WorldWideScience

Sample records for technology education consortium

  1. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  2. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  3. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  4. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  5. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  6. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  7. The Consortium for Advancing Renewable Energy Technology (CARET)

    Science.gov (United States)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  8. Consortium for Verification Technology Fellowship Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Lorraine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship on members of the consortium and on me/my laboratory’s technical knowledge and network.

  9. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

  10. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  11. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report draft, 1995--1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a memorandum of Understanding (MOU) among its member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCUs/MIs) agreed to work together to initiate or revise educational programs, develop research partnerships with public and private sector organizations, and promote technology development and transfer to address the nation`s critical environmental problems. While the Consortium`s Research, Education and Technology Transfer (RETT) Plan is the cornerstone of its overall program efforts, the initial programmatic activities of the Consortium focused on environmental education at all levels with the objective of addressing the underrepresentation of minorities in the environmental professions. This 1996 Annual Report provides an update on the activities of the Consortium with a focus on environmental curriculum development for the Technical Qualifications Program (TQP) and Education for Sustainability.

  12. Massachusetts Institute of Technology Consortium Agreement

    Science.gov (United States)

    1999-03-01

    This is the third progress report of the M.I.T. Home Automation and Healthcare Consortium-Phase Two. It covers majority of the new findings, concepts...research projects of home automation and healthcare, ranging from human modeling, patient monitoring, and diagnosis to new sensors and actuators, physical...aids, human-machine interface and home automation infrastructure. This report contains several patentable concepts, algorithms, and designs.

  13. Global Assessment of Hydrogen Technologies – Task 6 Report Promoting a Southeast Hydrogen Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.

    2007-12-01

    The purpose of this project task was to establish a technical consortium to promote the deployment of hydrogen technologies and infrastructure in the Southeast. The goal was to partner with fuel cell manufacturers, hydrogen fuel infrastructure providers, electric utilities, energy service companies, research institutions, and user groups to improve education and awareness of hydrogen technologies in an area that is lagging behind other parts of the country in terms of vehicle and infrastructure demonstrations and deployments. This report documents that effort.

  14. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  15. The Bellarmine Outreach Consortium: An Innovative Approach to Nursing Education.

    Science.gov (United States)

    Algren, Chris L.; Hockenberger, Susan

    The Bellarmine Outreach Consortium, which provides access to baccalaureate and masters education in nursing for registered nurses in Kentucky, West Virginia, and Tennessee, is described. The components of a marketing process for colleges are also considered, with attention to product, place, price, and promotion. The nursing department of…

  16. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

  17. Technical Progress Report for the Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2006-02-27

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

  18. Inner-City Energy and Environmental Education Consortium

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-11

    The numbers of individuals with adequate education and training to participate effectively in the highly technical aspects of environmental site cleanup are insufficient to meet the increasing demands of industry and government. Young people are particularly sensitive to these issues and want to become better equipped to solve the problems which will confront them during their lives. Educational institutions, on the other hand, have been slow in offering courses and curricula which will allow students to fulfill these interests. This has been in part due to the lack of federal funding to support new academic programs. This Consortium has been organized to initiate focused educational effort to reach inner-city youth with interesting and useful energy and environmental programs which can lead to well-paying and satisfying careers. Successful Consortium programs can be replicated in other parts of the nation. This report describes a pilot program in Washington, DC, Philadelphia, and Baltimore with the goal to attract and retain inner-city youth to pursue careers in energy-related scientific and technical areas, environmental restoration, and waste management.

  19. The Launch of the Philadelphia Education Research Consortium: Lessons Learned from the First Year of Implementation

    Science.gov (United States)

    Shaw, Kate

    2016-01-01

    The Philadelphia Education Research Consortium (PERC) was launched in July 2014 as an innovative place-based consortium of educational research partners from multiple sectors. Its primary objective is to provide research and analyses on some of the city's most pressing education issues. As such, PERC's research agenda is driven by both traditional…

  20. 77 FR 12041 - Applications for New Awards; Migrant Education Program (MEP) Consortium Incentive Grants Program

    Science.gov (United States)

    2012-02-28

    ... Applications for New Awards; Migrant Education Program (MEP) Consortium Incentive Grants Program AGENCY: Office...: Migrant Education Program (MEP) Consortium Incentive Grants Program; Notice inviting applications for new... appropriate entities to improve the delivery of services to migrant children whose education is...

  1. The Waste-Management Education and Research Consortium (WERC) annual progress report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-02-25

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE) . This program known by the acronym, WERC'' includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management by the Consortium universities resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. The term waste management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration. (2) Research programs at the leading edge, providing training to faculty and students and feeding into the education programs. (3) Education and research at the campuses, as well as from three field sites. (4) Ties with other multi-disciplinary university facilities. (5) Ties with two National Laboratories located in New Mexico. (6) Technology transfer and education via an existing fiber optic network, a proposed satellite link, and an existing state-wide extension program. (7) An outreach program to interest others in environmental management, especially precollege students, minority students and practitioners in the field. This report summarizes the accomplishments and status at the end of the first year.

  2. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  3. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  4. Academically Ambitious and Relevant Higher Education Research: The Legacy of the Consortium of Higher Education Researchers

    Science.gov (United States)

    Teichler, Ulrich

    2013-01-01

    The Consortium of Higher Education Researchers (CHER) was founded in 1988 to stimulate international communication and collaboration of higher education researchers. A need was felt to offset the isolation of the small numbers of scholars in this area of expertise in many countries, as well as the isolation of individual disciplines addressing…

  5. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-07

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, WERC'' includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), Navajo Community College, the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management to reach thousands of students by the three Consortium universities and the affiliate college resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (The term waste or environmental management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration.) (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing training to students and information to faculty feeding into the education programs. (4) Education and technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos Sandia) located in New Mexico, the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach program of special interest to pre-college students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the second year.

  6. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-07

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, ``WERC`` includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), Navajo Community College, the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management to reach thousands of students by the three Consortium universities and the affiliate college resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (The term waste or environmental management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration.) (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing training to students and information to faculty feeding into the education programs. (4) Education and technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos & Sandia) located in New Mexico, the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach program of special interest to pre-college students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the second year.

  7. Emerging educational technologies: Tensions and synergy

    OpenAIRE

    J. Michael Spector

    2014-01-01

    A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a) massive open online courses (MOOCs), (b) personalized learning, and (c) game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique w...

  8. Innovations in Nuclear Infrastructure and Education From the SW Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Warren

    2011-03-22

    This report describes the final expenditures for the INIE project during FY 08/09. (There were no expenditures during FY09/10 or during FY10/11.) To see the list of accomplishments done using the INIE funds, please see the reports included here. The last of the FY 07/08 funds were brought forward and used to complete two distance education modules teaching reactor experiments. These modules and parts from the modules are still being used and are being disseminated off-campus as a part of our distance education effort. The second largest expenditure was sending students to the ANS to present student papers on work that they had done the previous year underwritten by INIE funds. The remaining expenditures were IDC charges and minor travel expenses to give students a tour of a medical facility. Once again we wish to express of sincere appreciation of the INIE program and hope that the return on investment is appreciated by the DOE. Although INIE has come to a close, looking back at all the Consortium has accomplished is astounding. And, as was hoped, these funds have proved to be a springboard for continuing work, particularly at Texas A&M. With the resurgence of nuclear power, the utilities have realized that the nuclear workforce in the near future will be too small for the task of bringing dozens of new plants on line and have turned their attention to the URRs to help feed the workforce pipeline. The distance education modules developed at the A&M are soon to be broadcast throughout the country to help train a new generation of nuclear workers. Our students at the Nuclear Science Center at being snapped up by the nuclear power plants after graduating. Our research projects at A&M have all ended with new data, new ways of looking at old problems, and produced a covey of good students. I want to say 'Thanks' with utmost sincerity because without the INIE funds our efforts would yield a small fraction of the accomplishments you see in this report.

  9. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, ``WERC`` includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation`s capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos & Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  10. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, WERC'' includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation's capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  11. A consortium approach for disaster relief and technology research and development: Fire station earth

    Science.gov (United States)

    Ling, Douglas C.

    1992-06-01

    A new paradigm is proposed for alleviating the chronic problem of inadequate response to natural and man-made disasters. Fundamental flaws and weaknesses in the current disaster mitigation system point to the need for an international consortium involving governments, academia, industry, and businesses. Recent changes in social and political framework offer a unique opportunity of rethink and reform the existing disaster response mechanism. Benefits of a collaborative consortium approach may include commercial incentives, improved cost effectiveness, coherence in research and development efforts, conduciveness for long-term planning, and improved deployment of technology for disaster mitigation.

  12. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The HBCU/MI Consortium was formed (1) to respond to national R and D, policy formulation and minority manpower needs in environmental technology, hazardous, solid and mixed waste materials management, environmental restoration, and environmental health; and (2) to address limited minority participation in the public, private and non-profit environmental industries; limited environmental awareness among minorities; minimal interaction between HBCUs/MIs and majority universities, industry and interest groups; limited institutional development in environmental education and research; and lack of minority technical businesses in the environmental industry. This report gives progress made for the 92--93 period.

  13. Consortia for Engineering, Science and Technology Libraries in India: A Case Study of INDEST Consortium

    Science.gov (United States)

    Pathak, S. K.; Deshpande, N. J.

    2007-10-01

    The present scenario of the INDEST Consortium among engineering, science and technology (including astronomy and astrophysics) libraries in India is discussed. The Indian National Digital Library in Engineering Sciences & Technology (INDEST) Consortium is a major initiative of the Ministry of Human Resource Development, Government of India. The INDEST Consortium provides access to 16 full text e-resources and 7 bibliographic databases for 166 institutions as members who are taking advantage of cost effective access to premier resources in engineering, science and technology, including astronomy and astrophysics. Member institutions can access over 6500 e-journals from 1092 publishers. Out of these, over 150 e-journals are exclusively for the astronomy and physics community. The current study also presents a comparative analysis of the key features of nine major services, viz. ACM Digital Library, ASCE Journals, ASME Journals, EBSCO Databases (Business Source Premier), Elsevier's Science Direct, Emerald Full Text, IEEE/IEE Electronic Library Online (IEL), ProQuest ABI/INFORM and Springer Verlag's Link. In this paper, the limitations of this consortium are also discussed.

  14. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  15. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  16. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    Energy Technology Data Exchange (ETDEWEB)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  17. Global health education consortium: 20 years of leadership in global health and global health education.

    Science.gov (United States)

    Velji, Anvar

    2011-06-01

    The Global Health Education Consortium (GHEC) is a group of universities and institutions committed to improving the health and human rights of underserved populations worldwide through improved education and training of the global health workforce. In the early 1990s, GHEC brought together many of the global health programs in North America to improve competencies and curricula in global health as well as to involve member institutions in health policy, development issues, and delivery of care in the inner cities, marginalized areas, and abroad.

  18. From Franchise Network to Consortium: The Evolution and Operation of a New Kind of Further and Higher Education Partnership

    Science.gov (United States)

    Bridge, Freda; Fisher, Roy; Webb, Keith

    2003-01-01

    The Consortium for Post-Compulsory Education and Training (CPCET) is a single subject consortium of further education and higher education providers of professional development relating to in-service teacher training for the whole of the post-compulsory sector. Involving more than 30 partners spread across the North of England, CPCET evolved from…

  19. 78 FR 79613 - Final Requirement-Migrant Education Program Consortium Incentive Grant Program

    Science.gov (United States)

    2013-12-31

    ... Education Program (MEP) Consortium Incentive Grant (CIG) Program. This final requirement changes the maximum project period of grants awarded to State educational agencies (SEAs) under the MEP CIG program from two... established in their approved CIG program application. DATES: Effective Date: This requirement is effective...

  20. District, Union, and Community Collaboration: Massachusetts Consortium for Innovative Education Assessment

    Science.gov (United States)

    Kelly, Dianne; Fearing, Erik

    2017-01-01

    While Massachusetts has received accolades for its high scores on the National Assessment for Educational Progress (NAEP) and Program for International Student Assessment (PISA) tests, absolute results from standardized tests tend to correlate strongly with family income and parental education. The Massachusetts Consortium for Innovative Education…

  1. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  2. Earth Hazards Consortium: a Novel Approach to Student Education in Geoscience

    Science.gov (United States)

    Mann, C. P.; Delgado Granados, H.; Escobar Wolf, R.; Durant, A.; Girard, G.; Calder, E.; Dominguez, T.; Roberge, J.; Rose, W.; Stix, J.; Varley, N.; Williams-Jones, G.; Hernandez Javier, I.; Salinas Sanchez, S.

    2007-05-01

    The Earth Hazards (Ehaz) consortium consists of six research-based universities in the United States (Michigan Technological University, University of New York at Buffalo), Canada (McGill University, Simon Fraser University) and Mexico (Universidad Nacional Autónoma de México, Universidad de Colima) funded by the U.S. Department of Education, Human Resources and Skills Development Canada, and the Secretaría de Educación Pública of Mexico, as part of the North American Free Trade Agreement. The objective of the consortium is to expose students to a wide variety of scientific and cultural perspectives in the mitigation of geological natural hazards in North America. This four-year program is multi-faceted, including student exchanges, graduate level, web-based courses in volcanology, and intensive group field trips. In 2005 to 2006, a total of 27 students were mobilized among the three countries. In this first year, the videoconferencing course focused on caldera "Supervolcanoes" with weekly discussion leaders from various fields of volcanology. At the end of the course the students participated in a field trip to Long Valley and Yellowstone calderas. Also during the first year of the program, Mexico hosted an International Course on Volcanic Hazards Map Construction. The course was attended by graduate students from Mexico and the United States, included lectures from noted guest speakers, and involved a field trip to Popocatépetl volcano. The multi-university course focus for 2007 is Volcanic Edifice Failure with a field trip planned in August 2007 to the Cascades and Western Canada. A student survey from 2006 demonstrated that (1) during the videoconferencing the students benefited by the weekly interaction with well-known volcanologists at the top of their field, (2) the field trip provided an outstanding opportunity for participants to link the theoretical concepts covered during the course with the field aspects of supervolcano systems, as well as the

  3. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  4. Development and Implementation of the Midwest Geological Sequestration Consortium CO2-Technology Transfer Center

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Sallie E. [Univ. of Illinois, Champaign, IL (United States)

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programs and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).

  5. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  6. The Henry street consortium population-based competencies for educating public health nursing students.

    Science.gov (United States)

    Schaffer, Marjorie A; Cross, Sharon; Keller, Linda O; Nelson, Pamela; Schoon, Patricia M; Henton, Pat

    2011-01-01

    The Henry Street Consortium, a collaboration of nurse educators from universities and colleges and public health nurses (PHNs) from government, school, and community agencies, developed 11 population-based competencies for educating nursing students and the novice PHN. Although many organizations have developed competency lists for experts, the Consortium developed a set of competencies that clearly define expectations for the beginning PHN. The competencies are utilized by both education and practice. They guide nurse educators and PHNs in the creation of learning experiences that develop population-based knowledge and skills for baccalaureate nursing students. Public health nursing leaders use the competencies to frame their expectations and orientations for nurses who are new to public health nursing. This paper explains the meaning of each of the 11 population-based competencies and provides examples of student projects that demonstrate competency development. Strategies are suggested for nurse educators and PHNs to promote effective population-based student projects in public health agencies.

  7. The Georgia Higher Education Consortium: A Model for Linking Early Intervention Faculty.

    Science.gov (United States)

    Gallagher, Peggy A.; Vail, Cynthia O.; McCormick, Katherine; Malone, D. Michael

    2001-01-01

    A higher education consortium (HEC) in early intervention (EI) is described. An evaluation of the model found that benefits to faculty of HEC participation included development and implementation of EI coursework, development of interdisciplinary collaborative relationships, increased knowledge of state resources, and enhanced knowledge of EI…

  8. Institutional support for the Utah Consortium for Energy Research and Education. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Utah Consortium for Energy Research and Education is made up of three colleges and universities in Utah. The scope of the Consortium plan is the marshalling of the academic research resources, as well as the appropriate non-academic resources within Utah to pursue, as appropriate, energy-related research activities. The heart of this effort has been the institutional contract between DOE and the University of Utah, acting as fiscal agent for the Consortium. Sixteen programs are currently being funded, but only ten of the projects are described in this report. Three projects are on fission/fusion; three on environment and safety; four on fossil energy; three on basic energy sciences; one each on conservation, geothermal, and solar.

  9. EDUCATIONAL TECHNOLOGIES TO EMPOWER HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    J. C.V. Garzón

    2014-08-01

    Full Text Available Introduction and objectives: The New Media Consortium (NMC Horizon Project defines educational technology in a broad sense as tools and resources that are used to improve teaching, learning, and creative inquiry. Each technology has been carefully researched and framed in the context of its potential impact on higher education. Within the Horizon Project there are currently seven categories of technologies, tools, and strategies for their use that the NMC monitors continuously. All they have the potential to foster real changes in education, particularly in the development of progressive pedagogies and learning strategies; the organization of teachers’ work; and the arrangement and delivery of content. Following the recommendations of NMC experts panel, we design an application named Augmented Reality Metabolic Pathways (ARMET in order to improve motivation and to promote student interactivity to the development of skills needed to learn the metabolic pathways. Materials and methods: The ARMET app was developed using Unity, 3D molecules obtained from Protein Data Bank and ChemSpider-chemical structure database, the usage data are stored into a database (MySQL and are analyzed using the statistical software R. Results and conclusions: ARMET mixes several technologies out of seven categories recommend in the NMC Horizon Report: Mobile app, Bring Your Own Device, Flipped Classroom, Learning Analytics and Augmented Reality. The principal criterion for the inclusion of those technologies into the app was its potential relevance to teaching and learning biochemistry. ARMET is available for iOS and Android platforms, and includes PDF files with a set of cards, the game board and classroom worksheet’s. The students and teachers can register for free. Teachers can create classes and track student performance. ARMET collects data for personalizing learning experiences addressing the challenge to build better pedagogical tools to establish effective

  10. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  11. Education Technology Success Stories

    Science.gov (United States)

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  12. A Consortium Approach to Surgical Education in a Developing Country: Educational Needs Assessment.

    Science.gov (United States)

    Cook, Mackenzie; Howard, Benjamin M; Yu, Angela; Grey, Douglas; Hofmann, Paul B; Moren, Alexis M; Mchembe, Mabula; Essajee, Abbas; Mndeme, Omari; Peck, James; Schecter, William P

    2015-11-01

    Surgical disease is a global health priority, and improving surgical care requires local capacity building. Single-institution partnerships and surgical missions are logistically limited. The Alliance for Global Clinical Training (hereafter the Alliance) is a consortium of US surgical departments that aims to provide continuous educational support at the Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania (MUHAS). To our knowledge, the Alliance is the first multi-institutional international surgical collaboration to be described in the literature. To assess if the Alliance is effectively responding to the educational needs of MUHAS and Muhimbili National Hospital surgeons. During an initial 13-month program (July 1, 2013, to August 31, 2014), faculty and resident teams from 3 US academic surgical programs rotated at MUHAS as physicians and teachers for 1 month each. To assess the value of the project, we administered anonymous surveys. Anonymous surveys were analyzed on a 5-point Likert-type scale. Free-text answers were analyzed for common themes. During the study period, Alliance members were present at MUHAS for 8 months (1 month each). At the conclusion of the first year of collaboration, 15 MUHAS faculty and 22 MUHAS residents completed the survey. The following 6 areas of educational needs were identified: formal didactics, increased clinical mentorship, longer-term Alliance presence, equitable distribution of teaching time, improved coordination and language skills, and reciprocal exchange rotations at US hospitals. The MUHAS faculty and residents agreed that Alliance members contributed to improved patient care and resident education. A multi-institutional international surgical partnership is possible and leads to perceived improvements in patient care and resident learning. Alliance surgeons must continue to focus on training Tanzanian surgeons. Improving the volunteer surgeons' Swahili-language skills would be an asset. Future

  13. The Future of Higher Education: How Technology Will Shape Learning

    Science.gov (United States)

    Glenn, Marie; D'Agostino, Debra, Ed.

    2008-01-01

    On October 20, 2008, the New Media Consortium announced the release of a white paper produced in conjunction with the Economist Magazine and in collaboration with Apple, Inc. This paper reports the results of a study of nearly 300 CIOs and technology leaders inside and outside of education to gain deeper insight into the wider impact of technology…

  14. Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Parekh, B.K.; Meloy, T.

    1997-12-31

    The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.

  15. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad...

  16. Inner-City Energy and Environmental Education Consortium: Inventory of existing programs. Appendix 13.5

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-21

    This is the ``first effort`` to prepare an inventory of existing educational programs, focused primarily on inner-city youth, in operation in Washington, DC, Baltimore, and Philadelphia. The purpose of the inventory is to identify existing programs which could be augmented, adapted, or otherwise strengthened to help fulfil the mission of the Department of Energy-sponsored Inner-City Energy and Environmental Education Consortium, the mission of which is to recruit and retain inner-city youth to pursue careers in energy-related scientific and technical areas and in environmental restoration and waste management. The Consortium does not want to ``reinvent the wheel`` and all of its members need to learn what others are doing. Each of the 30 participating academic institutions was invited to submit as many program descriptions as they wished. Due to the summer holidays, or because they did not believe than they were carrying out programs relevant to the mission of the Consortium, some institutions did not submit any program descriptions. In addition, several industries, governmental agencies, and not-for-profit institutions were invited to submit program descriptions.

  17. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  18. Tle Triangulation Campaign by Japanese High School Students as a Space Educational Project of the Ssh Consortium Kochi

    Science.gov (United States)

    Yamamoto, Masa-Yuki; Okamoto, Sumito; Miyoshi, Terunori; Takamura, Yuzaburo; Aoshima, Akira; Hinokuchi, Jin

    As one of the space educational projects in Japan, a triangulation observation project of TLE (Transient Luminous Events: sprites, elves, blue-jets, etc.) has been carried out since 2006 in collaboration between 29 Super Science High-schools (SSH) and Kochi University of Technol-ogy (KUT). Following with previous success of sprite observations by "Astro High-school" since 2004, the SSH consortium Kochi was established as a national space educational project sup-ported by Japan Science and Technology Agency (JST). High-sensitivity CCD camera (Watec, Neptune-100) with 6 mm F/1.4 C-mount lens (Fujinon) and motion-detective software (UFO-Capture, SonotaCo) were given to each participating team in order to monitor Northern night sky of Japan with almost full-coverage. During each school year (from April to March in Japan) since 2006, thousands of TLE images were taken by many student teams, with considerably large numbers of successful triangulations, i.e., (School year, Numbers of TLE observations, Numbers of triangulations) are (2006, 43, 3), (2007, 441, 95), (2008, 734, 115), and (2009, 337, 78). Note that, school year in Japan begins on April 1 and ends on March 31. The observation campaign began in December 2006, numbers are as of Feb. 28, 2010. Recently, some high schools started wide field observations using multiple cameras, and others started VLF observations using handmade loop antennae and amplifiers. Infomation exchange among the SSH consortium Kochi is frequently communicated with scientific discussion via KUT's mailing lists. Also, interactions with amateur observers in Japan are made through an internet forum of "SonotaCo Network Japan" (http://sonotaco.jp). Not only as an educational project but also as a scientific one, the project is also in success. In February 2008, simultaneous observations of Elves were obtained, in November 2009 a Giant "Graft-shaped" Sprites driven by Jets was clearly imaged with VLF signals. Most recently, ob-servations of Elves

  19. Lessons of Educational Technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2006-01-01

    Full Text Available Reception of the book "Lessons of Educational Technology." The book contains materials work in certain aspects relevant to the formation of a teacher who is able to meet the challenges of society 'knowledge.

  20. Technology and Educational Structure

    Science.gov (United States)

    Boocock, Sarane S.

    2012-01-01

    Most current debate on instructional technology is characterized either by grandiose speculation on the salvation of education through automation (without specification of "what" and "how" technological innovations will actually be introduced in specific classroom situations, and how the changes will be financed), or by jargon-filled hairsplitting…

  1. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  2. The Educational Technology Myth

    Science.gov (United States)

    Stansfield, David

    2012-01-01

    If one wants to teach youth to think, one has to restrain himself from doing all their thinking for them. One has to refrain from specifying in advance what they are going to think. Yet, this is just what educational technologists are consistently guilty of doing. Educational technology is committed to excluding the possibility of anything new or…

  3. Tablet Technologies and Education

    OpenAIRE

    Heidi L. Schnackenberg

    2013-01-01

    Recently, tablet technologies have grown tremendously in popularity. They lend themselves to a myriad of learning modalities and therefore may be well suited to use in schools and universities. While teachers work to find useful applications for tablets, students have already begun using them at home and, in secondary and higher education, in classes. Unfortunately, sometimes when students use tablets for courses they play with “apps,” rather than using the technology as a useful and powerful...

  4. Innovation in Academic Progression: Progress of the New Mexico Nursing Education Consortium Model.

    Science.gov (United States)

    Landen, Jenny; Evans-Prior, Diane; Dakin, Becky; Liesveld, Judy

    The Institute of Medicine (IOM) challenged nursing education programs to increase the proportion of nurses with a baccalaureate degree in nursing to 80 percent by 2020. All 18 state-funded prelicensure nursing programs in New Mexico joined forces to create the New Mexico Nursing Education Consortium (NMNEC). NMNEC is a model of collaboration with a statewide common curriculum that provides seamless transferability for students between schools while offering the BSN on community college campuses. Over three years, university partnerships with community colleges increased prelicensure BSN seats by 77 percent. This article describes the NMNEC model, challenges and opportunities associated with implementation, current program outcomes, and factors that have contributed to NMNEC's success. Also discussed are future steps for sustainability and growth as NMNEC continues in its commitment to meeting the IOM challenge.

  5. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  6. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  7. TECHNOLOGY IN EDUCATION.

    Science.gov (United States)

    TONDOW, MURRAY

    PAPERS ON THE PRESENT AND FUTURE USE OF TECHNOLOGY IN EDUCATION IS PRESENTED. HARRY F. SILBERMAN, IN "EVALUATIVE CRITERIA FOR AUTOMATED TEACHING PROGRAMS," PRESENTS COMMENTS, CRITERIA, AND TABLES ON AUTOMATED TEACHING PROGRAMS. HE DESCRIBES EXPERIMENTS ON THE EFFECTIVENESS OF BRANCHING AND FIXED SEQUENCE PROGRAMS, ON A FOLLOWUP…

  8. Educational Technology Leadership

    Science.gov (United States)

    McLeod, Scott

    2008-01-01

    As districts look at the millennials in their classrooms and plan for the most effective educational strategies to reach them, it is clear that technology can enable learning in ways that never before have been possible. It is also clear that this generation grew up with tools and techniques that are well integrated with their lifestyles. To these…

  9. Technology and Nursing Education.

    Science.gov (United States)

    Neighbors, Marianne; Eldred, Evelyn E.

    1993-01-01

    A study to isolate some of the complex skills that nurses are expected to perform in current practice identified 54 skills and surveyed 167 staff nurses and 53 nurse executives to classify the expected level of performance for a new graduate. Results indicated that educators bear responsibility for learning about technology and incorporating it…

  10. Disruptive Technology for Vector Control: the Innovative Vector Control Consortium and the US Military Join Forces to Explore Transformative Insecticide Application Technology for Mosquito Control Programmes

    Science.gov (United States)

    2015-09-26

    Control Consortium and the US Military join forces to explore transformative insecticide application technology for  mosquito control programmes...opment of new insecticides to fight growing mosquito resistance to the current chemicals [6]. However, it is essential to match the next generation of...technological advancements made in recent decades to modernize the tools used to target, control, and monitor mosquito populations. This paper summarizes the

  11. From the Ground Up: Floorcovering Recommendations from an IAQ Consortium. Issuetrak: A CEFPI Brief on Educational Facility Issues.

    Science.gov (United States)

    Frank, David

    This brief describes the findings of a consortium on indoor air quality (IAQ) in educational facilities held in Chattanooga, Tennessee. The objective was to determine the impact floorcoverings have on indoor air quality in schools relative to maintenance, volatile organic compounds (VOCs), airborne contaminants, moisture, surface contaminants, and…

  12. Waste Management Education and Research Consortium (WERC), National Environmental Design. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E.

    1994-10-01

    The 4th Annual Waste-Management Education and Research Consortium (WERC) for National Environmental Design was held on April 10--14 in Las Cruces, New Mexico. The purpose of the WERC is to train students in the area of site remediation and restoration. Consistent with the Cooperative Agreement`s 3rd Task, the ultimate goal of WERC is to provide training for potential engineers and scientists for the DOE`s remediation and restoration efforts. WERC is sponsored by the Department of Energy and is housed at New Mexico State University. Two student groups from West Virginia University`s Department of Civil and Environmental Engineering traveled to New Mexico. Group 1 was composed of graduate students and Group 2 was composed of undergraduate students. Students who participated in this program were exposed to all aspects of the solution of a real life environmental problem.

  13. Lateral Thinking and Technology Education.

    Science.gov (United States)

    Waks, Shlomo

    1997-01-01

    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  14. Exploration of mobile educational technology

    OpenAIRE

    Hosny, W.

    2007-01-01

    Recent advances in mobile and wireless technology could be utilised to enhance the delivery of educational programmes. The use of this technology is known as “Mobile Education”. Mobile education technology provides unique opportunities for educators to flexibly deliver their educational material to learners via mobile services anywhere at any time. Moreover, the material delivered could be adapted to the learners’ needs and preferences. Examples of mobile devices which could be used in mobile...

  15. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  16. Disruptive Technologies in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2012-01-01

    This paper analyses the role of "disruptive" innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally…

  17. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  18. Improving Technology and Engineering Education

    Science.gov (United States)

    Tech Directions, 2013

    2013-01-01

    Improving Technology and Engineering Education for All Students: A Plan of Action is the theme of this year's International Technology and Engineering Educators Association (ITEEA) annual conference, which meets March 7-9 in Columbus, OH. The theme is aligned with ITEEA's 2012-15 Strategic Plan: Investing in People as Educational Change Agents.…

  19. Hawaii Space Grant Consortium

    Science.gov (United States)

    Flynn, Luke P.

    2005-01-01

    The Hawai'i Space Grant Consortium is composed of ten institutions of higher learning including the University of Hawai'i at Manoa, the University of Hawai'i at Hilo, the University of Guam, and seven Community Colleges spread over the 4 main Hawaiian islands. Geographic separation is not the only obstacle that we face as a Consortium. Hawai'i has been mired in an economic downturn due to a lack of tourism for almost all of the period (2001 - 2004) covered by this report, although hotel occupancy rates and real estate sales have sky-rocketed in the last year. Our challenges have been many including providing quality educational opportunities in the face of shrinking State and Federal budgets, encouraging science and technology course instruction at the K-12 level in a public school system that is becoming less focused on high technology and more focused on developing basic reading and math skills, and assembling community college programs with instructors who are expected to teach more classes for the same salary. Motivated people can overcome these problems. Fortunately, the Hawai'i Space Grant Consortium (HSGC) consists of a group of highly motivated and talented individuals who have not only overcome these obstacles, but have excelled with the Program. We fill a critical need within the State of Hawai'i to provide our children with opportunities to pursue their dreams of becoming the next generation of NASA astronauts, engineers, and explorers. Our strength lies not only in our diligent and creative HSGC advisory board, but also with Hawai'i's teachers, students, parents, and industry executives who are willing to invest their time, effort, and resources into Hawai'i's future. Our operational philosophy is to FACE the Future, meaning that we will facilitate, administer, catalyze, and educate in order to achieve our objective of creating a highly technically capable workforce both here in Hawai'i and for NASA. In addition to administering to programs and

  20. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pløn W.; Plomp, Tjeerd

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  1. Technological literacy and innovation education

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2014-01-01

    , and a heavy digitization of the health care sector. These developments have actualized the fundamental question of how new technologies change and challenge the professions and their professional relationships? As one way to deal with this question, health education programmes have begun to focus...... on innovation education and educational activities fostering technological literacy. While focus on technological literacy has often (historically) taken a functionalist direction, and mainly been related to ICT and development of non- vocational curricula, more recent developments of approaches...

  2. Emerging technologies in physics education

    CERN Document Server

    Krusberg, Z A C

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies - Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed particularly in terms of their potential at promoting conceptual change, developing expert-like problem-solving skills, and achieving the goals of the traditional physics laboratory. Pedagogical methods to maximize the potential of each educational technology are suggested.

  3. Integrating economic evaluation methods into clinical and translational science award consortium comparative effectiveness educational goals.

    Science.gov (United States)

    Iribarne, Alexander; Easterwood, Rachel; Russo, Mark J; Wang, Y Claire

    2011-06-01

    With the ongoing debate over health care reform in the United States, public health and policy makers have paid growing attention to the need for comparative effectiveness research (CER). Recent allocation of federal funds for CER represents a significant move toward increased evidence-based practice and better-informed allocation of constrained health care resources; however, there is also heated debate on how, or whether, CER may contribute to controlling national health care expenditures. Economic evaluation, in the form of cost-effectiveness or cost-benefit analysis, is often an aspect of CER studies, yet there are no recommendations or guidelines for providing clinical investigators with the necessary skills to collect, analyze, and interpret economic data from clinical trials or observational studies. With an emphasis on multidisciplinary research, the Clinical and Translational Science Award (CTSA) consortium and institutional CTSA sites serve as an important resource for training researchers to engage in CER. In this article, the authors discuss the potential role of CTSA sites in integrating economic evaluation methods into their comparative effectiveness education goals, using the Columbia University Medical Center CTSA as an example. By allowing current and future generations of clinical investigators to become fully engaged not only in CER but also in the economic evaluations that result from such analyses, CTSA sites can help develop the necessary foundation for advancing research to guide clinical decision making and efficient use of limited resources.

  4. Identifying the Role of the International Consortium ``MIT/ LINC'' in Supporting the Integration of ICT in Higher Education in Emerging Countries

    Science.gov (United States)

    Park, Young; Moser, Franziska Zellweger

    2008-04-01

    The goal of this research effort is to provide insights on what core needs and difficulties exist toward the implementation of ICT in higher education in emerging countries and how a consortium like LINC can best support these efforts. An exploratory research design combining a survey, on-site interviews, participant observation and document analysis were employed to answer the research questions. Main challenges in establishing technology- based learning environments were identified in the area of pedagogies, finances, technological infrastructure, cultural change, organization, and management. LINC, as an non-political organization embedded in an academic environment, can take an important role in facilitating the dialogue among participants through various platforms, take an active role in promoting joint programs and assist with efforts to "localize" tools and practice.

  5. Disruptive technologies in higher education

    OpenAIRE

    Flavin, Michael

    2012-01-01

    This paper analyses the role of ‘‘disruptive’’ innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According...

  6. 34 CFR 614.4 - Which member of the consortium must act as the lead applicant and fiscal agent?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Which member of the consortium must act as the lead applicant and fiscal agent? 614.4 Section 614.4 Education Regulations of the Offices of the Department of... TEACHERS TO USE TECHNOLOGY § 614.4 Which member of the consortium must act as the lead applicant and...

  7. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  8. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  9. Technology Education and the Arts

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    One hears quite frequently how the arts continually suffer in the academic day. Many long-time technology education champions certainly know what this is all about; but there may be some ways to use technology education to bring the arts into the classroom. This article offers a series of activities and suggestions that will help students better…

  10. Towards an Alternative Educational Technology.

    Science.gov (United States)

    Mansfield, Roger; Nunan, E. E.

    1978-01-01

    Outlines an alternative form of educational technology based on an analysis of criticism levelled at the subject, both from within and without. Article contends that the future of educational technology rests on an expansion of its concerns, rather than a refinement or modification of its existing content. (Author)

  11. Emerging Technologies in Physics Education

    Science.gov (United States)

    Krusberg, Zosia A. C.

    2007-01-01

    Three emerging technologies in physics education are evaluated from the interdisciplinary perspective of cognitive science and physics education research. The technologies--Physlet Physics, the Andes Intelligent Tutoring System (ITS), and Microcomputer-Based Laboratory (MBL) Tools--are assessed particularly in terms of their potential at promoting…

  12. Technology for Education and Learning

    CERN Document Server

    2012 international conference on Technology for Education and Learning (ICTEL 2012)

    2012-01-01

    This volume contains 108 selected papers presented at the 2012 international conference on Technology for Education and Learning (ICTEL 2012), Macau, China, March 1-2, 2012. The conference brought together researchers working in various different areas of Technology for Education and Learning with a main emphasis on technology for business and economy in order to foster international collaborations and exchange of new ideas. This proceedings book has its focus on Technology for Economy, Finance and Education representing some of the major subareas presented at the conference.

  13. Faculty Adoption of Educational Technology

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Although faculty support has been identified as a critical factor in the success of educational-technology programs, many people involved in such efforts underestimate the complexities of integrating technology into teaching. In this article, the author proposes an adoption cycle to help tackle the complex issue of technology adoption for…

  14. Assistive Technology and Mathematics Education

    Science.gov (United States)

    Akpan, Joseph P.; Beard, Lawrence A.

    2014-01-01

    Educators and caregivers now have the opportunity to individualize and differentiate instructions with many technological devices never before available. Assistive Technology is being introduced in the classroom at all levels as a tool for teachers to help deliver instruction to all students. Assistive Technology is widely used to ensure…

  15. Computer Technology and Nursing Education.

    Science.gov (United States)

    Southern Council on Collegiate Education for Nursing, Atlanta, GA.

    The influences of computer technology on college nursing education programs and health care delivery systems are discussed in eight papers. The use of computers is considered, with attention to clinical care, nursing education and continuing education, administration, and research. Attention is also directed to basic computer terminology, computer…

  16. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  17. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  18. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  19. 78 FR 40084 - Proposed Requirement-Migrant Education Program Consortium Incentive Grant Program

    Science.gov (United States)

    2013-07-03

    ... Program (MEP) Consortium Incentive Grant (CIG) Program from two years to three years. We take this action... achieving the objectives and outcomes that were established in their approved CIG program application. DATES....gillette@ed.gov . You must include the term ``CIG- Duration'' in the subject line of your electronic...

  20. Implementing Educational Technology in Higher Education:

    Directory of Open Access Journals (Sweden)

    Cynthia C. Roberts

    2008-01-01

    Full Text Available Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be utilized by educators for the purpose of the selection as well as successful implementation of educational technologies within their setting, in particular, online course management systems. The four steps of this process include strategic analysis, strategy making, strategic plan design, and strategic plan implementation. The choice to embrace a new system and the extent and speed of its implementation depends upon internal factors such as resources, organizational culture, faculty readiness, anticipated degree of resistance, and the degree of variance from the status quo. A case from the author’s experience provides one example of how the use of distance learning technology was strategically implemented.

  1. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Haw, Jung-Rim; Kalyani, Dayanand; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-03-01

    Two different biomasses were subjected to simultaneous pretreatment and saccharification (SPS) using a cocktail of hydrolytic and oxidizing enzymes. Application of a novel laccase as a detoxifying agent caused the removal of 49.8% and 32.6% of phenolic contents from the soaked rice straw and willow, respectively. Hydrolysis of soaked substrates using a newly developed fungal consortium resulted in saccharification yield of up to 74.2% and 63.6% for rice straw and willow, respectively. A high saccharification yield was obtained with soaked rice straw and willow without using any hazardous chemicals. The efficiency of each step related to SPS was confirmed by atomic force microscopy. The suitability of the developed SPS process was further confirmed by converting the hydrolysate from the process into bioethanol with 72.4% sugar conversion efficiency. To the best of our knowledge, this is the first report on the development of a less tedious, single-pot, and eco-friendly SPS methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  3. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  4. Computers: Educational Technology Paradox?

    Science.gov (United States)

    Hashim, Hajah Rugayah Hj.; Mustapha, Wan Narita

    2005-01-01

    As we move further into the new millennium, the need to involve and adapt learners with new technology have been the main aim of many institutions of higher learning in Malaysia. The involvement of the government in huge technology-based projects like the Multimedia Super Corridor Highway (MSC) and one of its flagships, the Smart Schools have…

  5. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  6. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  7. Art Education Technology: Digital Storytelling

    Science.gov (United States)

    Chung, Sheng Kuan

    2007-01-01

    The application of digital storytelling to art education is an interdisciplinary, inquiry-based, hands-on project that integrates the arts, education, local communities, technology, and storytelling. Through digital storytelling, students develop and apply multiliteracy skills, aesthetic sensitivities, and critical faculties to address greater…

  8. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2015-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...

  9. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    Science.gov (United States)

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  10. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  11. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field/R and D high performance flat panel display technology (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / koseino flat panel display gijutsu no sogo kaihatsu kenkyu (daiichi nendo ) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    One of the subjects in technology supporting the highly information-oriented society which will develop and diversify toward the 21st century is the construction of high grade man/machine interface. For it, high precision/high luminance/energy saving/thin plane displays are strongly requested. This R and D is to indicate models of systematical development in the region of element technology individually existing in the Shikoku area by forming a regional consortium in the industry/universities/government. Creation of new industries by gathering display related enterprises is a first step in a plan to realize `Display Island Shikoku.` As a concrete target, with the use of high-tech diamond semiconducting technology, a development is conducted of the high performance flat panel display using the negative electron affinity (NEA) electron emitter which drastically solves the problems such as luminance, visibility angle and response speed, the subjects on the commercialized liquid crystal flat panel display. 16 refs., 45 figs., 8 tabs.

  12. Multimedia technologies in education.

    Science.gov (United States)

    Liaskos, Joseph; Diomidus, Marianna

    2002-01-01

    In general multimedia is the combination of visual and audio representations. These representations could include elements of texts, graphic arts, sound, animation, and video. However, multimedia is restricted in such systems where information is digitalized and is processed by a computer. Interactive multimedia and hypermedia consist of multimedia applications that the user has more active role. Education is perhaps the most useful destination for multimedia and the place where multimedia has the most effective applications, as it enriches the learning process. Multimedia both in nursing education and in medical informatics education has several applications as well. A multimedia project can be developed even as a "stand alone" application (on CD-ROM), or on World Wide Web pages on Internet. However several technical constraints exist for developing multimedia applications on Internet. For developing multimedia projects we need hardware and software, talent and skill. The software requirements for multimedia development consist of one or more authoring systems and various editing applications for text, images, sounds and video. In this chapter different software tools for creating multimedia applications are presented. In the last part of this chapter, two examples of multimedia educational training programs are discussed. Both are "stand alone" applications (CD-ROMs). The first, examines several aspects of the electronic patient record by using videos, audio descriptions, lectures and glossary, while the second one presents several topics regarding epidemiology and epidemiological research by using graphics, sound and animation.

  13. The Cost of Change in Technology Education.

    Science.gov (United States)

    Pullias, Dave

    1987-01-01

    The author states that two costs will be involved in the coming change in technology education: financial and personal. He questions what group of educators will teach technology education in the future. (CH)

  14. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per;

    2015-01-01

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  15. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  16. Report on the CEPA activities [Consorcio Educativo para la Proteccion Ambiental/Educational Consortium for Environmental Preservation] [Final report of activities from 1998 to 2002

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Miriam

    2003-02-01

    This report compiles the instances of scientific, educational, and institutional cooperation on environmental issues and other activities in which CEPA was engaged during the past five years, and includes several annual reports and meeting summaries. CEPA is a collaborative international consortium that brings together higher education institutions with governmental agencies, research laboratories, and private sector entities. CEPA's mission is to strengthen the technical, professional, and educational environmental infrastructure in the United States and Latin America. The CEPA program includes curriculum development, student exchange, faculty development, and creation of educational materials, joint research, and other cooperative activities. CEPA's goals are accomplished by actively working with Hispanic-serving institutions of higher education in the United States, in collaboration with institutions of higher education in Latin America and other Consortium members to deliver competitive environmental programs.

  17. Overview of the Inland California Translational Consortium

    Science.gov (United States)

    Malkas, Linda H.

    2017-05-01

    The mission of the Inland California Translational Consortium (ICTC), an independent research consortium comprising a unique hub of regional institutions (City of Hope [COH], California Institute of Technology [Caltech], Jet Propulsion Laboratory [JPL], University of California Riverside [UCR], and Claremont Colleges Keck Graduate Institute [KGI], is to institute a new paradigm within the academic culture to accelerate translation of innovative biomedical discoveries into clinical applications that positively affect human health and life. The ICTC actively supports clinical translational research as well as the implementation and advancement of novel education and training models for the translation of basic discoveries into workable products and practices that preserve and improve human health while training and educating at all levels of the workforce using innovative forward-thinking approaches.

  18. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  19. The Tribe of Educational Technologies

    Science.gov (United States)

    Al Lily, Abdulrahman Essa

    2014-01-01

    This article looks into the claim that the international academic community of educational technologies seems to have functioned in a "tribal" way, having formed themselves around tribe-like patterns. It therefore addresses the research question: What are these claimed tribe-like practices that such a community exhibits? This question is…

  20. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  1. Technology for Education. IDRA Focus.

    Science.gov (United States)

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  2. Health Educational Potentials of Technologies

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising...

  3. Robot Technology: Implications for Education.

    Science.gov (United States)

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  4. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  5. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  6. Linking information technology in education

    Directory of Open Access Journals (Sweden)

    Humberto Jaime Pérez Gutierrez

    2014-02-01

    Full Text Available It is attempted in this paper, show a clear and concise point involved the new technologies of computer science in education, and how these affect the preparation of teachers, overcoming the wide and deep stretch that separates computer specialists teachers of any subject, learners and the interaction between them.

  7. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  8. Mobile Technology and Liberal Education

    Science.gov (United States)

    Rossing, Jonathan P.

    2012-01-01

    In this article, the author offers reflections on the impact of mobile technology for liberal education. These reflections are based on his own experience of incorporating iPads in his communication courses during the 2010-2011 academic year. As a member of an interdisciplinary faculty learning community on the use of mobile tablets, he explored…

  9. Identifying the Role of the International Consortium "MIT/LINC" in Supporting the Integration of ICT in Higher Education in Emerging Countries

    Science.gov (United States)

    Park, Young; Moser, Franziska Zellweger

    2008-01-01

    The goal of this research effort is to provide insights on what core needs and difficulties exist toward the implementation of ICT in higher education in emerging countries and how a consortium like LINC can best support these efforts. An exploratory research design combining a survey, on-site interviews, participant observation and document…

  10. Visions and Options: A Report on Five Forums Introducing the Research Consortium on Building Vocational Education and Training Provider Capability. Occasional Paper

    Science.gov (United States)

    Clayton, Berwyn; Robinson, Pauline

    2008-01-01

    This publication outlines the outcomes of forums held in 2005 to introduce the consortium research program which has investigated ways of building vocational education and training (VET) provider capability. It found a range of issues were of concern to participants as they considered how registered training organisations might position themselves…

  11. The Role of the University of Wisconsin - Eau Claire in the Consortium Effort to Implement, Maintain and Institutionalize Individually Guided Education and the Multiunit Elementary School.

    Science.gov (United States)

    Wisconsin Univ., Eau Claire.

    This case study focuses on the role of the University of Wisconsin-Eau Claire (UW-EC) in a consortium effort to implement, maintain, and institutionalize individually guided education and the multi-unit elementary school (IGE/MUS-E). The framework for the study is based on the chronological academic involvement of UW-EC with the various facets of…

  12. A consortium approach to commercialized Westinghouse solid oxide fuel cell technology

    Science.gov (United States)

    Casanova, Allan

    Westinghouse is developing its tubular solid oxide fuel cells (SOFCs) for a variety of applications in stationary power generation markets. By pressurizing a SOFC and integrating it with a gas turbine (GT), power systems with efficiencies as high as 70-75% can be obtained. The first such system will be tested in 1998. Because of their extraordinarily high efficiency (60-70%) even in small sizes the first SOFC products to be offered are expected to be integrated SOFC/GT power systems in the 1-7 MW range, for use in the emerging distributed generation (DG) market segment. Expansion into larger sizes will follow later. Because of their modularity, environmental friendliness and expected cost effectiveness, and because of a worldwide thrust towards utility deregulation, a ready market is forecasted for baseload distributed generation. Assuming Westinghouse can complete its technology development and reach its cost targets, the integrated SOFC/GT power system is seen as a product with tremendous potential in the emerging distributed generation market. While Westinghouse has been a leader in the development of power generation technology for over a century, it does not plan to manufacture small gas turbines. However, GTs small enough to integrate with SOFCs and address the 1-7 MW market are generally available from various manufacturers. Westinghouse will need access to a new set of customers as it brings baseload plants to the present small market mix of emergency and peaking power applications. Small cogeneration applications, already strong in some parts of the world, are also gaining ground everywhere. Small GT manufacturers already serve this market, and alliances and partnerships can enhance SOFC commercialization. Utilities also serve the DG market, especially those that have set up energy service companies and seek to grow beyond the legal and geographical confines of their current regulated business. Because fuel cells in general are a new product, because small

  13. Use of Educational Technology in Promoting Distance Education

    Science.gov (United States)

    Rashid, Muhammad; Elahi, Uzma

    2012-01-01

    Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…

  14. Technology Outlook for STEM+ Education 2013-2018: An NMC Horizon Project Sector Analysis

    Science.gov (United States)

    Johnson, L.; Adams Becker, S.; Estrada, V.; Martín, S.

    2013-01-01

    The "Technology Outlook for STEM+ Education 2013-2018: An NMC Horizon Project Sector Analysis" reflects a collaborative research effort between the New Media Consortium (NMC), the Centro Superior para la Enseñanza Virtual (CSEV), the Departamento de Ingeniería Eléctrica, Electrónica y de Control at the Universidad Nacional de Educación a…

  15. Dick and Jane and Technology Education.

    Science.gov (United States)

    Roman, Harry T.

    2002-01-01

    Science education and technology education have a common lineage. Contrary to prevailing beliefs, technology involves both process and content. It cuts across and unifies curricula and should be taught across all grade levels. (JOW)

  16. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Mesa, AZ (United States)

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This report provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.

  17. Thesaurus Dataset of Educational Technology in Chinese

    Science.gov (United States)

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  18. Evaluation and Assessment in Educational Information Technology.

    Science.gov (United States)

    Liu, Leping, Ed.; Johnson, D. LaMont, Ed.; Maddux, Cleborne D., Ed.; Henderson, Norma J., Ed.

    This book contains the following articles on evaluating and assessing educational information technology: (1) "Assessing Learning in the New Age of Information Technology in Education" (Leping Liu, D. LaMont Johnson, Cleborne D. Maddux, and Norma J. Henderson); (2) "Instruments for Assessing the Impact of Technology in Education" (Rhonda…

  19. The promises of educational technology: a reassessment

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, T.

    1986-01-01

    The claims made for educational technology have not always been realized. Many programmes in education based on media and technology have produced useful documentation and supportive research; others have failed. The current, comprehensive definition of educational technology is a helpful key to

  20. The Intersociety Professional Nutrition Education Consortium and American Board of Physician Nutrition Specialists: what have we learned?

    Science.gov (United States)

    Heimburger, Douglas C; McClave, Stephen A; Gramlich, Leah M; Merritt, Russell

    2010-01-01

    A significant obstacle to nutrition literacy among physicians is a paucity of physician nutrition specialists (PNSs) on medical school faculties who can effectively advocate for change in medical school and residency curricula, and who can serve as role models for incorporating nutrition into patient care. To address these issues, the Intersociety Professional Nutrition Education Consortium (IPNEC) developed a paradigm for PNSs that is designed to attract more physicians into the field; promulgated educational standards for fellowship training of PNSs; and established a unified mechanism for certifying PNSs, the American Board of Physician Nutrition Specialists (ABPNS). With a board of directors consisting of members nominated by 7 professional nutrition societies in addition to at-large members, the ABPNS incorporates broad participation by all professional nutrition societies that have substantial physician members. The ABPNS certificate is intended to be the premier comprehensive credential for physicians who wish to identify nutrition as an area of expertise. Certification is equally accessible to physicians with backgrounds in any of the specialties and subspecialties relevant to clinical nutrition. This article outlines the history and features of IPNEC and ABPNS and the consensus paradigm, training standards, and certification process they developed. We discuss achievements, opportunities, and challenges facing the maintenance of a consensus-based certification body in order to inform future initiatives designed to expand the number of physician nutrition specialists.

  1. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  2. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  3. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  4. Current Trends in Higher Education Technology: Simulation

    Science.gov (United States)

    Damewood, Andrea M.

    2016-01-01

    This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…

  5. Genome Consortium for Active Teaching: Meeting the Goals of BIO2010

    Science.gov (United States)

    Campbell, A. Malcolm; Ledbetter, Mary Lee S.; Hoopes, Laura L. M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail

    2007-01-01

    The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable…

  6. Integrating statewide research and education resources for homeland security: the State University System of Florida Consortium on Homeland Security (Invited Paper)

    Science.gov (United States)

    Pearson, James E.; Olson, Peter J.

    2005-05-01

    The eleven universities of the State University System of Florida (SUS-FL) have established a consortium to address the full range of homeland security and domestic preparedness requirements for both Florida and the U.S. The Consortium has established the Florida Homeland Security Institute to provide an effective and efficient mechanism to coordinate, mobilize, combine, and form into teams the diverse, cross-disciplinary expertise, facilities, and established large base of technology development activities within the SUS-FL institutions and their established associates at industrial companies, governmental labs, and other universities. The Florida Consortium and Institute may provide a model for other state university systems for how to combine established resources effectively to address specific homeland security and domestic preparedness needs. This paper describes the Consortium and Institute goals, structure, and operations, with examples of how it has functioned in its brief existence as an effective mechanism for integrating the wide range of university, industry, and government capabilities within the state for addressing homeland security requirements.

  7. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  8. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  9. New Theoretical Approach Integrated Education and Technology

    Science.gov (United States)

    Ding, Gang

    2010-01-01

    The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…

  10. Franchising Technology Education: Issues and Implications.

    Science.gov (United States)

    Daniel, Dan; Newcomer, Cynthia

    1993-01-01

    Describes educational technology franchises that sell services to students, either through schools or directly through retail centers, to educate them about and with technology. Topics addressed include the emphasis on personalized instruction; cooperative learning; curriculum; cost effectiveness; site-based management in public education; and…

  11. Educational Technology: Definition of the Problem.

    Science.gov (United States)

    Razavi, Hossein

    1978-01-01

    An analysis of the evolution of educational technology demonstrates that the expansion of the concept has been unavoidable. A definition of educational technology as an economic approach to the micro and macro planning of education is introduced, and problems and guidelines for implementation in developing countries are discussed. (Author/JEG)

  12. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  13. Educational Technology in the Crystal Ball.

    Science.gov (United States)

    Langham-Johnson, Shirley

    This paper predicts that microelectronic circuitry will have an impact on education comparable to that of the industrial revolution or the invention of the printing press. Present conditions influencing educational technology and trends are considered in light of five considerations: (1) recent redefinitions of what educational technology is; (2)…

  14. Cases on Technology Integration in Mathematics Education

    Science.gov (United States)

    Polly, Drew, Ed.

    2015-01-01

    Common Core education standards establish a clear set of specific ideas and skills that all students should be able to comprehend at each grade level. In an effort to meet these standards, educators are turning to technology for improved learning outcomes. "Cases on Technology Integration in Mathematics Education" provides a compilation…

  15. Examining the Nature of Technology Graduate Education

    Science.gov (United States)

    Hartman, Nathan; Sarapin, Marvin; Bertoline, Gary; Sarapin, Susan H.

    2009-01-01

    The purpose of this paper is twofold. This work presents a general discussion of the theoretical foundation for graduate education in technology followed by specific applications of research activities within graduate education in technology. This paper represents the authors' view of the role of graduate education in (a) advancing the knowledge…

  16. An Educator's Guide to Communication Satellite Technology.

    Science.gov (United States)

    Polcyn, Kenneth A.

    Recent developments in the area of sophisticated communications technology present challenges to the imagination of every educator. This guide provides educational planners with an awareness and understanding of communication satellite technology, its current uses, and some of the tentative plans for educational experimentation. The first part…

  17. A Contemporary Preservice Technology Education Program

    Science.gov (United States)

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  18. Toward Sustainable Practices in Technology Education

    Science.gov (United States)

    Elshof, Leo

    2009-01-01

    This paper discusses the problematic relationship between technology education, consumption and environmental sustainability. The emerging global sustainability crisis demands an educational response that moves beyond mere "tinkering" with classroom practices, toward technology education which embraces life cycle thinking and "eco-innovation". It…

  19. Virtually Nursing: Emerging Technologies in Nursing Education.

    Science.gov (United States)

    Foronda, Cynthia L; Alfes, Celeste M; Dev, Parvati; Kleinheksel, A J; Nelson, Douglas A; OʼDonnell, John M; Samosky, Joseph T

    Augmented reality and virtual simulation technologies in nursing education are burgeoning. Preliminary evidence suggests that these innovative pedagogical approaches are effective. The aim of this article is to present 6 newly emerged products and systems that may improve nursing education. Technologies may present opportunities to improve teaching efforts, better engage students, and transform nursing education.

  20. Studying Innovation Technologies in Modern Education

    Science.gov (United States)

    Stukalenko, Nina M.; Zhakhina, Bariya B.; Kukubaeva, Asiya K.; Smagulova, Nurgul K.; Kazhibaeva, Gulden K.

    2016-01-01

    In modern society, innovation technologies expand to almost every field of human activity, including such wide field as education. Due to integrating innovation technologies into the educational process practice, this phenomenon gained special significance within improvement and modernization of the established educational system. Currently, the…

  1. Food Allergy Educational Needs of Pediatric Dietitians: A Survey by the Consortium of Food Allergy Research

    Science.gov (United States)

    Groetch, Marion E.; Christie, Lynn; Vargas, Perla A.; Jones, Stacie M.; Sicherer, Scott H.

    2010-01-01

    Objective: To determine pediatric dietitians' self-reported proficiency, educational needs, and preferences regarding food allergy (FA) management. Design and Setting: An Internet-based, anonymous survey was distributed to the Pediatric Nutrition Practice Group (PNPG) of the American Dietetic Association. Participants: Respondents (n = 311) were…

  2. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  3. Finding the Education in Educational Technology with Early Learners

    Science.gov (United States)

    McManis, Lilla Dale; Gunnewig, Susan B.

    2012-01-01

    As many educators and parents have observed, today's children are exposed to advanced technology at an early age, with tablets, e-readers, and smartphones being some prevalent choices. Experiences with technology can pave the way for unprecedented learning opportunities. However, without an education component, technology cannot reach its full…

  4. Physical Education Teacher's Attitudes towards Philosophy of Education and Technology

    Science.gov (United States)

    Turkeli, Anil; Senel, Omer

    2016-01-01

    The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…

  5. It's TIME for Technology: The Technology in Mathematics Education Project

    Science.gov (United States)

    Hardy, Michael

    2008-01-01

    This article describes the impact that the Technology in Mathematics Education (TIME) Project had on participating middle level and secondary mathematics teachers' preparedness to teach through technology. Results indicate that the TIME Project positively impacted participants' perceptions of their knowledge of technological resources and methods…

  6. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  7. Technology Enhanced Learning in Design and Technology Education

    Science.gov (United States)

    Page, Tom; Thorsteinsson, Gisli

    2007-01-01

    The focus of this literature review addresses the opportunities that new media can have for design and technology education at the university level. Advances in public and technology interaction has changed drastically with the impact of New Media and Information and Communication Technologies (ICTs). This research investigates the role of New…

  8. Adult Education in Radiologic Technology: A Review.

    Science.gov (United States)

    Dowd, Steven B.

    In almost all its aspects, radiologic technology education is adult education. Boyle's (1981) adult learning model has four components: (1) the learner in terms of motivation; (2) learning as a change process; (3) the experiential role of education; and (4) the facilitative role of the educator. Andragogy, as defined by Knowles (1977, 1980), is a…

  9. Women Technology Leaders: Gender Issues in Higher Education Information Technology

    Science.gov (United States)

    Drury, Marilyn

    2011-01-01

    Women working in higher education information technology (IT) organizations and those seeking leadership positions in these organizations face a double challenge in overcoming the traditionally male-dominated environments of higher education and IT. Three women higher education chief information officers (CIOs) provided their perspectives,…

  10. The Donald W. Reynolds Consortium for Faculty Development to Advance Geriatrics Education (FD~AGE): a model for dissemination of subspecialty educational expertise.

    Science.gov (United States)

    Heflin, Mitchell T; Bragg, Elizabeth J; Fernandez, Helen; Christmas, Colleen; Osterweil, Dan; Sauvigné, Karen; Warshaw, Gregg; Cohen, Harvey Jay; Leipzig, Rosanne; Reuben, David B; Durso, Samuel C

    2012-05-01

    Most U.S. medical schools and training programs lack sufficient faculty expertise in geriatrics to train future physicians to care for the growing population of older adults. Thus, to reach clinician-educators at institutions and programs that have limited resources for enhancing geriatrics curricula, the Donald W. Reynolds Foundation launched the Faculty Development to Advance Geriatrics Education (FD~AGE) program. This consortium of four medical schools disseminates expertise in geriatrics education through support and training of clinician-educators. The authors conducted this study to measure the effects of FD~AGE. Program leaders developed a three-pronged strategy to meet program goals: FD~AGE offers (1) advanced fellowships in clinical education for geriatricians who have completed clinical training, (2) mini-fellowships and intensive courses for faculty in geriatrics, teaching skills, and curriculum development, and (3) on-site consultations to assist institutions with reviewing and redesigning geriatrics education programs. FD~AGE evaluators tracked the number and type of participants and conducted interviews and follow-up surveys to gauge effects on learners and institutions. Over six years (2004-2010), FD~AGE trained 82 fellows as clinician-educators, hosted 899 faculty scholars in mini-fellowships and intensive courses, and conducted 65 site visits. Participants taught thousands of students, developed innovative curricula, and assumed leadership roles. Participants cited as especially important to program success expanded knowledge, improved teaching skills, mentoring, and advocacy. The FD~AGE program represents a unique model for extending concentrated expertise in geriatrics education to a broad group of faculty and institutions to accelerate progress in training future physicians.

  11. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  12. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M - List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.

  13. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Maji, A. K.; Thomson, Bruce M.; Samani, Zohrab A.; Hanson, Adrian; Cadena, Fernando; Gopalan, Aravamudan; Barton, Larry L.; Sillerud, Laurel O.; Fekete, Frank A.; Rogers, Terry; Lindermann, William C.; Pigg, C. Joanne; Blake, Robert; Kieft, Thomas L.; Ross, Timothy J.; LaPointe, Joe L.; Khandan, Nirmala; Bedell, Glenn W.; Rayson, Gary D.; Leslie, Ian H.; Ondrias, Mark R.; Sarr, Gregory P.; Colbaugh, Richard; Angel, Edward; Niemczyk, Thomas M.; Bein, Thomas; Campbell, Andrew; Phillips, Fred; Wilson, John L.; Gutjahr, Allan; Sammis, T. W.; Steinberg, Stanly; Nuttall, H. E.; Genin, Joseph; Conley, Edgar; Aimone-Martin, Catherine T.; Wang, Ming L.; Chua, Koon Meng; Smith, Phillip; Leslie, Ian; Skowlund, Chris T.; McGuckin, Tom; Jenkins-Smith, Hank C.

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M - List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.

  14. Social Adjustment of At-Risk Technology Education Students

    Science.gov (United States)

    Ernst, Jeremy V.; Moye, Johnny J.

    2013-01-01

    Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…

  15. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive & Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth & Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  16. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Eiceman, Gary A.; King, J. Phillip; Smith, Geoffrey B.; Park, Su-Moon; Munson-McGee, Stuart H.; Rajtar, Jerzy; Chen, Z.; Johnson, James E.; Heger, A. Sharif; Martin, David W.; Wilks, Maureen E.; Schreyer, H. L.; Thomson, Bruce M.; Samani, Zohrab A.; Hanson, Adrian; Cadena, Fernando; Gopalan, Aravamudan; Barton, Larry L.; Sillerud, Laurel O.; Fekete, Frank A.; Rogers, Terry; Lindemann, William C.; Pigg, C. Joanne; Blake, Robert; Kieft, Thomas L.; Ross, Timothy J.; LaPointe, Joe L.; Khandan, Nirmala; Bedell, Glenn W.; Rayson, Gary D.; Leslie, Ian H.; Ondrias, Mark R.; Starr, Gregory P.; Colbaugh, Richard; Niemczyk, Thomas M.; Campbell, Andrew; Phillips, Fred; Wilson, John L.; Gutjahr, Allan; Sammis, T. W.; Steinberg, Stanly; Nuttall, H. E.; Genin, Joseph; Conley, Edgar; Aimone-Martin, Catherine T.; Wang, Ming L.; Chua, Koon Meng; Smith, Phillip; Skowland, Chris T.; McGuckin, Tom; Harrison, Glenn; Jenkins-Smith, Hank C.; Kelsey, Charles A.

    1993-02-15

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.

  17. Educational Technologies: Impact on Learning and Frustration

    Science.gov (United States)

    Hove, M. Christina; Corcoran, Kevin J.

    2008-01-01

    Educators are increasingly using educational technologies at the postsecondary level although little research has investigated the effects of such technologies on learning. Our research explored the effects of traditional lecture, slide-show-supplemented lecture, and virtual learning environment (VLE) on learning and frustration among college…

  18. The Changing Nature of Educational Technology Programs

    Science.gov (United States)

    Spector, J. Michael

    2015-01-01

    The many changes in educational technologies have been well documented in both the professional and popular literature. What is less well documented is the changing nature of programs that prepare individuals for careers in the broad multi-disciplinary field of educational technology. This article is a first attempt to look at how educational…

  19. Relationships between Teacher Characteristics and Educational Technology

    Science.gov (United States)

    Schulze, Kurt Ronald

    2014-01-01

    Too often, teachers are using educational technology resources for administrative purposes instead of using these resources in a constructivist manner to enhance student learning. The study site was well behind the national average in overall educational technology use categories. The purpose of this explanatory correlational research was to…

  20. Best Practices of Leadership in Educational Technology

    Science.gov (United States)

    Brown, Loren

    2014-01-01

    Leadership in Educational Technology is a relatively new field that is changing as fast as technology itself. Success for an educational leader includes maintaining a firm grasp of how to diagnose the needs of a district, a school, or a classroom while aligning policies, procedures, and protocols into a format that will empower the individual…

  1. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  2. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  3. Dehumanization: An Overview of Educational Technology's Critics.

    Science.gov (United States)

    Hewitt, Geoff

    Almost since its inception, the word "dehumanization" has caused apprehension, especially as the words relate to educational technology. This paper is a brief analysis of educational technology's critics from the late 1950s through present time; it also serves as a study of how their rhetoric has affected the structure of elementary and…

  4. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  5. A beginners guide for video production. [Prepared by the Energy Task Force of the Urban Consortium for Technology Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous Waste (HHW) and Small Quantity Generator (SQG) wastes from entering the municipal solid and liquid waste streams. Many innovative programs for managing small sources of hazardous waste have been developed in response to the Plan. With the assistance of Urban Consortium grants, the City of Seattle has researched and developed a series of reports describing the planning, operation and evaluation of the plan's HHW collection programs. Three of the Plan's programs of particular interest to other jurisdictions are the fixed site and mobile HHW Collection Facilities, and the Business Waste Consultations provided to SQG's. In 1991, Seattle received an Urban Consortium grant to produce two videos showing how the HHW Collection Facilities and Business Consultations programs work. This report provides an overviews of the video development and production process and a discussion of the lessons learned by the staff directing the production.

  6. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct......Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...

  7. Qualitative Research Methods in Education and Educational Technology. Research Methods for Educational Technology

    Science.gov (United States)

    Willis, Jerry W.

    2008-01-01

    "Qualitative Research Methods in Education and Educational Technology" was written for students and scholars interested in exploring the many qualitative methods developed over the last 50 years in the social sciences. The book does not stop, however, at the boundaries of the social sciences. Social scientists now consume and use research methods…

  8. Whatever became of educational technology? the implications for teacher education

    Directory of Open Access Journals (Sweden)

    Colin Latchem

    2013-12-01

    Full Text Available The paper explores the reasons for educational technology principles and practices not being more widely accepted and successfully applied in everyday teaching and learning. It argues that these are: an over-emphasis on new technology; a failure to learn from the lessons of the past; and a lack of meta-analysis and collaborative research to evidence the benefits. The paper also brings out the point that the literature fails to acknowledge the important role of educational technology in informal learning and non-formal education. It concludes with recommendations for future research into the broader aspects of educational technology and the employment of more longitudinal and collaborative action research and the nature of pre- service, in-service and postgraduate teacher education in educational technology.

  9. USE OF EDUCATIONAL TECHNOLOGY IN PROMOTING DISTANCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Muhammad RASHID

    2012-01-01

    Full Text Available Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between teacher and students lead to distance education. Now a days, media such as computer, artificial satellites, digital libraries, telephones, radio and television broadcasting and other technologies are presenting their potential for the purpose. Audio, video and print materials provide the base while internet is becoming cheap, fast and effective medium. Immense resources are already available on the web. In addition, technology is rushing to bring in revolution in the filed of distance education. So in future, positive changes can be apprehended.

  10. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  11. Educational Technology and Development of Education.

    Science.gov (United States)

    Dieuzeide, Henri

    The activities of International Education Year enable us to assess the recent spectacular expansion of world education, and the results are scarcely encouraging. There is a growing rift in the industrial nations between educational systems and societies, which is breaking down the school's monopoly as a source of knowledge. If the developing…

  12. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  13. What Is Technology Education? A Review of the "Official Curriculum"

    Science.gov (United States)

    Brown, Ryan A.; Brown, Joshua W.

    2010-01-01

    Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…

  14. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  15. Ethical Issues in Technology Education in Taiwan

    Science.gov (United States)

    Lin, Kuen-Yi

    2007-01-01

    A significant trend in technology education has shown internationally widespread acceptance with the increasing needs of developing students' technological literacy on both the elementary and secondary level from manual training to basic competency. Therefore, more and more countries have developed their national technology standards in order to…

  16. Identifying Advanced Technologies for Education's Future.

    Science.gov (United States)

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  17. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  18. Introducing Mobile Technology in Graduate Professional Education

    Science.gov (United States)

    Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma

    2014-01-01

    The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…

  19. Technology Teacher Education through a Constructivist Approach

    Science.gov (United States)

    Fox-Turnbull, Wendy; Snape, Paul

    2011-01-01

    This paper reviews literature on constructivist learning theories relevant to and evident in teacher education in a New Zealand university. These theories are illustrated within an authentic technology education context which involves students from a primary teacher-education degree programme. It investigates how a practical activity, based on…

  20. Educational Technology and Distance Supervision in Counselor Education

    Science.gov (United States)

    Carlisle, Robert Milton; Hays, Danica G.; Pribesh, Shana L.; Wood, Chris T.

    2017-01-01

    The authors used a nonexperimental descriptive design to examine the prevalence of distance supervision in counselor education programs, educational technology used in supervision, training on technology in supervision, and participants' (N = 673) perceptions of legal and ethical compliance. Program policies are recommended to guide the training…

  1. Technology, open education and a resilient higher education

    OpenAIRE

    Hall, Richard; Winn, Joss

    2010-01-01

    The place of technology in the development of coherent educational responses to environmental and socio-economic= disruption is here placed under scrutiny. One emerging area of interest is the role of technology in addressing more complex learning futures, and more especially in facilitating individual and social resilience, or the ability to manage and overcome disruption. However, the extent to which higher education practitioners can utilise technology to this end is framed by their approa...

  2. Using modern information technologies in continuing education

    Directory of Open Access Journals (Sweden)

    Магомедхан Магомедович Ниматулаев

    2012-06-01

    Full Text Available Article opens problems of formation of system of continuous education and improvement of professional skill for effective realization of professional work of the teacher in the conditions of use of modern information technology. Possibilities and necessities of use of information-communication technologies, Web-technologies for an intensification and giving of additional dynamics to educational process are considered. In this connection new forms and methods of the organization of educational activity for development and perfection of this activity are defined.

  3. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also......  The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...

  4. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  5. Bring Your Own Technology (BYOT to Education

    Directory of Open Access Journals (Sweden)

    Joseph M. Woodside

    2014-06-01

    Full Text Available In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD or Bring Your Own Technology (BYOT. Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explores the technology devices, and educational implications of policies, device management, security and included components.

  6. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  7. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  8. Oncofertility Consortium

    Science.gov (United States)

    ... Navigator Learn More homepage_banner_2 Introducing Reprotopia Reproductive health education for all Learn More Explore Explore The Oncofertility Network is a collection of sites and services to help you explore and better ... health. Here, you can visit: Preserve fertility, iSaveFertility, ...

  9. SET Careers Program: An interactive science, engineering, and technology career education exhibit. [A brief summary report

    Energy Technology Data Exchange (ETDEWEB)

    Cole, P.R.

    1993-03-31

    The New York Hall of Science, in response to the national crisis in education and employment in science and engineering, is developing and pilot testing a unique, interactive, video-based, hypermedia series on energy-related and other science and engineering careers for middle and junior high school students. Working in collaboration with the Consortium for Mathematics and its Applications (COMAP) and the Educational Film Center (EFC), this pilot-demonstration phase will last 14 months, during which time the basic design, production, and testing of eight science and engineering career modules (video and software) will be completed and installed as an interactive educational exhibit at the New York Hall of Science. This career education package will then be distributed to other science technology centers nationwide.

  10. Distance education: turf and technology.

    Science.gov (United States)

    Pickard, M R

    1992-07-01

    Distance learning fits with the mission and strategic plan of the University of Texas at Arlington. We believe these educational opportunities in nursing are highly desirable. The Board of Nurse Examiners for the State of Texas has approved this project and the Texas Higher Education Coordinating Board has approved it as a pilot project. The school will continue evaluation and creative problem-solving in the use of distance education.

  11. International Lymphoma Epidemiology Consortium

    Science.gov (United States)

    The InterLymph Consortium, or formally the International Consortium of Investigators Working on Non-Hodgkin's Lymphoma Epidemiologic Studies, is an open scientific forum for epidemiologic research in non-Hodgkin's lymphoma.

  12. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  13. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  14. Geospatial Technology in Geography Education

    Science.gov (United States)

    DeMers, Michael N.

    2016-01-01

    Depending on how you determine the starting point for the technology driving geographic information systems (GIS) and remote sensing, it is well over fifty years old now. During the first years of its existence in the early 1960s, the new technology benefited relatively few students who attended the handful of college programs that were actually…

  15. Communication Technology for Adult Education.

    Science.gov (United States)

    Rehman, S.

    1979-01-01

    The author draws attention to the quantitative and qualitative targets set for achievement by the National Adult Education Programme in India. She recommends a thorough and extensive use of educational media, not merely for motivational purposes, but for raising awareness and training the large numbers of instructors required to run the program.…

  16. Leveraging Technology for Educational Inclusion

    Science.gov (United States)

    Subramaniam, Sudha; Subramaniam, Radha

    2017-01-01

    The divides created by inequalities of income, lopsided growth and by the vicious circle of poverty has ensnared learning and delayed the planned strategies for educational inclusion. India's eighth Five-Year Plan prioritised and allocated increased funding for education with focus on reach-out to the remote interiors and rural India. However,…

  17. Social media, new technologies and history education

    NARCIS (Netherlands)

    Ribbens, Kees; Haydn, Terry; Carretero, Mario; Berger, Stefan; Grever, Maria

    This chapter explores the implications of recent developments in technology and social media, having a significant impact on the way in which young people learn history in schools and outside schools. New technology not only has a positive influence on education, it also has unintended negative

  18. Basic Principles in Holistic Technology Education.

    Science.gov (United States)

    Seemann, Kurt

    2003-01-01

    Outlines principles for holistic technology education by examining the following: (1) knowing and understanding through practical engagement with technology; (2) dialectics and praxis; and (3) the work of Dewey, Hegel, Feuerbach, and Marx. Identifies four interconnected factors: humans, applied setting, environment, and tools. (Contains 20…

  19. Introducing Educational Technologies to Teachers: Experience Report

    Science.gov (United States)

    Thota, Neena; Negreiros, Joao G. M.

    2015-01-01

    The dramatic rise in use of digital media has changed the way learning is taking place and has led to new ways to teach with digital technologies. In this article, we describe the experiences of teaching a course that introduces educational technologies to teachers in Macau. The course design is based on connectivism, a learning theory for the…

  20. Trends and Research Issues in Educational Technology

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    If one looks back at the last 50 years or so at educational technologies, one will notice several things. First, the pace of innovation has increased dramatically with many developments in the application of digital technologies to learning and instruction, following by a few years developments in the sciences and engineering disciplines that are…

  1. Introducing Technology Education at the Elementary Level

    Science.gov (United States)

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  2. Educational Perspectives on Digital Communications Technologies

    Science.gov (United States)

    Brett, Clare

    2009-01-01

    This article examines key issues in how new technologies are impacting upon how we teach, learn and collaborate, and uses an educational research project called GRAIL (Graduate Researcher's Academic Identity Online) under development to illustrate some fundamental issues in adopting new technologies. A significant challenge to the effective use of…

  3. Virtual Education: Guidelines for Using Games Technology

    Science.gov (United States)

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  4. Adult Education Technology in the Golden State.

    Science.gov (United States)

    Fleischman, John; Kilbert, Gerald H.

    1993-01-01

    Educational technology applications in California include (1) OTAN's Online Communication System--electronic mail and an information database; (2) Educard, a computer chip card for storing and retrieving student information; and (3) staff development via satellite in Los Angeles County Schools' Educational Telecommunications Network. (SK)

  5. Getting Your Counselor to Support Technology Education

    Science.gov (United States)

    Preble, Brian C.

    2016-01-01

    Is there a disconnect between counselors and educators in technology and vocational education? What is counseling, and what is a school counselor's role in a secondary school setting? How can one work with his or her guidance staff to ensure that students better understand your course offerings? The development of relationships, knowledge, and…

  6. European teachers and new educational technology

    Directory of Open Access Journals (Sweden)

    Manuela Repetto

    2005-01-01

    Full Text Available Analysis of the current status on initial and in-service teachers' use of ICT for education in Europe. The paper describes the results of an analysis conducted in uTeacher, a European project devoted to developing a European Framework on teachers' skills in using new technologies for education.

  7. Information Technologies (ITs) in Medical Education.

    Science.gov (United States)

    Masic, Izet; Pandza, Haris; Toromanovic, Selim; Masic, Fedja; Sivic, Suad; Zunic, Lejla; Masic, Zlatan

    2011-09-01

    Advances in medicine in recent decades are in significant correlation with the advances in the information technology. Modern information technologies (IT) have enabled faster, more reliable and comprehensive data collection. These technologies have started to create a large number of irrelevant information, which represents a limiting factor and a real growing gap, between the medical knowledge on one hand, and the ability of doctors to follow its growth on the other. Furthermore, in our environment, the term technology is generally reserved for its technical component. Education means, learning, teaching, or the process of acquiring skills or behavior modification through various exercises. Traditionally, medical education meant the oral, practical and more passive transferring of knowledge and skills from the educators to students and health professionals. For the clinical disciplines, of special importance are the principles, such as, "learning at bedside," aided by the medical literature. In doing so, these techniques enable students to contact with their teachers, and to refer to the appropriate literature. The disadvantage of these educational methods is in the fact, that teachers often do not have enough time. Additionally they are not very convenient to the horizontal and vertical integration of teaching, create weak or almost no self education, as well as, low skill levels and poor integration of education with a real social environment. In this paper authors describe application of modern IT in medical education - their advantages and disadvantages comparing with traditional ways of education.

  8. Information-Technology Based Physics Education

    Science.gov (United States)

    Kim, J. S.; Lee, K. H.

    2001-04-01

    Developing countries emphasize expansion of the educated population but demand for quality improvement follows later. Current science education reform is driven in part by post cold war restructuring of the global economy and associated focus on the education of a more scientifically literate society, due to the industrial change from labor-intensive to high-technology type, and the societal change inherent in the present information era. Industry needs employees of broad and flexible background with inter disciplinary training, engineers with better physics training, and well trained physicists. Education researches have proved that active-learning based methods are superior to the traditional methods and the information technology (IT) has lot to offer in this. Use of IT for improving physics education is briefly discussed with prospects for collaboration in the Asia-Pacific region via Asian Physics Education Network (ASPEN), UNESCO University Foundation Course in Physics (UUFCP), etc.

  9. Bring Your Own Technology (BYOT) to Education

    OpenAIRE

    2014-01-01

    In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD) or Bring Your Own Technology (BYOT). Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explore...

  10. The Consortium of E-Learning in Geriatrics Instruction.

    Science.gov (United States)

    Ruiz, Jorge G; Teasdale, Thomas A; Hajjar, Ihab; Shaughnessy, Marianne; Mintzer, Michael J

    2007-03-01

    This paper describes the activities of the Consortium of E-Learning in Geriatrics Instruction (CELGI), a group dedicated to creating, using, and evaluating e-learning to enhance geriatrics education. E-learning provides a relatively new approach to addressing geriatrics educators' concerns, such as the shortage of professionals trained to care for older people, overcrowded medical curricula, the move to transfer teaching venues to community settings, and the switch to competency-based education models. However, this innovative education technology is facing a number of challenges as its use and influence grow, including proof of effectiveness and efficiency. CELGI was created in response to these challenges, with the goal of facilitating the development and portability of e-learning materials for geriatrics educators. Members represent medical and nursing schools, the Department of Veterans Affairs healthcare system, long-term care facilities, and other institutions that rely on continuing streams of quality health education. CELGI concentrates on providing a coordinated approach to formulating and adapting specifications, standards, and guidelines; developing education and training in e-learning competencies; developing e-learning products; evaluating the effect of e-learning materials; and disseminating these materials. The vision of consortium members is that e-learning for geriatric education will become the benchmark for valid and successful e-learning throughout medical education.

  11. INFORMATION TECHNOLOGY AND COMMUNICATION IN NURSING EDUCATION

    Directory of Open Access Journals (Sweden)

    C. R. B. Costa

    2014-07-01

    Full Text Available The use of information and communication technologies in education, transforms not only the way we communicate, but also work, decide and think, as well as allows you to create rich, complex and diversified learning situations, through sharing the tasks between teachers and students , providing an interactive, continuous and lifelong learning. The paper aims to reflect on the importance of the use of information and communication technologies in higher education and show the potential in promoting changes and challenges for teachers of undergraduate nursing course. This is a literary review concerning the issue at hand, in the period from February to March 2014. The result indicates that the resources of information and communication technologies are strategies for the education of future nurses and promote the changing process for teachers , providing quality education to students and understanding that we must seek new opportunities to build a new style of training.

  12. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  13. Influencing Technology Education Teachers to Accept Teaching Positions

    Science.gov (United States)

    Steinke, Luke Joseph; Putnam, Alvin Robert

    2008-01-01

    Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…

  14. Tertiary Educators' Perceptions of and Attitudes Toward Emerging Educational Technologies.

    Science.gov (United States)

    Boddy, Greg

    1997-01-01

    Reports survey of University of Newcastle (Australia) nursing faculty concerning perceptions of new educational technologies. Respondents were more familiar with or had useful knowledge of CD-ROM technology and video conferencing; these were seen as potentially most useful. Lack of knowledge, display/delivery equipment, and the time-consuming…

  15. Implementing Educational Technology in Higher Education: A Strategic Approach

    Science.gov (United States)

    Roberts, Cynthia

    2008-01-01

    Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be…

  16. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  17. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  18. Integrating Technology in STEM Education

    Directory of Open Access Journals (Sweden)

    Priya Chacko

    2015-03-01

    Full Text Available Students have access to the Internet at their fingertips via e-tablets and smart phones. However, the STEM fields are struggling to remain relevant in students’ lives outside the classroom. In an effort to improve high school science curricula and to keep students engaged in the classroom, we developed a technology-rich bioengineering summer program for high school students in grades 9-12. The program utilized touch screen technology in conjunction with hands-on experiments and traditional lecturing to create an entertaining, relevant, and effective classroom experience.

  19. The Genomic Standards Consortium.

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2011-06-01

    Full Text Available A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC, an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences.

  20. Touch technologies in primary education

    DEFF Research Database (Denmark)

    Davidsen, Jacob

    This paper presents findings from a longitude project on children‘s use of interactive touchscreens in classroom-settings. By exploring and analysing interaction among pairs, children‘s collaborative activities are under study, and it is highlighted how touch technologies invites for a more...

  1. Technology in Education: Research Says!!

    Science.gov (United States)

    Canuel, Ron

    2011-01-01

    A large amount of research existed in the field of technology in the classroom; however, almost all was focused on the impact of desktop computers and the infamous "school computer room". However, the activities in a classroom represent a multitude of behaviours and interventions, including personal dynamics, classroom management and…

  2. Equity, Technology, and Educational Policy.

    Science.gov (United States)

    Barnett, Marguerite Ross

    1984-01-01

    Argues that three key themes seem to define the Reagan administration's educational policy: (1) contraction of the public sphere and of the definition of what constitutes the legitimate public interest; (2) social triage; and (3) individualism and privatization of public life. (CMG)

  3. Career Education in Colleges of Technology (KOSEN)

    Science.gov (United States)

    Hasegawa, Jun

    Present situations and problems of a career education in Colleges of Technology (KOSEN) , which were founded in almost fifty years ago by a strong support and demand from industry, are discussed in this article. Education programs in KOSEN have been designed aiming to foster creative and practical engineers and keeping close relationships with needs of industry. Consequently, essences of the career education have actually involved in the education programs with continuing improvements. Recently, KOSEN has been attaching special importance to engineering design educations. And as for Co-op educations, very active and excellent promotions have done in many KOSEN. Also, participations of KOSEN students to internship have been very good and they could have very important experiences.

  4. Information Literacy Education on College of Technology at Kyushu Area

    Science.gov (United States)

    Kozono, Kazutake; Ikeda, Naomitsu; Irie, Hiroki; Fujimoto, Yoichi; Oshima, Shunsuke; Murayama, Koichi; Taguchi, Hirotsugu

    Recently, the importance of an engineering education increases by the development of the information technology (IT) . Development of the information literacy education is important to deal with new IT in the education on college of technology. Our group investigated the current state of information literacy education on college of technology at Kyushu area and the secondary education. In addition, we investigated about the talent whom the industrial world requested. From these investigation results, this paper proposed cooperation with the elementary and secondary education, enhancement of intellectual property education, introduction of information ethics education, introduction of career education and enhancement of PBL to information literacy education on college of technology.

  5. From Shuttle Main Engine to the Human Heart: A Presentation to the Federal Lab Consortium for Technology Transfer

    Science.gov (United States)

    Fogarty, Jennifer A.

    2010-01-01

    A NASA engineer received a heart transplant performed by Drs. DeBakey and Noon after suffering a serious heart attack. 6 months later that engineer returned to work at NASA determined to use space technology to help people with heart disease. A relationship between NASA and Drs. DeBakey and Noon was formed and the group worked to develop a low cost, low power implantable ventricular assist device (VAD). NASA patented the method to reduce pumping damage to red blood cells and the design of a continuous flow heart pump (#5,678,306 and #5,947,892). The technology and methodology were licensed exclusively to MicroMed Technology, Inc.. In late 1998 MicroMed received international quality and electronic certifications and began clinical trials in Europe. Ventricular assist devices were developed to bridge the gap between heart failure and transplant. Early devices were cumbersome, damaged red blood cells, and increased the risk of developing dangerous blood clots. Application emerged from NASA turbopump technology and computational fluid dynamics analysis capabilities. To develop the high performance required of the Space Shuttle main engines, NASA pushed the state of the art in the technology of turbopump design. NASA supercomputers and computational fluid dynamics software developed for use in the modeling analysis of fuel and oxidizer flow through rocket engines was used in the miniaturization and optimization of a very small heart pump. Approximately 5 million people worldwide suffer from chronic heart failure at a cost of 40 billion dollars In the US, more than 5000 people are on the transplant list and less than 3000 transplants are performed each year due to the lack of donors. The success of ventricular assist devices has led to an application as a therapeutic destination as well as a bridge to transplant. This success has been attributed to smaller size, improved efficiency, and reduced complications such as the formation of blood clots and infection.

  6. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  7. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    Science.gov (United States)

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  8. TABLET (MOBILE TECHNOLOGY FOR PROFESSIONAL MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Gorbunova Irina B.

    2016-12-01

    Full Text Available The article highlights issues associated with the introduction of cloud-centric and tablet (mobile devices in music education, use of which confronts the teacher-musician fundamentally new challenges. So, it's a development of practical teaching skills with the assistance of modern technology, a search of approaches to the organization of educational process, a creation of conditions for the continuity between traditional music learning and information technologies in educational process. Authors give the characteristics of cloud computing and the perspective of its use in music schools (distance learning, sharing, cloud services, etc.. Also you can see in this article the overview of some mobile applications (for OS Android and iOS and their use in the educational process.

  9. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  10. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  11. Technological competencies in cardiovascular nursing education

    Directory of Open Access Journals (Sweden)

    Rika Miyahara Kobayashi

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. METHOD Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER, and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. RESULTS Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. CONCLUSION The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  12. [Technological competencies in cardiovascular nursing education].

    Science.gov (United States)

    Kobayashi, Rika Miyahara; Leite, Maria Madalena Januário

    2015-12-01

    To identify the perception of the coordinators of the Specialization Courses in Cardiovascular Nursing about inserting content from Information and Communication Technology (ICT) and analyze them in relation to the technological competencies and regarding its applicability, relevance and importance in assisting, teaching and management. Descriptive study with 10 coordinators of the Specialization course in Cardiologic Nursing, who replied to the questionnaire for the development of technological competency adapted from the Technology Initiative Guidelines Education Reforms (TIGER), and analyzed using the Delphi technique for obtaining consensus and scored according to the relevance, pertinence and applicability using Likert scale according to degree of agreement. Six courses developed ICT content. The contents of the TIGER were considered relevant, pertinent and applicable. The coordinators recognize the need for technological competencies of the Cardiovascular Nurse for healthcare applicability.

  13. Radiogenomics Consortium (RGC)

    Science.gov (United States)

    The Radiogenomics Consortium's hypothesis is that a cancer patient's likelihood of developing toxicity to radiation therapy is influenced by common genetic variations, such as single nucleotide polymorphisms (SNPs).

  14. Gender-Based Motivational Differences in Technology Education

    Science.gov (United States)

    Virtanen, Sonja; Räikkönen, Eija; Ikonen, Pasi

    2015-01-01

    Because of a deeply gendered history of craft education in Finland, technology education has a strong gender-related dependence. In order to motivate girls into pursuing technological studies and to enable them to see their own potential in technology, gender sensitive approaches should be developed in technology education. This study explores…

  15. Technology Education Teacher Supply and Demand--A Critical Situation

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Technology education is an excellent format to integrate science, technology, engineering, and mathematics (STEM) studies by employing problem-based learning activities. However, the benefits of technology education are still generally "misunderstood by the public." The effects of technology education on increased student mathematics abilities…

  16. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium field/ R and D on the technology to create new organic electroluminescence devices (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium bun`ya / shin`yuki electroluminescence device no sosei gijutsu ni kansuru kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper develops the R and D having as core creative technical seeds on the design principle of organic electroluminescence (EL) devices, aims at producing as products a polychrome display and a new energy saving type light source, develops new high efficient luminescent materials which support the production of products with high liability, and develops protective coats universally applicable to optical and electronic devices and sealing technology. In fiscal 1997, the following are commenced: 1) development of luminescent devices, 2) development of new luminescent agents, and 3) development of the mounting technology. In 1), the following are conducted: R and D for improvement of durability of EL devices, development of the process technology for polychroism, multi-coloring, and development of the large picture thin film formation technology. For the development of energy saving type high efficiency light source devices, a method is established for producing organic layers by a new wet coating method. In 3), the R and D are carried out of a method to form inorganic protective coats at low temperature and a method to highly evaluate structural defects in the protective coat. For the sealing of devices, low melting point glass and the forming technology are developed. 41 refs., 112 figs., 19 tabs.

  17. Defining the Greatest Need for Educational Technology.

    Science.gov (United States)

    Hayes, Jeanne; Bybee, Dennis L.

    1995-01-01

    The student-per-computer ratio identifies school districts with the greatest need for educational technology. Figures compare 12-year student-per-computer trends in K-12 public schools and rank the states with the greatest need. Results indicate that California, Illinois, Tennessee, Ohio, and Pennsylvania have districts in the greatest need…

  18. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  19. Innovations in Telecommunications Technology: Implications for Education.

    Science.gov (United States)

    Korman, Frank

    A survey of literature and information sources disclosed the overall trends for telecommunications technology in education. This report describes both hardware and software aspects of these trends. Hardware trends include microminiaturization, increased message transmission capacity, interactive information flow, more complex and complete…

  20. TECHcitement: Advances in Technological Education, 2004

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2004

    2004-01-01

    This edition of "TECHcitement" contains the following articles: (1) ATE Program Leads to Student Success; (2) Doing Whatever It Takes for Aquaculture; (3) The Bridge to Biotech; (4) Girls See What They Can Do With Technology at Camp; (5) Students Advancing Solutions to Business Problems; (6) CREATE Recreates Technical Education in California; (7)…

  1. Educational Technology Research in a VUCA World

    Science.gov (United States)

    Reeves, Thomas C.; Reeves, Patricia M.

    2015-01-01

    The status of educational technology research in a VUCA world is examined. The acronym, VUCA, stands for "Volatility" (rapidly changing contexts and conditions), "Uncertainty" (information missing that is critical to problem solving), "Complexity" (multiple factors difficult to categorize or control), and…

  2. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of equality--that…

  3. Vocabulary Development in Technology and Engineering Education

    Science.gov (United States)

    Klink, Pamela; Loveland, Thomas

    2015-01-01

    Some students have trouble performing well on summative tests in technology and engineering education. This is largely due to the students' inability to apply the terms to real-world scenarios (Baker, Simmons, & Kameenui, 1995). Exams often provide situational questions and, with these, critical-thinking skills are required. Students may lack…

  4. Information Technology and Undergraduate Medical Education.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    Hewlett-Packard Corporation grant enabled Harvard Medical School to begin using computer technology in medical educational applications. Hardware and software selection, integration into the curriculum, teaching the use of computers, cost, successful applications, knowledge base access, simulations, video and graphics teaching programs, and…

  5. Promoting Innovative Methods in Technology Education

    Science.gov (United States)

    Al-Nasra, Moayyad M.

    2012-01-01

    The engineering profession is very sensitive to the new changes in the engineering job market demand. The engineering job market is changing in a much faster rate than the engineering/engineering technology education. A 13-year study will be presented. The study focuses on the factors affecting the survival rate, student academic performance,…

  6. The Role of Conversation in Technology Education

    Science.gov (United States)

    Fox-Turnbull, Wendy

    2010-01-01

    This article investigates recent literature in the area of classroom conversation and dialogue with the aim of gaining a better understanding of the role that classroom conversation and dialogue plays in learning. It also investigates literature on the constructivist, collaborative nature of technology education and suggests that to enhance our…

  7. Advanced Technological Education Survey 2010 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2010-01-01

    This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…

  8. Advanced Technological Education Survey 2012 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen

    2012-01-01

    This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…

  9. Advanced Technological Education Survey 2011 Fact Sheet

    Science.gov (United States)

    Wingate, Lori; Westine, Carl; Gullickson, Arlen

    2011-01-01

    This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…

  10. Educational Technology: A Presupposition of Equality?

    Science.gov (United States)

    Orlando, Joanne

    2014-01-01

    The work of philosopher Jacques Rancière is used conceptually and methodologically to frame an exploration of the driving interests in educational technology policy and the sanctioning of particular discursive constructions of pedagogy that result. In line with Rancière's thinking, the starting point for this analysis is that of…

  11. Educational Technology and the Learning Process

    Science.gov (United States)

    Gagne, Robert M.

    1974-01-01

    Suggests how the "things of learning" can be employed to promote learning by first examining learning as it occurs in education, focusing on categories of learning outcomes; and then deriving some guidelines about the use of hardware technology as an aid to instruction. (JM)

  12. Using Citation Network Analysis in Educational Technology

    Science.gov (United States)

    Cho, Yonjoo; Park, Sunyoung

    2012-01-01

    Previous reviews in the field of Educational Technology (ET) have revealed some publication patterns according to authors, institutions, and affiliations. However, those previous reviews focused only on the rankings of individual authors and institutions, and did not provide qualitative details on relations and networks of scholars and scholarly…

  13. The Consortium for Teaching Asia and the Pacific in the Schools (CTAPS): A Case Study of Educational Reform in International Education.

    Science.gov (United States)

    Grossman, David L.

    1995-01-01

    Maintains that today's students are becoming citizens in the context of the first truly global era in human history. Describes the origins, development, and resources available from the Consortium for Teaching Asia and the Pacific in the Schools. Contends that most project activities involve the professional development of teachers. (CFR)

  14. International Conference on Computers and Advanced Technology in Education

    CERN Document Server

    Advanced Information Technology in Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computers and Advanced Technology in Education. With the development of computers and advanced technology, the human social activities are changing basically. Education, especially the education reforms in different countries, has been experiencing the great help from the computers and advanced technology. Generally speaking, education is a field which needs more information, while the computers, advanced technology and internet are a good information provider. Also, with the aid of the computer and advanced technology, persons can make the education an effective combination. Therefore, computers and advanced technology should be regarded as an important media in the modern education. Volume Advanced Information Technology in Education is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of computers and advanced technology in education to d...

  15. Inclusive Educative Technologies, for people with disabilities

    Science.gov (United States)

    Echenique, AM; Graffigna, JP; Pérez, E.; López, N.; Piccinini, D.; Fernández, H.; Garcés, A.

    2016-04-01

    The conventional educational environment imposes barriers to education for people with disabilities, limiting their rights, which is a non-discriminative education. In turn, hampers their access to other rights and creates huge obstacles to realize their potential and participate effectively in their communities. In this sense Assistive Technology provides alternative solutions, in order to compensate for a lost or diminished ability. Thus the necessary assistance is provided to perform tasks, including those related to education, improving the inclusion. In this paper some researches had been made in the Gabinete de TecnologiaMedica, in the Facultad de Ingenieria of the Universidad Nacional de San Juan in order to solve this problem. The researchers are classified by type of disability; sensory (visual and auditory) or motor. They have been designed, developed and experienced through various prototypes that have given satisfactory results. It had been published in national and international congresses of high relevance.

  16. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  17. Towards Discursive Education: Philosophy, Technology, and Modern Education

    Science.gov (United States)

    Erneling, Christina E.

    2010-01-01

    As technology continues to advance, the use of computers and the Internet in educational environments has immensely increased. But just how effective has their use been in enhancing children's learning? In this thought-provoking book, Christina E. Erneling conducts a thorough investigation of scholarly journals articles on how computers and the…

  18. The AGTSR consortium: An update

    Energy Technology Data Exchange (ETDEWEB)

    Fant, D.B.; Golan, L.P. [Clemson Univ., SC (United States)

    1995-10-01

    The Advanced Gas Turbine Systems Research (AGTSR) program is a collaborative University-Industry R&D Consortium that is managed and administered by the South Carolina Energy R&D Center. AGTSR is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry-defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. The consortium is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its third year of operation and is sponsored by the U.S. DOE - Morgantown Energy Technology Center. The program is scheduled to continue past the year 2000. At present, there are 78 performing member universities representing 36 states, and six cost-sharing U.S. gas turbine corporations. Three RFP`s have been announced and the fourth RFP is expected to be released in December, 1995. There are 31 research subcontracts underway at performing member universities. AGTSR has also organized three workshops, two in combustion and one in heat transfer. A materials workshop is in planning and is scheduled for February, 1996. An industrial internship program was initiated this past summer, with one intern positioned at each of the sponsoring companies. The AGTSR consortium nurtures close industry-university-government collaboration to enhance synergism and the transition of research results, accelerate and promote evolutionary-revolutionary R&D, and strives to keep a prominent U.S. industry strong and on top well into the 21st century. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1996.

  19. Staying connected: online education engagement and retention using educational technology tools.

    Science.gov (United States)

    Salazar, Jose

    2010-01-01

    The objective of this article is to inform educators about the use of currently available educational technology tools to promote student retention, engagement and interaction in online courses. Educational technology tools include content management systems, podcasts, video lecture capture technology and electronic discussion boards. Successful use of educational technology tools requires planning, organization and use of effective learning strategies.

  20. Multicultural awareness and technology in higher education: global perspectives

    NARCIS (Netherlands)

    Issa, Tomayess; Isaias, Pedro; Kommers, Petrus A.M.

    2014-01-01

    This book encompasses information on the effects of international students' exchanges in higher education through e-learning technologies, providing the latest teaching and learning methods, technologies, and approaches in the higher education sector worldwide

  1. Information and Communication Technologies in Engineering Education

    Directory of Open Access Journals (Sweden)

    Maldague Xavier

    2016-01-01

    Full Text Available In the emerging digital era it is difficult to train highly-skilled, competent specialists without the use of information and communication technology (ICT. The use of ICT in education increases the motivation to learn, stimulates cognitive activity and independent work, facilitates information exchange, enables interactive communication between teachers and students, and improves learning outcomes. This paper reviews the literature regarding the use of ICTs in education, explores their advantages and challenges, and surveys first-year students at the Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University to determine their attitude toward ICT in foreign language learning.

  2. FY 2000 report on the results of the regional consortium R and D project - Regional consortium field. Second year report. Development of the technology to combine plastic and metal using biodegradable natural polymer; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium bun'ya. Seibunkaisei tennen plastic to kinzoku no fukugoka gijutsu no kaihatsu (dai 2 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of the electromagnetic wave shielding technology composed of plastic body, chitosan containing biodegradable coating and electroless metal plating layer. Key technologies are for formation of biodegradable electroless plating use coating using chitosan as chemical adsorption carrier of Pd and for separation of the body and the metal thin film by the environment-harmony method for recovery of the material. Studies were made in the following 5 fields: 1) method to produce low molecular chitin and chitosan; 2) application of biodegradable materials to electromagnetic wave shielding; 3) evaluation of physical properties and function of a new electromagnetic wave shielding system; 4) R and D of the degradation method of the new electromagnetic wave shielding system; 5) comprehensive investigational study. In FY 2000, in 1), conditions for production of chitosan degrading enzymes were determined, and also the scale of bio-reactor was increased up to 20L. Further, chitosan was so re-synthesized that it disperses to the electroless plating use primer. (NEDO)

  3. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  4. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  5. Reflections on Preparing Educators to Evaluate the Efficacy of Educational Technology: An Interview with Joseph South

    Science.gov (United States)

    Bull, Glen; Spector, J. Michael; Persichitte, Kay; Meiers, Ellen

    2017-01-01

    Joseph South, an educational researcher, technology consultant, and former director of the U.S. Office of Educational Technology participated in a research initiative on Educational Technology Efficacy Research organized by the Jefferson Education Accelerator, Digital Promise, and the Curry School of Education at the University of Virginia. The…

  6. A blueprint of pain curriculum across prelicensure health sciences programs: one NIH Pain Consortium Center of Excellence in Pain Education (CoEPE) experience.

    Science.gov (United States)

    Doorenbos, Ardith Z; Gordon, Deborah B; Tauben, David; Palisoc, Jenny; Drangsholt, Mark; Lindhorst, Taryn; Danielson, Jennifer; Spector, June; Ballweg, Ruth; Vorvick, Linda; Loeser, John D

    2013-12-01

    To improve U.S. pain education and promote interinstitutional and interprofessional collaborations, the National Institutes of Health Pain Consortium has funded 12 sites to develop Centers of Excellence in Pain Education (CoEPEs). Each site was given the tasks of development, evaluation, integration, and promotion of pain management curriculum resources, including case studies that will be shared nationally. Collaborations among schools of medicine, dentistry, nursing, pharmacy, and others were encouraged. The John D. Loeser CoEPE is unique in that it represents extensive regionalization of health science education, in this case in the region covering the states of Washington, Wyoming, Alaska, Montana, and Idaho. This paper describes a blueprint of pain content and teaching methods across the University of Washington's 6 health sciences schools and provides recommendations for improvement in pain education at the prelicensure level. The Schools of Dentistry and Physician Assistant provide the highest percentage of total required curriculum hours devoted to pain compared with the Schools of Medicine, Nursing, Pharmacy, and Social Work. The findings confirm the paucity of pain content in health sciences curricula, missing International Association for the Study of Pain curriculum topics, and limited use of innovative teaching methods such as problem-based and team-based learning. Findings confirm the paucity of pain education across the health sciences curriculum in a CoEPE that serves a large region in the United States. The data provide a pain curriculum blueprint that can be used to recommend added pain content in health sciences programs across the country. Copyright © 2013. Published by Elsevier Inc.

  7. 77 FR 38770 - Notice of Consortium on “nSoft Consortium”

    Science.gov (United States)

    2012-06-29

    ... National Institute of Standards and Technology Notice of Consortium on ``nSoft Consortium'' AGENCY: National Institute of Standards and Technology, Commerce. ACTION: Notice. SUMMARY: On June 3, 2011, the... feasibility of establishing a NIST/Industry Consortium on Neutron Metrology for Soft Materials...

  8. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  9. Culturelogical senses of activity in anthropic technologies of higher education

    Directory of Open Access Journals (Sweden)

    Dmitriev S.V.

    2010-04-01

    Full Text Available Technology of the educational teaching motive actions is examined in a theory and practice of higher education. The role of modern educational technologies is rotined in professional preparation of students. «Humanism conversion» of educational technologies is offered. It is rotined that authentic sense of educational activity of man is finding by him itself (achievement of authenticness with itself. On the basis of it is creative realization in professional labour.

  10. Programmes of Educational Technology in China: Looking Backward, Thinking Forward

    Science.gov (United States)

    Fuyin, Xu; Jianli, Jiao

    2010-01-01

    There is a history of programmes in educational technology in colleges and universities in China going back about 70 years. This paper briefly reviews the developmental history of the educational technology programme in China, elaborates the status-quo of the programme and looks ahead into the future trends of educational technology development in…

  11. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  12. Applying Sustainable Systems Development Approach to Educational Technology Systems

    Science.gov (United States)

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  13. Emerging Technologies Landscape on Education. A review

    Directory of Open Access Journals (Sweden)

    Luis de la Fuente Valentin

    2013-09-01

    Full Text Available This paper presents a desk research that analysed available recent studies in the field of Technology Enhanced Learning. The desk research is focused on work produced in the frame of FP6 and FP7 European programs, in the area of Information and Communication Technologies. It concentrates in technologies that support existing forms of learning, and also in technologies that enhance new learning paradigms. This approach includes already adopted and successfully piloted technologies. The elaboration of the desk research had three main parts: firstly, the collection of documents from CORDIS and other institutions related to TEL research; secondly, the identification of relevant terms appearing in those documents and the elaboration of a thesaurus; and thirdly, a quantitative analysis of each term occurrences. Many of the identified technologies belong to the fields of interactive multimedia, Human-computer Interaction and-or related to recommendation and learning analytics. This study becomes a thorough review of the current state of these fields through the actual development of R&D European projects. This research, will be used as a basis to better understand the evolution of the sector, and to focus future research efforts on these sectors and their application to education.

  14. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  15. First languages and las technologies for education

    Directory of Open Access Journals (Sweden)

    Julio VERA VILA

    2013-12-01

    Full Text Available This article is a reflection on how each human being’s learning process and the cultural development of our species are connected to the possibility of translating reality –what we think, what we feel, our interaction- a system of signs that, having shared meanings, enrich our intrapersonal and interpersonal communication. Spoken language was the first technology but being well prepared genetically for it, we learn it through immersion; the rest of them, from written language to hypermedia, have to be well taught and even better learned.We conclude by highlighting the necessity of taking advantage of the benefits provided by the new technologies available nowadays in order to overcome the digital divide, without forgetting others such as literacy acquisition, which are the base of new technologies. Therefore we need a theory and practice of education which comprises its complexity and avoids simplistic reductionism.  

  16. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  17. Revolution in Communication Technologies: Impact on Distance Education

    Science.gov (United States)

    Rajesh, M.

    2015-01-01

    Information and Communication Technologies have transformed the way the world lives and thinks. Education, especially, Distance Education is no different. While the technologies per se are an important factor, the social milieus in which these technologies are implemented are equally important. Technological convergence in the Indian context…

  18. Discursive Constructions of "Teacher" in an Educational Technology Journal

    Science.gov (United States)

    McDonald, Jenny; Loke, Swee-Kin

    2016-01-01

    The integration of technology with teaching and learning is a significant area of research in the educational technology field. Teachers play an instrumental role in technology integration, and many teacher-related factors have been identified that predict technology use and integration in educational settings. How teachers are represented in the…

  19. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  20. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  1. Technology and Higher Education in America for the Next Decade.

    Science.gov (United States)

    Friedman, Edward A.

    1979-01-01

    The impact of technology on higher education from increasingly complex computers and technological systems will cause higher education to include technological courses in the liberal arts curriculum, prepare liberal arts students for careers in nontraditional areas in which technology is an important component, and broaden the base of engineering…

  2. Mobile Learning and Integration of Mobile Technologies in Education

    Science.gov (United States)

    Keengwe, Jared; Bhargava, Malini

    2014-01-01

    Mobile technologies have a huge potential to transform education provided these technologies are designed and implemented in such a way that they are relevant to the social and cultural context of learning. Clearly, the application, implementation, and design of mobile technology in the global educational context pose technological and…

  3. STEM-Based Computational Modeling for Technology Education

    Science.gov (United States)

    Clark, Aaron C.; Ernst, Jeremy V.

    2008-01-01

    According to professionals in education, change is an ever-present and evolving process. With transformation in education at both state and national levels, technology education must determine a position in this climate of change. This paper reflects the views on the future of technology education based on an ongoing research project. The purpose…

  4. Beyond Change Blindness: Embracing the Technology Revolution in Higher Education

    Science.gov (United States)

    Sutton, Kimberly Kode; DeSantis, Josh

    2017-01-01

    The pace of education technology innovation outpaces many professors' abilities to thoughtfully integrate new tools in their teaching practice. This poses challenges for higher education faculty as well as those responsible for planning professional development in higher education. This article explores recent trends in education technology and…

  5. The Facilitating University: Positioning Next Generation Educational Technology

    NARCIS (Netherlands)

    Van der Zanden, A.H.W.

    2009-01-01

    Higher education is directly and indirectly subjected to pressures of diminishing subsidies, increasing student populations, heterogeneity, shorter knowledge and product lifecycles, labour demands, proliferation of technology, and new educational approaches and practices. Higher education must chang

  6. Approaches to Research on Teacher Education and Technology. Society for Technology and Teacher Education Monograph Series. No. 1.

    Science.gov (United States)

    Waxman, Hersholt C., Ed.; Bright, George W., Ed.

    This document addresses the use of technology to enrich education. Twelve papers discuss research programs and perspectives and methods of research in technology and teacher education. Titles are: "Research Methods and Paradigms in Technology and Teacher Education" (Hersholt C. Waxman and George W. Bright); "Past and Future Stages in Educational…

  7. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Jiang, D.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  8. Multi-University Southeast INIE Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering

  9. The BADER Consortium

    Science.gov (United States)

    2013-10-01

    officials and UD Alumni. Senators Coons and Carper and Representative Carney also attended. Dr. Stanhope travelled to Capitol Hill to visit the...offices of Senators Coons (D-DE) and Carper (D-DE). The briefing meetings resulted in plans for a spring BADER Consortium event on the Hill and a visit...Spaulding Rehabilitation Hospital Davis, Samuel, PhD BADER Consortium Affiliate Naval Medical Center Portsmouth (NMCP) de Lateur, Barbara J., MD, MS

  10. Wilberforce Power Technology in Education Program

    Science.gov (United States)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  11. Critical Thinking as a Cognitive Educational Technology

    Directory of Open Access Journals (Sweden)

    Brylina Irina V.

    2016-01-01

    Full Text Available The article deals with higher education issues related to the formation of students’ intellectual work skills. The research objective of the paper was to consider critical thinking as a cognitive technology in education. In this regard, the didactic and structural approaches to the study of critical thinking do not contradict one another: each approach is a logical complement of the other and reveals certain aspects of the complex concept of critical thinking, giving emphasis to the argument, which is a tool, used both in critical and dogmatic thinking. By the general competence we mean principles of thinking, the ability to produce a reasoned piece of oral and written language, understanding and analysis of philosophical issues, considering the essence and value of the information. Among the professional competencies, the following should be listed: the ability to reconsider the gathered experience critically, the ability to collect, process, and interpret the data of modern research, to form judgments about the value and impact of the professional activity. The logical competence draws focused attention to the critical argument, regarding it throughout the course Logic. It is concluded that critical thinking can be seen as a cognitive educational technology for the formation of logical competence.

  12. What Is Educational Technology? An Inquiry into the Meaning, Use, and Reciprocity of Technology

    Science.gov (United States)

    Lakhana, Arun

    2014-01-01

    This position paper explores the ambiguity of technology, toward refined understanding of Educational Technology. The purpose of education is described by John Dewey as growing, or habitual learning. Two philosophical conceptions of technology are reviewed. Dewey positions inquiry as a technology that creates knowledge. Val Dusek offers a…

  13. Technology and Early Childhood Education: A Technology Integration Professional Development Model for Practicing Teachers

    Science.gov (United States)

    Keengwe, Jared; Onchwari, Grace

    2009-01-01

    Despite the promise of technology in education, many practicing teachers are faced with multiple challenges of effectively integrating technology into their classroom instruction. Additionally, teachers who are successful incorporating educational technology into their instruction recognize that although technology tools have the potential to help…

  14. VLSI Technology: Impact and Promise. Identifying Emerging Issues and Trends in Technology for Special Education.

    Science.gov (United States)

    Bayoumi, Magdy

    As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the implications of very large scale integrated (VLSI) technology. The first section reviews the development of educational technology, particularly microelectronics technology, from the 1950s to the present. The implications…

  15. Report from AmSECT’s International Consortium for Evidence-Based Perfusion: American Society of ExtraCorporeal Technology Standards and Guidelines for Perfusion Practice: 2013

    Science.gov (United States)

    Baker, Robert A.; Bronson, Shahna L.; Dickinson, Timothy A.; Fitzgerald, David C.; Likosky, Donald S.; Mellas, Nicholas B.; Shann, Kenneth G.

    2013-01-01

    Abstract: One of the roles of a professional society is to develop standards and guidelines of practice as an instrument to guide safe and effective patient care. The American Society of Extracorporeal Technology (AmSECT) first published its Essentials for Perfusion Practice, Clinical Function: Conduct of Extracorporeal Circulation in 1993. The International Consortium for Evidence-Based Perfusion (ICEBP), a committee within AmSECT, was tasked with updating this document in 2010. The aim of this report is to describe the method of development and content of AmSECT’s new professional standards and guidelines. The ICEBP committee independently evaluated and provided input regarding the current “Essentials and Guidelines.” Structural changes were made to the entire document, and a draft document was developed, presented, and circulated to the AmSECT Board of Directors and broader membership for comment. Informed by these reviews, a revised document was then presented to the Society for a membership vote. The final document consists of 15 areas of practice covered by 50 Standards and 38 Guidelines (see Appendix 1) with the first standard focusing on the development of institutional protocols to support their implementation and use. A majority of the membership voted to accept the document (81.2% of the voting membership accepting, 18.8% rejecting). After an audit of the balloting process by AmSECT’s Ethics Committee, the results were reported to the membership and the document was officially adopted on July 24, 2013. The Standards and Guidelines will serve as a useful guide for cardiac surgical teams that wish to develop institution-specific standards and guidelines to improve the reliability, safety, and effectiveness of adult cardiopulmonary bypass. The ICEBP recognizes that the development of a Standards and Guidelines statement alone will not change care. Safe, reliable, and effective care will be best served through the development and implementation of

  16. WestEd Eisenhower Regional Consortium: Helping to Build a Presence for Science With Online Professional Development Opportunities for K-12 Educators

    Science.gov (United States)

    Rognier, E.

    2002-12-01

    The WestEd Eisenhower Regional Consortium (WERC) is in its third year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." These courses also support our NSTA-sponsored "Building a Presence for Science" program in California, providing professional development opportunities to help achieve our vision of increased quantity and quality of science education statewide. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Students have consistently embraced the concept of a systems-based approach to science instruction, commenting on how these courses have forever changed their teaching practices and provided a successful means for engaging and involving their students in scientific inquiry. Through offering these online courses, we have learned valuable lessons about recruitment, retention, team-building, and facilitating discussions for classes with no "face to face" component. This format is both rich and challenging, with teammates from diverse geographic regions and timezones, with a variety of connectivity and accessibility issues. In this third year of offering the courses, we are pleased to have students taking their second course with us, wanting to continue learning content and stragtegies to improve their skills as science teachers.

  17. Factors Predicting Nurse Educators' Acceptance and Use of Educational Technology in Classroom Instruction

    Science.gov (United States)

    Cleveland, Sandra D.

    2014-01-01

    Nurse educators may express a willingness to use educational technology, but they may not have the belief or ability to carry out the technology use in the classroom. The following non-experimental, quantitative study examined factors that predict nurse educators' willingness to accept and use educational technology in the classroom. The sample…

  18. Education for Sustainable Development: Current Discourses and Practices and Their Relevance to Technology Education

    Science.gov (United States)

    Leal Filho, Walter; Manolas, Evangelos; Pace, Paul

    2009-01-01

    Technology education is a well-established field of knowledge whose applications have many ramifications. For example, technology education may be used as a tool in meeting the challenges of sustainable development. However, the usefulness of technology education to the sustainability debate as a whole and to education for sustainable development…

  19. New Perspectives: Technology Teacher Education and Engineering Design

    OpenAIRE

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000...

  20. Personalized Learning and the Future of Educational Technology

    OpenAIRE

    Karpicke, Jeffrey D.

    2014-01-01

    Recent advances in the cognitive science of learning have important implications for instructional practices at all levels of education. Educational technology is becoming pervasive, yet very little of it is designed around principles of learning from cognitive science. This talk discusses current trends in educational technologies, including personalized online learning systems and MOOCs, and how new advanced learning technologies will impact education in the future.

  1. Urban Consortium Energy Task Force - Year 21 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  2. Growth behind the Mirror: The Family Therapy Consortium's Group Process.

    Science.gov (United States)

    Wendorf, Donald J.; And Others

    1985-01-01

    Charts the development of the Family Therapy Consortium, a group that provides supervision and continuing education in family therapy and explores the peer supervision process at work in the consortium. The focus is on individual and group development, which are seen as complementary aspects of the same growth process. (Author/NRB)

  3. International Arid Lands Consortium: A synopsis of accomplishments

    Science.gov (United States)

    Peter F. Ffolliott; Jeffrey O. Dawson; James T. Fisher; Itshack Moshe; Timothy E. Fulbright; W. Carter Johnson; Paul Verburg; Muhammad Shatanawi; Jim P. M. Chamie

    2003-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training activities related to the development, management, and reclamation of arid and semiarid lands in the Southwestern United States, the Middle East, and elsewhere in the world. The Consortium supports the ecological sustainability and environmentally sound...

  4. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  5. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  6. Connecting Critical Theory of Technology to Educational Studies

    Science.gov (United States)

    Kruger-Ross, Matthew James

    2013-01-01

    In this article, I explore how transformative learning theory, an approach to educating drawn from adult education, can be used to provide access to the critical theory of technology for educators. Rather than focusing primarily on K-12 teachers and educational systems or higher education and other postsecondary instruction, I connect learning as…

  7. Potential of information technology in dental education.

    Science.gov (United States)

    Mattheos, N; Stefanovic, N; Apse, P; Attstrom, R; Buchanan, J; Brown, P; Camilleri, A; Care, R; Fabrikant, E; Gundersen, S; Honkala, S; Johnson, L; Jonas, I; Kavadella, A; Moreira, J; Peroz, I; Perryer, D G; Seemann, R; Tansy, M; Thomas, H F; Tsuruta, J; Uribe, S; Urtane, I; Walsh, T F; Zimmerman, J; Walmsley, A D

    2008-02-01

    The use of information technology (IT) in dentistry is far ranging. In order to produce a working document for the dental educator, this paper focuses on those methods where IT can assist in the education and competence development of dental students and dentists (e.g. e-learning, distance learning, simulations and computer-based assessment). Web pages and other information-gathering devices have become an essential part of our daily life, as they provide extensive information on all aspects of our society. This is mirrored in dental education where there are many different tools available, as listed in this report. IT offers added value to traditional teaching methods and examples are provided. In spite of the continuing debate on the learning effectiveness of e-learning applications, students request such approaches as an adjunct to the traditional delivery of learning materials. Faculty require support to enable them to effectively use the technology to the benefit of their students. This support should be provided by the institution and it is suggested that, where possible, institutions should appoint an e-learning champion with good interpersonal skills to support and encourage faculty change. From a global prospective, all students and faculty should have access to e-learning tools. This report encourages open access to e-learning material, platforms and programs. The quality of such learning materials must have well defined learning objectives and involve peer review to ensure content validity, accuracy, currency, the use of evidence-based data and the use of best practices. To ensure that the developers' intellectual rights are protected, the original content needs to be secure from unauthorized changes. Strategies and recommendations on how to improve the quality of e-learning are outlined. In the area of assessment, traditional examination schemes can be enriched by IT, whilst the Internet can provide many innovative approaches. Future trends in IT will

  8. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  9. TUBSAT-1, satellite technology for educational purposes

    Science.gov (United States)

    Ginati, A.

    1988-01-01

    TUBSAT-1 (Technical University of Berlin Satellite) is an experimental low-cost satellite within the NASA Get Away Special (GAS) program. This project is being financed by the German BMFT (Federal Ministry for Research and Technology), mainly for student education. The dimensions and weight are determined by GAS requirements and the satellite will be ejected from the space shuttle into an approximately 300-km circular orbit. It is a sun/star oriented satellite with an additional spin stabilization mode. The first planned payload is to be used for observing flight paths of migratory birds from northern Europe to southern Africa and back.

  10. Technological Middle Level Education in Mexico

    Directory of Open Access Journals (Sweden)

    Silvia Cruz Prieto

    2014-02-01

    Full Text Available Technological middle level education in Mexico trains young people between 15 to 18 years old to continue higher studies or to enter the labor market. It serves about 807,433 students through its 755 campuses with an educational model that has a focus on developing competences. High School Educational Reform, in operation since 2008, has initiated some programs to serve students, with the aim of reducing dropout rates. It also has implemented innovative management and information systems. In 2013, an educational reform was begun with an orientation to working conditions, focusing on the evaluation of school administrators and teachers. Received: 25/09/2013 / Accepted: 03/10/2013How to reference this articleCruz Prieto, S., Egido, I. (2014. La Educación Tecnológica de Nivel Medio Superior en México. Foro de Educación, 12(16, pp. 99-121. doi: http://dx.doi.org/10.14516/fde.2014.012.016.004

  11. Lowering Student Loan Default Rates: What One Consortium of Historically Black Institutions Did to Succeed. Education Sector Reports

    Science.gov (United States)

    Dillon, Erin; Smiles, Robin V.

    2010-01-01

    Colleges across the nation are struggling to confront a growing problem in higher education: student debt. As more students borrow more money than ever before, and recent graduates enter the worst job market in a generation, students are increasingly unable to pay back their loans. This report discusses the growing problem of students defaulting…

  12. The incidence of technological stress among baccalaureate nurse educators using technology during course preparation and delivery.

    Science.gov (United States)

    Burke, Mary S

    2009-01-01

    The concept of technology-related stress was first introduced in the 1980s when computers became more prevalent in the business and academic world. Nurse educators have been impacted by the rapid changes in technology in recent years. A review of the literature revealed no research studies that have been conducted to investigate the incidence of technological stress among nurse educators. The purpose of this descriptive-correlational study was to describe the technological stressors that Louisiana baccalaureate nurse educators experienced while teaching nursing theory courses. A researcher-developed questionnaire, the nurse educator technostress scale (NETS) was administered to a census sample of 311 baccalaureate nurse educators in Louisiana. Findings revealed that Louisiana baccalaureate nurse educators are experiencing technological stress. The variable, perceived administrative support for use of technology in the classroom, was a significant predictor in a regression model predicting Louisiana baccalaureate nurse educators' technological stress (F=14.157, p<.001).

  13. Educational Media and Technology Yearbook, 1992. Volume 18.

    Science.gov (United States)

    Ely, Donald P., Ed.; Minor, Barbara B., Ed.

    The Educational Media and Technology Yearbook (EMTY) is designed to provide media and instructional technology professionals with an up-to-date, single-source overview and assessment of the field of educational technology. Each volume addresses current issues, notes trends, and provides current listings of and background information about the…

  14. Emerging Technologies: An Overview of Practices in Distance Education

    Science.gov (United States)

    Hussain, Irshad

    2007-01-01

    In contemporary society, information technologies and communication technologies (ICTs) are playing crucial role in dissemination of knowledge and information the world over. Universities/ higher education institutions, particularly distance education universities in developed countries are making best use of these technologies for effective and…

  15. Creating Technology-Enriched Classrooms: Implementational Challenges in Turkish Education

    Science.gov (United States)

    Kurt, Serhat

    2014-01-01

    This paper provides an overview of the status of educational technology in Turkey. In the face of severe social and economic challenges, many developing nations, including Turkey, are looking to education as a potential remedy. Recognizing that in an increasingly technology-dependent world, information and communications technology skills and…

  16. The Time Is Now! Creating Technology Competencies for Teacher Educators

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Slykhuis, David; Schmidt-Crawford, Denise; Trust, Torrey

    2016-01-01

    The way preservice teachers learn to use technology within their practice varies widely depending on the learning opportunities available (e.g., technology-infused teacher preparation program vs. standalone education technology course), and the knowledge, skills, and attitudes of the teacher educators within their teacher preparation programs.…

  17. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  18. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  19. Gateways to Positioning Information and Communication Technology in Accounting Education

    Science.gov (United States)

    Rhodes, N.

    2012-01-01

    In terms of technology, accounting education has not evolved to the extent required by industry and has created a gap in the knowledge and skills of accounting graduates. This article reports on how an educational research tool assisted in finding a place for information and communication technology in accounting education. This article also…

  20. Intended and Unintended Consequences of Educational Technology on Social Inequality

    Science.gov (United States)

    Tawfik, Andrew A.; Reeves, Todd D.; Stich, Amy

    2016-01-01

    While much has been written in the field of educational technology regarding educational excellence and efficiency, less attention has been paid to issues of equity. Along these lines, the field of educational technology often does not address key equity problems such as academic achievement and attainment gaps, and inequality of educational…

  1. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  2. Revolutionizing Arts Education in K-12 Classrooms through Technological Integration

    Science.gov (United States)

    Lemon, Narelle, Ed.

    2015-01-01

    Educational technologies are becoming more commonplace across the K-12 curriculum. In particular, the use of innovative digital technology is expanding the potential of arts education, presenting new opportunities--and challenges--to both curricular design and pedagogical practice. "Revolutionizing Arts Education in K-12 Classrooms through…

  3. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  4. STEM and Technology Education: International State-of-the-Art

    Science.gov (United States)

    Ritz, John M.; Fan, Szu-Chun

    2015-01-01

    This paper reports the perceptions of 20 international technology education scholars on their country's involvement in science, technology, engineering, and mathematics (STEM) education. Survey research was used to obtain data. It was found that the concept of STEM education is being discussed differently by nations. Some consider STEM education…

  5. Engaging Students Regarding Special Needs in Technology and Engineering Education

    Science.gov (United States)

    White, David W.

    2015-01-01

    In 1984, James Buffer and Michael Scott produced the book "Special Needs Guide for Technology Education" (Buffer and Scott, 1984). This was a pivotal offering insofar as it set the stage for technology education educators, at the time, to think about and be provided with information regarding students with special needs in their…

  6. Pentexonomy: A Multi-Dimensional Taxonomy of Educational Online Technologies

    Science.gov (United States)

    Tuapawa, Kimberley; Sher, William; Gu, Ning

    2014-01-01

    Educational online technologies (EOTs) have revolutionised the delivery of online education, making a large contribution towards the global increase in demand for higher learning. Educationalists have striven to adapt through knowledge development and application of online tools, but making educationally sound choices about technology has proved…

  7. The Application of Augmented Reality Technology in Food Professional Education

    OpenAIRE

    Wei Shan

    2015-01-01

    This study presents the application of augmented reality technology in food professional education, combining with the current situation of applying virtual reality education, analyzes the problems existing in the virtual reality application in food professional education, puts forward some suggestions and finally prospects the developing trend of the technology of virtual reality now.

  8. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  9. ICT and Web Technology Based Innovations in Education Sector

    Science.gov (United States)

    Sangeeta Namdev, Dhamdhere

    2012-01-01

    ICT made real magic and drastic changes in all service sectors along with higher education and library practices and services. The academic environment is changing from formal education to distance and online learning mode because of ICT. Web technology and mobile technology has made great impact on education sector. The role of Open Access,…

  10. Integrating Educational Technologies into the Culinary Classroom and Instructional Kitchen

    Science.gov (United States)

    Glass, Samuel

    2005-01-01

    The integration of educational technologies has and will continue to change the nature of education. From the advent of the printed word to the current use of computer assisted teaching and learning, the use of technology is an integral part of modern day realities and approaches to education. The purpose of this paper is to review some of the…

  11. Challenges and prospects of using information technologies in higher education

    Directory of Open Access Journals (Sweden)

    Frolov Alexander

    2016-01-01

    Full Text Available The considerable attention is paid to information technologies in system of the higher education now. Using the latest technology, software and hardware in the learning process allows achieving high outcomes quality of study. The article deals with modern teaching technologies, including distance learning technology, case-technology, which is already used in practice in higher education. There remain unresolved issues of effective use of new learning technologies, the quality of the used software and hardware. The perspective directions of development of informatization of education are defined.

  12. Educational Technology Research Journals: "Australasian Journal of Educational Technology," 2003-2012

    Science.gov (United States)

    Hadlock, Camey Andersen; Clegg, J. Aleta; Hickman, Garrett R.; Huyett, Sabrina Lynn; Jensen, Hyrum C.; West, Richard E.

    2014-01-01

    The authors analyzed all research articles in the "Australasian Journal of Educational Technology" from 2003 to 2012 to determine the types of research methodologies published, major contributing authors, and most frequently referenced keywords, abstract terms, and cited articles. During this decade, the majority of articles published…

  13. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  14. Educational Technology Research Journals: "Journal of Technology and Teacher Education," 2001-2010

    Science.gov (United States)

    Cottle, Karen; Juncker, Janeel; Aitken, Meghan; West, Richard E.

    2012-01-01

    In this study, the authors examined the "Journal of Technology and Teacher Education" to determine research trends from the past decade (2001-2010). Topical (via EBSCO subject term analysis), article types, and authorship trends were all analyzed. A few of "JTATE"'s seminal articles were also identified using "Publish or Perish." Findings were…

  15. Educational Technology Research Journals: "International Journal of Technology and Design Education", 2005-2014

    Science.gov (United States)

    Christensen, James M.; Jones, Brian; Cooper, Jessica Rose; McAllister, Laura; Ware, Mark B.; West, Richard E.

    2015-01-01

    This study examines the trends of the "International Journal of Technology and Design Education" over the past decade (2005-2014). The researchers looked at trends in article topics, research methods, authorship, and article citations by analyzing keyword frequencies, performing word counts of article titles, classifying studies…

  16. The Impact of Technology on Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-08-01

    Near the top of the list of critical issues in education is the appropriate use of technology in the educational process. It is clear that some type of investment in educational technology, specifically interactive computing, is essential for nearly all institutions, and indeed, many have made some purchases already. Despite that fact, the leadership of educational institutions face a complex set of problems in this regard. What portion of a (probably) shrinking budget should be allocated to this expanding area? Which options from a growing array of technological choices are the most appropriate for a particular environment? Which of these options are essentials, and which are luxuries? What sorts of technology will benefit students the most? What is needed now in order to keep from falling (even further) behind a few years hence? The pressure to do something is great, and it is often exacerbated by arguments of efficiency that have little foundation in fact. For example, suggestions are often made that an investment in educational technology will help handle more students. This point of view may ultimately prevail, but little evidence on this point is currently available. Indeed, it appears that more faculty/staff effort is required to bring interactive technology into students' hands in a meaningful way. Often ignored is the amount of training necessary for a spectrum of novice users. Another argument often made is that empowering students with interactive technology will somehow lessen pressure on the current (classical) library operation. Presumably, this effect will come about through access to the Internet resources. As currently constituted, the Internet carries information of widely varying quality, ranging from the systematic holdings of many of the fine libraries of the world to outright garbage (from an intellectual point of view). Information on the Internet (other than that from libraries) is often unedited or unorganized to the extent that potential

  17. The Digital Preservation Consortium: Mission and Goals.

    Science.gov (United States)

    Walters, Donald J.; Kenney, Anne

    The development of the National Information Infrastructure (NII) and the growing use of the Internet are creating a rapidly-changing environment for collaborative preservation and access. Within this environment, the Digital Preservation Consortium (DPC) seeks to advance the use and utility of digital technology for the preservation of and access…

  18. 77 FR 43237 - Genome in a Bottle Consortium-Work Plan Review Workshop

    Science.gov (United States)

    2012-07-24

    ... National Institute of Standards and Technology Genome in a Bottle Consortium--Work Plan Review Workshop.... SUMMARY: NIST announces the Genome in a Bottle Consortium meeting to be held on Thursday and Friday, August 16 and 17, 2012. The Genome in a Bottle Consortium is planning to develop the reference...

  19. 78 FR 47674 - Genome in a Bottle Consortium-Progress and Planning Workshop

    Science.gov (United States)

    2013-08-06

    ... National Institute of Standards and Technology Genome in a Bottle Consortium--Progress and Planning... workshop. SUMMARY: NIST announces the Genome in a Bottle Consortium meeting to be held on Thursday and Friday, August 15 and 16, 2013. The Genome in a Bottle Consortium is developing the reference...

  20. Research and development project of regional consortiums in fiscal 1998. Research and development of regional consortium energy (development of measuring technology to aid energy conservation in electronic device manufacturing processes (design and trial production of IMI) (Report on the result in the first year)); 1998 nendo chiiki consortium energy kenkyu kaihatsu. Denshi kikirui seizo process no sho energy shien keisoku seigyo gijutsu no kaihatsu (IMI no sekkei to shisaku) (dai 1 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the development of intelligent micro instruments (IMI) inaugurated in fiscal 1998 as the wide-area consortium project for the Tama area. Research and development will be carried out on the following items: IMI substrate elements utilizing micro machining technology, applicable to micro sensors and micro probes, semiconductor process sensors, electronic device measuring probes, signal processing and communication circuits for wireless sensing. This paper describes the achievements during fiscal 1998. Technologies were transferred from the Mechanical Engineering Laboratory of the Agency of Industrial Science and Technology on silicon micro machining and PZT piezoelectric thin film formation. An IMI research laboratory was installed at the Tokyo Metropolitan University. In developing the IMI substrate elements, different beams applicable to sensors and probes were fabricated on a trial basis, and their mechanical properties were measured. For the semiconductor process sensors, discussions were given on micronization on a chlorine ion analyzer. In developing the electronic device measuring probes, the target was placed on measurement of in-situ characteristics of IC chips on a wafer. A prototype transmitting and receiving circuit board was fabricated for developing the wireless sensing. (NEDO)

  1. Grid Modernization Laboratory Consortium - Testing and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Skare, Paul; Pratt, Rob; Kim, Tom; Ellis, Abraham

    2017-05-11

    This paper highlights some of the unique testing capabilities and projects being performed at several national laboratories as part of the U. S. Department of Energy Grid Modernization Laboratory Consortium. As part of this effort, the Grid Modernization Laboratory Consortium Testing Network isbeing developed to accelerate grid modernization by enablingaccess to a comprehensive testing infrastructure and creating a repository of validated models and simulation tools that will be publicly available. This work is key to accelerating thedevelopment, validation, standardization, adoption, and deployment of new grid technologies to help meet U. S. energy goals.

  2. APPLICATION OF CLOUD TECHNOLOGY IN THE STOMATOLOGISTS EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Oksana A. Zorina

    2016-01-01

    Full Text Available Study the possibility of applying cloud technologies for the control of knowledge and the certification of specialists has been studied in the framework of realization of educational programs of internship and residency training in dental specialties. It was found that the management of the educational process in online mode is possible on the basis of distance education technologies using cloud technology

  3. Digital technology shaping teaching practices in higher education

    Directory of Open Access Journals (Sweden)

    Monika eAkbar

    2016-02-01

    Full Text Available In their quest on being effective, educators have always experimented with the art of teaching. Teaching has evolved over centuries by adopting new approaches, methods, tools, and technologies to reach a wider audience. As technologies advance, educators should carefully use, evaluate, and adopt the changes to utilize the technologies and track of their impacts. This article provides a mini review to briefly describe some of the existing technical achievements that are used in higher education along with their challenges.

  4. UNIVERSITY TEACHERS’ READINESS TO APPLY THE MODERN EDUCATIONAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Irina O. Kotlyarova

    2015-01-01

    Full Text Available The aim of the research is to investigate the readiness of the university teachers to apply the modern educational technologies. Methods. The methods include theoretical: analysis of existing modern educational technologies, the concept «readiness» and its components, abstraction of signs and kinds of modern educational technologies based on the scientific literature and in the Federal State Educational Standards (FSES; empirical: questionnaires and testing methods for detecting levels of university teachers’ skills and readiness to use modern educational technology. Results. The main features of modern educational technologies are identified and justified that are to comply with modern methodology of the theory and practice of education study and the latest FSES requirements; the level of science, manufacturing, and modern rules of human relations. The components of readiness of university teachers to use modern educational technology are structured. The linguistic component is included along with the cognitive, psychological, operational, connotative components; its necessity is proved. The average level of readiness for the use of modern educational technology by university teachers is identified. Scientific novelty. The author specifies the features of the modern educational technology. The most significant components of higher-education teaching personnel readiness to use technological innovations are identified. As a whole, these results form the indicative framework for the development and measurement of readiness of the university teachers to use the modern educational technology. The development of the readiness of the university teachers to apply the modern educational technologies is proved to be an issue of current interest. Practical significance. The research findings can be used as the basis of techniques and methods designing for its further development and measurement of the training, retraining and advanced training of

  5. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  6. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  7. The MSU Educational Technology Certificate Courses and Their Impact on Teachers' Growth as Technology Integrators

    Science.gov (United States)

    Hagerman, Michelle Schira; Keller, Alison; Spicer, Jodi L.

    2013-01-01

    The Educational Technology Certificate (ETC.) courses at Michigan State University are a set of three courses that can be taken as a standalone qualification or as the first three courses in the Master's of Educational Technology degree. Together, the courses emphasize the development of technology skills and advanced mindsets for technology…

  8. Technology Links to Literacy: A Case Book of Special Educators' Use of Technology To Promote Literacy.

    Science.gov (United States)

    Craver, James M., Ed.; Burton-Radzely, Lisa, Ed.

    This monograph describes how special educators in seven schools are using technology to promote literacy. Profiles of the different schools provide concrete examples of technology use in different instructional settings and demonstrate how various educational philosophies and implementation efforts help schools build successful technology-based…

  9. The MSU Educational Technology Certificate Courses and Their Impact on Teachers' Growth as Technology Integrators

    Science.gov (United States)

    Hagerman, Michelle Schira; Keller, Alison; Spicer, Jodi L.

    2013-01-01

    The Educational Technology Certificate (ETC.) courses at Michigan State University are a set of three courses that can be taken as a standalone qualification or as the first three courses in the Master's of Educational Technology degree. Together, the courses emphasize the development of technology skills and advanced mindsets for technology…

  10. Information Technology (IT) and applied domain education in West ...

    African Journals Online (AJOL)

    Apart from these two Information Science, Information Systems, Software ... India is the largest stakeholder of educational industry, each and every state, offered ... Paper illustrated Information Technology (IT) education and various facet in ...

  11. Educational Technology's Problems and Challenges in the Arab World.

    Science.gov (United States)

    Ayesh, Husni

    1984-01-01

    Discusses problems of centralization versus decentralization, tradition versus modernization, teacher status, administrative burdens, and educational objectives in relation to the use of educational technology in the Arab world, and suggests some possible remedies. (MBR)

  12. Technology Educational Affordance: Bridging the Gap between Patterns of Interaction and Technology Usage

    Science.gov (United States)

    Badia, A.; Barbera, E.; Guasch, T.; Espasa, A.

    2011-01-01

    This paper reports on an empirical and descriptive investigation into how teachers and learners use technology in three prototypical learning activities in a higher educational online learning environment. Additionally, the relationship between the educational uses of technology and the overall educational patterns of interaction between teachers…

  13. Online Technologies for Health Information and Education: A literature review.

    Science.gov (United States)

    Gill, Harkiran K; Gill, Navkiranjit; Young, Sean D

    2013-04-01

    There is a growing body of research focused on the use of social media and Internet technologies for health education and information sharing. The authors reviewed literature on this topic, with a specific focus on the benefits and concerns associated with using online social technologies as health education and communication tools. Studies suggest that social media technologies have the potential to safely and effectively deliver health education, if privacy concerns are addressed. Utility of social media-based health education and communication will improve as technology developers and public health officials determine ways to improve information accuracy and address privacy concerns.

  14. Information Technology in Education: The Critical Lack of Principled Leadership.

    Science.gov (United States)

    Maddux, Cleborne D.

    2002-01-01

    Suggests there is a crisis in educational leadership, especially as it affects information technology. Highlights include educational leaders as managers; the commercialization of education; management strategies on campus; students as customers; quality control, online distance education, and the business model; and the future of online distance…

  15. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  16. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  17. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  18. Workshop on Learning Technology for Education in Cloud

    CERN Document Server

    Rodríguez, Emilio; Santana, Juan; Prieta, Fernando

    2012-01-01

    Learning Technology for Education in Cloud investigates how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud.   The Workshop on Learning Technology for Education in Cloud (LTEC '12) is a forum where researchers, educators and practitioners came together to discuss ideas, projects and lessons learned related to the use of learning technology in cloud, on the 11th-13th July at Salamanca in Spain.

  19. Distance education: the humanization of technology

    Science.gov (United States)

    Voelzke, Marcos Rincon; Rodrigues Ferreira, Orlando

    2015-08-01

    The Distance Education [DE] presents significant growth in graduates and postgraduates programs. Regarding this fact, new challenges arise and others must be considered, as the generation gap between digital immigrants and digital natives, the establishment of a population increasingly accustomed to Information and Communication Technologies [ICT] and teaching methodologies that should be used and developed. Vygotsky’s model of social interaction related to mediation can and should be used in DE, and concerning historical, social and cultural approaches affecting Brazilian reality, Paulo Freire is still up-to-date, integrating humanization into the use of ICT. This work only proceeds with analyses of these elements, being an excerpt of the master’s dissertation of one of the authors [Ferreira], under the guidance of another [Voelzke].

  20. Educational and technological approaches to renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Gottwald, Julia (eds.)

    2012-07-01

    This book documents and disseminates a number of educational and technological approaches to renewable energy, with a special emphasis on European and Latin American experiences, but also presenting experiences from other parts of the world. It was prepared as part of the project JELARE (Joint European-Latin American Universities Renewable Energy Project), undertaken as part of the ALFA III Programme of the European Commission involving countries in Latin America (e.g. Bolivia, Brazil, Chile, Guatemala) as well as in Europe (Germany and Latvia). Thanks to its approach and structure, this book will prove useful to all those dedicated to the development of the renewable energy sector, especially those concerned with the problems posed by lack of expertise and lack of training in this field.

  1. Theological education with the help of technology

    Directory of Open Access Journals (Sweden)

    Erna Oliver

    2014-02-01

    Full Text Available Theology seemingly does not have a major impact on society anymore. However, Christianity did not only change and form the western world over the past 2000 thousand years, it still has a substantial role to play in society. This could be done through the development of theologies, the recognition that religious topics are still major segments in the publishing industry and the transforming potential of the Christian message on people. Although theological training finds itself in a difficult position, technology offers support to teaching and learning, cuts costs and offers solutions to a number of current problems concerning the effective formation of ministers. It is no longer necessary to provide theological training through a one-size-fits-all approach – a style that kept the pre-network society boxed. The aim is to motivate educators in theology to embrace the opportunities provided by the network society in aiding with the training of ministers by utilising current and future trends of development in technology.

  2. Theological education with the help of technology

    Directory of Open Access Journals (Sweden)

    Erna Oliver

    2014-09-01

    Full Text Available Theology seemingly does not have a major impact on society anymore. However, Christianity did not only change and form the western world over the past 2000 thousand years, it still has a substantial role to play in society. This could be done through the development of theologies, the recognition that religious topics are still major segments in the publishing industry and the transforming potential of the Christian message on people. Although theological training finds itself in a difficult position, technology offers support to teaching and learning, cuts costs and offers solutions to a number of current problems concerning the effective formation of ministers. It is no longer necessary to provide theological training through a one-size-fits-all approach – a style that kept the pre-network society boxed. The aim is to motivate educators in theology to embrace the opportunities provided by the network society in aiding with the training of ministers by utilising current and future trends of development in technology.

  3. INFORMATION TECHNOLOGIES IN MODERN LANGUAGE EDUCATION

    Directory of Open Access Journals (Sweden)

    N. Y. Gutareva

    2014-09-01

    Full Text Available This article develops the sources of occurrence and the purposes of application of information technologies in teaching of foreign languages from the point of view of linguistics, methods of teaching foreign languages and psychology. The main features of them have been determined in works of native and foreign scientists from the point of view of the basic didactic principles and new standards of selection for working with computer programs are pointed out. In work the author focuses the main attention to modern technologies that in language education in teaching are especially important and demanded as answer the purpose and problems of teaching in foreign languages are equitable to interests of students but they should be safe.Purpose:  to determine advantages of using interactive means in teaching foreign languages.Methodology: studying and analysis of psychological, pedagogical and methodological literature on the theme of investigation.Results: the analysis of the purpose and kinds of interactive means has shown importance of its application in practice.Practical implications:  it is possible for us to use the results of this work in courses of theory of methodology of teaching foreign languages.

  4. Graduate Automotive Technology Education (GATE) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  5. Mobile technologies in medical education: AMEE Guide No. 105.

    Science.gov (United States)

    Masters, Ken; Ellaway, Rachel H; Topps, David; Archibald, Douglas; Hogue, Rebecca J

    2016-06-01

    Mobile technologies (including handheld and wearable devices) have the potential to enhance learning activities from basic medical undergraduate education through residency and beyond. In order to use these technologies successfully, medical educators need to be aware of the underpinning socio-theoretical concepts that influence their usage, the pre-clinical and clinical educational environment in which the educational activities occur, and the practical possibilities and limitations of their usage. This Guide builds upon the previous AMEE Guide to e-Learning in medical education by providing medical teachers with conceptual frameworks and practical examples of using mobile technologies in medical education. The goal is to help medical teachers to use these concepts and technologies at all levels of medical education to improve the education of medical and healthcare personnel, and ultimately contribute to improved patient healthcare. This Guide begins by reviewing some of the technological changes that have occurred in recent years, and then examines the theoretical basis (both social and educational) for understanding mobile technology usage. From there, the Guide progresses through a hierarchy of institutional, teacher and learner needs, identifying issues, problems and solutions for the effective use of mobile technology in medical education. This Guide ends with a brief look to the future.

  6. Information technologies and the transformation of nursing education.

    Science.gov (United States)

    Skiba, Diane J; Connors, Helen R; Jeffries, Pamela R

    2008-01-01

    Higher education is facing new challenges with the emergence of the Internet and other information and communication technologies. The call for the transformation of higher education is imperative. This article describes the transformation of higher education and its impact on nursing education. Nursing education, considered by many a pioneer in the use of educational technologies, still faces 3 major challenges. The first challenge is incorporation of the Institute of Medicine's recommendation of 5 core competencies for all health professionals. The second challenge focuses on the preparation of nurses to practice in informatics-intensive healthcare environments. The last challenge is the use of emerging technologies, such as Web 2.0 tools, that will help to bridge the gap between the next generation and faculty in nursing schools. Nurse educators need to understand and use the power of technologies to prepare the next generation of nurses.

  7. An Introduction to Biometrics Technology: Its Place in Technology Education

    Science.gov (United States)

    Elliott, Stephen J.; Peters, Jerry L.; Rishel, Teresa J.

    2004-01-01

    The increased utilization of biometrics technology in the past few years has contributed to a strong growth pattern as the technology is used in a variety of facilities, including schools. Due to media exposure, students' familiarity with technology will continue to increase proportionately, which will result in an increased curiosity about…

  8. New Technological Trend in Educational Management

    Directory of Open Access Journals (Sweden)

    Florin Postolache

    2011-05-01

    Full Text Available The authors aim to highlight, after using the LMS based Sakai from implementation, the perceptionof both sides (professors and students over the use of the implementation of information and communicationtechnology (ITC in the education process. In the academic year 2007 – 2008, the leadership of DanubiusUniversity from Galati adopted the strategic decision to develop an integrated information system, which toincorporate the Student Information System (UMS, an e-learning platform, management system, researchand administrative management. In the months April – May 2010, at Danubius University from Galati it wasmade a survey organized by MISI 2010, at which 28 universities attended from around the world who useSakai, of the professors and students regarding the use in their activity of the ITC and in general of theplatform Danubius Online. At the university Danubius from Galati answered to the survey 24 professors and177 students. The participants responded to questions about both their views concerning the use of theinformation technology in the superior education in general, and at specific questions concerning theDanubius Online portal. After the experience gained in the pilot phase, developed in the academic year 2009-2010 and taking into account by the results of the survey, it was decided that starting with 1 October 2010 toproceed to the stage production. To this end, it was installed the Sakai version 2.7.1 and significantlyincreased the number of course sites that are operating on the Danubius Online portal, the tendency being togeneralize at all the university courses, taking into account by the trends of the both sides. There have beenintroduced more extensive indications of use, both for students and for professors. The article aims tohighlight the reactions of both sides: professors and students, on the implementation of the Danubius onlineplatform, through a survey that took place during May – June 2010. This is a clear example

  9. Strengthening post-graduate educational capacity for health policy and systems research and analysis: the strategy of the Consortium for Health Policy and Systems Analysis in Africa.

    Science.gov (United States)

    Erasmus, Ermin; Lehmann, Uta; Agyepong, Irene Akua; Alwar, John; de Savigny, Don; Kamuzora, Peter; Mirzoev, Tolib; Nxumalo, Nonhlanhla; Tomson, Göran; Uzochukwu, Benjamin; Gilson, Lucy

    2016-04-12

    The last 5-10 years have seen significant international momentum build around the field of health policy and systems research and analysis (HPSR + A). Strengthening post-graduate teaching is seen as central to the further development of this field in low- and middle-income countries. However, thus far, there has been little reflection on and documentation of what is taught in this field, how teaching is carried out, educators' challenges and what future teaching might look like. Contributing to such reflection and documentation, this paper reports on a situation analysis and inventory of HPSR + A post-graduate teaching conducted among the 11 African and European partners of the Consortium for Health Policy and Systems Analysis in Africa (CHEPSAA), a capacity development collaboration. A first questionnaire completed by the partners collected information on organisational teaching contexts, while a second collected information on 104 individual courses (more in-depth information was subsequently collected on 17 of the courses). The questionnaires yielded a mix of qualitative and quantitative data, which were analysed through counts, cross-tabulations, and the inductive grouping of material into themes. In addition, this paper draws information from internal reports on CHEPSAA's activities, as well as its external evaluation. The analysis highlighted the fluid boundaries of HPSR + A and the range and variability of the courses addressing the field, the important, though not exclusive, role of schools of public health in teaching relevant material, large variations in the time investments required to complete courses, the diversity of student target audiences, the limited availability of distance and non-classroom learning activities, and the continued importance of old-fashioned teaching styles and activities. This paper argues that in order to improve post-graduate teaching and continue to build the field of HPSR + A, key questions need to be

  10. Continuing education for Physical Education teachers: Assistive Technology in inclusive education

    Directory of Open Access Journals (Sweden)

    Maria Luiza Salzani Fiorini

    2017-05-01

    Full Text Available This study aimed at describing the development of continuing education for physical education teachers towards the incorporation of Assistive Technology and the creation of favorable conditions to an inclusive school. The methodology employed was reflective and collaborative research. Two teachers who were facing difficulties to include a physically disabled student and one student with global developmental delay took part in the study. The continuing education plan comprised three steps: 1 reflecting on their own practice after watching a video and planning one lesson, together with the researcher, seeking to incorporate Assistive Technology and favor inclusion; 2 videoing the lesson; 3 evaluating and reflecting on what was planned and what was executed and planning a new lesson. Some factors were seen to be essential to the development of continuing education: considering the teacher’s demand, developing collaborative work, promoting reflection on the practices and having Assistive Technology as a support to the human element.

  11. 77 FR 25406 - Consortium on “Concrete Rheology: Enabling Metrology (CREME)”: Membership Fee Update

    Science.gov (United States)

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Institute of Standards and Technology Consortium on ``Concrete Rheology: Enabling Metrology (CREME... NIST/Industry Consortium on Concrete Rheology: Enabling Metrology (CREME)''. The notice stated that...

  12. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  13. Educators' Perceived Importance of Web 2.0 Technology Applications

    Science.gov (United States)

    Pritchett, Christal C.; Wohleb, Elisha C.; Pritchett, Christopher G.

    2013-01-01

    This research study was designed to examine the degree of perceived importance of interactive technology applications among various groups of certified educators; the degree to which education professionals utilized interactive online technology applications and to determine if there was a significant difference between the different groups based…

  14. International Yearbook of Educational and Instructional Technology 1976/77.

    Science.gov (United States)

    Howe, Anne, Ed.; Romiszowski, A. J., Ed.

    This yearbook of the Association for Programmed Learning and Educational Technology is intended to provide an updated general reference survey for practitioners in educational technology. In Section 1, eight invited articles on trends within the field serve to outline some aspects of current thinking. Section 2 contains articles on the state of…

  15. Educators' Perceived Importance of Web 2.0 Technology Applications

    Science.gov (United States)

    Pritchett, Christal C.; Wohleb, Elisha C.; Pritchett, Christopher G.

    2013-01-01

    This research study was designed to examine the degree of perceived importance of interactive technology applications among various groups of certified educators; the degree to which education professionals utilized interactive online technology applications and to determine if there was a significant difference between the different groups based…

  16. The Use of Cloud Technology in Athletic Training Education

    Science.gov (United States)

    Perkey, Dennis

    2012-01-01

    As technology advances and becomes more portable, athletic training educators (ATEs) have many options available to them. Whether attempting to streamline efforts in courses, or operate a more efficient athletic training education program, portable technology is becoming an important tool that will assist the ATE. One tool that allows more…

  17. Information, Communication, and Educational Technologies in Rural Alaska

    Science.gov (United States)

    Page, G. Andrew; Hill, Melissa

    2008-01-01

    Information, communication, and educational technologies hold promise to connect geographically isolated rural communities, offering adults greater access to educational, financial, and numerous other resources. The Internet and computer-based network technologies are often seen as remedies for communities in economic decline, but they also have…

  18. Some Big Questions about Design in Educational Technology

    Science.gov (United States)

    Gibbons, Andrew S.

    2016-01-01

    This article asks five questions that lead us to the foundations of design practice in educational technology. Design processes structure time, space, place, activity, role, goal, and resource. For educational technology to advance in its understanding of design practice, it must question whether we have clear conceptions of how abstract…

  19. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  20. A Philosophy for Education in the World of Technology

    Science.gov (United States)

    Jokisaari, Olli-Jukka

    2012-01-01

    One of the most challenging questions of education in late modern society concerns technology. Development and use of technology is altering our views of world and humanity. In this paper I explore philosophical background for a new kind of critical education that would be up to date with the changed world. This paper introduces case philosophy…

  1. Integrating Engineering Design into Technology Education: Georgia's Perspective

    Science.gov (United States)

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  2. Taking Part in Technology Education: Elements in Students' Motivation

    Science.gov (United States)

    Autio, Ossi; Hietanoro, Jenni; Ruismaki, Heikki

    2011-01-01

    The purpose of this study was to determine the elements motivating comprehensive school students to study technology education. In addition, we tried to discover how students' motivation towards technology education developed over the period leading up to their school experience and the effect this might have on their future involvement with…

  3. "The" Problem in Technology Education (A Definite Article)

    Science.gov (United States)

    Flowers, Jim

    2010-01-01

    As with any field, technology education and its close relatives have numerous strengths and weaknesses. One of these weaknesses has too long been overlooked, and it is the subject of this article. One might think of technology education as empowering students, divergently fostering their own creativity. An abundance of design briefs shows that…

  4. Technology Education in New Zealand: The Connected Curriculum

    Science.gov (United States)

    O'Sullivan, Gary

    2010-01-01

    This paper aims to identify what actually takes place when policy directives bring together Technology Education, Enterprise Education, and the wider Community Partnerships. Since the introduction of a national technology curriculum to New Zealand schools in 1999 there has been little critique as to the intentions of the curriculum. In late 2005…

  5. Challenges and Opportunities Facing Technology Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2009-01-01

    The technology education in Taiwan is prescribed in the national curriculum and provided to all students in grades 1-12. However, it faces the following challenges: (1) Lack of worthy image, (2) Inadequate teachers in elementary schools, (3) Deficient teaching vitality in secondary schools, and (4) Diluted technology teacher education programs. In…

  6. Research Needs for Technology Education: An International Perspective

    Science.gov (United States)

    Ritz, John M.; Martin, Gene

    2013-01-01

    These authors report the findings of a study that sought to determine the most relevant research issues needed to be studied by the technology education profession. It used an international panel of experts to develop a list of important research issues for the school subject of technology education and for the preparation of teachers to better…

  7. Curriculum Consonance and Dissonance in Technology Education Classrooms

    Science.gov (United States)

    Brown, Ryan A.

    2009-01-01

    In a time of increased accountability, a tightened curriculum, and fewer curricular choices for students, technology education in the United States is in the position of defending itself by "carving a niche" in the school curriculum. Justifying the place of technology education is becoming increasingly difficult, as there has been little…

  8. Extension Youth Educators' Technology Use in Youth Development Programming

    Science.gov (United States)

    McClure, Carli; Buquoi, Brittany; Kotrlik, Joe W.; Machtmes, Krisanna; Bunch, J. C.

    2014-01-01

    The purpose of this descriptive-correlational study was to determine the use of technology in youth programming by Extension youth development educators in Louisiana, Mississippi, and Tennessee. Data were collected via e-mail and a SurveyMonkey© questionnaire. Extension educators are using some technology in youth development programming. More…

  9. Trends in the Crowdfunding of Educational Technology Startups

    Science.gov (United States)

    Antonenko, Pavlo D.; Lee, Brenda R.; Kleinheksel, A. J.

    2014-01-01

    This article presents an analysis of active crowdfunding campaigns posted on ten crowdfunding platforms in May 2013 to provide a glimpse of the recent trends in the crowdfunding of educational technology startups. We describe the characteristics of the most successful crowdfunding campaigns in educational technology and identify the most popular…

  10. Whatever Became of University Education for Technology and Public Policy?

    Science.gov (United States)

    Morgan, Robert P.

    1983-01-01

    The need for education concerning societal issues with technological components persists, as does the need for education of engineers relevant to the public sector and the public interest. The need for evaluation of technology and public policy programs is emphasized. (MLW) '

  11. Advanced Education and Technology Business Plan, 2010-13. Highlights

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  12. Advanced Education and Technology Business Plan, 2009-12

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The Ministry of Advanced Education and Technology consists of the following entities for budget purposes: Department of Advanced Education and Technology, the Access to the Future Fund, Alberta Enterprise Corporation, Alberta Research Council Inc., and iCORE Inc. Achieving the Ministry's goals involves the work and coordination of many…

  13. Advanced Education and Technology Business Plan, 2010-13

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…

  14. Organisational Culture and Technology-Enhanced Innovation in Higher Education

    Science.gov (United States)

    Zhu, Chang

    2015-01-01

    Higher education institutions are evolving and technology often plays a central role in their transformations. Educational changes benefit from a supportive environment. The study examines the relationship between organisational culture and teachers' perceptions of and responses to technology-enhanced innovation among Chinese universities. A…

  15. Research Perspectives and Best Practices in Educational Technology Integration

    Science.gov (United States)

    Keengwe, Jared

    2013-01-01

    With advancements in technology continuing to influence all areas of society, students in current classrooms have a different understanding and perspective of learning than the educational system has been designed to teach. Research Perspectives and Best Practices in Educational Technology Integration highlights the emerging digital age, its…

  16. The Use of Cloud Technology in Athletic Training Education

    Science.gov (United States)

    Perkey, Dennis

    2012-01-01

    As technology advances and becomes more portable, athletic training educators (ATEs) have many options available to them. Whether attempting to streamline efforts in courses, or operate a more efficient athletic training education program, portable technology is becoming an important tool that will assist the ATE. One tool that allows more…

  17. Organisational Culture and Technology-Enhanced Innovation in Higher Education

    Science.gov (United States)

    Zhu, Chang

    2015-01-01

    Higher education institutions are evolving and technology often plays a central role in their transformations. Educational changes benefit from a supportive environment. The study examines the relationship between organisational culture and teachers' perceptions of and responses to technology-enhanced innovation among Chinese universities. A…

  18. Prospects for the Use of Mobile Technologies in Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2008-01-01

    During the past few years there have been great strides in the advancement of technology with the rise of mobile devices leading to an era characterized by the instant access to and mobility of information. Mobile technologies have more recently been used in a variety of educational settings for a variety of purposes and educational goals.…

  19. Exploring health information technology education: an analysis of the research.

    Science.gov (United States)

    Virgona, Thomas

    2012-01-01

    This article is an analysis of the Health Information Technology Education published research. The purpose of this study was to examine selected literature using variables such as journal frequency, keyword analysis, universities associated with the research and geographic diversity. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of Health Information Technology. The keyword analysis suggests that Health Information Technology research has evolved from establishing concepts and domains of health information systems, technology and management to contemporary issues such as education, outsourcing, web services and security. The research findings have implications for educators, researchers, journal.

  20. The influence of technology in nursing education.

    Science.gov (United States)

    Krau, Stephen D

    2015-06-01

    The complexity of the relationship between nursing and technology is not new. The complexity has increased with the advent of new technology and technological devices. For faculty who are in the clinical area on a limited basis, and for nurses who are not involved in decisions related to the adoption of technology, terms and concepts related to technology can be misconstrued or misunderstood. An overview of some major terms used in reference to technology and technological approaches can only enhance the intricate relationship between nursing and technology.

  1. Strategic Planning for Technological Innovation in Canadian Post Secondary Education

    Directory of Open Access Journals (Sweden)

    Denise Stockley

    2004-06-01

    Full Text Available In this study, institution-wide strategic plans that were available online were examined in detail to determine how educational technology was referred to in these documents. Based on this data and the literature, a schedule of principles for supporting the implementation of educational technology in post-secondary teaching was developed. Institutions that are formatively evaluating local efforts to understand and improve technologically supported instruction can use this checklist diagnostically.

  2. The application of digital technology in community health education

    Directory of Open Access Journals (Sweden)

    Wen Ren

    2015-01-01

    Full Text Available With the rapid development of the internet and information technologies, coupled with a variety of digital media, the digital technology has become a conventional method of health education for the general public and has the potential to influence health behaviors. Our aim was to conduct a review of how digital technology projects have been used in the health education and health promotion, as well as the disadvantages and barriers in the process.

  3. IS EDUCATIONAL TECHNOLOGY USEFUL TO MATHEMATICS TEACHERS ACTIVISTS?

    OpenAIRE

    Dorian Stoilescu

    2009-01-01

    This in-progress study presents aspects of using educational technology in teaching mathematics education. More exactly, it explores ways in which educational technology might be used in order to improve teachers’ cultural awareness and social activism. A rationale for a qualitative research study is presented by using multiple methods combining action research and multiple case studies. Three high school mathematics teachers from Greater Toronto Area are selected to participate in this resea...

  4. Predictive Power of Prospective Physical Education Teachers' Attitudes towards Educational Technologies for Their Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Varol, Yaprak Kalemoglu

    2015-01-01

    The aim of the research is to determine the predictive power of prospective physical education teachers' attitudes towards educational technologies for their technological pedagogical content knowledge. In this study, a relational research model was used on a study group that consisted of 529 (M[subscript age]=21.49, SD=1.44) prospective physical…

  5. Improving K-12 STEM Education Outcomes through Technological Integration

    Science.gov (United States)

    Urban, Michael J., Ed.; Falvo, David A., Ed.

    2016-01-01

    The application of technology in classroom settings has equipped educators with innovative tools and techniques for effective teaching practice. Integrating digital technologies at the elementary and secondary levels helps to enrich the students' learning experience and maximize competency in the areas of science, technology, engineering, and…

  6. The Use of Technology by Nonformal Environmental Educators

    Science.gov (United States)

    Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield

    2013-01-01

    This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…

  7. Indigenous Language Revitalization, Promotion, and Education: Function of Digital Technology

    Science.gov (United States)

    Galla, Candace Kaleimamoowahinekapu

    2016-01-01

    Within the last two decades, there has been increased interest in how technology supports Indigenous language revitalization and reclamation efforts. This paper considers the effect technology has on Indigenous language learning and teaching, while conceptualizing how language educators, speakers, learners, and technology users holistically…

  8. Impact of Computer Technology on Design and Craft Education

    Science.gov (United States)

    Thorsteinsson, Gisli

    2014-01-01

    This research aims to answer the question, "How has the use of computer technology benefited the compulsory education system, focusing on Design and Technology?" In order to reply this question, it was necessary to focus on interactive whiteboards, e-portfolios and digital projectors as the main technology formats. An initial literature…

  9. Technology User Groups and Early Childhood Education: A Preliminary Study

    Science.gov (United States)

    Parette, Howard P.; Hourcade, Jack J.; Blum, Craig; Watts, Emily H.; Stoner, Julia B.; Wojcik, Brian W.; Chrismore, Shannon B.

    2013-01-01

    This article presents a preliminary examination of the potential of Technology User Groups as a professional development venue for early childhood education professionals in developing operational and functional competence in using hardware and software components of a Technology toolkit. Technology user groups are composed of varying numbers of…

  10. Developing an Educational Technology Group for Pre-Service Teachers

    Science.gov (United States)

    Wilson, Jay

    2012-01-01

    The College of Education Technology Group is a pilot program that supports teacher candidates in developing an understanding of the integration of technology. By engaging teacher candidates with local schools the program is enhancing technology-based learning in the classroom for high school students, especially those from First Nations and other…

  11. Information Literacy and technology to improve learning and education

    NARCIS (Netherlands)

    Mooij, Ton; Smeets, Ed

    2011-01-01

    Mooij, T., & Smeets, E. (2011, 13-16 September). Information Literacy and technology to improve learning and education. Presentation and discussion in a cross-network symposium of networks 16 and 12 at the ‘European Conference on Educational Research’ of the “European Educational Research

  12. Information Literacy and technology to improve learning and education

    NARCIS (Netherlands)

    Mooij, Ton; Smeets, Ed

    2011-01-01

    Mooij, T., & Smeets, E. (2011, 13-16 September). Information Literacy and technology to improve learning and education. Presentation and discussion in a cross-network symposium of networks 16 and 12 at the ‘European Conference on Educational Research’ of the “European Educational Research Associatio

  13. Information Literacy and technology to improve learning and education

    NARCIS (Netherlands)

    Mooij, Ton; Smeets, Ed

    2011-01-01

    Mooij, T., & Smeets, E. (2011, 13-16 September). Information Literacy and technology to improve learning and education. Presentation and discussion in a cross-network symposium of networks 16 and 12 at the ‘European Conference on Educational Research’ of the “European Educational Research Associatio

  14. Making Room: Integrating Geo-Technologies into Teacher Education

    Science.gov (United States)

    Gatrell, Jay D.

    2004-01-01

    Geo-educators focus on content standards, particularly the 1994 "Geography for Life" standards, as the primary rationale for integrating geo-spatial technologies into preservice teacher education programs. In this paper, an alternative framework is proposed to infuse GIS and GIScience into existing teacher education programs. Specifically, the…

  15. Mobile technology use in medical education.

    Science.gov (United States)

    Luanrattana, Rattiporn; Win, Khin Than; Fulcher, John; Iverson, Don

    2012-02-01

    This study was undertaken to determine the PDA functionalities for a problem-based learning (PBL) medical curriculum at the Graduate School of Medicine (GSM), the University of Wollongong (UOW). The study determines the factors/aspects of incorporating PDAs, and the attitudes of stakeholders regarding the use of PDAs in such a PBL-based medical curriculum. In-depth interviews were designed and conducted with medical faculty, the medical education technology team and honorary medical academics. Four major PDA functionalities were identified, these being: clinical-log, reference, communication, and general functions. Two major aspects for the incorporation of PDAs into the PBL-medical curriculum at the UOW were determined from the interviews, these being technical and practical aspects. There is a potential for PDAs to be incorporated into the PBL-medical curricula at the UOW. However, a clear strategy needs to be defined as to how best to incorporate PDAs into PBL-medical curricula with minimal impact on students, as well as financial and resource implications for the GSM.

  16. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  17. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  18. The Technological Knowledge Used by Technology Education Students in Capability Tasks

    Science.gov (United States)

    Rauscher, Willem

    2011-01-01

    Since technology education is, compared to subjects such as mathematics and science, still a fairly new subject both nationally and internationally, it does not have an established subject philosophy. In the absence of an established subject philosophy for technology education, one can draw on other disciplines in the field, such as engineering…

  19. L'Information sur la Technologie Educative (Information about Educational Technology). Melanges Pedagogiques, 1976.

    Science.gov (United States)

    Cembalo, M.

    This paper deals with the problems of information about educational technology among teachers of foreign languages. It investigates the various definitions of educational technology as they appear explicitly in technological publications or implicitly among language teachers. The stress on the systems approach on the researcher's part and the…

  20. National Educational Technology Trends: 2012. State Leadership Empowers Educators, Transforms Teaching and Learning

    Science.gov (United States)

    Duffey, Delia, R.; Fox, Christine

    2012-01-01

    The State Educational Technology Directors Association (SETDA) is the principal association representing the technology leadership in all fifty states, the District of Columbia, the U.S. Virgin Islands, and the Bureau of Indian Affairs. This is SETDA's ninth annual report on select educational technology activities. This year's report includes…

  1. A Model of Leadership in Integrating Educational Technology in Higher Education

    Science.gov (United States)

    Markova, Mariya

    2014-01-01

    The potential impacts and implications of technology on the professional lives of instructors in higher education, and the role of leadership in integrating educational technology, present a variety of complexities and challenges. The purpose of this paper is to identify the reasons why faculty members are not fully embracing technology and what…

  2. Implementation Costs for Educational Technology Systems. Issue Trak: A CEFPI Brief on Educational Facility Issues.

    Science.gov (United States)

    Meeks, Glenn E.; Fisher, Ricki; Loveless, Warren

    Personnel involved in planning or developing schools lack the costing tools that will enable them to determine educational technology costs. This report presents an overview of the technology costing process and the general costs used in estimating educational technology systems on a macro-budget basis, along with simple cost estimates for…

  3. The Status of Technology-Enhanced Education and Service Delivery in Rehabilitation Counselor Education

    Science.gov (United States)

    Oswald, Gina R.; Huber, Mary J.; Wilson, Josephine F.; Embree, Jared

    2015-01-01

    Purpose: The purpose of this article is to discuss the upsurge of technology-enhanced rehabilitation education programs and telerehabilitation services, to provide examples of these advancements, and to discuss the implications of this technology for education and the field including the unique advantage to developing technological skills through…

  4. The Effects of Role Modeling on Technology Integration within Physical Education Teacher Education

    Science.gov (United States)

    Baert, Helena

    2014-01-01

    The national standards for physical education teacher education (PETE) in the US state that teacher candidates should be able to plan and implement technology infused lessons that meet lesson objectives and enhance learning in physical education (standard 3.7). Research shows that role modeling of technology integration can have a positive impact…

  5. A Qualitative Study on Transferring the Experience of Using Technology from Formal Education to Distance Education

    Science.gov (United States)

    Yildiz, Merve; Selim, Yavuz

    2015-01-01

    With improvements in information technologies, distance education programs have become widespread. Institutions that offer distance education programs are increasing in number. Scholars who were used to face-to-face teaching began to give courses in distance education programs which entail technological teaching methods, a new teaching experience…

  6. e-Leadership in Higher Education: The Fifth "Age" of Educational Technology Research

    Science.gov (United States)

    Jameson, Jill

    2013-01-01

    A discussion of the relative lack of research into e-leadership in educational technology in education is followed by an outline of selected prior literature in the field. The paper proposes that, as part of a natural evolution of educational technology research, considerably more attention needs to be focused on research and development in…

  7. Educational Technology and the Enclosure of Academic Labour inside Public Higher Education

    Science.gov (United States)

    Hall, Richard

    2013-01-01

    Across higher education in the United Kingdom, the procurement and deployment of educational technology increasingly impacts the practices of academic labour, in terms of administration, teaching and research. Moreover the relationships between academic labour and educational technology are increasingly framed inside the practices of neoliberal,…

  8. Education for Sustainable Development in Technology Education in Irish Schools: A Curriculum Analysis

    Science.gov (United States)

    McGarr, Oliver

    2010-01-01

    This paper explores the integration of Education for Sustainable Development (ESD) in technology education and the extent to which it is currently addressed in curriculum documents and state examinations in technology education at post-primary level in Ireland. This analysis is conducted amidst the backdrop of considerable change in technology…

  9. Positioning Technology and Engineering Education as a Key Force in STEM Education

    Science.gov (United States)

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  10. Standardization as Emerging Content in Technology Education at All Levels of Education

    Science.gov (United States)

    Choi, Dong Geun; de Vries, Henk J.

    2011-01-01

    Integration of standardization into different levels of technology education has surfaced as a critical issue for educational practitioners and policy makers at national and regional (APEC, EU) level. In this paper, we describe and analyze empirical data collected from 118 educational experiences and practices about technology standards and…

  11. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  12. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  13. [Activity of NTDs Drug-discovery Research Consortium].

    Science.gov (United States)

    Namatame, Ichiji

    2016-01-01

    Neglected tropical diseases (NTDs) are an extremely important issue facing global health care. To improve "access to health" where people are unable to access adequate medical care due to poverty and weak healthcare systems, we have established two consortiums: the NTD drug discovery research consortium, and the pediatric praziquantel consortium. The NTD drug discovery research consortium, which involves six institutions from industry, government, and academia, as well as an international non-profit organization, is committed to developing anti-protozoan active compounds for three NTDs (Leishmaniasis, Chagas disease, and African sleeping sickness). Each participating institute will contribute their efforts to accomplish the following: selection of drug targets based on information technology, and drug discovery by three different approaches (in silico drug discovery, "fragment evolution" which is a unique drug designing method of Astellas Pharma, and phenotypic screening with Astellas' compound library). The consortium has established a brand new database (Integrated Neglected Tropical Disease Database; iNTRODB), and has selected target proteins for the in silico and fragment evolution drug discovery approaches. Thus far, we have identified a number of promising compounds that inhibit the target protein, and we are currently trying to improve the anti-protozoan activity of these compounds. The pediatric praziquantel consortium was founded in July 2012 to develop and register a new praziquantel pediatric formulation for the treatment of schistosomiasis. Astellas Pharma has been a core member in this consortium since its establishment, and has provided expertise and technology in the area of pediatric formulation development and clinical development.

  14. Technology Education: Twenty-five years of progress

    OpenAIRE

    De Miranda, Michael A.; Miyakawa, Hidetoshi

    2005-01-01

    The past 25 years has brought significant changes in the field of technology education. Contributing to these changes has been the evolution of a curriculum from the early days of industrial arts that addressed human productive practice to an emerging contemporary technological curriculum shaped by the exponential growth of technology and its impact on the extension of human capabilities, society, and the environment. The recent literature that focuses on the exponential growth of technology ...

  15. A methodology to investigate the usage of educational technologies on tablets in schools

    NARCIS (Netherlands)

    Molenaar, I.; Schaik, A. van

    2016-01-01

    This chapter introduces a methodology to study how educational technologies on tablets are being used in schools. Specifically it investigates how different educational technologies influence the organization of the learning environment and the way teachers teach. Educational technologies differ gre

  16. The NIH Extracellular RNA Communication Consortium.

    Science.gov (United States)

    Ainsztein, Alexandra M; Brooks, Philip J; Dugan, Vivien G; Ganguly, Aniruddha; Guo, Max; Howcroft, T Kevin; Kelley, Christine A; Kuo, Lillian S; Labosky, Patricia A; Lenzi, Rebecca; McKie, George A; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S; Srinivas, Pothur R; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A; Tucker, Jessica M; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

  17. Technology in Schools: Suggestions, Tools and Guidelines for Assessing Technology in Elementary and Secondary Education.

    Science.gov (United States)

    Ogle, Tom; Branch, Morgan; Canada, Bethann; Christmas, Oren; Clement, John; Fillion, Judith; Goddard, Ed; Loudat, N. Blair; Purwin, Tom; Rogers, Andy; Schmitt, Carl; Vinson, Mike

    This handbook is intended to facilitate the assessment of technology used to support elementary and secondary education in the United States. It is designed to help decision makers and technology users prepare, collect and assess information about whether and how technology is being used in their school systems. To make assessments that will be…

  18. Technology Education in Taiwan: A Transition from Industrial Arts to Living Technology.

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    Secondary-level technology education in Taiwan is shifting its emphasis from industrial arts to living technology in an effort to overcome the following problems: industrial arts is seen as a subordinate subject; the public's perceptions are not aligned with the field; and industrial technology teachers have had to struggle with huge class sizes…

  19. Learning Practice and Technology: Extending the Structurational Practice Lens to Educational Technology Research

    Science.gov (United States)

    Halperin, Ruth

    2017-01-01

    Scholars in the field of educational technology have been calling for robust use of social theory within learning technology research. In view of that, interest has been noted in applying Giddens' structuration theory to the understanding of human interaction with technology in learning settings. However, only few such attempts have been published…

  20. Educational Technology as a Subversive Activity: Questioning Assumptions Related to Teaching and Leading with Technology

    Science.gov (United States)

    Kruger-Ross, Matthew J.; Holcomb, Lori B.

    2012-01-01

    The use of educational technologies is grounded in the assumptions of teachers, learners, and administrators. Assumptions are choices that structure our understandings and help us make meaning. Current advances in Web 2.0 and social media technologies challenge our assumptions about teaching and learning. The intersection of technology and…

  1. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  2. FEATURES OF USING AUGMENTED REALITY TECHNOLOGY TO SUPPORT EDUCATIONAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Yury A. Kravchenko

    2014-01-01

    Full Text Available The paper discusses the concept and technology of augmented reality, the rationale given the relevance and timeliness of its use to support educational processes. Paper is a survey and study of the possibility of using augmented reality technology in education. Architecture is proposed and constructed algorithms of the software system management QR-codes media objects. An overview of the features and uses of augmented reality technology to support educational processes is displayed, as an option of a new form of visual demonstration of complex objects, models and processes. 

  3. Evaluating learning and teaching technologies in further education

    Directory of Open Access Journals (Sweden)

    Ann Jones

    2000-12-01

    Full Text Available There is currently an unprecedented interest in the use of technologies for supporting teaching and learning. In post-compulsory education, the current Government's commitment to increasing access to Lifelong Learning is expressed through a number of initiatives that also affect the further education (FE sector. For example, in The Learning Age: A Renaissance for a New Britain (Stationery Office, 1998 the government outlines its proposal to expand the scale, scope and nature of both further and higher education. The Learning Age follows a number of such government papers that emphasize the importance of Information and Communication Technologies (ICTs or Information and Learning Technologies (ILTs in FE and HE.

  4. Educational Infrastructure Using Virtualization Technologies: Experience at Kaunas University of Technology

    Science.gov (United States)

    Miseviciene, Regina; Ambraziene, Danute; Tuminauskas, Raimundas; Pažereckas, Nerijus

    2012-01-01

    Many factors influence education nowadays. Educational institutions are faced with budget cuttings, outdated IT, data security management and the willingness to integrate remote learning at home. Virtualization technologies provide innovative solutions to the problems. The paper presents an original educational infrastructure using virtualization…

  5. An Appraisal of Educational Technology Usage in Secondary Schools in Ondo State (Nigeria)

    OpenAIRE

    Olufemi Victor ADEOLUWA; Olukayode Solomon ABODERIN; Oladele Dennis OMODARA

    2013-01-01

    This study examined and appraised the use of Educational Technology in secondary schools in Ondo State South West, Nigeria. The study investigated the level of availability of Educational Technology facilities in schools, attitude of teachers toward educational technology, the perceived benefits of using Educational Technology, the problems facing the use of Educational Technology in secondary schools and Application of Educational Technology in schools by teachers. The descriptive survey des...

  6. Smoothing the Path: Technology Education and School Transition

    Science.gov (United States)

    Mawson, Brent

    2003-08-01

    The lack of coherence between early childhood education settings and primary school classrooms provides a challenge to the creation of a seamless educational experience in the period from birth to age eight. This paper examines the nature of technological activities in Kindergartens and New Entrant/Year One classes in New Zealand. It highlights commonalities between the two and discusses the potential for technology education to provide a bridge for children to ease their passage into the formal school setting and to provide a coherent educational experience.

  7. Learning analytics in practice: The effects of adaptive educational technology Snappet on students' arithmetic skills

    NARCIS (Netherlands)

    Molenaar, I.; Knoop-van Campen, C.A.N.

    2016-01-01

    Even though the recent influx of tablets in primary education goes together with the vision that educational technology empowered with learning analytics will revolutionize education, empirical results supporting this claim are scares. Adaptive educational technology Snappet combines extracted and e

  8. Trends in international research presented through the Research Consortium of the American Alliance for Health, Physical Education, Recreation and Dance (1965-2008).

    Science.gov (United States)

    Cardinal, Bradley J; Powell, Felicity M; Lee, Miyoung

    2009-09-01

    The extent of international research on the Research Consortium's program between 1965 and 2008 was documented. A total of 9,132 abstracts were reviewed, and 657 (7.19%) had an international component. Inclusion of international research ranged from a low of 1.97% in 1983 to a high of 14.24% in 2007. There was a decrease in the amount of international research presented between 1965 and 1983, after which there was an increase through 2008. Most growth was from increased contributions coming from researchers in Southeast Asia. In terms of general research topics, eight areas increased over the 44-year history reviewed, and five areas decreased. Seven recommendations are advanced for expanding the place and role of international research within the Research Consortium.

  9. Student pharmacists' use and perceived impact of educational technologies.

    Science.gov (United States)

    Stolte, Scott K; Richard, Craig; Rahman, Ateequr; Kidd, Robert S

    2011-06-10

    To assess the frequency of use by and perceived impact of various educational technologies on student pharmacists. Data were obtained using a validated, Web-based survey instrument designed to evaluate the frequency of use and impact on learning of various technologies used in educating first-, second-, and third-year student pharmacists. Basic demographic data also were collected and analyzed. The majority (89.4%) of the 179 respondents were comfortable with the technology used in the academic program. The most frequently used technologies for educational purposes were in class electronic presentations, course materials posted on the school Web site, and e-mail. The technologies cited as having the most beneficial impact on learning were course materials posted on the Web site and in-class electronic presentations, and those cited as most detrimental were video-teleconferencing and online testing. Compared to the course textbook, students reported more frequent use of technologies such as electronic course materials, presentations, digital lecture recordings, e-mail, and hand-held devices. Because students' opinions of educational technologies varied, colleges and schools should incorporate educational technologies that students frequently use and that positively impact learning.

  10. Educational Technology Media Method in Teaching and Learning Progress

    Directory of Open Access Journals (Sweden)

    Ahamad A. Sakat

    2012-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the level of understanding and students interest in Jawi education, after educational technology media was used in teaching and learning at primary schools. This study emphasizes with more detail on the aspects of usage and effectiveness media-aided teaching system. Exploring the notion of instrument, recognized positive attitude and students associated with the use of educational technology media in teaching and learning process. Approach: A total of 52 students taken as a respondent at National School of Changgai Kelantan, reviewed the Educational Technology Media as a teaching method. Purpose of this study was to compare the scoring percentage, after using the ordinary method and educational technology media as a teaching aid. In order to realize the ultimate objective, field studies, questionnaire and survey libraries were implemented. Results: Proceeds from the research found that teaching and learning process with the use of Jawi in Educational Technology Media had a positive effect on students. The results showed that more than 63.4% student achievement increased in Jawi education after using this instrument. Conclusion: Computer usage can stimulate effective learning and improve the performance of Jawi education, enhancing the high level of interactivity among students.

  11. Educational technologies in the system of managerial staff mentoring

    Directory of Open Access Journals (Sweden)

    L. P. Gancharik

    2016-01-01

    Full Text Available Investigations related to educational technologies, ensuring the Investigations are related to the educational technologies, ensuring the formation and support of a system of mentoring of managerial staff on the basis of the «cascade» technology training. A new form of cascade training – academic cascade training when the educational institutions create a large-scale information and educational environment on the basis of telecommunication technologies to provide the institute mentoring support in the state bodies and organizations.In comparison with the traditional mentoring (personal experience, students and graduates of the retraining system of educational institutions can transmit the knowledge and skills, acquired by them in the course of training, to the young managers and specialists of their organizations, thereby promoting further innovative educational potential of educational institutions through a system of cascading mentoring. For this purpose, in educational institutions an interactive educational environment is created based on telecommunication technologies, which allows you to create and develop a common information space, to simplify the procedure for communicating the mentors and trainees, to provide a wide access to the content. Telecommunication information technologies are not only a powerful tool, intelligent instrument and means of creating a cascade learning environment, but also an important factor in improving the entire methodical system of mentoring.It is proposed the creation of a large-scale information and educational environment on the basis of telecommunication technologies for cascade training when the educational institutions may become a part of the mentoring institution. On the one hand, they prepare students, including both potential mentors, and on the other hand, using modern telecommunication educational technologies, they participate together with the students-mentors in mentoring activity in

  12. Effective Technology Integration Shows New Frontiers in Education

    Science.gov (United States)

    Paoletti, Franco; Carlucci, Lisa Marie

    2007-11-01

    In this ever-changing world, technology is affecting how people view learning and the overall educational process. For an educator, the successful implementation of technology can be one of the most effective tools in the classroom. The introduction of virtual simulations of real life situations into what was once considered a teacher-centered classroom, allows the educator to meet the complex differentiated needs of a multi-faced student population. In this modified classroom, the focus naturally shifts on the students and their interaction with the rest of the class and beyond. Effective integration of technology literally opens a window onto the outside world providing students with increased motivation and with the necessary expertise to enter the workforce or successfully pursue higher education. This work analyzes the impact of technology, the methodologies currently in use, advantages and disadvantages, providing examples on how to successfully implement effective programs under budgetary constraints.

  13. #Nomoretextbooks? The impact of rapid communications technologies on medical education.

    Science.gov (United States)

    Farooq, Ameer; White, Jonathan

    2014-08-01

    This paper was selected as the 2013 student essay winner by the Canadian Undergraduate Surgical Education Committee. The essay was in response to the question "How does rapid communications technology affect learning?"

  14. Information Technology from Theory to Practice in Higher Education Structure

    Directory of Open Access Journals (Sweden)

    Tooraj Sadeghi

    2016-12-01

    Full Text Available In the past two decades, developments process of higher education dependence on the increased demand for admission to higher education, development of communication technologies, need for human resource development, rapid technological changes, accumulated knowledge and information and leads to serious challenges and changes in the role of universities and higher education in the new millennium. So dramatic changes of higher education and move it towards the universalization and interpretations of the common need for higher education has created new perspectives in the development of higher education that under the influence of the information revolution and paradigm of information technology added new funds to higher education charter. The article discussed after several years of theorizing, turns and focuses on research into fundamental processes and IT operations in higher education are essential. In this study, using theoretical method and library studies gap between theory and deployment procedures were evaluated and the results showed that " there is still the gap between the theory of information technology in higher education structure and deployment procedures in practice between theory and practice]".

  15. Transforming Dental Technology Education: Skills, Knowledge, and Curricular Reform.

    Science.gov (United States)

    Bobich, Anita M; Mitchell, Betty L

    2017-09-01

    Dental technology is one of the core allied dental health professions supporting the practice of dentistry. By definition, it is the art, science, and technologies that enable the design and fabrication of dental prostheses and/or corrective devices to restore natural teeth and supporting structures to fulfill a patient's physiological and esthetic needs. Dental technology educational programs are faced with serious challenges, including rapid changes in technology, inadequate funding for educational programs, and the need to develop curricula that reflect current industry needs. Better communications between dental technologists and practitioners are needed to gain greater recognition of the contribution that technologists make to patient health. Amid these challenges, the technology workforce is dedicated to providing patients with the best possible restorative dental prostheses. This article was written as part of the project "Advancing Dental Education in the 21(st) Century."

  16. Identification of risk factors of computer information technologies in education.

    OpenAIRE

    Hrebniak M.P.; Shchudro S.A.; Yakimova K.O.

    2014-01-01

    The basic direction of development of secondary school and vocational training is computer training of schoolchildren and students, including distance forms of education and widespread usage of world information systems. The purpose of the work is to determine risk factors for schoolchildren and students, when using modern information and computer technologies. Results of researches allowed to establish dynamics of formation of skills using computer information technologies in education and c...

  17. Critical Thinking and Education in College of Technology

    OpenAIRE

    上村, 崇; 木原,滋哉; 宮田,健一

    2011-01-01

    We have tried to introduce critical thinking into the education in Kure National College of Technology. This article deals with significance of introduction of critical thinking into education in College of Technology. We think that the ability to think critically consists of the sum of various skills of critical thinking. We built a map of critical thinking skills and taught these skills in the classes, and most students understood these skills. We will introduce critical thinking skills int...

  18. 76 FR 20633 - Announcement of Meeting to Explore Feasibility of Establishing a NIST/Industry Consortium on...

    Science.gov (United States)

    2011-04-13

    ... Establishing a NIST/Industry Consortium on Neutron Measurements for Soft Materials Manufacturing AGENCY... National Institute of Standards and Technology (NIST) invites interested parties to attend a pre-consortium... industry interest in creating a NIST/industry consortium focused on advanced neutron-based probes for...

  19. Uses of Technology in Adult ESL Education.

    Science.gov (United States)

    National Center for ESL Literacy Education, Washington, DC.

    Adult English-as-a-Second-Language (ESL) professionals have long used technology to enrich instructional activities. Currently, they are integrating multimedia packages and PowerPoint presentations into instruction. Technology can be used in many different contexts (in the classroom, at distance learning sites, and for extended or self-study). New…

  20. Geospatial Technologies and Higher Education in Argentina

    Science.gov (United States)

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of climates, such as…

  1. The Use of Technology in Educational Teaching

    Science.gov (United States)

    Murati, Rabije; Ceka, Ardita

    2017-01-01

    Today, Information and communication technology has become a way of life in which children are drawn. Today's children are beginning to use digital tools at a very young age, so that the school should respond to the needs of students. Also today it is impossible for any profession performs without the help of information technology. The computer…

  2. Subject Matter: Meaningful Learning in Technology Education

    Science.gov (United States)

    Autio, Ossi

    2006-01-01

    In Finland teaching of technology has traveled a long road during its 140-year history. It has gradually gone from the copying of the model series dating back to the 1860s to the building of computer controlled robots. Materials, techniques and technology have developed wildly but the pedagogic contents are restricted regrettably still often only…

  3. Educational Technology and Its Effective Use

    Science.gov (United States)

    Puckett, Rhonda

    2013-01-01

    Technology is becoming more and more prevalent in the American classroom. Students are becoming extremely knowledgeable of computer programs, iPads, and their applications are in an increasing manner. The reasoning behind the push for such technology in the classroom is for students to become accomplished twenty-first century learners, college- or…

  4. Geospatial Technologies and Higher Education in Argentina

    Science.gov (United States)

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of…

  5. Computer Education and Instructional Technology Prospective Teachers’ Perceptions of Technology

    Directory of Open Access Journals (Sweden)

    Ümmü Gülsüm DURUKAN

    2016-04-01

    Full Text Available The purpose of this study is to determine the “technology” perception of prospective computer and instructional technologies (CEIT teachers by metaphors. For this purpose the study was carried out with 53 first-year prospective teachers studying in the Department of CEIT in a public university in the fall term of 2014-2015 academic year. The forms consisting of the statement “Technology is like ……………because ………” written few times were used as a data collection tool. Phenomenography design was used in the study and the data were analyzed by content analysis. According to the study's findings, it was found that out of 118 valid metaphors developed by the prospective teachers, 103 of them were included in positive category, 7 were in negative category and 8 were in the neutral category.

  6. Media Literacy Education: Harnessing the Technological Imaginary

    Science.gov (United States)

    Fry, Katherine G.

    2011-01-01

    An important challenge for media literacy education in the next decade will be to cultivate a commanding voice in the cultural conversation about new and emerging communication media. To really have a stake in the social, economic and educational developments that emerge around new digital media in the U.S. and globally, media literacy educators…

  7. Technology Education to Engineering: A Good Move?

    Science.gov (United States)

    Williams, P. John

    2010-01-01

    Recent curriculum changes in the educational system of Australia have resulted in allowing optional Engineering course work to count for university entrance for students choosing to apply to a university. In other educational systems, Engineering is playing an increasingly important role, either as a stand-alone subject or as part of an integrated…

  8. Technology in Education: What Teachers Should Know

    Science.gov (United States)

    De Bruyckere, Pedro; Kirschner, Paul A.; Hulshof, Casper D.

    2016-01-01

    Educators often have the feeling that they are finding it harder and harder to reach their students. That is why they are so feverishly interested in smartboards or learning platforms or anything new on the market that might help. Every new tool seems like a possible solution, although sometimes educators really don't know what the problem is or…

  9. Interactive Technologies in Electronic Educational Resources

    Science.gov (United States)

    Anisimova, Tatyana Ivanovna; Krasnova, Lyubov Alekseevna

    2015-01-01

    Modern professional education in the transition to a tiered system of specialists training is focused not on the transfer of ready knowledge but on teaching to find this knowledge and to apply them in situations close to the professional conditions. The educational process, relying on use of interactive methods of teaching, which is organized with…

  10. Environmental Education through Inquiry and Technology

    Science.gov (United States)

    Markaki, Vassiliki

    2014-01-01

    In the transformative world of today, the role of environmental education has become a much-debated issue. The experience from various EU countries shows lack of a concrete policy for the advancement of those strategic skills that correspond to the identified need for the connection of environmental education to green career choices. This paper…

  11. Educational Scholarship and Technology: Resources for a Changing Undergraduate Medical Education Curriculum.

    Science.gov (United States)

    Kyle, Brandon N; Corral, Irma; John, Nadyah Janine; Shelton, P G

    2017-06-01

    Returning to the original emphasis of higher education, universities have increasingly recognized the value and scholarship of teaching, and medical schools have been part of this educational scholarship movement. At the same time, the preferred learning styles of a new generation of medical students and advancements in technology have driven a need to incorporate technology into psychiatry undergraduate medical education (UGME). Educators need to understand how to find, access, and utilize such educational technology. This article provides a brief historical context for the return to education as scholarship, along with a discussion of some of the advantages to this approach, as well as several recent examples. Next, the educational needs of the current generation of medical students, particularly their preference to have technology incorporated into their education, will be discussed. Following this, we briefly review the educational scholarship of two newer approaches to psychiatry UGME that incorporate technology. We also offer the reader some resources for accessing up-to-date educational scholarship for psychiatry UGME, many of which take advantage of technology themselves. We conclude by discussing the need for promotion of educational scholarship.

  12. Final Report: Appalachian Consortium. Evaluation of a Dissemination and Diffusion Design.

    Science.gov (United States)

    Elsbery Systems Analysis, Ltd., Flushing, NY.

    The Appalachian Consortium was evaluated as an organization for the dissemination of educational information regarding programs for the early identification of preschool handicapped children. Chapter I provides a historical overview and discusses the Consortium's independence from the Appalachian Educational Laboratory. The chapter also indicates…

  13. Augmenting a Child's Reality: Using Educational Tablet Technology

    Science.gov (United States)

    Tanner, Patricia; Karas, Carly; Schofield, Damian

    2014-01-01

    This study investigates the classroom integration of an innovative technology, augmented reality. Although the process of adding new technologies into a classroom setting can be daunting, the concept of augmented reality has demonstrated the ability to educate students and to assist with their comprehension of a procedural task. One half of the…

  14. Educating the Adolescent for Technological Changes: Some Implications for Teaching.

    Science.gov (United States)

    Cheong, Lau Kam

    Generally concerned with how the schools can better educate the adolescent for adulthood, this paper briefly discusses the adolescent's need for work as a means of attaining adulthood, some promises and threats of technology, and effects of technological advances on society. Particular attention is given to four main effects having direct…

  15. Information Technology in Education: The Best of ERIC.

    Science.gov (United States)

    Ely, Donald P.

    This publication highlights 48 recent ERIC listings which help to explain the variety of emerging technologies for the delivery of information in educational settings. Specific technologies addressed include cable television, electronic mail, satellite communication, teleconferencing, videodisc, and videotex. Entries were selected for inclusion…

  16. Instruments for Assessing the Impact of Technology in Education

    Science.gov (United States)

    Christensen, Rhonda; Knezek, Gerald

    2002-01-01

    Ten years of instrument development are summarized and placed within a framework for assessing the impact of technology in education. Seven well-validated instruments spanning the areas of attitudes, beliefs, skills, competencies, and technology integration proficiencies are presented, along with data analysis examples. These instruments are…

  17. Academic Technology in Higher Education: Organizing for Better Results

    Science.gov (United States)

    Nworie, John

    2007-01-01

    The field of instructional technology has continued to evolve since its inception in the early 1900s. Academic technology units in higher education have witnessed tremendous change in the last one and a half decades. The changes have led to reorganizations, realignments, adoption of innovative administrative structures, increased demands for…

  18. Marginalizing Significant Others: The Canadian Contribution to Educational Technology.

    Science.gov (United States)

    Hlynka, Denis

    1994-01-01

    Considers Canadian contributions to the philosophical basis of educational technology which have helped shape the model shifts now occurring in the field. Four individuals are highlighted: Harold Innis and his work on media; Marshall McLuhan, who built on Innis' work; Ursula Franklin and her philosophical analysis of technology; and Arthur Kroker.…

  19. The Invisible Barrier to Integrating Computer Technology in Education

    Science.gov (United States)

    Aflalo, Ester

    2014-01-01

    The article explores contradictions in teachers' perceptions regarding the place of computer technologies in education. The research population included 47 teachers who have incorporated computers in the classroom for several years. The teachers expressed positive attitudes regarding the decisive importance of computer technologies in furthering…

  20. Anchored Instruction in Preservice Educational Technology Classes: A Research Project.

    Science.gov (United States)

    Bauer, Jeffrey W.

    This study examined the effectiveness of the anchored instruction (i.e., using a theme or anchor around which various learning activities take place) approach in preparing preservice teachers to integrate technology. Participants were 48 students enrolled in the three sections of a preservice educational technology class during the summer of 1997.…