategies that lead to an improvement of lab report writing done by students. Given that little research has been conducted in this area thus far, this thesis also serves as a pilot study. A literature review is first conducted on the history of the lab report to delineate its development since its inception into American postsecondary education in the late 19th century. Genre theory and Vygotsky's zone of proximal development (ZPD) serve as the theoretical lenses for this thesis. Surveys and interviews are conducted with biology majors and instructors in the Department of Biology at George Mason University. Univariate analysis and coding are applied to elucidate responses from participants. The findings suggest that students may lack the epistemological background to understand lab reports as a process of doing science. This thesis also finds that both instructors and students consider the lab report primarily as a pedagogical genre as opposed to an apprenticeship genre. Additionally, although instructors were found to have utilized an effective piecemeal teaching strategy, there remains a lack of empathy among instructors for students. Collectively, these findings suggest that instructors should modify teaching strategies to determine and address student weaknesses more directly.

  16. Technological literacy and innovation education

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2014-01-01

    , and a heavy digitization of the health care sector. These developments have actualized the fundamental question of how new technologies change and challenge the professions and their professional relationships? As one way to deal with this question, health education programmes have begun to focus...... on innovation education and educational activities fostering technological literacy. While focus on technological literacy has often (historically) taken a functionalist direction, and mainly been related to ICT and development of non- vocational curricula, more recent developments of approaches...

  17. Emerging technologies in physics education

    CERN Document Server

    Krusberg, Z A C

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies - Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed particularly in terms of their potential at promoting conceptual change, developing expert-like problem-solving skills, and achieving the goals of the traditional physics laboratory. Pedagogical methods to maximize the potential of each educational technology are suggested.

  18. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  19. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  20. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    Science.gov (United States)

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  1. Using National Instruments LabVIEW[TM] Education Edition in Schools

    Science.gov (United States)

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  2. Disruptive technologies in higher education

    OpenAIRE

    Flavin, Michael

    2012-01-01

    This paper analyses the role of ‘‘disruptive’’ innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According...

  3. ADS Labs - Supporting Information Discovery in Science Education

    CERN Document Server

    Henneken, Edwin A

    2012-01-01

    The SAO/NASA Astrophysics Data System (ADS) is an open access digital library portal for researchers in astronomy and physics, operated by the Smithsonian Astrophysical Observatory (SAO) under a NASA grant, successfully serving the professional science community for two decades. Currently there are about 55,000 frequent users (100+ queries per year), and up to 10 million infrequent users per year. Access by the general public now accounts for about half of all ADS use, demonstrating the vast reach of the content in our databases. The visibility and use of content in the ADS can be measured by the fact that there are over 17,000 links from Wikipedia pages to ADS content, a figure comparable to the number of links that Wikipedia has to OCLCs WorldCat catalog. The ADS, through its holdings and innovative techniques available in ADS Labs (http://adslabs.org), offers an environment for information discovery that is unlike any other service currently available to the astrophysics community. Literature discovery and...

  4. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  5. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.

    Science.gov (United States)

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-08-21

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  6. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    Science.gov (United States)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  7. A new approach to standardize multicenter studies: mobile lab technology for the German Environmental Specimen Bank.

    Science.gov (United States)

    Lermen, Dominik; Schmitt, Daniel; Bartel-Steinbach, Martina; Schröter-Kermani, Christa; Kolossa-Gehring, Marike; von Briesen, Hagen; Zimmermann, Heiko

    2014-01-01

    Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB) collects, characterizes, and stores blood, plasma, and urine samples of 120-150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab) in the project "Labor der Zukunft" (future's lab technology). This laboratory includes a 14.7 m(2) reception area to record medical history and exposure-relevant behavior, a 21.1 m(2) examination room to record dental fillings and for blood withdrawal, a 15.5 m(2) biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m(2) personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL) 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for retrospective

  8. A new approach to standardize multicenter studies: mobile lab technology for the German Environmental Specimen Bank.

    Directory of Open Access Journals (Sweden)

    Dominik Lermen

    Full Text Available Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB collects, characterizes, and stores blood, plasma, and urine samples of 120-150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab in the project "Labor der Zukunft" (future's lab technology. This laboratory includes a 14.7 m(2 reception area to record medical history and exposure-relevant behavior, a 21.1 m(2 examination room to record dental fillings and for blood withdrawal, a 15.5 m(2 biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m(2 personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for

  9. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  10. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  11. Technology Education and the Arts

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    One hears quite frequently how the arts continually suffer in the academic day. Many long-time technology education champions certainly know what this is all about; but there may be some ways to use technology education to bring the arts into the classroom. This article offers a series of activities and suggestions that will help students better…

  12. Towards an Alternative Educational Technology.

    Science.gov (United States)

    Mansfield, Roger; Nunan, E. E.

    1978-01-01

    Outlines an alternative form of educational technology based on an analysis of criticism levelled at the subject, both from within and without. Article contends that the future of educational technology rests on an expansion of its concerns, rather than a refinement or modification of its existing content. (Author)

  13. Emerging Technologies in Physics Education

    Science.gov (United States)

    Krusberg, Zosia A. C.

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…

  14. Technology for Education and Learning

    CERN Document Server

    2012 international conference on Technology for Education and Learning (ICTEL 2012)

    2012-01-01

    This volume contains 108 selected papers presented at the 2012 international conference on Technology for Education and Learning (ICTEL 2012), Macau, China, March 1-2, 2012. The conference brought together researchers working in various different areas of Technology for Education and Learning with a main emphasis on technology for business and economy in order to foster international collaborations and exchange of new ideas. This proceedings book has its focus on Technology for Economy, Finance and Education representing some of the major subareas presented at the conference.

  15. Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content

    Science.gov (United States)

    Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.

    2017-06-01

    Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning course content from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.

  16. Faculty Adoption of Educational Technology

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Although faculty support has been identified as a critical factor in the success of educational-technology programs, many people involved in such efforts underestimate the complexities of integrating technology into teaching. In this article, the author proposes an adoption cycle to help tackle the complex issue of technology adoption for…

  17. Assistive Technology and Mathematics Education

    Science.gov (United States)

    Akpan, Joseph P.; Beard, Lawrence A.

    2014-01-01

    Educators and caregivers now have the opportunity to individualize and differentiate instructions with many technological devices never before available. Assistive Technology is being introduced in the classroom at all levels as a tool for teachers to help deliver instruction to all students. Assistive Technology is widely used to ensure…

  18. Computer Technology and Nursing Education.

    Science.gov (United States)

    Southern Council on Collegiate Education for Nursing, Atlanta, GA.

    The influences of computer technology on college nursing education programs and health care delivery systems are discussed in eight papers. The use of computers is considered, with attention to clinical care, nursing education and continuing education, administration, and research. Attention is also directed to basic computer terminology, computer…

  19. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  20. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  1. "Supply Chain-Marketing Shark Tank" Experiential Lab Game in Interdisciplinary Business Education: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Arora, A.; Arora, A. Saxena

    2015-01-01

    This article provides educators in business schools with a new interdisciplinary experiential lab game called Supply Chain-Marketing (SC-Mark) Shark Tank game, which can be implemented in both Supply Chain Management (SCM) and Marketing courses. The SC-Mark experiential lab game is a real-life business environment simulation that explores…

  2. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    Science.gov (United States)

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  3. "Supply Chain-Marketing Shark Tank" Experiential Lab Game in Interdisciplinary Business Education: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Arora, A.; Arora, A. Saxena

    2015-01-01

    This article provides educators in business schools with a new interdisciplinary experiential lab game called Supply Chain-Marketing (SC-Mark) Shark Tank game, which can be implemented in both Supply Chain Management (SCM) and Marketing courses. The SC-Mark experiential lab game is a real-life business environment simulation that explores…

  4. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    Science.gov (United States)

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  5. PD Lab

    OpenAIRE

    Bilow, Marcel; Entrop, Bram; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  6. Implementing Educational Technology in Higher Education:

    Directory of Open Access Journals (Sweden)

    Cynthia C. Roberts

    2008-01-01

    Full Text Available Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be utilized by educators for the purpose of the selection as well as successful implementation of educational technologies within their setting, in particular, online course management systems. The four steps of this process include strategic analysis, strategy making, strategic plan design, and strategic plan implementation. The choice to embrace a new system and the extent and speed of its implementation depends upon internal factors such as resources, organizational culture, faculty readiness, anticipated degree of resistance, and the degree of variance from the status quo. A case from the author’s experience provides one example of how the use of distance learning technology was strategically implemented.

  7. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-02-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.

  8. Lab-on-a-chip biophotonics: its application to assisted reproductive technologies.

    Science.gov (United States)

    Lai, David; Smith, Gary D; Takayama, Shuichi

    2012-08-01

    With the benefits of automation, sensitivity and precision, microfluidics has enabled complex and otherwise tedious experiments. Lately, lab-on-a-chip (LOC) has proven to be a useful tool for enhancing non-invasive assisted reproductive technology (ART). Non-invasive gamete and embryo assessment has largely been through periodic morpohological assessment using optical microscopy and early LOC ART was the same. As we realize that morphological assessment is a poor indication of gamete or embryo health, more advanced biophotonics has emerged in LOC ART to assay for metabolites or gamete separation via optoelectrical tweezers. Off-chip, even more advanced biophotonics with broad spectrum analysis of metabolites and secretomes has been developed that show even higher accuracy to predicting reproductive potential. The integration of broad spectrum metabolite analysis into LOC ART is an exciting future that merges automation and sensitivity with the already highly accurate and strong predictive power of biophotonics.

  9. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  10. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  11. Computers: Educational Technology Paradox?

    Science.gov (United States)

    Hashim, Hajah Rugayah Hj.; Mustapha, Wan Narita

    2005-01-01

    As we move further into the new millennium, the need to involve and adapt learners with new technology have been the main aim of many institutions of higher learning in Malaysia. The involvement of the government in huge technology-based projects like the Multimedia Super Corridor Highway (MSC) and one of its flagships, the Smart Schools have…

  12. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  13. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  14. Art Education Technology: Digital Storytelling

    Science.gov (United States)

    Chung, Sheng Kuan

    2007-01-01

    The application of digital storytelling to art education is an interdisciplinary, inquiry-based, hands-on project that integrates the arts, education, local communities, technology, and storytelling. Through digital storytelling, students develop and apply multiliteracy skills, aesthetic sensitivities, and critical faculties to address greater…

  15. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2015-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...

  16. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  17. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    Science.gov (United States)

    Mejías Borrero, A.; Andújar Márquez, J. M.

    2012-10-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL

  18. Setting up a Low-Cost Lab Management System for a Multi-Purpose Computing Laboratory Using Virtualisation Technology

    Science.gov (United States)

    Mok, Heng Ngee; Lee, Yeow Leong; Tan, Wee Kiat

    2012-01-01

    This paper describes how a generic computer laboratory equipped with 52 workstations is set up for teaching IT-related courses and other general purpose usage. The authors have successfully constructed a lab management system based on decentralised, client-side software virtualisation technology using Linux and free software tools from VMware that…

  19. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fetterly, K [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.

  20. Multimedia technologies in education.

    Science.gov (United States)

    Liaskos, Joseph; Diomidus, Marianna

    2002-01-01

    In general multimedia is the combination of visual and audio representations. These representations could include elements of texts, graphic arts, sound, animation, and video. However, multimedia is restricted in such systems where information is digitalized and is processed by a computer. Interactive multimedia and hypermedia consist of multimedia applications that the user has more active role. Education is perhaps the most useful destination for multimedia and the place where multimedia has the most effective applications, as it enriches the learning process. Multimedia both in nursing education and in medical informatics education has several applications as well. A multimedia project can be developed even as a "stand alone" application (on CD-ROM), or on World Wide Web pages on Internet. However several technical constraints exist for developing multimedia applications on Internet. For developing multimedia projects we need hardware and software, talent and skill. The software requirements for multimedia development consist of one or more authoring systems and various editing applications for text, images, sounds and video. In this chapter different software tools for creating multimedia applications are presented. In the last part of this chapter, two examples of multimedia educational training programs are discussed. Both are "stand alone" applications (CD-ROMs). The first, examines several aspects of the electronic patient record by using videos, audio descriptions, lectures and glossary, while the second one presents several topics regarding epidemiology and epidemiological research by using graphics, sound and animation.

  1. The Cost of Change in Technology Education.

    Science.gov (United States)

    Pullias, Dave

    1987-01-01

    The author states that two costs will be involved in the coming change in technology education: financial and personal. He questions what group of educators will teach technology education in the future. (CH)

  2. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per;

    2015-01-01

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  3. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  4. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  5. The Tribe of Educational Technologies

    Science.gov (United States)

    Al Lily, Abdulrahman Essa

    2014-01-01

    This article looks into the claim that the international academic community of educational technologies seems to have functioned in a "tribal" way, having formed themselves around tribe-like patterns. It therefore addresses the research question: What are these claimed tribe-like practices that such a community exhibits? This question is…

  6. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  7. Technology for Education. IDRA Focus.

    Science.gov (United States)

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  8. Health Educational Potentials of Technologies

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising...

  9. Robot Technology: Implications for Education.

    Science.gov (United States)

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  10. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  11. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  12. Linking information technology in education

    Directory of Open Access Journals (Sweden)

    Humberto Jaime Pérez Gutierrez

    2014-02-01

    Full Text Available It is attempted in this paper, show a clear and concise point involved the new technologies of computer science in education, and how these affect the preparation of teachers, overcoming the wide and deep stretch that separates computer specialists teachers of any subject, learners and the interaction between them.

  13. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  14. Mobile Technology and Liberal Education

    Science.gov (United States)

    Rossing, Jonathan P.

    2012-01-01

    In this article, the author offers reflections on the impact of mobile technology for liberal education. These reflections are based on his own experience of incorporating iPads in his communication courses during the 2010-2011 academic year. As a member of an interdisciplinary faculty learning community on the use of mobile tablets, he explored…

  15. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  16. EDUCATIONAL TECHNOLOGIES TO EMPOWER HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    J. C.V. Garzón

    2014-08-01

    Full Text Available Introduction and objectives: The New Media Consortium (NMC Horizon Project defines educational technology in a broad sense as tools and resources that are used to improve teaching, learning, and creative inquiry. Each technology has been carefully researched and framed in the context of its potential impact on higher education. Within the Horizon Project there are currently seven categories of technologies, tools, and strategies for their use that the NMC monitors continuously. All they have the potential to foster real changes in education, particularly in the development of progressive pedagogies and learning strategies; the organization of teachers’ work; and the arrangement and delivery of content. Following the recommendations of NMC experts panel, we design an application named Augmented Reality Metabolic Pathways (ARMET in order to improve motivation and to promote student interactivity to the development of skills needed to learn the metabolic pathways. Materials and methods: The ARMET app was developed using Unity, 3D molecules obtained from Protein Data Bank and ChemSpider-chemical structure database, the usage data are stored into a database (MySQL and are analyzed using the statistical software R. Results and conclusions: ARMET mixes several technologies out of seven categories recommend in the NMC Horizon Report: Mobile app, Bring Your Own Device, Flipped Classroom, Learning Analytics and Augmented Reality. The principal criterion for the inclusion of those technologies into the app was its potential relevance to teaching and learning biochemistry. ARMET is available for iOS and Android platforms, and includes PDF files with a set of cards, the game board and classroom worksheet’s. The students and teachers can register for free. Teachers can create classes and track student performance. ARMET collects data for personalizing learning experiences addressing the challenge to build better pedagogical tools to establish effective

  17. PHOTON PBL: problem-based learning in photonics technology education

    Science.gov (United States)

    Massa, Nicholas; Audet, Richard; Donnelly, Judith; Hanes, Fenna; Kehrhahn, Marijke

    2007-06-01

    Problem-based learning (PBL) is an educational approach whereby students learn course content by actively and collaboratively solving real-world problems presented in a context similar to that in which the learning is to be applied. Research shows that PBL improves student learning and retention, critical thinking and problem-solving skills, and the ability to skillfully apply knowledge to new situations - skills deemed critical to lifelong learning. Used extensively in medical education since the 1970's, and widely adopted in other fields including business, law, and education, PBL is emerging as an alternative to traditional lecture-based courses in engineering and technology education. In today's ever-changing global economy where photonics technicians are required to work productively in teams to solve complex problems across disciplines as well as cultures, PBL represents an exciting alternative to traditional lecture-based photonics education. In this paper we present the PHOTON PBL project, a National Science Foundation Advanced Technology Education (NSF-ATE) project aimed at creating, in partnership with the photonics industry and university research labs from across the US, a comprehensive series of multimedia-based PBL instructional resource materials and offering faculty professional development in the use of PBL in photonics technology education. Quantitative and qualitative research will be conducted on the effectiveness of PBL in photonics technician education.

  18. Use of Educational Technology in Promoting Distance Education

    Science.gov (United States)

    Rashid, Muhammad; Elahi, Uzma

    2012-01-01

    Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…

  19. Reusable Handheld Electrolytes and Lab Technology for Humans (rHEALTH Sensor) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the rHEALTH sensor is to provide rapid, low-cost, handheld complete blood count (CBC), cell differential counts, electrolyte measurements, and other lab...

  20. The history of Rhoton's Lab.

    Science.gov (United States)

    Matsushima, Toshio; Richard Lister, J; Matsushima, Ken; de Oliveira, Evandro; Timurkaynak, Erdener; Peace, David A; Kobayashi, Shigeaki

    2017-09-06

    The work performed in Dr. Rhoton's Lab, represented by over 500 publications on microneurosurgical anatomy, greatly contributed to improving the level of neurosurgical treatment throughout the world. The authors reviewed the development and activities of the Lab over 40 years. Dr. Albert L. Rhoton Jr., the founder of, and leader in, this field, displayed great creativity and ingenuity during his life. He devoted himself to perfecting his study methodology, employing high-definition photos and slides to enhance the quality of his published papers. He dedicated his life to the education of neurosurgeons. His "lab team," which included microneuroanatomy research fellows, medical illustrators, lab directors, and secretaries, worked together under his leadership to develop the methods and techniques of anatomical study to complete over 160 microneurosurgical anatomy projects. The medical illustrators adapted computer technologies and integrated art and science in the field of microneurosurgical anatomy. Dr. Rhoton's fellows established methods of injecting colors and pursued a series of projects to innovate surgical approaches and instruments over a 40-year period. They also continued to help Dr. Rhoton to conduct international educational activities after returning to their home countries. Rhoton's Lab became a world-renowned anatomical lab as well as a microsurgical training center and generated the knowledge necessary to perform accurate, gentle, and safe surgery for the sake of patients.

  1. Dick and Jane and Technology Education.

    Science.gov (United States)

    Roman, Harry T.

    2002-01-01

    Science education and technology education have a common lineage. Contrary to prevailing beliefs, technology involves both process and content. It cuts across and unifies curricula and should be taught across all grade levels. (JOW)

  2. A Magnetocaloric Pump for Lab-On-Chip Technology: Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.J.

    2004-04-05

    A magnetocaloric pump provides a simple means of pumping fluid using only external thermal and magnetic fields. The principle, which can be traced back to the early work of Rosensweig, is straightforward. Magnetic materials tend to lose their magnetization as the temperature approaches the material's Curie point. Exposing a column of magnetic fluid to a uniform magnetic field coincident with a temperature gradient produces a pressure gradient in the magnetic fluid. As the fluid heats up, it loses its attraction to the magnetic field and is displaced by cooler fluid. The impact of such a phenomenon is obvious: fluid propulsion with no moving mechanical parts. Until recently, limitations in the magnetic and thermal properties of conventional materials severely limited practical operating pressure gradients. However, recent advancements in the design of metal substituted magnetite enable fine control over both the magnetic and thermal properties of magnetic nanoparticles, a key element in colloidal based magnetic fluids (ferrofluids). This manuscript begins with a basic description of the process and previous limitations due to material properties. This is followed by a review of existing methods of synthesizing magnetic nanoparticles as well as an introduction to a new approach based on thermophilic metal-reducing bacteria. We compare two compounds and show, experimentally, significant variation in specific magnetic and thermal properties. We develop the constitutive thermal, magnetic, and fluid dynamic equations associated with magnetocaloric pump and validate our finite element model with a series of experiments. Preliminary results show a good match between the model and experiment as well as approximately an order of magnitude increase in the fluid flow rate over conventional magnetite based ferrofluids operating below 80 C. Finally, as a practical demonstration, we describe a novel application of this technology: pumping fluids at the ''Lab

  3. A Magnetocaloric Pump for Lab-On-A-Chip Technology: Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Love, LJL

    2004-05-08

    A magnetocaloric pump provides a simple means of pumping fluid using only external thermal and magnetic fields. The principle, which can be traced back to the early work of Rosensweig, is straightforward. Magnetic materials tend to lose their magnetization as the temperature approaches the material's Curie point. Exposing a column of magnetic fluid to a uniform magnetic field coincident with a temperature gradient produces a pressure gradient in the magnetic fluid. As the fluid heats up, it loses its attraction to the magnetic field and is displaced by cooler fluid. The impact of such a phenomenon is obvious: fluid propulsion with no moving mechanical parts. Until recently, limitations in the magnetic and thermal properties of conventional materials severely limited practical operating pressure gradients. However, recent advancements in the design of metal substituted magnetite enable fine control over both the magnetic and thermal properties of magnetic nanoparticles, a key element in colloidal based magnetic fluids (ferrofluids). This manuscript begins with a basic description of the process and previous limitations due to material properties. This is followed by a review of existing methods of synthesizing magnetic nanoparticles as well as an introduction to a new approach based on thermophilic metal-reducing bacteria. We compare two compounds and show, experimentally, significant variation in specific magnetic and thermal properties. We develop the constitutive thermal, magnetic, and fluid dynamic equations associated with magnetocaloric pump and validate our finite element model with a series of experiments. Preliminary results show a good match between the model and experiment as well as approximately an order of magnitude increase in the fluid flow rate over conventional magnetite based ferrofluids operating below 80 C. Finally, as a practical demonstration, we describe a novel application of this technology: pumping fluids at the ''Lab

  4. High contrast imaging in multi-star systems: technology development and first lab results

    Science.gov (United States)

    Belikov, Ruslan; Bendek, Eduardo; Pluzhnik, Eugene; Sirbu, Dan; Thomas, Sandrine J.

    2016-07-01

    We show preliminary laboratory results advancing the technology readiness of a method to directly image planets and disks in multi-star systems such as Alpha Centauri. This method works with almost any coronagraph (or external occulter with a DM) and requires little or no change to existing and mature hardware. Because of the ubiquity of multistar systems, this method potentially multiplies the science yield of many missions and concepts such as WFIRST, Exo-C/S, HabEx, LUVOIR, and potentially enables the detection of Earth-like planets (if they exist) around our nearest neighbor star, Alpha Centauri, with a small and low-cost space telescope such as ACESat. We identified two main challenges associated with double-star (or multi-star) systems and methods to solve them. "Multi-Star Wavefront Control" (MSWC) enables the independent suppression of starlight from more than one star, and Super-Nyquist Wavefront Control (SNWC) enables extending MSWC to the case where star separation is beyond the Nyquist limit of the deformable mirror (DM). Our lab demonstrations were conducted at the Ames Coronagraph Experiment (ACE) laboratory and proved the basic principles of both MSWC and SNWC. They involved a 32x32 deformable mirror but no coronagraph for simplicity. We used MSWC to suppress starlight independently from two stars by at least an order of magnitude, in monochromatic as well as broadband light as broad as 50%. We also used SNWC to suppress starlight at 32 l/D, surpassing the Nyquist limit of the DM.

  5. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  6. Integration of the BSCS 5E instructional method and technology in an anatomy and physiology lab

    Science.gov (United States)

    Gopal, Tamilselvi

    This research provides an understanding of how the 5E instructional method combined with educational technology tools can be used in teaching undergraduate college level anatomy and physiology laboratory classes. The 5E instructional model is the exemplary instructional model in teaching biology for high school students. The phases in the 5E learning cycle are Engage, Explore, Explain, Elaborate, and Evaluate. In every step of the learning cycle, the researcher used appropriate technology tools to enhance the teaching and learning processes. The researcher used the Dynamic Instructional Design model to identify the appropriate technology tools for instruction. The topics selected for modification were 'The Heart' and 'The Vascular System.' The researcher chose these two topics based on results of the preliminary survey that the researcher conducted during summer 2008. The existing topics identified on the syllabus were followed but the teaching method was changed. In order to accomplish this, the researcher created a class Website and included tools including pronunciation, spelling, an Interactive Tool, and Web links. In addition, the researcher also created teacher resources for the Pronunciation Corner and Spelling Bee, so that any teacher can customize and use these tools for their classes. The results indicated that the students took advantage of the technology provided.

  7. Thesaurus Dataset of Educational Technology in Chinese

    Science.gov (United States)

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  8. Evaluation and Assessment in Educational Information Technology.

    Science.gov (United States)

    Liu, Leping, Ed.; Johnson, D. LaMont, Ed.; Maddux, Cleborne D., Ed.; Henderson, Norma J., Ed.

    This book contains the following articles on evaluating and assessing educational information technology: (1) "Assessing Learning in the New Age of Information Technology in Education" (Leping Liu, D. LaMont Johnson, Cleborne D. Maddux, and Norma J. Henderson); (2) "Instruments for Assessing the Impact of Technology in Education" (Rhonda…

  9. The promises of educational technology: a reassessment

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, T.

    1986-01-01

    The claims made for educational technology have not always been realized. Many programmes in education based on media and technology have produced useful documentation and supportive research; others have failed. The current, comprehensive definition of educational technology is a helpful key to

  10. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  11. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab Mission Establish and maintain a Digital...

  12. Applying a Living Lab methodology to support innovation in education at a university in South Africa

    CSIR Research Space (South Africa)

    Gallaghan, R

    2015-07-01

    Full Text Available The Living Lab paradigm creates open and inter-disciplinary environments where participants can interrogate challenges and co-create solutions. A successful Living Lab context incorporates a clear focus/vision, strong leadership, self...

  13. Interface technology and application between LabVIEW and C language%LabVIEW与C语言的接口技术及其应用

    Institute of Scientific and Technical Information of China (English)

    欧阳华兵; 徐温干

    2004-01-01

    在介绍虚拟仪器及其软件开发平台LabVIEW特点的基础上,指出了基于LabVIEW的G语言与传统的编程语言的不同,并阐述了LabVIEW在开发虚拟仪器中的强大优势.结合具体例子,重点讨论了LabVIEW与C语言接口的高级技术CIN(Code Interface Node).应用表明,此方法的高效、可行性,它充分利用了C语言的强大优势,大大增强了LabVIEW的整体功能.

  14. A communication between LabVIEW and Word based on ActiveX technology%基于ActiveX技术的LabVIEW与Word通信实现

    Institute of Scientific and Technical Information of China (English)

    张仁辉

    2007-01-01

    本文介绍了一种使用ActiveX技术完成LabVIEW与Word通信的方法.文中首先介绍了相关的概念,然后对LabVIEW中通过ActiveX调用Word进行了介绍,介绍了常用Word对象模型,并对Word文档在LabVIEW中的显示以及LabVIEW对Word事件的响应进行了详细介绍,最后在前文基础上给出了一个较完整的实例具体阐述了使用ActiveX实现LabVIEW与Word通信的实现方法.

  15. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  16. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    Science.gov (United States)

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  17. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  18. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  19. Current Trends in Higher Education Technology: Simulation

    Science.gov (United States)

    Damewood, Andrea M.

    2016-01-01

    This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…

  20. The TACOR educational telescope and the Italian RemoteLab Project - Learning tools for the International Year of Astronomy 2009

    Science.gov (United States)

    Altamore, A.; Nesci, R.; Rossi, C.; Sclavi, S.

    2008-06-01

    The Department of Physics of La Sapienza University has installed a didactic remote controlled telescope (TACOR) which, in collaboration with the Department of Physics of University Roma Tre, is currently used by mid-level and high-school classes. TACOR operates in the framework of the National RemoteLab Project which is supported by Italian Ministry of Public Education. During the forthcoming IYA2009, TACOR and RemoteLab will be powerful online tools for an interdisciplinary teaching and public communication of astronomy.

  1. Laboratory for development of open source geospatial technologies – role in education and research

    Directory of Open Access Journals (Sweden)

    Milan Kilibarda

    2014-06-01

    Full Text Available International Cartographic CBOs (International Cartographic Association- ICA in partnership with the Open Source Geospatial Foundation-OSGeo has started the initiative ICA-OSGeo Labs to promote and use open source technologies in education and research. For many years, the use and development of open source software and technologies have been present in the field of research and education at the Faculty of Civil Engineering at the Department of Geodesy and Geoinformatics, University of Belgrade. Additionally, at the University of Belgrade, Faculty of Civil Engineering a laboratory called "Laboratory for development of open source geospatial technologies - OSGL" has recently been established. This paper presents the current experience of the lab members in using open source software in geoinformatics, research and education as well as the perspectives and future activities of the newly formed laboratory.

  2. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  3. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  4. New Theoretical Approach Integrated Education and Technology

    Science.gov (United States)

    Ding, Gang

    2010-01-01

    The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…

  5. Franchising Technology Education: Issues and Implications.

    Science.gov (United States)

    Daniel, Dan; Newcomer, Cynthia

    1993-01-01

    Describes educational technology franchises that sell services to students, either through schools or directly through retail centers, to educate them about and with technology. Topics addressed include the emphasis on personalized instruction; cooperative learning; curriculum; cost effectiveness; site-based management in public education; and…

  6. Educational Technology: Definition of the Problem.

    Science.gov (United States)

    Razavi, Hossein

    1978-01-01

    An analysis of the evolution of educational technology demonstrates that the expansion of the concept has been unavoidable. A definition of educational technology as an economic approach to the micro and macro planning of education is introduced, and problems and guidelines for implementation in developing countries are discussed. (Author/JEG)

  7. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  8. Educational Technology in the Crystal Ball.

    Science.gov (United States)

    Langham-Johnson, Shirley

    This paper predicts that microelectronic circuitry will have an impact on education comparable to that of the industrial revolution or the invention of the printing press. Present conditions influencing educational technology and trends are considered in light of five considerations: (1) recent redefinitions of what educational technology is; (2)…

  9. Cases on Technology Integration in Mathematics Education

    Science.gov (United States)

    Polly, Drew, Ed.

    2015-01-01

    Common Core education standards establish a clear set of specific ideas and skills that all students should be able to comprehend at each grade level. In an effort to meet these standards, educators are turning to technology for improved learning outcomes. "Cases on Technology Integration in Mathematics Education" provides a compilation…

  10. Examining the Nature of Technology Graduate Education

    Science.gov (United States)

    Hartman, Nathan; Sarapin, Marvin; Bertoline, Gary; Sarapin, Susan H.

    2009-01-01

    The purpose of this paper is twofold. This work presents a general discussion of the theoretical foundation for graduate education in technology followed by specific applications of research activities within graduate education in technology. This paper represents the authors' view of the role of graduate education in (a) advancing the knowledge…

  11. An Educator's Guide to Communication Satellite Technology.

    Science.gov (United States)

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  12. A Contemporary Preservice Technology Education Program

    Science.gov (United States)

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  13. Toward Sustainable Practices in Technology Education

    Science.gov (United States)

    Elshof, Leo

    2009-01-01

    This paper discusses the problematic relationship between technology education, consumption and environmental sustainability. The emerging global sustainability crisis demands an educational response that moves beyond mere "tinkering" with classroom practices, toward technology education which embraces life cycle thinking and "eco-innovation". It…

  14. Virtually Nursing: Emerging Technologies in Nursing Education.

    Science.gov (United States)

    Foronda, Cynthia L; Alfes, Celeste M; Dev, Parvati; Kleinheksel, A J; Nelson, Douglas A; OʼDonnell, John M; Samosky, Joseph T

    Augmented reality and virtual simulation technologies in nursing education are burgeoning. Preliminary evidence suggests that these innovative pedagogical approaches are effective. The aim of this article is to present 6 newly emerged products and systems that may improve nursing education. Technologies may present opportunities to improve teaching efforts, better engage students, and transform nursing education.

  15. Studying Innovation Technologies in Modern Education

    Science.gov (United States)

    Stukalenko, Nina M.; Zhakhina, Bariya B.; Kukubaeva, Asiya K.; Smagulova, Nurgul K.; Kazhibaeva, Gulden K.

    2016-01-01

    In modern society, innovation technologies expand to almost every field of human activity, including such wide field as education. Due to integrating innovation technologies into the educational process practice, this phenomenon gained special significance within improvement and modernization of the established educational system. Currently, the…

  16. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  17. Committee on Veterinary Medicine at the Society for Medical Education: Skills Labs in Veterinary Medicine - a brief overview.

    Science.gov (United States)

    Dilly, Marc; Gruber, Christian

    2016-01-01

    Since 2012, skills labs have been set up to teach practical skills at veterinary training facilities in the German-speaking world. In addition to didactic considerations, ethical points of view in terms of animal protection form the basis of the increasing significance of skills labs in veterinary medicine. Not least because of the quality standards in veterinary medicine training which apply across Europe, the link between veterinary medicine training facilities is particularly significant when it comes to the setting up and development of skills labs. The Committee on Veterinary Medicine is therefore not only interested in exchange and cooperation within veterinary medicine, but also sees an opportunity for mutual gain in the link with the Society for Medical Education Committee "Practical Skills".

  18. LabVIEW Based Remote Virtual Instrument Multiple Thread Technology%基于LabVIEW的远程虚似仪器多线程技术

    Institute of Scientific and Technical Information of China (English)

    林康红

    2003-01-01

    在简要介绍虚拟仪器开发平台LabVIEW的基础上,对多线程技术作了说明.结合具体实例,着重分析了远程虚拟仪器系统中多线程技术的实现方法--LabVIEW多任务并行程序.

  19. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  20. Technologies for autonomous integrated lab-on-chip systems for space missions

    Science.gov (United States)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  1. Finding the Education in Educational Technology with Early Learners

    Science.gov (United States)

    McManis, Lilla Dale; Gunnewig, Susan B.

    2012-01-01

    As many educators and parents have observed, today's children are exposed to advanced technology at an early age, with tablets, e-readers, and smartphones being some prevalent choices. Experiences with technology can pave the way for unprecedented learning opportunities. However, without an education component, technology cannot reach its full…

  2. Physical Education Teacher's Attitudes towards Philosophy of Education and Technology

    Science.gov (United States)

    Turkeli, Anil; Senel, Omer

    2016-01-01

    The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…

  3. It's TIME for Technology: The Technology in Mathematics Education Project

    Science.gov (United States)

    Hardy, Michael

    2008-01-01

    This article describes the impact that the Technology in Mathematics Education (TIME) Project had on participating middle level and secondary mathematics teachers' preparedness to teach through technology. Results indicate that the TIME Project positively impacted participants' perceptions of their knowledge of technological resources and methods…

  4. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  5. Technology Enhanced Learning in Design and Technology Education

    Science.gov (United States)

    Page, Tom; Thorsteinsson, Gisli

    2007-01-01

    The focus of this literature review addresses the opportunities that new media can have for design and technology education at the university level. Advances in public and technology interaction has changed drastically with the impact of New Media and Information and Communication Technologies (ICTs). This research investigates the role of New…

  6. Adult Education in Radiologic Technology: A Review.

    Science.gov (United States)

    Dowd, Steven B.

    In almost all its aspects, radiologic technology education is adult education. Boyle's (1981) adult learning model has four components: (1) the learner in terms of motivation; (2) learning as a change process; (3) the experiential role of education; and (4) the facilitative role of the educator. Andragogy, as defined by Knowles (1977, 1980), is a…

  7. Women Technology Leaders: Gender Issues in Higher Education Information Technology

    Science.gov (United States)

    Drury, Marilyn

    2011-01-01

    Women working in higher education information technology (IT) organizations and those seeking leadership positions in these organizations face a double challenge in overcoming the traditionally male-dominated environments of higher education and IT. Three women higher education chief information officers (CIOs) provided their perspectives,…

  8. Risk of internet addiction among undergraduate medical, nursing, and lab technology students of a health institution from Delhi, India

    Directory of Open Access Journals (Sweden)

    Anika Sulania

    2015-01-01

    Full Text Available Objective: To assess prevalence, usage pattern, and risk of internet addiction (IA among undergraduate students of a health institution from Delhi. Materials and Methods: A cross-sectional descriptive study was carried out during March-April 2015 using 20-item Young′s IA test, a Likert scale-based interview schedule with scores ranging from 0 to 100 points with a higher score indicating greater internet dependency. Background variables included sociodemographic details, general health practices, self-assessment of mental health status, inter-personal relation (family/friends, personality type, and global satisfaction in life. The scoring pattern was analyzed in the form of low risk (score ≤49 points and high risk (score ≥50 points for IA. The proportion, Chi-square test, adjusted, and un-adjusted odds ratio (OR (95% confidence interval were computed using regression analysis. Results: Out of 202, 40.6% were MBBS students, followed by 35.6% from nursing, and 23.8% from medical lab technology stream; 68.3% were females; the mean age was 20.3 ± 1.4 years; and 61.9% were residing in hostels. It was observed that 44 (21.8% and 22 (10.9% students had ever consumed alcohol and smoked, respectively, while only 42 (20.8% were engaged in physical activity (≥30 min during most (≥5 of the days of the week. Based on self-assessment, 33 (16.3% were globally dissatisfied and 88 (43.6% reported themselves to be introverts. The majority of students were using internet for educational purpose (98%, entertainment (95.0%, accessing social sites (92.5%, checking E-mails (76.2%, and pornographic websites (45%. With regard to IA, 171 (84.7% were at low risk (score ≤49 and 31 (15.4% were at high risk (score ≥50. Male students (P = 0.001, ever consumed alcohol (P = 0.003, ever smoker (P = 0.02, and regular physical activity (P = 0.04 were found to be significantly associated with a high risk of IA based on Chi-square test, but none were found significant

  9. ExperimentaLab: A Virtual Platform to Enhance Entrepreneurial Education through Training

    Science.gov (United States)

    Iscaro, Valentina; Castaldi, Laura; Sepe, Enrica

    2017-01-01

    With a view to enhancing the entrepreneurial activity of universities, the authors explore the concepts and features of the "experimental lab", presenting it as an effective means of supporting entrepreneurial training programmes and helping students to turn ideas into actual start-ups. In this context, the term experimental lab refers…

  10. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  11. Social Adjustment of At-Risk Technology Education Students

    Science.gov (United States)

    Ernst, Jeremy V.; Moye, Johnny J.

    2013-01-01

    Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…

  12. WiFi技术助推外语语音室向智慧语言实验室转型%The Transformation of the Foreign Language Lab to the Smart Language Lab Boosted by WiFi Technology

    Institute of Scientific and Technical Information of China (English)

    郭迎

    2016-01-01

    随着信息技术与网络技术的高速发展,WiFi技术改变了人们访问互联网的方式,使人们摆脱了电线和网线的束缚,具有极大的应用前景。从智慧语言实验室的应用出发,阐述了WiFi技术的特点及优势,介绍了智慧语言实验室的特点及其WiFi网络规划,讨论了WiFi技术在智慧语言实验室发展中所起的重要作用。%Along with the high speed development of information technology and network technology, the WiFi technology, which has changed people’s way to access the Internet,makes people get rid of the bondage of wires and cables, and has a great application prospect. Starting from the application of the smart language lab, this paper expounds the characteristics and advantages of the WiFi technology, introduces the features of the smart language lab and its WiFi network planning, and discusses the important role of the WiFi technology in the development of the smart language lab.

  13. Technological process supervising using vision systems cooperating with the LabVIEW vision builder

    Science.gov (United States)

    Hryniewicz, P.; Banaś, W.; Gwiazda, A.; Foit, K.; Sękala, A.; Kost, G.

    2015-11-01

    One of the most important tasks in the production process is to supervise its proper functioning. Lack of required supervision over the production process can lead to incorrect manufacturing of the final element, through the production line downtime and hence to financial losses. The worst result is the damage of the equipment involved in the manufacturing process. Engineers supervise the production flow correctness use the great range of sensors supporting the supervising of a manufacturing element. Vision systems are one of sensors families. In recent years, thanks to the accelerated development of electronics as well as the easier access to electronic products and attractive prices, they become the cheap and universal type of sensors. These sensors detect practically all objects, regardless of their shape or even the state of matter. The only problem is considered with transparent or mirror objects, detected from the wrong angle. Integrating the vision system with the LabVIEW Vision and the LabVIEW Vision Builder it is possible to determine not only at what position is the given element but also to set its reorientation relative to any point in an analyzed space. The paper presents an example of automated inspection. The paper presents an example of automated inspection of the manufacturing process in a production workcell using the vision supervising system. The aim of the work is to elaborate the vision system that could integrate different applications and devices used in different production systems to control the manufacturing process.

  14. The Virtual Lab System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A virtual lab system is the simulation of real devices and experiments using computer and network tech-nology. It can make users do experiments easily, observe experiment phenomena and results through the remote termi-nal. Consequently, users can get final results to verify relative theory. The article analyses the features of virtual labsystems. A real virtual lab system named "Multimedia Virtual Lab for Digital Circuit Logic Design (MVLDCLD) "which has been developed by the authors and their group is also presented.

  15. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    Science.gov (United States)

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-07

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  16. Educational Technologies: Impact on Learning and Frustration

    Science.gov (United States)

    Hove, M. Christina; Corcoran, Kevin J.

    2008-01-01

    Educators are increasingly using educational technologies at the postsecondary level although little research has investigated the effects of such technologies on learning. Our research explored the effects of traditional lecture, slide-show-supplemented lecture, and virtual learning environment (VLE) on learning and frustration among college…

  17. The Changing Nature of Educational Technology Programs

    Science.gov (United States)

    Spector, J. Michael

    2015-01-01

    The many changes in educational technologies have been well documented in both the professional and popular literature. What is less well documented is the changing nature of programs that prepare individuals for careers in the broad multi-disciplinary field of educational technology. This article is a first attempt to look at how educational…

  18. Relationships between Teacher Characteristics and Educational Technology

    Science.gov (United States)

    Schulze, Kurt Ronald

    2014-01-01

    Too often, teachers are using educational technology resources for administrative purposes instead of using these resources in a constructivist manner to enhance student learning. The study site was well behind the national average in overall educational technology use categories. The purpose of this explanatory correlational research was to…

  19. Best Practices of Leadership in Educational Technology

    Science.gov (United States)

    Brown, Loren

    2014-01-01

    Leadership in Educational Technology is a relatively new field that is changing as fast as technology itself. Success for an educational leader includes maintaining a firm grasp of how to diagnose the needs of a district, a school, or a classroom while aligning policies, procedures, and protocols into a format that will empower the individual…

  20. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  1. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  2. Dehumanization: An Overview of Educational Technology's Critics.

    Science.gov (United States)

    Hewitt, Geoff

    Almost since its inception, the word "dehumanization" has caused apprehension, especially as the words relate to educational technology. This paper is a brief analysis of educational technology's critics from the late 1950s through present time; it also serves as a study of how their rhetoric has affected the structure of elementary and…

  3. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  4. From road to lab to math: the co-evolution of technological, regulatory, and organizational innovations for automotive crash testing.

    Science.gov (United States)

    Leonardi, Paul M

    2010-04-01

    Today, in the midst of economic crisis, senior executives at US automakers and influential industry analysts frequently reflect on the progression that safety testing has taken from the crude trials done on the road, to controlled laboratory experiments, and to today's complex math-based simulation models. They use stories of this seemingly linear and natural sequence to justify further investment in simulation technologies. The analysis presented in this paper shows that change in the structures of automakers' organizations co-evolved with regulations specifying who was at fault in vehicle impacts, how vehicles should be built to withstand the force of an impact, and how testing should be done to assure that vehicles met those requirements. Changes in the regulatory environment were bolstered by new theories about crash test dynamics and changing technologies with which to test those theories. Thus, as new technological and regulatory innovations co-evolved with innovations in organizational structuring, ideas about how to best conduct crash tests shifted and catalyzed new cycles of technological, regulatory, and organizational innovation. However, this co-evolutionary story tells us that the move from road to lab to math was not natural or linear as today's managerial rhetoric would have us believe. Rather, the logic of math-based simulation was the result of technological, regulatory and organizational changes that created an industry-wide ideology that supported the move toward math while making it appear natural within the shifting structure of the industry.

  5. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct......Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...

  6. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  7. Qualitative Research Methods in Education and Educational Technology. Research Methods for Educational Technology

    Science.gov (United States)

    Willis, Jerry W.

    2008-01-01

    "Qualitative Research Methods in Education and Educational Technology" was written for students and scholars interested in exploring the many qualitative methods developed over the last 50 years in the social sciences. The book does not stop, however, at the boundaries of the social sciences. Social scientists now consume and use research methods…

  8. Whatever became of educational technology? the implications for teacher education

    Directory of Open Access Journals (Sweden)

    Colin Latchem

    2013-12-01

    Full Text Available The paper explores the reasons for educational technology principles and practices not being more widely accepted and successfully applied in everyday teaching and learning. It argues that these are: an over-emphasis on new technology; a failure to learn from the lessons of the past; and a lack of meta-analysis and collaborative research to evidence the benefits. The paper also brings out the point that the literature fails to acknowledge the important role of educational technology in informal learning and non-formal education. It concludes with recommendations for future research into the broader aspects of educational technology and the employment of more longitudinal and collaborative action research and the nature of pre- service, in-service and postgraduate teacher education in educational technology.

  9. USE OF EDUCATIONAL TECHNOLOGY IN PROMOTING DISTANCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Muhammad RASHID

    2012-01-01

    Full Text Available Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between teacher and students lead to distance education. Now a days, media such as computer, artificial satellites, digital libraries, telephones, radio and television broadcasting and other technologies are presenting their potential for the purpose. Audio, video and print materials provide the base while internet is becoming cheap, fast and effective medium. Immense resources are already available on the web. In addition, technology is rushing to bring in revolution in the filed of distance education. So in future, positive changes can be apprehended.

  10. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  11. Use of Video Technology for Lecture and Lab Material in Introductory Earth Science

    Science.gov (United States)

    Shorey, C. V.

    2008-12-01

    Still images are essential to teaching introductory geology courses, but video has traditionally been relegated a minor role. When creatively integrated with lecture material, video can provide a better perspective on spatial scales and relationships between static geologic locations, or to demonstrate evolving processes with much greater economy. With the use of appropriate editing software, events can be temporally compressed and dilated to give a more visceral experience to processes described in labs and lectures. Video can also be used as a form of virtual field trip for students to see a more wide ranging sample of locations, and such virtual field trips can deliver comparable experiences for students with physical disabilities that may limit their ability to visit the locations their fellow students attend.

  12. INSA Virtual Labs: a new R+D framework for innovative space science and technology

    Science.gov (United States)

    Cardesin Moinelo, Alejandro; Sanchez Portal, Miguel

    2012-10-01

    The company INSA (Ingeniería y Servicios Aeroespaciales) has given support to ESA Scientific missions for more than 20 years and is one of the main companies present in the European Space Astronomy Centre (ESAC) in Madrid since its creation. INSA personnel at ESAC provide high level technical and scientific support to ESA for all Astronomy and Solar System missions. In order to improve and maintain the scientific and technical competences among the employees, a research group has been created with the name "INSA Virtual Labs". This group coordinates all the R+D activities carried out by INSA personnel at ESAC and aims to establish collaborations and improve synergies with other research groups, institutes and universities. This represents a great means to improve the visibility of these activities towards the scientific community and serves as breeding ground for new innovative ideas and future commercial products.

  13. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.

    Science.gov (United States)

    Sanati Nezhad, Amir; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama; Geitmann, Anja

    2013-05-14

    Tip-growing cells have the unique property of invading living tissues and abiotic growth matrices. To do so, they exert significant penetrative forces. In plant and fungal cells, these forces are generated by the hydrostatic turgor pressure. Using the TipChip, a microfluidic lab-on-a-chip device developed for tip-growing cells, we tested the ability to exert penetrative forces generated in pollen tubes, the fastest-growing plant cells. The tubes were guided to grow through microscopic gaps made of elastic polydimethylsiloxane material. Based on the deformation of the gaps, the force exerted by the elongating tubes to permit passage was determined using finite element methods. The data revealed that increasing mechanical impedance was met by the pollen tubes through modulation of the cell wall compliance and, thus, a change in the force acting on the obstacle. Tubes that successfully passed a narrow gap frequently burst, raising questions about the sperm discharge mechanism in the flowering plants.

  14. Educational Technology and Development of Education.

    Science.gov (United States)

    Dieuzeide, Henri

    The activities of International Education Year enable us to assess the recent spectacular expansion of world education, and the results are scarcely encouraging. There is a growing rift in the industrial nations between educational systems and societies, which is breaking down the school's monopoly as a source of knowledge. If the developing…

  15. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  16. What Is Technology Education? A Review of the "Official Curriculum"

    Science.gov (United States)

    Brown, Ryan A.; Brown, Joshua W.

    2010-01-01

    Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…

  17. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  18. Ethical Issues in Technology Education in Taiwan

    Science.gov (United States)

    Lin, Kuen-Yi

    2007-01-01

    A significant trend in technology education has shown internationally widespread acceptance with the increasing needs of developing students' technological literacy on both the elementary and secondary level from manual training to basic competency. Therefore, more and more countries have developed their national technology standards in order to…

  19. Identifying Advanced Technologies for Education's Future.

    Science.gov (United States)

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  20. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  1. Introducing Mobile Technology in Graduate Professional Education

    Science.gov (United States)

    Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma

    2014-01-01

    The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…

  2. Technology Teacher Education through a Constructivist Approach

    Science.gov (United States)

    Fox-Turnbull, Wendy; Snape, Paul

    2011-01-01

    This paper reviews literature on constructivist learning theories relevant to and evident in teacher education in a New Zealand university. These theories are illustrated within an authentic technology education context which involves students from a primary teacher-education degree programme. It investigates how a practical activity, based on…

  3. Physics Labs with Flavor

    Science.gov (United States)

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  4. Making Real Virtual Labs

    Science.gov (United States)

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  5. Educational Technology and Distance Supervision in Counselor Education

    Science.gov (United States)

    Carlisle, Robert Milton; Hays, Danica G.; Pribesh, Shana L.; Wood, Chris T.

    2017-01-01

    The authors used a nonexperimental descriptive design to examine the prevalence of distance supervision in counselor education programs, educational technology used in supervision, training on technology in supervision, and participants' (N = 673) perceptions of legal and ethical compliance. Program policies are recommended to guide the training…

  6. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  7. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  8. Technology, open education and a resilient higher education

    OpenAIRE

    Hall, Richard; Winn, Joss

    2010-01-01

    The place of technology in the development of coherent educational responses to environmental and socio-economic= disruption is here placed under scrutiny. One emerging area of interest is the role of technology in addressing more complex learning futures, and more especially in facilitating individual and social resilience, or the ability to manage and overcome disruption. However, the extent to which higher education practitioners can utilise technology to this end is framed by their approa...

  9. Animal ethics and welfare education in wet-lab training can foster residents' ethical values toward life.

    Science.gov (United States)

    Iki, Yuko; Ito, Takuya; Kudo, Katsuyoshi; Noda, Masafumi; Kanehira, Masahiko; Sueta, Teruko; Miyoshi, Ichiro; Kagaya, Yutaka; Okada, Yoshinori; Unno, Michiaki

    2017-06-07

    Live animals are used in surgical skills training in wet lab, which has undeniable effectiveness for the development of future surgeons. However, where such training is provided, animal welfare is a major consideration. Increasingly, institutions that offer wet-lab training are incorporating animal ethics and welfare-related content into their training courses, but the effectiveness of such animal ethics education has yet to be evaluated quantitatively. We investigated whether the animal ethics content of a training course affected trainees by measuring increase in ethical awareness using visual analog scale questionnaires before and after training. Our results demonstrated a significant and positive increase in awareness of animal ethics (significance level of 5%; 0.0380≤P≤0.0016).

  10. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.

    Science.gov (United States)

    Zhu, Feng; Hall, Christopher J; Crosier, Philip S; Wlodkowic, Donald

    2015-08-01

    To spearhead deployment of zebrafish embryo biotests in large-scale drug discovery studies, automated platforms are needed to integrate embryo in-test positioning and immobilization (suitable for high-content imaging) with fluidic modules for continuous drug and medium delivery under microperfusion to developing embryos. In this work, we present an innovative design of a high-throughput three-dimensional (3D) microfluidic chip-based device for automated immobilization and culture and time-lapse imaging of developing zebrafish embryos under continuous microperfusion. The 3D Lab-on-a-Chip array was fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining, while the off-chip interfaces were fabricated using additive manufacturing processes (fused deposition modelling and stereolithography). The system's design facilitated rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It was conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. Compared with the conventional Petri dish assays, the chip-based bioassay was much more convenient and efficient as only small amounts of drug solutions were required for the whole perfusion system running continuously over 72 h. Embryos were spatially separated in the traps that assisted tracing single embryos, preventing interembryo contamination and improving imaging accessibility.

  11. Shared Investment by NIS and National Labs Develops Cutting-Edge Safeguards Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Williams, Laura S.

    2012-04-01

    This article, regarding a new technology for detecting undeclared enrichment at gas centrifuge enrichment plants, was written for the DOE/NNSA NA-24 Highlights, a newsletter intended for public release.

  12. Using modern information technologies in continuing education

    Directory of Open Access Journals (Sweden)

    Магомедхан Магомедович Ниматулаев

    2012-06-01

    Full Text Available Article opens problems of formation of system of continuous education and improvement of professional skill for effective realization of professional work of the teacher in the conditions of use of modern information technology. Possibilities and necessities of use of information-communication technologies, Web-technologies for an intensification and giving of additional dynamics to educational process are considered. In this connection new forms and methods of the organization of educational activity for development and perfection of this activity are defined.

  13. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also......  The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...

  14. 基于DLL技术和COM组件技术实现LabVIEW和MATLAB混合编程%IMPLEMENTING MIXED PROGRAMMING WITH LABVIEW AND MATLAB BASED ON DLL TECHNOLOGY AND COM COMPONENT TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    宋广东; 王昌; 王金玉; 路璐; 魏玉宾

    2013-01-01

    LabVIEW和MATLAB混合编程应用日益广泛,然而大多数开发软件在客户端应用时需要同步安装MATLAB,大大限制了软件的推广应用.针对LabVIEW和MATLAB混合编程开发软件发布后独立于MATLAB运行的要求,从LabVIEW和MATLAB共同支持的数据接口技术出发,论述LabVIEW调用MATLAB计算代码的方法,比较每种接口技术的优势和缺点.通过实例实现了基于DLL(动态链接库)技术和COM(基于组件对象模型)组件技术的LabVIEW与MATLAB混合编程.成功实现了应用程序独立运行并明显改善了执行效率.%The application of mixed programming with Lab VIEW and MATLAB is increasingly widespread, but most developing software need to install MATLAB synchronously when applied in client, this greatly limits the promotion and application of the software. In order to meet the demand of the software mixed programming with LabVIEW and MATLAB that after its release it runs independently to MATLAB, in this paper we discuss the method of LabVIEW calling MATLAB computing code based on the data interface technology jointly supported by the both, compare the advantages and disadvantages of each interface technology. The mixed programming with LabVIEW and MATLAB based on DLL (dynamic link library) technology and COM (Component Object Model) component technology is achieved through examples. The software runs independently to MATLAB is successful realised and the efficiency is significantly improved.

  15. Bring Your Own Technology (BYOT to Education

    Directory of Open Access Journals (Sweden)

    Joseph M. Woodside

    2014-06-01

    Full Text Available In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD or Bring Your Own Technology (BYOT. Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explores the technology devices, and educational implications of policies, device management, security and included components.

  16. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  17. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  18. Automation of daphtoxkit-F biotest using a microfluidic lab-on-a-chip technology

    Science.gov (United States)

    Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald

    2015-12-01

    An increased rigor in water quality monitoring is not only a legal requirement, but is also critical to ensure timely chemical hazard emergency responses and protection of human and animal health. Bioindication is a method that applies very sensitive living organisms to detect environmental changes using their natural responses. Although bioindicators do not deliver information on an exact type or intensity of toxicants present in water samples, they do provide an overall snapshot and early-warning information about presence of harmful and dangerous parameters. Despite the advantages of biotests performed on sentinel organisms, their wider application is limited by the nonexistence of high-throughput laboratory automation systems. As a result majority of biotests used in ecotoxicology require time-consuming and laborious manual procedures. In this work, we present development of a miniaturized Lab-on-a-Chip (LOC) platform for automation and enhancement of acute ecotoxicity test based on immobilization of a freshwater crustacean Daphnia magna (Daphtoxkit-FTM). Daphnids' immobilization in response to sudden changes in environment parameters is fast, unambiguous, and easy to record optically. We also for the first time demonstrate that LOC system enables studies of sub-lethal ecotoxic effects using behavioral responses of Daphnia magna as sentinels of water pollution. The system working principle incorporated a high definition (HD) time-resolved video data analysis to dynamically assess impact of the reference toxicant on swimming behavior of D. magna. Our system design combined: (i) microfluidic device for caging of Daphnia sp.; (ii) mechatronic interface for fluidic actuation; (iii) video data acquisition; and (iv) algorithms for animal movement tracking and analysis.

  19. Biomedical lab on glass slide for crystallo-optic diagnostics: high technology

    Science.gov (United States)

    Berg, Dmitri B.; Mintz, Rafail I.

    1997-05-01

    The unique analytic potential of biofluids crystallooptic diagnostics (COD) is determined by visualization of aggregation properties and molecular biofluid organization, that reflect an important information about functional state of separate systems as well as about the physiological status of the whole organism. Extraction, visualization and processing of the diagnostic information are supplied by the smart-technology. COD techniques experience in studies of bile, urine, liquor, tear, saliva, blood and other biological fluids is generalized: crystallooptic diagnosticums are the pool of analytical system 'Mesotest'. Combining of biofluids COD with the modern computer technologies transfer such methods into the category of intellectual prompts.

  20. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  1. Distance education: turf and technology.

    Science.gov (United States)

    Pickard, M R

    1992-07-01

    Distance learning fits with the mission and strategic plan of the University of Texas at Arlington. We believe these educational opportunities in nursing are highly desirable. The Board of Nurse Examiners for the State of Texas has approved this project and the Texas Higher Education Coordinating Board has approved it as a pilot project. The school will continue evaluation and creative problem-solving in the use of distance education.

  2. High pressure: a challenge for lab-on-a-chip technology

    NARCIS (Netherlands)

    Benito-Lopez, F.

    2007-01-01

    The realization of microreactors, in which chemical reactions can be carried out in continuous or stop flow mode under pressure conditions, is the main topic of this thesis. The advantages of microreactor technology for pressure chemistry are clearly demonstrated in this thesis. Organic reactions

  3. Methods for Evaluating Learner Activities with New Technologies: Guidelines for the Lab@Future Project

    Science.gov (United States)

    Mwanza-Simwami, Daisy; Engestrom, Yrjo; Amon, Tomaz

    2009-01-01

    The task of evaluating learner activities with new technologies is becoming increasingly complex because traditional evaluation strategies do not adequately consider the unique and often dynamic characteristics of learners and activities carried out. Learner activities are largely driven by motives and relationships that exist in the context in…

  4. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  5. Building a Better Biology Lab? Testing Tablet PC Technology in a Core Laboratory Course

    Science.gov (United States)

    Pryor, Gregory; Bauer, Vernon

    2008-01-01

    Tablet PC technology can enliven the classroom environment because it is dynamic, interactive, and "organic," relative to the rigidity of chalkboards, whiteboards, overhead projectors, and PowerPoint presentations. Unlike traditional computers, tablet PCs employ "digital linking," allowing instructors and students to freehand annotate, clarify,…

  6. The Online Writing Lab (OWL) and the Forum: A Tool for Writers in Distance Education Environments.

    Science.gov (United States)

    Terryberry, Karl

    2002-01-01

    Demonstrates how to integrate static web pages with the dynamic forum for an effective learning experience on the online writing lab (OWL). Explains why asynchronous feedback provides effective, individualized writing instruction to students with various learning styles and how collaborative learning is fostered through threaded discussion groups.…

  7. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  8. Geospatial Technology in Geography Education

    Science.gov (United States)

    DeMers, Michael N.

    2016-01-01

    Depending on how you determine the starting point for the technology driving geographic information systems (GIS) and remote sensing, it is well over fifty years old now. During the first years of its existence in the early 1960s, the new technology benefited relatively few students who attended the handful of college programs that were actually…

  9. Educational-researching and Information Resources In Interdisciplinary Automated Training System Based On Internet Technology

    Directory of Open Access Journals (Sweden)

    T. V. Savitskaya

    2016-01-01

    Full Text Available The aim of the research is the study of the functionality of modular object-oriented dynamic learning environment (Moodle to development the informational and educational and educational research resource for training students in the disciplines of natural-scientific and engineer science. Have considered scientific-practical and methodological experience in the development, implementation and use of the interdisciplinary automated training system based on the Moodle system in the educational process. Presented the structure of the typical training course and set out recommendations for the development of information and educational resources different types of lessons and self-study students.Have considered the features of preparation of teaching-research resources of the assignments for lab using the software package MatLab. Also has considered the experience of implementing the discipline “Remote educational technologies and electronic learning in the scientific and the educational activities” for the training of graduate students at the Mendeleev University of Chemical Technology of Russia. The proposed an article approaches to the implementation of informational and educational and educational research resources in the interdisciplinary automated training system can be applied for a wide range of similar disciplines of natural-scientific and engineering sciences in a multilevel system of training of graduates.

  10. Communication Technology for Adult Education.

    Science.gov (United States)

    Rehman, S.

    1979-01-01

    The author draws attention to the quantitative and qualitative targets set for achievement by the National Adult Education Programme in India. She recommends a thorough and extensive use of educational media, not merely for motivational purposes, but for raising awareness and training the large numbers of instructors required to run the program.…

  11. Leveraging Technology for Educational Inclusion

    Science.gov (United States)

    Subramaniam, Sudha; Subramaniam, Radha

    2017-01-01

    The divides created by inequalities of income, lopsided growth and by the vicious circle of poverty has ensnared learning and delayed the planned strategies for educational inclusion. India's eighth Five-Year Plan prioritised and allocated increased funding for education with focus on reach-out to the remote interiors and rural India. However,…

  12. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  13. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  14. Social media, new technologies and history education

    NARCIS (Netherlands)

    Ribbens, Kees; Haydn, Terry; Carretero, Mario; Berger, Stefan; Grever, Maria

    This chapter explores the implications of recent developments in technology and social media, having a significant impact on the way in which young people learn history in schools and outside schools. New technology not only has a positive influence on education, it also has unintended negative

  15. Basic Principles in Holistic Technology Education.

    Science.gov (United States)

    Seemann, Kurt

    2003-01-01

    Outlines principles for holistic technology education by examining the following: (1) knowing and understanding through practical engagement with technology; (2) dialectics and praxis; and (3) the work of Dewey, Hegel, Feuerbach, and Marx. Identifies four interconnected factors: humans, applied setting, environment, and tools. (Contains 20…

  16. Introducing Educational Technologies to Teachers: Experience Report

    Science.gov (United States)

    Thota, Neena; Negreiros, Joao G. M.

    2015-01-01

    The dramatic rise in use of digital media has changed the way learning is taking place and has led to new ways to teach with digital technologies. In this article, we describe the experiences of teaching a course that introduces educational technologies to teachers in Macau. The course design is based on connectivism, a learning theory for the…

  17. Trends and Research Issues in Educational Technology

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    If one looks back at the last 50 years or so at educational technologies, one will notice several things. First, the pace of innovation has increased dramatically with many developments in the application of digital technologies to learning and instruction, following by a few years developments in the sciences and engineering disciplines that are…

  18. Introducing Technology Education at the Elementary Level

    Science.gov (United States)

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  19. Educational Perspectives on Digital Communications Technologies

    Science.gov (United States)

    Brett, Clare

    2009-01-01

    This article examines key issues in how new technologies are impacting upon how we teach, learn and collaborate, and uses an educational research project called GRAIL (Graduate Researcher's Academic Identity Online) under development to illustrate some fundamental issues in adopting new technologies. A significant challenge to the effective use of…

  20. Virtual Education: Guidelines for Using Games Technology

    Science.gov (United States)

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  1. Adult Education Technology in the Golden State.

    Science.gov (United States)

    Fleischman, John; Kilbert, Gerald H.

    1993-01-01

    Educational technology applications in California include (1) OTAN's Online Communication System--electronic mail and an information database; (2) Educard, a computer chip card for storing and retrieving student information; and (3) staff development via satellite in Los Angeles County Schools' Educational Telecommunications Network. (SK)

  2. Getting Your Counselor to Support Technology Education

    Science.gov (United States)

    Preble, Brian C.

    2016-01-01

    Is there a disconnect between counselors and educators in technology and vocational education? What is counseling, and what is a school counselor's role in a secondary school setting? How can one work with his or her guidance staff to ensure that students better understand your course offerings? The development of relationships, knowledge, and…

  3. European teachers and new educational technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2005-01-01

    Full Text Available Analysis of the current status on initial and in-service teachers' use of ICT for education in Europe. The paper describes the results of an analysis conducted in uTeacher, a European project devoted to developing a European Framework on teachers' skills in using new technologies for education.

  4. Information Technologies (ITs) in Medical Education.

    Science.gov (United States)

    Masic, Izet; Pandza, Haris; Toromanovic, Selim; Masic, Fedja; Sivic, Suad; Zunic, Lejla; Masic, Zlatan

    2011-09-01

    Advances in medicine in recent decades are in significant correlation with the advances in the information technology. Modern information technologies (IT) have enabled faster, more reliable and comprehensive data collection. These technologies have started to create a large number of irrelevant information, which represents a limiting factor and a real growing gap, between the medical knowledge on one hand, and the ability of doctors to follow its growth on the other. Furthermore, in our environment, the term technology is generally reserved for its technical component. Education means, learning, teaching, or the process of acquiring skills or behavior modification through various exercises. Traditionally, medical education meant the oral, practical and more passive transferring of knowledge and skills from the educators to students and health professionals. For the clinical disciplines, of special importance are the principles, such as, "learning at bedside," aided by the medical literature. In doing so, these techniques enable students to contact with their teachers, and to refer to the appropriate literature. The disadvantage of these educational methods is in the fact, that teachers often do not have enough time. Additionally they are not very convenient to the horizontal and vertical integration of teaching, create weak or almost no self education, as well as, low skill levels and poor integration of education with a real social environment. In this paper authors describe application of modern IT in medical education - their advantages and disadvantages comparing with traditional ways of education.

  5. Information-Technology Based Physics Education

    Science.gov (United States)

    Kim, J. S.; Lee, K. H.

    2001-04-01

    Developing countries emphasize expansion of the educated population but demand for quality improvement follows later. Current science education reform is driven in part by post cold war restructuring of the global economy and associated focus on the education of a more scientifically literate society, due to the industrial change from labor-intensive to high-technology type, and the societal change inherent in the present information era. Industry needs employees of broad and flexible background with inter disciplinary training, engineers with better physics training, and well trained physicists. Education researches have proved that active-learning based methods are superior to the traditional methods and the information technology (IT) has lot to offer in this. Use of IT for improving physics education is briefly discussed with prospects for collaboration in the Asia-Pacific region via Asian Physics Education Network (ASPEN), UNESCO University Foundation Course in Physics (UUFCP), etc.

  6. Emerging educational technologies: Tensions and synergy

    OpenAIRE

    J. Michael Spector

    2014-01-01

    A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a) massive open online courses (MOOCs), (b) personalized learning, and (c) game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique w...

  7. Bring Your Own Technology (BYOT) to Education

    OpenAIRE

    2014-01-01

    In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD) or Bring Your Own Technology (BYOT). Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explore...

  8. How "Discover the COSMOS", "PATHWAY", "Go-Lab" and "Inspiring Science Education" are changing the science education in European high schools

    Science.gov (United States)

    Kourkoumelis, Christine

    2014-04-01

    It has been noted by various reports that during recent years, there has been an alarming decline in young people's interest for science studies and mathematics. Since it is believed that the traditional teaching methods often fail to foster positive attitudes towards learning science, the European Commission has made intensive efforts to promote science education in schools though new methods based on the inquiry methodology of learning: questions, search and answers. This should be coupled to laboratories and hands-on experience which should be structured and scaffolded in a pedagogically meaningful way. "PATHWAY", "Discover the COSMOS" and "ISE" have been providing the lesson plans and the best practices for teachers and students and "Go-lab" is working towards an integrated set up of on-line labs for large scale use in science education. In the next sections some concrete examples which aim to bring the High Energy Physics (HEP) frontier research to schools will be given.

  9. 3D printing – a key technology for tailored biomedical cell culture lab ware

    Directory of Open Access Journals (Sweden)

    Schmieder Florian

    2016-09-01

    Full Text Available Today’s 3D printing technologies offer great possibilities for biomedical researchers to create their own specific laboratory equipment. With respect to the generation of ex vivo vascular perfusion systems this will enable new types of products that will embed complex 3D structures possibly coupled with cell loaded scaffolds closely reflecting the in-vivo environment. Moreover this could lead to microfluidic devices that should be available in small numbers of pieces at moderate prices. Here, we will present first results of such 3D printed cell culture systems made from plastics and show their use for scaffold based applications.

  10. ASK4Labs: A Web-Based Repository for Supporting Learning Design Driven Remote and Virtual Labs Recommendations

    Science.gov (United States)

    Zervas, Panagiotis; Fiskilis, Stefanos; Sampson, Demetrios G.

    2014-01-01

    Over the past years, Remote and Virtual Labs (RVLs) have gained increased attention for their potential to support technology-enhanced science education by enabling science teachers to improve their day-to-day science teaching. Therefore, many educational institutions and scientific organizations have invested efforts for providing online access…

  11. INFORMATION TECHNOLOGY AND COMMUNICATION IN NURSING EDUCATION

    Directory of Open Access Journals (Sweden)

    C. R. B. Costa

    2014-07-01

    Full Text Available The use of information and communication technologies in education, transforms not only the way we communicate, but also work, decide and think, as well as allows you to create rich, complex and diversified learning situations, through sharing the tasks between teachers and students , providing an interactive, continuous and lifelong learning. The paper aims to reflect on the importance of the use of information and communication technologies in higher education and show the potential in promoting changes and challenges for teachers of undergraduate nursing course. This is a literary review concerning the issue at hand, in the period from February to March 2014. The result indicates that the resources of information and communication technologies are strategies for the education of future nurses and promote the changing process for teachers , providing quality education to students and understanding that we must seek new opportunities to build a new style of training.

  12. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Science.gov (United States)

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-01-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409

  13. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.

    Science.gov (United States)

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-12-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

  14. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Directory of Open Access Journals (Sweden)

    George Luka

    2015-12-01

    Full Text Available A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter, increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

  15. Multi-Lab EV Smart Grid Integration Requirements Study. Providing Guidance on Technology Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Meintz, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardy, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Bohn, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Smart, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Saxena, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MacDonald, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kahl, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pratt, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-28

    The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.

  16. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  17. Influencing Technology Education Teachers to Accept Teaching Positions

    Science.gov (United States)

    Steinke, Luke Joseph; Putnam, Alvin Robert

    2008-01-01

    Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…

  18. Tertiary Educators' Perceptions of and Attitudes Toward Emerging Educational Technologies.

    Science.gov (United States)

    Boddy, Greg

    1997-01-01

    Reports survey of University of Newcastle (Australia) nursing faculty concerning perceptions of new educational technologies. Respondents were more familiar with or had useful knowledge of CD-ROM technology and video conferencing; these were seen as potentially most useful. Lack of knowledge, display/delivery equipment, and the time-consuming…

  19. Implementing Educational Technology in Higher Education: A Strategic Approach

    Science.gov (United States)

    Roberts, Cynthia

    2008-01-01

    Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be…

  20. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  1. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  2. Integrating Technology in STEM Education

    Directory of Open Access Journals (Sweden)

    Priya Chacko

    2015-03-01

    Full Text Available Students have access to the Internet at their fingertips via e-tablets and smart phones. However, the STEM fields are struggling to remain relevant in students’ lives outside the classroom. In an effort to improve high school science curricula and to keep students engaged in the classroom, we developed a technology-rich bioengineering summer program for high school students in grades 9-12. The program utilized touch screen technology in conjunction with hands-on experiments and traditional lecturing to create an entertaining, relevant, and effective classroom experience.

  3. Intelligent computer aided training systems in the real world: Making the technology accessible to the educational mainstream

    Science.gov (United States)

    Kovarik, Madeline

    1993-01-01

    Intelligent computer aided training systems hold great promise for the application of this technology to mainstream education and training. Yet, this technology, which holds such a vast potential impact for the future of education and training, has had little impact beyond the enclaves of government research labs. This is largely due to the inaccessibility of the technology to those individuals in whose hands it can have the greatest impact, teachers and educators. Simply throwing technology at an educator and expecting them to use it as an effective tool is not the answer. This paper provides a background into the use of technology as a training tool. MindLink, developed by HyperTech Systems, provides trainers with a powerful rule-based tool that can be integrated directly into a Windows application. By embedding expert systems technology it becomes more accessible and easier to master.

  4. Touch technologies in primary education

    DEFF Research Database (Denmark)

    Davidsen, Jacob

    This paper presents findings from a longitude project on children‘s use of interactive touchscreens in classroom-settings. By exploring and analysing interaction among pairs, children‘s collaborative activities are under study, and it is highlighted how touch technologies invites for a more...

  5. Technology in Education: Research Says!!

    Science.gov (United States)

    Canuel, Ron

    2011-01-01

    A large amount of research existed in the field of technology in the classroom; however, almost all was focused on the impact of desktop computers and the infamous "school computer room". However, the activities in a classroom represent a multitude of behaviours and interventions, including personal dynamics, classroom management and…

  6. Educational techno mobile laboratory: robotics courses for low cost scientific and technological literacy

    Directory of Open Access Journals (Sweden)

    Jonathan Germain Ortiz Meza

    2012-11-01

    Full Text Available The robotics in education is a multidisciplinary branch of the engineering that has been an invaluable asset to promote the science and the technology as something fun. However, the high costs for the implementation as also the difficulty to train instructors have made the robotics more common only in first world countries, because generally they have more educational budget for this practices. For this reason the Educational Techno Mobile Lab was created; this Lab incorporates robotics courses based on BEAM robots and also sciences and cognitive practices. The objective of the Project is to create a new concept of learning based on a techno educative platform with the finality to promote the scientific and technological literacy to the development of knowledge and critical scientific thinking. The results of the evaluation present a 36% of improvement related science and technology knowledge on fourth grade students; these results show the necessity to incorporate a given robotic course to all the public education level.

  7. Equity, Technology, and Educational Policy.

    Science.gov (United States)

    Barnett, Marguerite Ross

    1984-01-01

    Argues that three key themes seem to define the Reagan administration's educational policy: (1) contraction of the public sphere and of the definition of what constitutes the legitimate public interest; (2) social triage; and (3) individualism and privatization of public life. (CMG)

  8. Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology

    Directory of Open Access Journals (Sweden)

    Bartosz Kempisty

    2014-01-01

    Full Text Available Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each, n=100 recovered from follicles of different sizes, for example, from large (>5 mm, medium (3–5 mm, and small (<3 mm, were analyzed after preceding in vitro maturation (IVM. The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned “face-to-face.” Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity for oocytes isolated from large, medium, and small follicles differ significantly (P<0.05 and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.

  9. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).

    Science.gov (United States)

    Zhu, Feng; Wigh, Adriana; Friedrich, Timo; Devaux, Alain; Bony, Sylvie; Nugegoda, Dayanthi; Kaslin, Jan; Wlodkowic, Donald

    2015-12-15

    The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.

  10. WeFiLab: A Web-Based WiFi Laboratory Platform for Wireless Networking Education

    Science.gov (United States)

    Cui, Lin; Tso, Fung Po; Yao, Di; Jia, Weijia

    2012-01-01

    Remote access to physical laboratories for education has received significant attention from both researchers and educators as it provides access at reduced cost in sharing manner of real devices and gives students practical training. With the rapid growing of wireless technologies, it has become an essential of learning to have the hand-on…

  11. Career Education in Colleges of Technology (KOSEN)

    Science.gov (United States)

    Hasegawa, Jun

    Present situations and problems of a career education in Colleges of Technology (KOSEN) , which were founded in almost fifty years ago by a strong support and demand from industry, are discussed in this article. Education programs in KOSEN have been designed aiming to foster creative and practical engineers and keeping close relationships with needs of industry. Consequently, essences of the career education have actually involved in the education programs with continuing improvements. Recently, KOSEN has been attaching special importance to engineering design educations. And as for Co-op educations, very active and excellent promotions have done in many KOSEN. Also, participations of KOSEN students to internship have been very good and they could have very important experiences.

  12. Information Literacy Education on College of Technology at Kyushu Area

    Science.gov (United States)

    Kozono, Kazutake; Ikeda, Naomitsu; Irie, Hiroki; Fujimoto, Yoichi; Oshima, Shunsuke; Murayama, Koichi; Taguchi, Hirotsugu

    Recently, the importance of an engineering education increases by the development of the information technology (IT) . Development of the information literacy education is important to deal with new IT in the education on college of technology. Our group investigated the current state of information literacy education on college of technology at Kyushu area and the secondary education. In addition, we investigated about the talent whom the industrial world requested. From these investigation results, this paper proposed cooperation with the elementary and secondary education, enhancement of intellectual property education, introduction of information ethics education, introduction of career education and enhancement of PBL to information literacy education on college of technology.

  13. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  14. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  15. Imagery-37: a virtual lab for computer assisted education on digital image processing

    OpenAIRE

    Montenegro Joo, Javier; Universidad Nacional Mayor de San Marcos

    2014-01-01

    Imagery is a Virtual Lab for computer-assisted traning on Digital Image Processing(DIP), currently including 37 modules. Thhis software allows the user in the effects on real images; it may be used in the classroom, in the laboratory or at home. Imagery not only operates on images included by its creator(the author of this report), but also on those provided by the user. Some supporting theory is incluyed in Imagery, which may be used as a complement to specialized textbooks or classes. Im...

  16. TABLET (MOBILE TECHNOLOGY FOR PROFESSIONAL MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Gorbunova Irina B.

    2016-12-01

    Full Text Available The article highlights issues associated with the introduction of cloud-centric and tablet (mobile devices in music education, use of which confronts the teacher-musician fundamentally new challenges. So, it's a development of practical teaching skills with the assistance of modern technology, a search of approaches to the organization of educational process, a creation of conditions for the continuity between traditional music learning and information technologies in educational process. Authors give the characteristics of cloud computing and the perspective of its use in music schools (distance learning, sharing, cloud services, etc.. Also you can see in this article the overview of some mobile applications (for OS Android and iOS and their use in the educational process.

  17. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  18. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  19. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  20. Technological competencies in cardiovascular nursing education

    Directory of Open Access Journals (Sweden)

    Rika Miyahara Kobayashi

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. METHOD Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER, and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. RESULTS Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. CONCLUSION The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  1. [Technological competencies in cardiovascular nursing education].

    Science.gov (United States)

    Kobayashi, Rika Miyahara; Leite, Maria Madalena Januário

    2015-12-01

    To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT) and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER), and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  2. Wearable technology a new paradigm in Educational Universities

    Directory of Open Access Journals (Sweden)

    T. Naga Swathi

    2015-04-01

    Full Text Available Wearable technology, making a mark as the emerging technology where the goal of computing is to minimize the time and accessing the technology everywhere. It helps students in many ways. For identifying buildings by combining Google mobile app and on the campus map. For displaying supplemental material, during lectures. In labs it is used in demonstrations, teaching students doctor surgery techniques.There are different wearable devices available in the market, whichis utilized in the real world.

  3. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    Science.gov (United States)

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  4. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  5. Gender-Based Motivational Differences in Technology Education

    Science.gov (United States)

    Virtanen, Sonja; Räikkönen, Eija; Ikonen, Pasi

    2015-01-01

    Because of a deeply gendered history of craft education in Finland, technology education has a strong gender-related dependence. In order to motivate girls into pursuing technological studies and to enable them to see their own potential in technology, gender sensitive approaches should be developed in technology education. This study explores…

  6. Technology Education Teacher Supply and Demand--A Critical Situation

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics abilities…

  7. Defining the Greatest Need for Educational Technology.

    Science.gov (United States)

    Hayes, Jeanne; Bybee, Dennis L.

    1995-01-01

    The student-per-computer ratio identifies school districts with the greatest need for educational technology. Figures compare 12-year student-per-computer trends in K-12 public schools and rank the states with the greatest need. Results indicate that California, Illinois, Tennessee, Ohio, and Pennsylvania have districts in the greatest need…

  8. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  9. Innovations in Telecommunications Technology: Implications for Education.

    Science.gov (United States)

    Korman, Frank

    A survey of literature and information sources disclosed the overall trends for telecommunications technology in education. This report describes both hardware and software aspects of these trends. Hardware trends include microminiaturization, increased message transmission capacity, interactive information flow, more complex and complete…

  10. TECHcitement: Advances in Technological Education, 2004

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  11. Educational Technology Research in a VUCA World

    Science.gov (United States)

    Reeves, Thomas C.; Reeves, Patricia M.

    2015-01-01

    The status of educational technology research in a VUCA world is examined. The acronym, VUCA, stands for "Volatility" (rapidly changing contexts and conditions), "Uncertainty" (information missing that is critical to problem solving), "Complexity" (multiple factors difficult to categorize or control), and…

  12. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of equality--that…

  13. Vocabulary Development in Technology and Engineering Education

    Science.gov (United States)

    Klink, Pamela; Loveland, Thomas

    2015-01-01

    Some students have trouble performing well on summative tests in technology and engineering education. This is largely due to the students' inability to apply the terms to real-world scenarios (Baker, Simmons, & Kameenui, 1995). Exams often provide situational questions and, with these, critical-thinking skills are required. Students may lack…

  14. Information Technology and Undergraduate Medical Education.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    Hewlett-Packard Corporation grant enabled Harvard Medical School to begin using computer technology in medical educational applications. Hardware and software selection, integration into the curriculum, teaching the use of computers, cost, successful applications, knowledge base access, simulations, video and graphics teaching programs, and…

  15. Promoting Innovative Methods in Technology Education

    Science.gov (United States)

    Al-Nasra, Moayyad M.

    2012-01-01

    The engineering profession is very sensitive to the new changes in the engineering job market demand. The engineering job market is changing in a much faster rate than the engineering/engineering technology education. A 13-year study will be presented. The study focuses on the factors affecting the survival rate, student academic performance,…

  16. The Role of Conversation in Technology Education

    Science.gov (United States)

    Fox-Turnbull, Wendy

    2010-01-01

    This article investigates recent literature in the area of classroom conversation and dialogue with the aim of gaining a better understanding of the role that classroom conversation and dialogue plays in learning. It also investigates literature on the constructivist, collaborative nature of technology education and suggests that to enhance our…

  17. Advanced Technological Education Survey 2010 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  18. Advanced Technological Education Survey 2012 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  19. Advanced Technological Education Survey 2011 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  20. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of…

  1. Educational Technology and the Learning Process

    Science.gov (United States)

    Gagne, Robert M.

    1974-01-01

    Suggests how the "things of learning" can be employed to promote learning by first examining learning as it occurs in education, focusing on categories of learning outcomes; and then deriving some guidelines about the use of hardware technology as an aid to instruction. (JM)

  2. Using Citation Network Analysis in Educational Technology

    Science.gov (United States)

    Cho, Yonjoo; Park, Sunyoung

    2012-01-01

    Previous reviews in the field of Educational Technology (ET) have revealed some publication patterns according to authors, institutions, and affiliations. However, those previous reviews focused only on the rankings of individual authors and institutions, and did not provide qualitative details on relations and networks of scholars and scholarly…

  3. Measurement and classification of heart and lung sounds by using LabView for educational use.

    Science.gov (United States)

    Altrabsheh, B

    2010-01-01

    This study presents the design, development and implementation of a simple low-cost method of phonocardiography signal detection. Human heart and lung signals are detected by using a simple microphone through a personal computer; the signals are recorded and analysed using LabView software. Amplitude and frequency analyses are carried out for various phonocardiography pathological cases. Methods for automatic classification of normal and abnormal heart sounds, murmurs and lung sounds are presented. Various cases of heart and lung sound measurement are recorded and analysed. The measurements can be saved for further analysis. The method in this study can be used by doctors as a detection tool aid and may be useful for teaching purposes at medical and nursing schools.

  4. Textile Technology Analysis Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Textile Analysis Labis built for evaluating and characterizing the physical properties of an array of textile materials, but specifically those used in aircrew...

  5. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  6. The Needs Assessment in order to develop the Service of Psychological Lab and Counseling Center, Department of Educational Psychology and Guidance, the Faculty of Education, Mahasarakham University

    Directory of Open Access Journals (Sweden)

    Chaiporn Pongpisanrat

    2017-03-01

    Full Text Available The purpose of this study was to explore the needs assessment in order to develop the service of Psychological Lab and Counseling Center, Department of Educational Psychology and Guidance, the Faculty of Education, Mahasarakham University. This study aimed to compare the realistic service and the desirable service, as well as, to explore the directions to improve the service of Psychological Lab and Counseling Center among the service recipients based on their gender, age range, and field of studies. A total sample of 150 participants were service recipients; college students, lecturers, staff during the first semester academic year 2014 until the first semester academic year 2015. The instruments used included: the Questionnaire on needs assessment of the development of Psychological Lab and Counseling Center, and a focus group discussion. Frequency distribution, percentage, means, standard deviation, and variance were used to analyze the data. The needs assessment results showed as follows: 1 Overall the realistic basis of Psychological Lab and Counseling Center service was in an “above level of needs” while “the highest level of needs” was found in the desirable qualification. After having divided into categories, the result yielded an “above level” on the realistic basis of the counselor characteristics, task planning, and facility arrangement. For the desired qualification, the results showed that the needs on the counselors’ characteristics, task planning, and facility arrangement were identified as at a highest level of needs. 2 No differences were found on the realistic basis needs of the clients, the services provided, gender, and age range of the clients although they responded differently to the questionnaire. The clients who responded to the questionnaire from different field of studies showed the different needs of services provided in the realistic basis significantly at the level of .05 in which the General Sciences

  7. Inclusive Educative Technologies, for people with disabilities

    Science.gov (United States)

    Echenique, AM; Graffigna, JP; Pérez, E.; López, N.; Piccinini, D.; Fernández, H.; Garcés, A.

    2016-04-01

    The conventional educational environment imposes barriers to education for people with disabilities, limiting their rights, which is a non-discriminative education. In turn, hampers their access to other rights and creates huge obstacles to realize their potential and participate effectively in their communities. In this sense Assistive Technology provides alternative solutions, in order to compensate for a lost or diminished ability. Thus the necessary assistance is provided to perform tasks, including those related to education, improving the inclusion. In this paper some researches had been made in the Gabinete de TecnologiaMedica, in the Facultad de Ingenieria of the Universidad Nacional de San Juan in order to solve this problem. The researchers are classified by type of disability; sensory (visual and auditory) or motor. They have been designed, developed and experienced through various prototypes that have given satisfactory results. It had been published in national and international congresses of high relevance.

  8. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  9. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  10. Exploring the Impact of TeachME™ Lab Virtual Classroom Teaching Simulation on Early Childhood Education Majors' Self-Efficacy Beliefs

    Science.gov (United States)

    Bautista, Nazan Uludag; Boone, William J.

    2015-01-01

    The purpose of this study was to investigate the impact of a mixed-reality teaching environment, called TeachME™ Lab (TML), on early childhood education majors' science teaching self-efficacy beliefs. Sixty-two preservice early childhood teachers participated in the study. Analysis of the quantitative (STEBI-b) and qualitative (journal entries)…

  11. Staying connected: online education engagement and retention using educational technology tools.

    Science.gov (United States)

    Salazar, Jose

    2010-01-01

    The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.

  12. Multicultural awareness and technology in higher education: global perspectives

    NARCIS (Netherlands)

    Issa, Tomayess; Isaias, Pedro; Kommers, Petrus A.M.

    2014-01-01

    This book encompasses information on the effects of international students' exchanges in higher education through e-learning technologies, providing the latest teaching and learning methods, technologies, and approaches in the higher education sector worldwide

  13. Information and Communication Technologies in Engineering Education

    Directory of Open Access Journals (Sweden)

    Maldague Xavier

    2016-01-01

    Full Text Available In the emerging digital era it is difficult to train highly-skilled, competent specialists without the use of information and communication technology (ICT. The use of ICT in education increases the motivation to learn, stimulates cognitive activity and independent work, facilitates information exchange, enables interactive communication between teachers and students, and improves learning outcomes. This paper reviews the literature regarding the use of ICTs in education, explores their advantages and challenges, and surveys first-year students at the Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University to determine their attitude toward ICT in foreign language learning.

  14. Real time Intelligent Control Laboratory (RT-ICL) of PowerLabDK for smart grid technology development

    DEFF Research Database (Denmark)

    Ostergaard, Jacob; Wu, Qiuwei; Garcia-Valle, Rodrigo

    2012-01-01

    This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link to the B......This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link...... to the Bornholm power system data, an IBM blade server for optimization and control implementation, and a Phasor Measurement Unit (PMU) Lab. It is possible to interface PMUs and other hardware with the RTDS for hardware-in-the-loop (HIL) and power-hardware-in-the-loop (PHIL) tests. The ICL can interface...

  15. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  16. 7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

  17. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  18. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  19. Reflections on Preparing Educators to Evaluate the Efficacy of Educational Technology: An Interview with Joseph South

    Science.gov (United States)

    Bull, Glen; Spector, J. Michael; Persichitte, Kay; Meiers, Ellen

    2017-01-01

    Joseph South, an educational researcher, technology consultant, and former director of the U.S. Office of Educational Technology participated in a research initiative on Educational Technology Efficacy Research organized by the Jefferson Education Accelerator, Digital Promise, and the Curry School of Education at the University of Virginia. The…

  20. The Laser Institute of Technology for Education and Research at Camden County College: how it has changed and evolved after 20 years

    Science.gov (United States)

    Seeber, Fred P.

    2009-06-01

    The Laser Institute of Technology for Education and Research (LITER), nationally and internationally recognized in the field of Photonics, is a state of the art facility built in 1989 on the campus of Camden County College, Blackwood, NJ. This building consists of six high power laser labs, five low power laser labs and four fiber-optic laboratories. It also contains classrooms and research labs and the facility houses over $5,000,000 in equipment. This paper will discuss the evolution of this facility in regards to enrollment in its photonics programs, funding for new equipment purchases and maintaining and updating the facility in laser safety requirements as required by the ANSI Z-136.5 Standard for Educational Institutions. The paper will also discuss how OP-TEC (The National Center for Optics and Photonics Education) has helped to keep this Laser Institute at the cutting edge of photonics education.

  1. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  2. Culturelogical senses of activity in anthropic technologies of higher education

    Directory of Open Access Journals (Sweden)

    Dmitriev S.V.

    2010-04-01

    Full Text Available Technology of the educational teaching motive actions is examined in a theory and practice of higher education. The role of modern educational technologies is rotined in professional preparation of students. «Humanism conversion» of educational technologies is offered. It is rotined that authentic sense of educational activity of man is finding by him itself (achievement of authenticness with itself. On the basis of it is creative realization in professional labour.

  3. Supplemental Guidelines, JCE Lab-Experiment Manuscripts

    Science.gov (United States)

    2000-05-01

    These guidelines supplement the Guide to Submissions (published in J. Chem. Educ. 2000, 77, 29-30 and at http://jchemed.chem.wisc.edu/Journal/Authors/ Guidelines.html or available on request from the JCE editorial office). Manuscripts that describe laboratory experiments should first follow the Guide to Submissions and then apply these Supplemental Guidelines. Rationale JCE receives many submissions that describe laboratory experiments. The broad range of experiments readers can find each month is one of our most important features. These supplemental guidelines have been designed to make published laboratory experiments as useful as possible to readers. They are based on four fundamental ideas: peer review of a lab-experiment manuscript should be based to a large degree on the written and technology-based materials used by students in the laboratory, not just on a description of those materials; JCE should print the information a reader needs to decide whether to try to use the experiment; this includes information about possible safety hazards; readers who decide to use a lab should be able to adapt it to their circumstances quickly and easily; detailed information, including student materials, should be available to adopters of an experiment in a format that is modifiable and easily adapted for use by faculty, students, and support staff. To support these goals we require that a manuscript that describes a laboratory experiment must consist of a Lab Summary and Lab Documentation. (Each of these is described in detail below.) If, after peer review, a lab-experiment manuscript is published, only the Lab Summary will be printed in JCE. The Abstract, the Lab Summary, and all Lab Documentation will be published via JCE Online. Lab Documentation is placed on the Web as PDF files that can be displayed and printed by Acrobat Reader, and as Word or Word Perfect files that can be edited by those who adopt a lab. Those without Web access can request printed copies of all

  4. Programmes of Educational Technology in China: Looking Backward, Thinking Forward

    Science.gov (United States)

    Fuyin, Xu; Jianli, Jiao

    2010-01-01

    There is a history of programmes in educational technology in colleges and universities in China going back about 70 years. This paper briefly reviews the developmental history of the educational technology programme in China, elaborates the status-quo of the programme and looks ahead into the future trends of educational technology development in…

  5. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  6. Applying Sustainable Systems Development Approach to Educational Technology Systems

    Science.gov (United States)

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  7. Emerging Technologies Landscape on Education. A review

    Directory of Open Access Journals (Sweden)

    Luis de la Fuente Valentin

    2013-09-01

    Full Text Available This paper presents a desk research that analysed available recent studies in the field of Technology Enhanced Learning. The desk research is focused on work produced in the frame of FP6 and FP7 European programs, in the area of Information and Communication Technologies. It concentrates in technologies that support existing forms of learning, and also in technologies that enhance new learning paradigms. This approach includes already adopted and successfully piloted technologies. The elaboration of the desk research had three main parts: firstly, the collection of documents from CORDIS and other institutions related to TEL research; secondly, the identification of relevant terms appearing in those documents and the elaboration of a thesaurus; and thirdly, a quantitative analysis of each term occurrences. Many of the identified technologies belong to the fields of interactive multimedia, Human-computer Interaction and-or related to recommendation and learning analytics. This study becomes a thorough review of the current state of these fields through the actual development of R&D European projects. This research, will be used as a basis to better understand the evolution of the sector, and to focus future research efforts on these sectors and their application to education.

  8. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  9. First languages and las technologies for education

    Directory of Open Access Journals (Sweden)

    Julio VERA VILA

    2013-12-01

    Full Text Available This article is a reflection on how each human being’s learning process and the cultural development of our species are connected to the possibility of translating reality –what we think, what we feel, our interaction- a system of signs that, having shared meanings, enrich our intrapersonal and interpersonal communication. Spoken language was the first technology but being well prepared genetically for it, we learn it through immersion; the rest of them, from written language to hypermedia, have to be well taught and even better learned.We conclude by highlighting the necessity of taking advantage of the benefits provided by the new technologies available nowadays in order to overcome the digital divide, without forgetting others such as literacy acquisition, which are the base of new technologies. Therefore we need a theory and practice of education which comprises its complexity and avoids simplistic reductionism.  

  10. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  11. Revolution in Communication Technologies: Impact on Distance Education

    Science.gov (United States)

    Rajesh, M.

    2015-01-01

    Information and Communication Technologies have transformed the way the world lives and thinks. Education, especially, Distance Education is no different. While the technologies per se are an important factor, the social milieus in which these technologies are implemented are equally important. Technological convergence in the Indian context…

  12. Discursive Constructions of "Teacher" in an Educational Technology Journal

    Science.gov (United States)

    McDonald, Jenny; Loke, Swee-Kin

    2016-01-01

    The integration of technology with teaching and learning is a significant area of research in the educational technology field. Teachers play an instrumental role in technology integration, and many teacher-related factors have been identified that predict technology use and integration in educational settings. How teachers are represented in the…

  13. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  14. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  15. Technology and Higher Education in America for the Next Decade.

    Science.gov (United States)

    Friedman, Edward A.

    1979-01-01

    The impact of technology on higher education from increasingly complex computers and technological systems will cause higher education to include technological courses in the liberal arts curriculum, prepare liberal arts students for careers in nontraditional areas in which technology is an important component, and broaden the base of engineering…

  16. Mobile Learning and Integration of Mobile Technologies in Education

    Science.gov (United States)

    Keengwe, Jared; Bhargava, Malini

    2014-01-01

    Mobile technologies have a huge potential to transform education provided these technologies are designed and implemented in such a way that they are relevant to the social and cultural context of learning. Clearly, the application, implementation, and design of mobile technology in the global educational context pose technological and…

  17. STEM-Based Computational Modeling for Technology Education

    Science.gov (United States)

    Clark, Aaron C.; Ernst, Jeremy V.

    2008-01-01

    According to professionals in education, change is an ever-present and evolving process. With transformation in education at both state and national levels, technology education must determine a position in this climate of change. This paper reflects the views on the future of technology education based on an ongoing research project. The purpose…

  18. Beyond Change Blindness: Embracing the Technology Revolution in Higher Education

    Science.gov (United States)

    Sutton, Kimberly Kode; DeSantis, Josh

    2017-01-01

    The pace of education technology innovation outpaces many professors' abilities to thoughtfully integrate new tools in their teaching practice. This poses challenges for higher education faculty as well as those responsible for planning professional development in higher education. This article explores recent trends in education technology and…

  19. The Facilitating University: Positioning Next Generation Educational Technology

    NARCIS (Netherlands)

    Van der Zanden, A.H.W.

    2009-01-01

    Higher education is directly and indirectly subjected to pressures of diminishing subsidies, increasing student populations, heterogeneity, shorter knowledge and product lifecycles, labour demands, proliferation of technology, and new educational approaches and practices. Higher education must chang

  20. Elemental Chem Lab

    Science.gov (United States)

    Franco Mariscal, Antonio Joaquin

    2008-01-01

    This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…

  1. Status of chemistry lab safety in Nepal.

    Science.gov (United States)

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  2. Approaches to Research on Teacher Education and Technology. Society for Technology and Teacher Education Monograph Series. No. 1.

    Science.gov (United States)

    Waxman, Hersholt C., Ed.; Bright, George W., Ed.

    This document addresses the use of technology to enrich education. Twelve papers discuss research programs and perspectives and methods of research in technology and teacher education. Titles are: "Research Methods and Paradigms in Technology and Teacher Education" (Hersholt C. Waxman and George W. Bright); "Past and Future Stages in Educational…

  3. A Remote Direct Sequence Spread Spectrum Communications Lab Utilising the Emona DATEx

    Directory of Open Access Journals (Sweden)

    Cosmas Mwikirize

    2012-12-01

    Full Text Available Remote labs have become popular learning aids due to their versatility and considerable ease of utilisation as compared to their physical counterparts. At Makerere University, the remote labs are based on the standard Massachusetts Institute of Technology (MIT iLabs Shared Architecture (ISA - a scalable and generic platform. Presented in this paper is such a lab, addressing the key practical aspects of Direct Sequence Spread Spectrum (DSSS communication. The lab is built on the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS with the Emona Digital and Analog Telecommunications Experimenter (DATEx add-on board. It also incorporates switching hardware. The lab facilitates real-time control of the equipment, with users able to set, manipulate and observe signal parameters in both the frequency and the time domains. Simulation and data Acquisition modes of the experiment are supported to provide a richer learning experience.

  4. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  5. Inexpensive DAQ based physics labs

    Science.gov (United States)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  6. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  7. Critical Thinking as a Cognitive Educational Technology

    Directory of Open Access Journals (Sweden)

    Brylina Irina V.

    2016-01-01

    Full Text Available The article deals with higher education issues related to the formation of students’ intellectual work skills. The research objective of the paper was to consider critical thinking as a cognitive technology in education. In this regard, the didactic and structural approaches to the study of critical thinking do not contradict one another: each approach is a logical complement of the other and reveals certain aspects of the complex concept of critical thinking, giving emphasis to the argument, which is a tool, used both in critical and dogmatic thinking. By the general competence we mean principles of thinking, the ability to produce a reasoned piece of oral and written language, understanding and analysis of philosophical issues, considering the essence and value of the information. Among the professional competencies, the following should be listed: the ability to reconsider the gathered experience critically, the ability to collect, process, and interpret the data of modern research, to form judgments about the value and impact of the professional activity. The logical competence draws focused attention to the critical argument, regarding it throughout the course Logic. It is concluded that critical thinking can be seen as a cognitive educational technology for the formation of logical competence.

  8. Use of On-Line Math Skills Modules in an Introductory General Education Geoscience Course at a Community College: The Importance of Integration Across Lab & Lecture Sections

    Science.gov (United States)

    Moosavi, S. C.

    2011-12-01

    The NSF sponsored on-line math skills module series The Math You Need When You Need It (TMYN) was constructed to provide math skill development and support to introductory geoscience course instructors whose students science learning is often hindered by deficiencies in critical math skills. The on-line modules give instructors a mechanism for student-centered, skill-specific math tutorials, practice exercises and assessments outside regular class time. In principle, a student deficient in a skill such as graphing, calculating a best-fit line or manipulating and quantifying a concept such as density can use the appropriate TMYN module to identify their area of weakness, focus on developing the skill using geologically relevant examples, and get feedback reflecting their mastery of the skill in an asynchronous format just as the skill becomes critical to learning in the course. The asynchronous format allows the instructor to remain focused on the geoscience content during class time without diverting all students' attention to skill remediation needed by only a subset of the population. Such a blended approach prevents the progression of the class from being slowed by the need for remediation for some students while simultaneously not leaving those students behind. The challenge to geoscience educators comes in identifying the best strategy for implementing TMYN modules in their classrooms. This presentation contrasts the effectiveness of 2 strategies for implementing TMYN in an introductory Earth System Science class taken as a general education science lab requirement by lower division students at a community college. This course is typical of many such large general education courses in that lab instruction is provided by separate educators from the primary instructor in charge of the lecture, often creating 2 parallel and only dimly connected courses in the experience of many students. In case 1, TMYN was implemented in 3 of 4 lab sections by an adjunct lab

  9. What Is Educational Technology? An Inquiry into the Meaning, Use, and Reciprocity of Technology

    Science.gov (United States)

    Lakhana, Arun

    2014-01-01

    This position paper explores the ambiguity of technology, toward refined understanding of Educational Technology. The purpose of education is described by John Dewey as growing, or habitual learning. Two philosophical conceptions of technology are reviewed. Dewey positions inquiry as a technology that creates knowledge. Val Dusek offers a…

  10. Technology and Early Childhood Education: A Technology Integration Professional Development Model for Practicing Teachers

    Science.gov (United States)

    Keengwe, Jared; Onchwari, Grace

    2009-01-01

    Despite the promise of technology in education, many practicing teachers are faced with multiple challenges of effectively integrating technology into their classroom instruction. Additionally, teachers who are successful incorporating educational technology into their instruction recognize that although technology tools have the potential to help…

  11. VLSI Technology: Impact and Promise. Identifying Emerging Issues and Trends in Technology for Special Education.

    Science.gov (United States)

    Bayoumi, Magdy

    As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the implications of very large scale integrated (VLSI) technology. The first section reviews the development of educational technology, particularly microelectronics technology, from the 1950s to the present. The implications…

  12. Modeling Various Teaching Methods in a Faculty of Education in Science Education: Chalk and Talk, Virtual Labs or Hovercrafts

    Science.gov (United States)

    Laronde, Gerald; MacLeod, Katarin

    2012-01-01

    This research was conducted with 291 Junior/Intermediate (J/I) pre-service teachers in a ubiquitous laptop Bachelor of Education program at Nipissing University. The authors modeled a lesson using three different teaching styles using flight as the content medium, a specific expectation found in the Ontario Ministry of Education grade six Science…

  13. Modeling Various Teaching Methods in a Faculty of Education in Science Education: Chalk and Talk, Virtual Labs or Hovercrafts

    Science.gov (United States)

    Laronde, Gerald; MacLeod, Katarin

    2012-01-01

    This research was conducted with 291 Junior/Intermediate (J/I) pre-service teachers in a ubiquitous laptop Bachelor of Education program at Nipissing University. The authors modeled a lesson using three different teaching styles using flight as the content medium, a specific expectation found in the Ontario Ministry of Education grade six Science…

  14. Factors Predicting Nurse Educators' Acceptance and Use of Educational Technology in Classroom Instruction

    Science.gov (United States)

    Cleveland, Sandra D.

    2014-01-01

    Nurse educators may express a willingness to use educational technology, but they may not have the belief or ability to carry out the technology use in the classroom. The following non-experimental, quantitative study examined factors that predict nurse educators' willingness to accept and use educational technology in the classroom. The sample…

  15. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    Science.gov (United States)

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  16. 基于LabVIEW的单向阀振动信号采集关键技术设计%Design of the key technology of the signal acquisition for check valve based on LabVIEW

    Institute of Scientific and Technical Information of China (English)

    徐琪; 刘平; 曾禹乔; 姜韬

    2016-01-01

    ZPM泵中单向阀在工作过程中极易损坏,为了促进生产安全,提高效率。在分析了该单向阀实际振动情况的基础上,结合信号分析与处理技术,以LabVIEW为开发平台,以动态信号采集卡、双核高性能控制器和PXI机箱为硬件基础,对ZPM泵单向阀振动信号采集的关键技术进行了设计。在设计的过程中采用了模块化编程思想、多线程并行处理技术,同时还根据实际需求进行了循环缓冲区的设计以及数据储存策略的设计。经试验,该监测系统与LMS国际公司的振动信号分析仪相比,所采集的信号精度满足要求,系统可以长期连续稳定运行,能实现无人值守的自动化监测。%ZPM check valve in the pump is easily damaged in the process of work ,in order to promote production safety and efficiency .On the analysis of the check valve in the ZPM pump working condition ,that combined the technology of signal analysis and processing , based on the LabVIEW , with dynamic signal acquisition card , dual‐core high‐performance controller and PXI chassis as the foundation of hardware ,the key technology of signal acquisition for ZPM one‐way valve is designed .In the process of design ,the modular programming idea and the mufti‐thread processing technology are adopted ,and the designs of the loop buffer and of the data storage strategy are also carried out ,at the same time .In addition ,it also gives the corresponding program block diagram and code .After the test ,the monitoring system is compared with the vibration signal analysis instrument of LMS International Corporation .The collected signal precision meets the requirement . Thus , the system has a long‐term and continuous stable operation to achieve unattended automatic monitoring .

  17. New Perspectives: Technology Teacher Education and Engineering Design

    OpenAIRE

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000...

  18. Personalized Learning and the Future of Educational Technology

    OpenAIRE

    Karpicke, Jeffrey D.

    2014-01-01

    Recent advances in the cognitive science of learning have important implications for instructional practices at all levels of education. Educational technology is becoming pervasive, yet very little of it is designed around principles of learning from cognitive science. This talk discusses current trends in educational technologies, including personalized online learning systems and MOOCs, and how new advanced learning technologies will impact education in the future.

  19. Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives.

    Science.gov (United States)

    Pesenti, Alessandra; Taudte, Regina Verena; McCord, Bruce; Doble, Philip; Roux, Claude; Blanes, Lucas

    2014-05-20

    A new microfluidic paper-based analytical device (μPAD) in conjunction with confirmation by a lab on chip analysis was developed for detection of three trinitro aromatic explosives. Potassium hydroxide was deposited on the μPADs (0.5 μL, 1.5 M), creating a color change reaction when explosives are present, with detection limits of approximately 7.5 ± 1.0 ng for TNB, 12.5 ± 2.0 ng for TNT and 15.0 ± 2.0 ng for tetryl. For confirmatory analysis, positive μPADs were sampled using a 5 mm hole-punch, followed by extraction of explosives from the punched chad in 30 s using 20 μL borate/SDS buffer. The extractions had efficiencies of 96.5 ± 1.7%. The extracted explosives were then analyzed with the Agilent 2100 Bioanalyzer lab on a chip device with minimum detectable amounts of 3.8 ± 0.1 ng for TNB, 7.0 ± 0.9 ng for TNT, and 4.7 ± 0.2 ng for tetryl. A simulated in-field scenario demonstrated the feasibility of coupling the μPAD technique with the lab on a chip device to detect and identify 1 μg of explosives distributed on a surface of 100 cm(2).

  20. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  1. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  2. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  3. Potential of information technology in dental education.

    Science.gov (United States)

    Mattheos, N; Stefanovic, N; Apse, P; Attstrom, R; Buchanan, J; Brown, P; Camilleri, A; Care, R; Fabrikant, E; Gundersen, S; Honkala, S; Johnson, L; Jonas, I; Kavadella, A; Moreira, J; Peroz, I; Perryer, D G; Seemann, R; Tansy, M; Thomas, H F; Tsuruta, J; Uribe, S; Urtane, I; Walsh, T F; Zimmerman, J; Walmsley, A D

    2008-02-01

    The use of information technology (IT) in dentistry is far ranging. In order to produce a working document for the dental educator, this paper focuses on those methods where IT can assist in the education and competence development of dental students and dentists (e.g. e-learning, distance learning, simulations and computer-based assessment). Web pages and other information-gathering devices have become an essential part of our daily life, as they provide extensive information on all aspects of our society. This is mirrored in dental education where there are many different tools available, as listed in this report. IT offers added value to traditional teaching methods and examples are provided. In spite of the continuing debate on the learning effectiveness of e-learning applications, students request such approaches as an adjunct to the traditional delivery of learning materials. Faculty require support to enable them to effectively use the technology to the benefit of their students. This support should be provided by the institution and it is suggested that, where possible, institutions should appoint an e-learning champion with good interpersonal skills to support and encourage faculty change. From a global prospective, all students and faculty should have access to e-learning tools. This report encourages open access to e-learning material, platforms and programs. The quality of such learning materials must have well defined learning objectives and involve peer review to ensure content validity, accuracy, currency, the use of evidence-based data and the use of best practices. To ensure that the developers' intellectual rights are protected, the original content needs to be secure from unauthorized changes. Strategies and recommendations on how to improve the quality of e-learning are outlined. In the area of assessment, traditional examination schemes can be enriched by IT, whilst the Internet can provide many innovative approaches. Future trends in IT will

  4. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  5. TUBSAT-1, satellite technology for educational purposes

    Science.gov (United States)

    Ginati, A.

    1988-01-01

    TUBSAT-1 (Technical University of Berlin Satellite) is an experimental low-cost satellite within the NASA Get Away Special (GAS) program. This project is being financed by the German BMFT (Federal Ministry for Research and Technology), mainly for student education. The dimensions and weight are determined by GAS requirements and the satellite will be ejected from the space shuttle into an approximately 300-km circular orbit. It is a sun/star oriented satellite with an additional spin stabilization mode. The first planned payload is to be used for observing flight paths of migratory birds from northern Europe to southern Africa and back.

  6. Technological Middle Level Education in Mexico

    Directory of Open Access Journals (Sweden)

    Silvia Cruz Prieto

    2014-02-01

    Full Text Available Technological middle level education in Mexico trains young people between 15 to 18 years old to continue higher studies or to enter the labor market. It serves about 807,433 students through its 755 campuses with an educational model that has a focus on developing competences. High School Educational Reform, in operation since 2008, has initiated some programs to serve students, with the aim of reducing dropout rates. It also has implemented innovative management and information systems. In 2013, an educational reform was begun with an orientation to working conditions, focusing on the evaluation of school administrators and teachers. Received: 25/09/2013 / Accepted: 03/10/2013How to reference this articleCruz Prieto, S., Egido, I. (2014. La Educación Tecnológica de Nivel Medio Superior en México. Foro de Educación, 12(16, pp. 99-121. doi: http://dx.doi.org/10.14516/fde.2014.012.016.004

  7. Validation study for using lab-on-chip technology for Coxiella burnetii multi-locus-VNTR-analysis (MLVA) typing: application for studying genotypic diversity of strains from domestic ruminants in France.

    Science.gov (United States)

    Prigent, Myriam; Rousset, Elodie; Yang, Elise; Thiéry, Richard; Sidi-Boumedine, Karim

    2015-01-01

    Coxiella burnetii, the etiologic bacterium of Q fever zoonosis, is still difficult to control. Ruminants are often carriers and involved in human epidemics. MLVA is a promising genotyping method for molecular epidemiology. Different techniques are used to resolve the MLVA band profiles such as electrophoresis on agarose gels, capillary electrophoresis or using the microfluidic Lab-on-Chip system. In this study, system based on microfluidics electrophoresis with Lab-on-Chip technology was assessed and applied on DNA field samples to investigate the genotypic diversity of C. burnetii strains circulating in France. The Lab-on-Chip technology was first compared to agarose gel electrophoresis. Subsequently, the set-up Lab-on-Chip technology was applied on 97 samples collected from ruminants in France using the 17 markers previously described. A discordance rate of 27% was observed between Lab-on-Chip and agarose gel electrophoresis. These discrepancies were checked and resolved by sequencing. The cluster analysis revealed classification based on host species and/or geographic origin criteria. Moreover, the circulation of different genotypic strains within the same farm was also observed. In this study, MLVA with Lab-on-Chip technology was shown to be more accurate, reproducible, user friendly and safer than gel electrophoresis. It also provides an extended data set from French ruminant C. burnetii circulating strains useful for epidemiological investigations. Finally, it raises some questions regarding the standardization and harmonization of C. burnetii MLVA genotyping.

  8. The incidence of technological stress among baccalaureate nurse educators using technology during course preparation and delivery.

    Science.gov (United States)

    Burke, Mary S

    2009-01-01

    The concept of technology-related stress was first introduced in the 1980s when computers became more prevalent in the business and academic world. Nurse educators have been impacted by the rapid changes in technology in recent years. A review of the literature revealed no research studies that have been conducted to investigate the incidence of technological stress among nurse educators. The purpose of this descriptive-correlational study was to describe the technological stressors that Louisiana baccalaureate nurse educators experienced while teaching nursing theory courses. A researcher-developed questionnaire, the nurse educator technostress scale (NETS) was administered to a census sample of 311 baccalaureate nurse educators in Louisiana. Findings revealed that Louisiana baccalaureate nurse educators are experiencing technological stress. The variable, perceived administrative support for use of technology in the classroom, was a significant predictor in a regression model predicting Louisiana baccalaureate nurse educators' technological stress (F=14.157, p<.001).

  9. A Sequential Logic iLab Utilizing NI ELVIS II+ and the Interactive iLab Architecture

    Directory of Open Access Journals (Sweden)

    Cosmas Mwikirize

    2012-08-01

    Full Text Available Recent trends in development and utilization of online laboratories have resulted into standard platforms that are not lab-specific, which can be leveraged to develop laboratories in diverse fields. One such platform is the Massachusetts Institute of Technology (MIT interactive iLab Shared Architecture. This paper presents work undertaken at Makerere University to develop a synchronous sequential logic iLab based on this architecture. The research was carried out by a Graduate researcher, under joint supervision in the confines of the iLab Africa Graduate Fellowship Programme. The research builds on previous work undertaken by the same researcher, in which a combinational digital logic iLab was developed. The sequential logic iLab utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II+ hardware, with its interactive user interface developed using the Laboratory Virtual Instrument Engineering Workbench (LabVIEW. The generic platform supports experiments in the fields of counters, shift registers, frequency dividers and digital clocks, with appropriate electronic component selection and configuration. The design methodologies and implementation strategies for each experiment category are presented as well as the respective test runs. The laboratory has been used to support courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programmes at Makerere University.

  10. IonLab. A remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Wolfgang; Fournier, Claudia; Vahlbruch, Jan-Willem; Walther, Clemens [Leibniz Univ., Hannover (Germany). Inst. for Radioecology and Radiation Protection (IRS)

    2016-07-01

    As a major contribution to modern web-based education and training in nuclear chemistry we have built and operated a remote-controlled experiment - IonLab - as part of the integrated EUFP7 project CINCHII. The setup is suitable for teaching basics on extraction chromatography and ion exchange using radionuclides. We describe separation of the beta emitting nuclides Sr-90 and Y-90 followed by radiometric detection, but the experiment is easily adapted to other separation schemes. This approach is aimed at institutions in academic or vocational education who need to convey the skills of handling radioactive (or otherwise dangerous, e.g. biotoxic) substances without appropriately licensed laboratory space for teaching. This camera-monitored remote controlled lab experiment has proved to be much closer to a real hands-on training and superior to a mere computer simulation.

  11. Educational Media and Technology Yearbook, 1992. Volume 18.

    Science.gov (United States)

    Ely, Donald P., Ed.; Minor, Barbara B., Ed.

    The Educational Media and Technology Yearbook (EMTY) is designed to provide media and instructional technology professionals with an up-to-date, single-source overview and assessment of the field of educational technology. Each volume addresses current issues, notes trends, and provides current listings of and background information about the…

  12. Emerging Technologies: An Overview of Practices in Distance Education

    Science.gov (United States)

    Hussain, Irshad

    2007-01-01

    In contemporary society, information technologies and communication technologies (ICTs) are playing crucial role in dissemination of knowledge and information the world over. Universities/ higher education institutions, particularly distance education universities in developed countries are making best use of these technologies for effective and…

  13. Creating Technology-Enriched Classrooms: Implementational Challenges in Turkish Education

    Science.gov (United States)

    Kurt, Serhat

    2014-01-01

    This paper provides an overview of the status of educational technology in Turkey. In the face of severe social and economic challenges, many developing nations, including Turkey, are looking to education as a potential remedy. Recognizing that in an increasingly technology-dependent world, information and communications technology skills and…

  14. The Time Is Now! Creating Technology Competencies for Teacher Educators

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Slykhuis, David; Schmidt-Crawford, Denise; Trust, Torrey

    2016-01-01

    The way preservice teachers learn to use technology within their practice varies widely depending on the learning opportunities available (e.g., technology-infused teacher preparation program vs. standalone education technology course), and the knowledge, skills, and attitudes of the teacher educators within their teacher preparation programs.…

  15. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  16. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  17. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  18. Intended and Unintended Consequences of Educational Technology on Social Inequality

    Science.gov (United States)

    Tawfik, Andrew A.; Reeves, Todd D.; Stich, Amy

    2016-01-01

    While much has been written in the field of educational technology regarding educational excellence and efficiency, less attention has been paid to issues of equity. Along these lines, the field of educational technology often does not address key equity problems such as academic achievement and attainment gaps, and inequality of educational…

  19. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  20. Revolutionizing Arts Education in K-12 Classrooms through Technological Integration

    Science.gov (United States)

    Lemon, Narelle, Ed.

    2015-01-01

    Educational technologies are becoming more commonplace across the K-12 curriculum. In particular, the use of innovative digital technology is expanding the potential of arts education, presenting new opportunities--and challenges--to both curricular design and pedagogical practice. "Revolutionizing Arts Education in K-12 Classrooms through…

  1. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  2. STEM and Technology Education: International State-of-the-Art

    Science.gov (United States)

    Ritz, John M.; Fan, Szu-Chun

    2015-01-01

    This paper reports the perceptions of 20 international technology education scholars on their country's involvement in science, technology, engineering, and mathematics (STEM) education. Survey research was used to obtain data. It was found that the concept of STEM education is being discussed differently by nations. Some consider STEM education…

  3. Engaging Students Regarding Special Needs in Technology and Engineering Education

    Science.gov (United States)

    White, David W.

    2015-01-01

    In 1984, James Buffer and Michael Scott produced the book "Special Needs Guide for Technology Education" (Buffer and Scott, 1984). This was a pivotal offering insofar as it set the stage for technology education educators, at the time, to think about and be provided with information regarding students with special needs in their…

  4. Pentexonomy: A Multi-Dimensional Taxonomy of Educational Online Technologies

    Science.gov (United States)

    Tuapawa, Kimberley; Sher, William; Gu, Ning

    2014-01-01

    Educational online technologies (EOTs) have revolutionised the delivery of online education, making a large contribution towards the global increase in demand for higher learning. Educationalists have striven to adapt through knowledge development and application of online tools, but making educationally sound choices about technology has proved…

  5. The Application of Augmented Reality Technology in Food Professional Education

    OpenAIRE

    Wei Shan

    2015-01-01

    This study presents the application of augmented reality technology in food professional education, combining with the current situation of applying virtual reality education, analyzes the problems existing in the virtual reality application in food professional education, puts forward some suggestions and finally prospects the developing trend of the technology of virtual reality now.

  6. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  7. ICT and Web Technology Based Innovations in Education Sector

    Science.gov (United States)

    Sangeeta Namdev, Dhamdhere

    2012-01-01

    ICT made real magic and drastic changes in all service sectors along with higher education and library practices and services. The academic environment is changing from formal education to distance and online learning mode because of ICT. Web technology and mobile technology has made great impact on education sector. The role of Open Access,…

  8. Integrating Educational Technologies into the Culinary Classroom and Instructional Kitchen

    Science.gov (United States)

    Glass, Samuel

    2005-01-01

    The integration of educational technologies has and will continue to change the nature of education. From the advent of the printed word to the current use of computer assisted teaching and learning, the use of technology is an integral part of modern day realities and approaches to education. The purpose of this paper is to review some of the…

  9. Challenges and prospects of using information technologies in higher education

    Directory of Open Access Journals (Sweden)

    Frolov Alexander

    2016-01-01

    Full Text Available The considerable attention is paid to information technologies in system of the higher education now. Using the latest technology, software and hardware in the learning process allows achieving high outcomes quality of study. The article deals with modern teaching technologies, including distance learning technology, case-technology, which is already used in practice in higher education. There remain unresolved issues of effective use of new learning technologies, the quality of the used software and hardware. The perspective directions of development of informatization of education are defined.

  10. Educational Technology Research Journals: "Australasian Journal of Educational Technology," 2003-2012

    Science.gov (United States)

    Hadlock, Camey Andersen; Clegg, J. Aleta; Hickman, Garrett R.; Huyett, Sabrina Lynn; Jensen, Hyrum C.; West, Richard E.

    2014-01-01

    The authors analyzed all research articles in the "Australasian Journal of Educational Technology" from 2003 to 2012 to determine the types of research methodologies published, major contributing authors, and most frequently referenced keywords, abstract terms, and cited articles. During this decade, the majority of articles published…

  11. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  12. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  13. Educational Technology Research Journals: "International Journal of Technology and Design Education", 2005-2014

    Science.gov (United States)

    Christensen, James M.; Jones, Brian; Cooper, Jessica Rose; McAllister, Laura; Ware, Mark B.; West, Richard E.

    2015-01-01

    This study examines the trends of the "International Journal of Technology and Design Education" over the past decade (2005-2014). The researchers looked at trends in article topics, research methods, authorship, and article citations by analyzing keyword frequencies, performing word counts of article titles, classifying studies…

  14. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  15. The Impact of Technology on Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-08-01

    Near the top of the list of critical issues in education is the appropriate use of technology in the educational process. It is clear that some type of investment in educational technology, specifically interactive computing, is essential for nearly all institutions, and indeed, many have made some purchases already. Despite that fact, the leadership of educational institutions face a complex set of problems in this regard. What portion of a (probably) shrinking budget should be allocated to this expanding area? Which options from a growing array of technological choices are the most appropriate for a particular environment? Which of these options are essentials, and which are luxuries? What sorts of technology will benefit students the most? What is needed now in order to keep from falling (even further) behind a few years hence? The pressure to do something is great, and it is often exacerbated by arguments of efficiency that have little foundation in fact. For example, suggestions are often made that an investment in educational technology will help handle more students. This point of view may ultimately prevail, but little evidence on this point is currently available. Indeed, it appears that more faculty/staff effort is required to bring interactive technology into students' hands in a meaningful way. Often ignored is the amount of training necessary for a spectrum of novice users. Another argument often made is that empowering students with interactive technology will somehow lessen pressure on the current (classical) library operation. Presumably, this effect will come about through access to the Internet resources. As currently constituted, the Internet carries information of widely varying quality, ranging from the systematic holdings of many of the fine libraries of the world to outright garbage (from an intellectual point of view). Information on the Internet (other than that from libraries) is often unedited or unorganized to the extent that potential

  16. Using GeoMapApp As a Virtual Lab to Enrich Geoscience Education

    Science.gov (United States)

    Goodwillie, A. M.

    2014-12-01

    Student engagement increases when they take ownership of data. GeoMapApp (http://www.geomapapp.org) is a free, map-based data discovery and visualisation tool that enables students to manipulate and examine a wide range of geoscience data in a variety of ways. Additionally, a new Save Session function allows educators to preserve a pre-loaded state of GeoMapApp. When shared with a class, the saved file allows every student to open GeoMapApp at exactly the same starting point from which to begin their data explorations. Built-in data sets include those related to land and ocean topography, seafloor spreading and plate tectonics, polar sea ice cover and ocean temperature, geological maps, and sea-level rise. An intuitive user interface allows students to interrogate the research-grade data using simple techniques to help gain meaning from the data. For example, students can readily layer data sets for easy comparison, display tabular data sets in ways that facilitate visual pattern recognition, and shade and contour elevation data to help delineate features on land and the seafloor. Using a simple profiling tool, cross-sections can be generated instantly and saved for future use. In the attached image, high-resolution elevation data for Mount St. Helens reveals the dramatic relief of this famous volcano - the gap in the northern flank is clearly seen in both the map view and the 3-D perspective image, and the cross-section shows the steep flanks forming the crater rim. An import function allows students to quickly bring their own data sets into GeoMapApp. Once imported, all of the same analytical and visualisation functionality that applies to built-in data sets can be used on the students' own data. A number of guided-inquiry learning modules developed with GeoMapApp are available and help students grapple with fundamental concepts in earth sciences. Examples include a module in which students calculate seafloor spreading rates in different ocean basins using their

  17. Guide to Adopting Technology in the Physics Classroom.

    Science.gov (United States)

    Rios, Jose M.; Madhavan, Santosh

    2000-01-01

    Presents guidelines for equipping physics labs with components from each of four technology-use categories: (1) computer interfacing; (2) modeling; (3) simulations; and (4) research-reference-presentation. Includes references to useful websites discussing educational technology. (WRM)

  18. Workspace: LAB

    DEFF Research Database (Denmark)

    Binder, Thomas; Lundsgaard, Christina; Nørskov, Eva-Carina

    2007-01-01

    På mange arbejdspladser viger man tilbage fra at inddrage medarbejderne når der igangsættes større forandringer. Workspace:lab er et bud på en inddragende udviklingsproces hvor dialog og eksperimenter står i centrum. Ved at samle såvel medarbejdere som ledelse og rådgivere på et mindre antal...

  19. 基于CIE LAB的标签检测技术%Label Detection Technology Based on CIE LAB

    Institute of Scientific and Technical Information of China (English)

    陈府庭; 汪仁煌

    2011-01-01

    为实现羽毛球标签是否合格的自动检测,提出一种基于CIE 1976 LAB空间的色差计算方法.该方法通过从RGB颜色空间转换到CIELAB颜色空间上,利用球头底胶与各种标签的正表面颜色的相异,由A、B分量计算它们之间的色差,与设定的阈值进行比较,计算出未贴正的区域,以此判断出标签是否合格.该方法对于标签自动检测具有较好的效果.%An approach of detecting whether badminton label is qualified in CIE LAB model is presented. It turns image data from RGB model to CIE LAB model, because of the different colors between the ball' s head and a variety of labels, then calculates color using A, B variables. And comparing the threshold set, the area which is not posted is calculated to judge whether label is qualified. The approach is effective in label automatic detection.

  20. Neurogaming Technology Meets Neuroscience Education: A Cost-Effective, Scalable, and Highly Portable Undergraduate Teaching Laboratory for Neuroscience.

    Science.gov (United States)

    de Wit, Bianca; Badcock, Nicholas A; Grootswagers, Tijl; Hardwick, Katherine; Teichmann, Lina; Wehrman, Jordan; Williams, Mark; Kaplan, David Michael

    2017-01-01

    Active research-driven approaches that successfully incorporate new technology are known to catalyze student learning. Yet achieving these objectives in neuroscience education is especially challenging due to the prohibitive costs and technical demands of research-grade equipment. Here we describe a method that circumvents these factors by leveraging consumer EEG-based neurogaming technology to create an affordable, scalable, and highly portable teaching laboratory for undergraduate courses in neuroscience. This laboratory is designed to give students hands-on research experience, consolidate their understanding of key neuroscience concepts, and provide a unique real-time window into the working brain. Survey results demonstrate that students found the lab sessions engaging. Students also reported the labs enhanced their knowledge about EEG, their course material, and neuroscience research in general.

  1. Cloud ecosystem for supporting inquiry learning with online labs : Creation, personalization, and exploitation

    NARCIS (Netherlands)

    Gillet, Denis; Rodríguez-Triana, María Jesús; De Jong, Ton; Bollen, Lars; Dikke, Diana

    2017-01-01

    To effectively and efficiently implement blended science and technology education, teachers should be able to find educational resources that suit their need, fit with their curricula, and that can be easily exploited in their classroom. The European Union has supported the FP7 Go-Lab Integrated

  2. APPLICATION OF CLOUD TECHNOLOGY IN THE STOMATOLOGISTS EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Oksana A. Zorina

    2016-01-01

    Full Text Available Study the possibility of applying cloud technologies for the control of knowledge and the certification of specialists has been studied in the framework of realization of educational programs of internship and residency training in dental specialties. It was found that the management of the educational process in online mode is possible on the basis of distance education technologies using cloud technology

  3. Digital technology shaping teaching practices in higher education

    Directory of Open Access Journals (Sweden)

    Monika eAkbar

    2016-02-01

    Full Text Available In their quest on being effective, educators have always experimented with the art of teaching. Teaching has evolved over centuries by adopting new approaches, methods, tools, and technologies to reach a wider audience. As technologies advance, educators should carefully use, evaluate, and adopt the changes to utilize the technologies and track of their impacts. This article provides a mini review to briefly describe some of the existing technical achievements that are used in higher education along with their challenges.

  4. UNIVERSITY TEACHERS’ READINESS TO APPLY THE MODERN EDUCATIONAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Irina O. Kotlyarova

    2015-01-01

    Full Text Available The aim of the research is to investigate the readiness of the university teachers to apply the modern educational technologies. Methods. The methods include theoretical: analysis of existing modern educational technologies, the concept «readiness» and its components, abstraction of signs and kinds of modern educational technologies based on the scientific literature and in the Federal State Educational Standards (FSES; empirical: questionnaires and testing methods for detecting levels of university teachers’ skills and readiness to use modern educational technology. Results. The main features of modern educational technologies are identified and justified that are to comply with modern methodology of the theory and practice of education study and the latest FSES requirements; the level of science, manufacturing, and modern rules of human relations. The components of readiness of university teachers to use modern educational technology are structured. The linguistic component is included along with the cognitive, psychological, operational, connotative components; its necessity is proved. The average level of readiness for the use of modern educational technology by university teachers is identified. Scientific novelty. The author specifies the features of the modern educational technology. The most significant components of higher-education teaching personnel readiness to use technological innovations are identified. As a whole, these results form the indicative framework for the development and measurement of readiness of the university teachers to use the modern educational technology. The development of the readiness of the university teachers to apply the modern educational technologies is proved to be an issue of current interest. Practical significance. The research findings can be used as the basis of techniques and methods designing for its further development and measurement of the training, retraining and advanced training of

  5. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  6. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  7. The MSU Educational Technology Certificate Courses and Their Impact on Teachers' Growth as Technology Integrators

    Science.gov (United States)

    Hagerman, Michelle Schira; Keller, Alison; Spicer, Jodi L.

    2013-01-01

    The Educational Technology Certificate (ETC.) courses at Michigan State University are a set of three courses that can be taken as a standalone qualification or as the first three courses in the Master's of Educational Technology degree. Together, the courses emphasize the development of technology skills and advanced mindsets for technology…

  8. Technology Links to Literacy: A Case Book of Special Educators' Use of Technology To Promote Literacy.

    Science.gov (United States)

    Craver, James M., Ed.; Burton-Radzely, Lisa, Ed.

    This monograph describes how special educators in seven schools are using technology to promote literacy. Profiles of the different schools provide concrete examples of technology use in different instructional settings and demonstrate how various educational philosophies and implementation efforts help schools build successful technology-based…

  9. The MSU Educational Technology Certificate Courses and Their Impact on Teachers' Growth as Technology Integrators

    Science.gov (United States)

    Hagerman, Michelle Schira; Keller, Alison; Spicer, Jodi L.

    2013-01-01

    The Educational Technology Certificate (ETC.) courses at Michigan State University are a set of three courses that can be taken as a standalone qualification or as the first three courses in the Master's of Educational Technology degree. Together, the courses emphasize the development of technology skills and advanced mindsets for technology…

  10. Information Technology (IT) and applied domain education in West ...

    African Journals Online (AJOL)

    Apart from these two Information Science, Information Systems, Software ... India is the largest stakeholder of educational industry, each and every state, offered ... Paper illustrated Information Technology (IT) education and various facet in ...

  11. Educational Technology's Problems and Challenges in the Arab World.

    Science.gov (United States)

    Ayesh, Husni

    1984-01-01

    Discusses problems of centralization versus decentralization, tradition versus modernization, teacher status, administrative burdens, and educational objectives in relation to the use of educational technology in the Arab world, and suggests some possible remedies. (MBR)

  12. Technology Educational Affordance: Bridging the Gap between Patterns of Interaction and Technology Usage

    Science.gov (United States)

    Badia, A.; Barbera, E.; Guasch, T.; Espasa, A.

    2011-01-01

    This paper reports on an empirical and descriptive investigation into how teachers and learners use technology in three prototypical learning activities in a higher educational online learning environment. Additionally, the relationship between the educational uses of technology and the overall educational patterns of interaction between teachers…

  13. Online Technologies for Health Information and Education: A literature review.

    Science.gov (United States)

    Gill, Harkiran K; Gill, Navkiranjit; Young, Sean D

    2013-04-01

    There is a growing body of research focused on the use of social media and Internet technologies for health education and information sharing. The authors reviewed literature on this topic, with a specific focus on the benefits and concerns associated with using online social technologies as health education and communication tools. Studies suggest that social media technologies have the potential to safely and effectively deliver health education, if privacy concerns are addressed. Utility of social media-based health education and communication will improve as technology developers and public health officials determine ways to improve information accuracy and address privacy concerns.

  14. Information Technology in Education: The Critical Lack of Principled Leadership.

    Science.gov (United States)

    Maddux, Cleborne D.

    2002-01-01

    Suggests there is a crisis in educational leadership, especially as it affects information technology. Highlights include educational leaders as managers; the commercialization of education; management strategies on campus; students as customers; quality control, online distance education, and the business model; and the future of online distance…

  15. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  16. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  17. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  18. Study of extraction procedures for protein analysis in plankton samples by OFFGEL electrophoresis hyphenated with Lab-on-a-chip technology.

    Science.gov (United States)

    García-Otero, Natalia; Barciela-Alonso, Ma Carmen; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2013-10-15

    Extraction procedures for protein analysis from plankton samples were studied. OFFGEL electrophoresis combined with Lab-on-a-chip technology has been applied for protein analysis in plankton samples. BCR-414 (plankton) certified reference material from the European Commission was used to evaluate the protein extraction procedures. Three protein extraction procedures were studied: (1) by using Tris-HCl buffer containing a protease inhibitor cocktail, (2) urea/triton X-100 buffer extraction, and (3) using the phenol/sodium dodecyl sulphate method after different washing steps with 10% trichloroacetic acid/acetone solution and methanol. The pellet of proteins obtained was dried and then dissolved in the OFFGEL buffer. Proteins were separated according to their isoelectric points by OFFGEL electrophoresis. This separation was performed using 24 cm, pH 3-10 IPG Dry Strips. The proteins present in each liquid fraction (24 fractions) were separated according to their molecular weight using a microfluidic Lab-on-a-chip electrophoresis with the Protein 80 LabChip kit. This kit allows for the separation of proteins with a molecular weight ranging from 5 to 80 kDa. Taking into account the intensity and the number of the protein bands obtained, the protein extraction procedure using the phenol/sodium dodecyl sulphate after different wash steps with 10% trichloroacetic acid/acetone solution was selected. The developed method was applied for protein determination in a fresh marine plankton sample. The proteins found in this sample have a molecular weight ranging from 6.4 to 57.3 kDa, and the proteins with highest molecular weight were in the OFFGEL fractions with an isoelectric point ranging from 4.40 to 8.60. The concentration of proteins were calculated using external calibration with Bovine Serum Albumin, and the protein concentrations varied from 50.0 to 925.9 ng µL(-1).

  19. Workshop on Learning Technology for Education in Cloud

    CERN Document Server

    Rodríguez, Emilio; Santana, Juan; Prieta, Fernando

    2012-01-01

    Learning Technology for Education in Cloud investigates how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud.   The Workshop on Learning Technology for Education in Cloud (LTEC '12) is a forum where researchers, educators and practitioners came together to discuss ideas, projects and lessons learned related to the use of learning technology in cloud, on the 11th-13th July at Salamanca in Spain.

  20. Distance education: the humanization of technology

    Science.gov (United States)

    Voelzke, Marcos Rincon; Rodrigues Ferreira, Orlando

    2015-08-01

    The Distance Education [DE] presents significant growth in graduates and postgraduates programs. Regarding this fact, new challenges arise and others must be considered, as the generation gap between digital immigrants and digital natives, the establishment of a population increasingly accustomed to Information and Communication Technologies [ICT] and teaching methodologies that should be used and developed. Vygotsky’s model of social interaction related to mediation can and should be used in DE, and concerning historical, social and cultural approaches affecting Brazilian reality, Paulo Freire is still up-to-date, integrating humanization into the use of ICT. This work only proceeds with analyses of these elements, being an excerpt of the master’s dissertation of one of the authors [Ferreira], under the guidance of another [Voelzke].

  1. Educational and technological approaches to renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Gottwald, Julia (eds.)

    2012-07-01

    This book documents and disseminates a number of educational and technological approaches to renewable energy, with a special emphasis on European and Latin American experiences, but also presenting experiences from other parts of the world. It was prepared as part of the project JELARE (Joint European-Latin American Universities Renewable Energy Project), undertaken as part of the ALFA III Programme of the European Commission involving countries in Latin America (e.g. Bolivia, Brazil, Chile, Guatemala) as well as in Europe (Germany and Latvia). Thanks to its approach and structure, this book will prove useful to all those dedicated to the development of the renewable energy sector, especially those concerned with the problems posed by lack of expertise and lack of training in this field.

  2. Utility of lab-on-a-chip technology for high-throughput nucleic acid and protein analysis

    DEFF Research Database (Denmark)

    Hawtin, Paul; Hardern, Ian; Wittig, Rainer

    2005-01-01

    On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysis...... to achieve rapid analysis times (C systems to enable and augment systems biology investigations. RNA quality, as assessed by an RNA integrity number score, is compared to existing quality control (QC) measurements. High-throughput DNA analysis of multiplex PCR...... samples is used to stratify gene sets for disease discovery. Finally, the applicability of a high-throughput LoaC system for assessing protein purification is demonstrated. The improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis...

  3. Theological education with the help of technology

    Directory of Open Access Journals (Sweden)

    Erna Oliver

    2014-02-01

    Full Text Available Theology seemingly does not have a major impact on society anymore. However, Christianity did not only change and form the western world over the past 2000 thousand years, it still has a substantial role to play in society. This could be done through the development of theologies, the recognition that religious topics are still major segments in the publishing industry and the transforming potential of the Christian message on people. Although theological training finds itself in a difficult position, technology offers support to teaching and learning, cuts costs and offers solutions to a number of current problems concerning the effective formation of ministers. It is no longer necessary to provide theological training through a one-size-fits-all approach – a style that kept the pre-network society boxed. The aim is to motivate educators in theology to embrace the opportunities provided by the network society in aiding with the training of ministers by utilising current and future trends of development in technology.

  4. Theological education with the help of technology

    Directory of Open Access Journals (Sweden)

    Erna Oliver

    2014-09-01

    Full Text Available Theology seemingly does not have a major impact on society anymore. However, Christianity did not only change and form the western world over the past 2000 thousand years, it still has a substantial role to play in society. This could be done through the development of theologies, the recognition that religious topics are still major segments in the publishing industry and the transforming potential of the Christian message on people. Although theological training finds itself in a difficult position, technology offers support to teaching and learning, cuts costs and offers solutions to a number of current problems concerning the effective formation of ministers. It is no longer necessary to provide theological training through a one-size-fits-all approach – a style that kept the pre-network society boxed. The aim is to motivate educators in theology to embrace the opportunities provided by the network society in aiding with the training of ministers by utilising current and future trends of development in technology.

  5. INFORMATION TECHNOLOGIES IN MODERN LANGUAGE EDUCATION

    Directory of Open Access Journals (Sweden)

    N. Y. Gutareva

    2014-09-01

    Full Text Available This article develops the sources of occurrence and the purposes of application of information technologies in teaching of foreign languages from the point of view of linguistics, methods of teaching foreign languages and psychology. The main features of them have been determined in works of native and foreign scientists from the point of view of the basic didactic principles and new standards of selection for working with computer programs are pointed out. In work the author focuses the main attention to modern technologies that in language education in teaching are especially important and demanded as answer the purpose and problems of teaching in foreign languages are equitable to interests of students but they should be safe.Purpose:  to determine advantages of using interactive means in teaching foreign languages.Methodology: studying and analysis of psychological, pedagogical and methodological literature on the theme of investigation.Results: the analysis of the purpose and kinds of interactive means has shown importance of its application in practice.Practical implications:  it is possible for us to use the results of this work in courses of theory of methodology of teaching foreign languages.

  6. Graduate Automotive Technology Education (GATE) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  7. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.

    Science.gov (United States)

    Bsoul, Anas; Pan, Sheng; Cretu, Edmond; Stoeber, Boris; Walus, Konrad

    2016-08-16

    In this paper, we present a disposable inkjet dispenser platform technology and demonstrate the Lab-on-a-Printer concept, an extension of the ubiquitous Lab-on-a-Chip concept, whereby microfluidic modules are directly integrated into the printhead. The concept is demonstrated here through the integration of an inkjet dispenser and a microfluidic mixer enabling control over droplet composition from a single nozzle in real-time during printing. The inkjet dispenser is based on a modular design platform that enables the low-cost microfluidic component and the more expensive actuation unit to be easily separated, allowing for the optional disposal of the former and reuse of the latter. To limit satellite droplet formation, a hydrophobic-coated and tapered micronozzle was microfabricated and integrated with the fluidics to realize the dispenser. The microfabricated devices generated droplets with diameters ranging from 150-220 μm, depending mainly on the orifice diameter, with printing rates up to 8000 droplets per second. The inkjet dispenser is capable of dispensing materials with a viscosity up to ∼19 mPa s. As a demonstration of the inkjet dispenser function and application, we have printed type I collagen seeded with human liver carcinoma cells (cell line HepG2), to form patterned biological structures.

  8. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m......We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll...

  9. Mobile technologies in medical education: AMEE Guide No. 105.

    Science.gov (United States)

    Masters, Ken; Ellaway, Rachel H; Topps, David; Archibald, Douglas; Hogue, Rebecca J

    2016-06-01

    Mobile technologies (including handheld and wearable devices) have the potential to enhance learning activities from basic medical undergraduate education through residency and beyond. In order to use these technologies successfully, medical educators need to be aware of the underpinning socio-theoretical concepts that influence their usage, the pre-clinical and clinical educational environment in which the educational activities occur, and the practical possibilities and limitations of their usage. This Guide builds upon the previous AMEE Guide to e-Learning in medical education by providing medical teachers with conceptual frameworks and practical examples of using mobile technologies in medical education. The goal is to help medical teachers to use these concepts and technologies at all levels of medical education to improve the education of medical and healthcare personnel, and ultimately contribute to improved patient healthcare. This Guide begins by reviewing some of the technological changes that have occurred in recent years, and then examines the theoretical basis (both social and educational) for understanding mobile technology usage. From there, the Guide progresses through a hierarchy of institutional, teacher and learner needs, identifying issues, problems and solutions for the effective use of mobile technology in medical education. This Guide ends with a brief look to the future.

  10. Information technologies and the transformation of nursing education.

    Science.gov (United States)

    Skiba, Diane J; Connors, Helen R; Jeffries, Pamela R

    2008-01-01

    Higher education is facing new challenges with the emergence of the Internet and other information and communication technologies. The call for the transformation of higher education is imperative. This article describes the transformation of higher education and its impact on nursing education. Nursing education, considered by many a pioneer in the use of educational technologies, still faces 3 major challenges. The first challenge is incorporation of the Institute of Medicine's recommendation of 5 core competencies for all health professionals. The second challenge focuses on the preparation of nurses to practice in informatics-intensive healthcare environments. The last challenge is the use of emerging technologies, such as Web 2.0 tools, that will help to bridge the gap between the next generation and faculty in nursing schools. Nurse educators need to understand and use the power of technologies to prepare the next generation of nurses.

  11. An Introduction to Biometrics Technology: Its Place in Technology Education

    Science.gov (United States)

    Elliott, Stephen J.; Peters, Jerry L.; Rishel, Teresa J.

    2004-01-01

    The increased utilization of biometrics technology in the past few years has contributed to a strong growth pattern as the technology is used in a variety of facilities, including schools. Due to media exposure, students' familiarity with technology will continue to increase proportionately, which will result in an increased curiosity about…

  12. New Technological Trend in Educational Management

    Directory of Open Access Journals (Sweden)

    Florin Postolache

    2011-05-01

    Full Text Available The authors aim to highlight, after using the LMS based Sakai from implementation, the perceptionof both sides (professors and students over the use of the implementation of information and communicationtechnology (ITC in the education process. In the academic year 2007 – 2008, the leadership of DanubiusUniversity from Galati adopted the strategic decision to develop an integrated information system, which toincorporate the Student Information System (UMS, an e-learning platform, management system, researchand administrative management. In the months April – May 2010, at Danubius University from Galati it wasmade a survey organized by MISI 2010, at which 28 universities attended from around the world who useSakai, of the professors and students regarding the use in their activity of the ITC and in general of theplatform Danubius Online. At the university Danubius from Galati answered to the survey 24 professors and177 students. The participants responded to questions about both their views concerning the use of theinformation technology in the superior education in general, and at specific questions concerning theDanubius Online portal. After the experience gained in the pilot phase, developed in the academic year 2009-2010 and taking into account by the results of the survey, it was decided that starting with 1 October 2010 toproceed to the stage production. To this end, it was installed the Sakai version 2.7.1 and significantlyincreased the number of course sites that are operating on the Danubius Online portal, the tendency being togeneralize at all the university courses, taking into account by the trends of the both sides. There have beenintroduced more extensive indications of use, both for students and for professors. The article aims tohighlight the reactions of both sides: professors and students, on the implementation of the Danubius onlineplatform, through a survey that took place during May – June 2010. This is a clear example

  13. Continuing education for Physical Education teachers: Assistive Technology in inclusive education

    Directory of Open Access Journals (Sweden)

    Maria Luiza Salzani Fiorini

    2017-05-01

    Full Text Available This study aimed at describing the development of continuing education for physical education teachers towards the incorporation of Assistive Technology and the creation of favorable conditions to an inclusive school. The methodology employed was reflective and collaborative research. Two teachers who were facing difficulties to include a physically disabled student and one student with global developmental delay took part in the study. The continuing education plan comprised three steps: 1 reflecting on their own practice after watching a video and planning one lesson, together with the researcher, seeking to incorporate Assistive Technology and favor inclusion; 2 videoing the lesson; 3 evaluating and reflecting on what was planned and what was executed and planning a new lesson. Some factors were seen to be essential to the development of continuing education: considering the teacher’s demand, developing collaborative work, promoting reflection on the practices and having Assistive Technology as a support to the human element.

  14. Educators' Perceived Importance of Web 2.0 Technology Applications

    Science.gov (United States)

    Pritchett, Christal C.; Wohleb, Elisha C.; Pritchett, Christopher G.

    2013-01-01

    This research study was designed to examine the degree of perceived importance of interactive technology applications among various groups of certified educators; the degree to which education professionals utilized interactive online technology applications and to determine if there was a significant difference between the different groups based…

  15. International Yearbook of Educational and Instructional Technology 1976/77.

    Science.gov (United States)

    Howe, Anne, Ed.; Romiszowski, A. J., Ed.

    This yearbook of the Association for Programmed Learning and Educational Technology is intended to provide an updated general reference survey for practitioners in educational technology. In Section 1, eight invited articles on trends within the field serve to outline some aspects of current thinking. Section 2 contains articles on the state of…

  16. Educators' Perceived Importance of Web 2.0 Technology Applications

    Science.gov (United States)

    Pritchett, Christal C.; Wohleb, Elisha C.; Pritchett, Christopher G.

    2013-01-01

    This research study was designed to examine the degree of perceived importance of interactive technology applications among various groups of certified educators; the degree to which education professionals utilized interactive online technology applications and to determine if there was a significant difference between the different groups based…

  17. The Use of Cloud Technology in Athletic Training Education

    Science.gov (United States)

    Perkey, Dennis

    2012-01-01

    As technology advances and becomes more portable, athletic training educators (ATEs) have many options available to them. Whether attempting to streamline efforts in courses, or operate a more efficient athletic training education program, portable technology is becoming an important tool that will assist the ATE. One tool that allows more…

  18. Information, Communication, and Educational Technologies in Rural Alaska

    Science.gov (United States)

    Page, G. Andrew; Hill, Melissa

    2008-01-01

    Information, communication, and educational technologies hold promise to connect geographically isolated rural communities, offering adults greater access to educational, financial, and numerous other resources. The Internet and computer-based network technologies are often seen as remedies for communities in economic decline, but they also have…

  19. Some Big Questions about Design in Educational Technology

    Science.gov (United States)

    Gibbons, Andrew S.

    2016-01-01

    This article asks five questions that lead us to the foundations of design practice in educational technology. Design processes structure time, space, place, activity, role, goal, and resource. For educational technology to advance in its understanding of design practice, it must question whether we have clear conceptions of how abstract…

  20. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  1. A Philosophy for Education in the World of Technology

    Science.gov (United States)

    Jokisaari, Olli-Jukka

    2012-01-01

    One of the most challenging questions of education in late modern society concerns technology. Development and use of technology is altering our views of world and humanity. In this paper I explore philosophical background for a new kind of critical education that would be up to date with the changed world. This paper introduces case philosophy…

  2. Integrating Engineering Design into Technology Education: Georgia's Perspective

    Science.gov (United States)

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  3. Taking Part in Technology Education: Elements in Students' Motivation

    Science.gov (United States)

    Autio, Ossi; Hietanoro, Jenni; Ruismaki, Heikki

    2011-01-01

    The purpose of this study was to determine the elements motivating comprehensive school students to study technology education. In addition, we tried to discover how students' motivation towards technology education developed over the period leading up to their school experience and the effect this might have on their future involvement with…

  4. "The" Problem in Technology Education (A Definite Article)

    Science.gov (United States)

    Flowers, Jim

    2010-01-01

    As with any field, technology education and its close relatives have numerous strengths and weaknesses. One of these weaknesses has too long been overlooked, and it is the subject of this article. One might think of technology education as empowering students, divergently fostering their own creativity. An abundance of design briefs shows that…

  5. Technology Education in New Zealand: The Connected Curriculum

    Science.gov (United States)

    O'Sullivan, Gary

    2010-01-01

    This paper aims to identify what actually takes place when policy directives bring together Technology Education, Enterprise Education, and the wider Community Partnerships. Since the introduction of a national technology curriculum to New Zealand schools in 1999 there has been little critique as to the intentions of the curriculum. In late 2005…

  6. Challenges and Opportunities Facing Technology Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2009-01-01

    The technology education in Taiwan is prescribed in the national curriculum and provided to all students in grades 1-12. However, it faces the following challenges: (1) Lack of worthy image, (2) Inadequate teachers in elementary schools, (3) Deficient teaching vitality in secondary schools, and (4) Diluted technology teacher education programs. In…

  7. Research Needs for Technology Education: An International Perspective

    Science.gov (United States)

    Ritz, John M.; Martin, Gene

    2013-01-01

    These authors report the findings of a study that sought to determine the most relevant research issues needed to be studied by the technology education profession. It used an international panel of experts to develop a list of important research issues for the school subject of technology education and for the preparation of teachers to better…

  8. Curriculum Consonance and Dissonance in Technology Education Classrooms

    Science.gov (United States)

    Brown, Ryan A.

    2009-01-01

    In a time of increased accountability, a tightened curriculum, and fewer curricular choices for students, technology education in the United States is in the position of defending itself by "carving a niche" in the school curriculum. Justifying the place of technology education is becoming increasingly difficult, as there has been little…

  9. Extension Youth Educators' Technology Use in Youth Development Programming

    Science.gov (United States)

    McClure, Carli; Buquoi, Brittany; Kotrlik, Joe W.; Machtmes, Krisanna; Bunch, J. C.

    2014-01-01

    The purpose of this descriptive-correlational study was to determine the use of technology in youth programming by Extension youth development educators in Louisiana, Mississippi, and Tennessee. Data were collected via e-mail and a SurveyMonkey© questionnaire. Extension educators are using some technology in youth development programming. More…

  10. Trends in the Crowdfunding of Educational Technology Startups

    Science.gov (United States)

    Antonenko, Pavlo D.; Lee, Brenda R.; Kleinheksel, A. J.

    2014-01-01

    This article presents an analysis of active crowdfunding campaigns posted on ten crowdfunding platforms in May 2013 to provide a glimpse of the recent trends in the crowdfunding of educational technology startups. We describe the characteristics of the most successful crowdfunding campaigns in educational technology and identify the most popular…

  11. Whatever Became of University Education for Technology and Public Policy?

    Science.gov (United States)

    Morgan, Robert P.

    1983-01-01

    The need for education concerning societal issues with technological components persists, as does the need for education of engineers relevant to the public sector and the public interest. The need for evaluation of technology and public policy programs is emphasized. (MLW) '

  12. Advanced Education and Technology Business Plan, 2010-13. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  13. Advanced Education and Technology Business Plan, 2009-12

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  14. Advanced Education and Technology Business Plan, 2010-13

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  15. Organisational Culture and Technology-Enhanced Innovation in Higher Education

    Science.gov (United States)

    Zhu, Chang

    2015-01-01

    Higher education institutions are evolving and technology often plays a central role in their transformations. Educational changes benefit from a supportive environment. The study examines the relationship between organisational culture and teachers' perceptions of and responses to technology-enhanced innovation among Chinese universities. A…

  16. Research Perspectives and Best Practices in Educational Technology Integration

    Science.gov (United States)

    Keengwe, Jared

    2013-01-01

    With advancements in technology continuing to influence all areas of society, students in current classrooms have a different understanding and perspective of learning than the educational system has been designed to teach. Research Perspectives and Best Practices in Educational Technology Integration highlights the emerging digital age, its…

  17. The Use of Cloud Technology in Athletic Training Education

    Science.gov (United States)

    Perkey, Dennis

    2012-01-01

    As technology advances and becomes more portable, athletic training educators (ATEs) have many options available to them. Whether attempting to streamline efforts in courses, or operate a more efficient athletic training education program, portable technology is becoming an important tool that will assist the ATE. One tool that allows more…

  18. Organisational Culture and Technology-Enhanced Innovation in Higher Education

    Science.gov (United States)

    Zhu, Chang

    2015-01-01

    Higher education institutions are evolving and technology often plays a central role in their transformations. Educational changes benefit from a supportive environment. The study examines the relationship between organisational culture and teachers' perceptions of and responses to technology-enhanced innovation among Chinese universities. A…

  19. Prospects for the Use of Mobile Technologies in Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2008-01-01

    During the past few years there have been great strides in the advancement of technology with the rise of mobile devices leading to an era characterized by the instant access to and mobility of information. Mobile technologies have more recently been used in a variety of educational settings for a variety of purposes and educational goals.…

  20. Exploring health information technology education: an analysis of the research.

    Science.gov (United States)

    Virgona, Thomas

    2012-01-01

    This article is an analysis of the Health Information Technology Education published research. The purpose of this study was to examine selected literature using variables such as journal frequency, keyword analysis, universities associated with the research and geographic diversity. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of Health Information Technology. The keyword analysis suggests that Health Information Technology research has evolved from establishing concepts and domains of health information systems, technology and management to contemporary issues such as education, outsourcing, web services and security. The research findings have implications for educators, researchers, journal.