WorldWideScience

Sample records for technology doe-httt program

  1. 2012 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  2. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  4. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    Hightower, M.

    1995-01-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  5. 2009 DOE Vehicle Technologies Program Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  6. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. Technology needs assessment for DOE environmental restoration programs

    International Nuclear Information System (INIS)

    Duray, J.R.; Carlson, T.J.; Carpenter, C.E.; Cummins, L.E.; Daub, G.J.

    1992-01-01

    The 'Technology Needs Assessment Final Report' describes current and planned environmental restoration activity, identifies technologies intended to be used or under consideration, and ranks technology deficiencies in the U.S. Department of Energy's environmental restoration program. Included in the ranking are treatment technologies, characterization technologies, and non-technology issues that affect environmental restoration. Data used for the assessment was gathered during interviews in the spring of 1991 with DOE site personnel responsible for the environmental restoration work. (author)

  9. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  10. The DOE safeguards and security technology development program

    International Nuclear Information System (INIS)

    Cherry, R.C.; Wheelock, A.J.

    1991-01-01

    This paper reports that strategic planning for safeguards and security within the Department of Energy emphasizes the contributions of advanced technologies to the achievement of Departmental protection program goals. The Safeguards and Security Technology Development Program provides state-of-the-art technologies, systems and technical services in support of the policies and programmatic requirements for the protection of Departmental assets. The Program encompasses research and development in physical security, nuclear material control and accountability, information security and personnel security, and the integration of these disciplines in advanced applications. Technology development tasks serve goals that range from the maintenance of an effective technology base to the development, testing and evaluation of applications to meet field needs. A variety of factors, from the evolving threat to reconfiguration of the DOE complex and the technical requirements of new facilities, are expected to influence safeguards and security technology requirements and development efforts. Implementation of the Program is based on the systematic identification, prioritization and alignment of technology development tasks and needs. Initiatives currently underway are aimed at enhancing technology development project management. Increased management attention is also being placed on efforts to promote the benefits of the Program through technology transfer and interagency liaison

  11. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  12. DOE Low-Level Waste Management Program perspective on technology transfer: opportunities and challenges

    International Nuclear Information System (INIS)

    Large, D.E.

    1982-01-01

    The Department of Energy's Low-Level Waste Management Program (DOE LLWMP) perspective in regard to transfer of LLWMP technology to current and potential users in both the commercial and defense sectors is discussed. Past, present, and future opportunities and challenges for the whole nuclear waste management are indicated. Elements considered include: historical and evolutionary events and activities; the purpose of the Program and its inherent opportunities and challenges; achievements and expected accomplishments; supporters and interactors; packaging and delivering technology; implementing and serving potential users; determining and meeting users' needs; and identifying and responding to opportunities and challenges. The low-level waste management effort to improve shallow land burial technology began in FY 1977 and has expanded to include waste treatment and alternative disposal methods. Milestones have been established and are used as principal management control items. This technology, the Program Product, is described and is made available. This year, the Program has drafted criteria for inclusion in a DOE order for radioactive waste management operations at DOE sites

  13. DOE/PNC joint program on transportation technology

    International Nuclear Information System (INIS)

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed

  14. DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Mezga, L.J.

    1983-01-01

    The Oak Ridge National Laboratory (ORNL) in its role as associate lead contractor of the DOE LLWMP has responsibility for the management of program-funded technology development activities. In this role with general guidance provided by DOE and the lead contractor (EG and G Idaho), the ORNL program office is charged with the responsibility to (1) develop program plans for the major technology areas, (2) recommend allocations for the program resources, (3) review the technology development tasks to ensure that program objectives are being met, and (4) to assist the lead contractor in coordinating the DOE LLWMP with other on-going US and foreign waste technology programs. Although the ORNL office generally assists the lead laboratory in management of the total program, our emphasis is on management of R and D for development of basic technology and to assess concepts for alternative systems of processing and disposal of LLW. Technical progress for each of the tasks of this program for FY 1982 is summarized

  15. 34 CFR 403.63 - How does a State carry out the State Vocational and Applied Technology Education Program?

    Science.gov (United States)

    2010-07-01

    ... Applied Technology Education Program? 403.63 Section 403.63 Education Regulations of the Offices of the... VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM What Kinds of Activities Does the Secretary Assist Under... Technology Education Program? (a) Unless otherwise indicated in the regulations in this part, a State board...

  16. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  17. Application of safeguards technology in DOE's environmental restoration program

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Baker, M.P.; Hansen, W.R.; Lucas, M.C.; Markin, J.T.; Phillips, J.R.

    1990-01-01

    During the last two decades, the Department of Energy's Office of Safeguards and Security (DOE/OSS) has supported the research and development of safeguards systems analysis methodologies and nondestructive assay (NDS) technology for characterizing, monitoring, and accounting nuclear materials. This paper discusses methodologies and NDA instrumentation developed by the DOE/OSS program that could be applied in the Environmental Restoration Program. NDA instrumentation could be used for field measurements during site characterization and to monitor nuclear materials, heavy metals, and other hazardous materials during site remediation. Systems methodologies can minimize the expenditure of resources and help specify appropriate combinations of NDA instrumentation and chemical analyses to characterize a variety of materials quickly and reduce personnel exposure in hazardous environments. A training program is available to teach fundamental and advanced principles and approaches to characterize and quantify nuclear materials properly and to organize and analyze measurement information for decision making. The ability to characterize the overall volume and distribution of materials at a waste site is difficult because of the inhomogeneous distribution of materials, the requirement for extreme sensitivity, and the lack of resources to collect and chemically analyze a sufficient number of samples. Using a systems study approach based on statistical sampling, the resources necessary to characterize a site can be enhanced by appropriately combining in situ and field NDA measurements with laboratory analyses. 35 refs., 1 figs., 2 tabs

  18. Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE's environmental management international technology integration program

    International Nuclear Information System (INIS)

    Jordan, G.B.; Reed, J.H.; Wyler, L.D.

    1997-03-01

    This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline

  19. 2010 Annual Progress Report DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.

  20. Pollution Prevention Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT ampersand E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact

  1. How the Office of Safeguards and Security Technology development program facilitates safeguarding and securing the DOE complex

    International Nuclear Information System (INIS)

    Smoot, W.

    1995-01-01

    The technology development program's (TDP's) mission is to provide technologies or methodologies that address safeguards and security requirements throughout the U.S. DOE complex as well as to meet headquarters' policy needs. This includes developing state-of-the-art technologies or modifying existing technologies in physical security, material control and accountability, information security, and integrated safeguards systems. The TDP has an annual process during which it solicits user requirements from the field. These requirements are analyzed by DOE headquarters and laboratory personnel for technical merit. The requirements are then prioritized at headquarters, and the highest priorities are incorporated into our budget. Although this user-needs process occurs formally once a year, user requirements are accepted at any time. The status of funded technologies is communicated through briefings, programs reviews, and various documents that are available to all interested parties. Participants in several interagency groups allows our program to benefit from what others are doing and to prevent duplications of efforts throughout the federal community. Many technologies are transferred to private industry

  2. 1996 DOE technical standards program workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop theme is `The Strategic Standardization Initiative - A Technology Exchange and Global Competitiveness Challenge for DOE.` The workshop goal is to inform the DOE technical standards community of strategic standardization activities taking place in the Department, other Government agencies, standards developing organizations, and industry. Individuals working on technical standards will be challenged to improve cooperation and communications with the involved organizations in response to the initiative. Workshop sessions include presentations by representatives from various Government agencies that focus on coordination among and participation of Government personnel in the voluntary standards process; reports by standards organizations, industry, and DOE representatives on current technology exchange programs; and how the road ahead appears for `information superhighway` standardization. Another session highlights successful standardization case studies selected from several sites across the DOE complex. The workshop concludes with a panel discussion on the goals and objectives of the DOE Technical Standards Program as envisioned by senior DOE management. The annual workshop on technical standards has proven to be an effective medium for communicating information related to standards throughout the DOE community. Technical standards are used to transfer technology and standardize work processes to produce consistent, acceptable results. They provide a practical solution to the Department`s challenge to protect the environment and the health and safety of the public and workers during all facility operations. Through standards, the technologies of industries and governments worldwide are available to DOE. The DOE Technical Standards Program, a Department-wide effort that crosscuts all organizations and disciplines, links the Department to those technologies.

  3. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  4. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  5. Proceedings of the 2000 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-11-01

    The 2000 US Department of Energy (DOE) Hydrogen Program Review was sponsored by the Office of Power Delivery Systems, Office of Power Technologies, US Department of Energy. The proceedings from this meeting serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 2000. The growth of fuel cell technology will provide a basis for the establishment of the hydrogen option into both transportation and electricity supply markets.

  6. Cask technology program activities

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1986-01-01

    The civilian waste cask technology program consists of five major activities: (1) technical issue resolution directed toward NRC and DOT concerns, (2) system concept evaluations to determine the benefits of proposals made to DOE for transportation improvements, (3) applied technology and technical data tasks that provide independent information and enhance technology transfer between cask contractors, (4) standards development and code benchmarking that provide a service to DOE and cask contractors, and (5) testing to ensure the adequacy of cask designs. The program addresses broad issues that affect several cask development contractors and areas where independent technical input could enhance the Office of Civilian Radioactive Waste Management goals

  7. Robotics Technology Crosscutting Program. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  8. Proceedings of the 1999 U.S. DOE Hydrogen Program Review

    Energy Technology Data Exchange (ETDEWEB)

    NREL

    2000-08-28

    The Proceedings of the 1999 US Department of Energy (DOE) Hydrogen Program Review serve as an important technology reference for the DOE Hydrogen Program. This document contains technical progress reports on 60 research and technology validation projects funded by the DOE Hydrogen Program in Fiscal Year 1999, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research.

  9. Penn State DOE GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anstrom, Joel

    2012-08-31

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  10. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  11. Clean Coal Technology Programs: Program Update 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  12. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R ampersand D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER ampersand WM) operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER ampersand WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER ampersand WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs

  13. DOE technology information management system database study report

    Energy Technology Data Exchange (ETDEWEB)

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

    1994-11-01

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  14. US DOE surplus facilities management program (SFMP). International technology exchange activities

    International Nuclear Information System (INIS)

    Broderick, J.

    1986-01-01

    The Surplus Facilities Management Program is one of five remedial action programs established by the US Department of Energy (DOE) to eliminate potential hazards to the public and environment from radioactive contamination. These programs provide remedial actions at various facilities and sites previously used by the US Government in national atomic energy programs. Included are uranium ore milling sites, nuclear materials production plants, and research and development facilities. The DOE's five remedial action programs are: the Grand Junction Remedial Action Project; the Formerly Utilized Sites Remedial Action Project; the West Valley Demonstration Project; and the Surplus Facilities Management Program. The Surplus Facilities Management Program (SWMP) was established by DOE in 1978. There are presently over 300 shutdown facilities in the SFMP located at sites across the United States and in Puerto Rico. In some cases, remedial action involves decontaminating and releasing a facility for some other use. In other instances, facilities are completely demolished and removed from the site

  15. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  16. 2010 Annual Progress Report: DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  17. US DOE Office of Technology Innovation and Development - Integration of the EM R and D Program in 2012 and Beyond - 12537

    Energy Technology Data Exchange (ETDEWEB)

    Collazo, Yvette T.; DeLeon, Gary; Schneider, Steve; Gerdes, Kurt; Szilagyi, Andy [Office of Technology Innovation and Development, U.S. DOE, Washington, DC 20585 (United States); Wellman, Dawn; Bredt, Paul [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Pierce, Eric [Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 (United States); Marra, Jim [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    Applied research and technology development has the potential to accelerate environmental cleanup and reduce the cost for cleanup and closure of U.S. Department of Energy (DOE) legacy waste sites throughout the United States. Providing the scientific understanding, knowledge, and technologies to enable successful completion of the DOE Office of Environmental Management (EM) mission, the Technology Innovation and Development program is transforming science and innovation into practical solutions for environmental cleanup. Through integration, collaboration, and communication with DOE partner organization, DOE site managers and contractors, these technologies will reduce human health and environmental risk, cost, and time associated with cleanup and closure. The Office of Technology Innovation and Development (OTID) focused efforts in fiscal year 2011 (FY 2011) to a proactive, visionary program balance with integrated, cross-disciplinary applied research and technology development activities. This transition provides the necessary scientific and technical advancements to address near-term needs. In addition, it fills the critical role in providing scientific approaches and advanced technologies that look beyond today's known needs and requirements to provide innovative technologies to make the necessary long-term changes required to facilitate cleanup and bring sites to closure. The outcomes and impacts of this strategy are summarized in the Impact Plan, which describes potential reduction in life-cycle costs through the development and deployment of advanced technologies supporting EM needs associated with waste processing, groundwater and soil remediation, deactivation and decommissioning, and spent nuclear fuel and materials disposition. Additionally, the OTID International Program Strategic Plan 2010-2015 outlines cooperation and collaboration with the international community that has similar nuclear legacy management experience and expertise to foster

  18. Cask technology program activities

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1986-01-01

    The civilian waste cask technology program consists of five major activities: Technical issue resolution directed toward NRC and DOT concerns; system concept evaluations to determine the benefits of proposals made to DOE for transportation improvements; applied technology and technical data tasks that provide independent information and enhance technology transfer between cask contractors; standards development and code benchmarking that provide a service to DOE and cask contractors; and testing to ensure the adequacy of cask designs. This paper addresses broad issues that affect several cask development contractors and areas where independent technical input could enhance OCRWM goals

  19. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  20. Robotics Technology Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  1. Outcome of cooperative program between JAEA and US DOE on decommissioning

    International Nuclear Information System (INIS)

    Shimada, Taro; Shiraishi, Kunio; Tachibana, Mitsuo; Ishigami, Tsutomu

    2009-07-01

    The Japan Atomic Energy Agency (JAEA: the former Japan Atomic Energy Research Institute) has been collecting wide variety of information on decommissioning nuclear facilities by the cooperative program with US Department of Energy (DOE) since 1988. In the course of the cooperation, the cooperative program has continued under the newly established specific memorandum in the field of decontamination and decommissioning nuclear facilities since 2001 on the framework agreement of USDOE and JAERI. On the other hand, the US DOE environmental management program, which was initiated in 1989, has developed resulting in achievement of dismantlement and decontamination and cleanup of nuclear facilities mainly used for Manhattan project and demonstration of various technologies developed for this program. In the cooperative activities, information on decommissioning activities including innovated technology developments has been exchanged with CP-5 and Mound plant as designated main facilities of DOE, and with JRR-2 and the reprocessing test facility of JAERI. The experiences and technologies applied in the environmental management program are expected to contribute to planning and implementing decommissioning nuclear facilities in JAEA. This report describes the summary of the information on decommissioning activities and technology development and deployment of the environmental management program in DOE obtained through the cooperation under the specific memorandum agreement. (author)

  2. DOE [Department of Energy]-Nuclear Energy Standards Program annual assessment, FY 1990

    International Nuclear Information System (INIS)

    Williams, D.L. Jr.

    1990-11-01

    To meet the objectives of the programs funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a nuclear standards program and related activities and fosters the development and application of standards. This standards program is carried out in accordance with the principles in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980. The purposes of this effort, as set forth in three subtasks, are to (1) manage the NE Standards Program, (2) manage the development and maintenance of NE standards, and (3) operate an NE Standards Information Program. This report assesses the Performance Assurance Project Office (PAPO) activities in terms of the objectives of the Department of Energy-Nuclear Energy (DOE-NE) funded programs. To meet these objectives, PAPO administers a nuclear standards program and related activities and fosters the development and application of standards. This task is carried out in accordance with the principles set forth in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980, and DOE memorandum, Implementation of DOE Orders on Quality Assurance, Standards, and Unusual Occurrence Reporting for Nuclear Energy Programs, March 3, 1982, and with guidance from the DOE-NE Technology Support Programs. 1 tab. (JF)

  3. Solar Energy Technologies Program Newsletter - July 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  4. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    International Nuclear Information System (INIS)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP's Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE's site restoration activities

  5. DOE transporation programs - computerized techniques

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.S.; Johnson, P.E.; Fore, C.S.; Peterson, B.E.

    1983-01-01

    One of the major thrusts of the transportation programs at the Oak Ridge National Laboratory has been the development of a number of computerized transportation programs and data bases. The U.S. Department of Energy (DOE) is supporting these efforts through the Transportation Technology Center at Sandia National Laboratories and the Tranportation Operations and Traffic Management (TOTM) organization at DOE Headquarters. Initially this project was centered upon research activities. However, since these tools provide traffic managers and key personnel involved in preshipment planning with a unique resource for ensuring that the movement of radioactive materials can be properly accomplished, additional interest and support is coming from the operational side of DOE. The major accomplishments include the development of two routing models (one for rail shipments and the other for highway shipments), an emergency response assistance program, and two data bases containing pertinent legislative and regulatory information. This paper discusses the mose recent advances in, and additions to, these computerized techniques and provides examples of how they are used.

  6. Summary of DOE/PERF water program review.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.; Gasper, J.; Puder, M.; Leath, P.; Environmental Science Division

    2006-01-31

    For many years, the U.S. Department of Energy (DOE) has supported and sponsored various types of water research relating to the oil and gas industry through its Office of Fossil Energy and its National Energy Technology Laboratory (NETL). In early 2005, the Petroleum Environmental Research Forum (PERF) submitted a proposal to DOE for funding an upcoming PERF meeting that would feature water research in the petroleum industry. PERF is a nonprofit organization created in 1986 to provide a stimulus to and a forum for the collection, exchange, and analysis of research information related to the development of technology concerning the petroleum industry, and a mechanism for establishing joint research projects in that field. Additional information on PERF can be accessed at http://www.perf.org. DOE agreed to provide funding to hold a review of its water research program in conjunction with the fall 2005 PERF meeting. Argonne National Laboratory (Argonne) was asked to coordinate and host the meeting, which was referred to as the DOE/PERF Water Program Review. The program review was held on November 1-4, 2005, in Annapolis, Maryland, at the Historic Inns of Annapolis. The purpose of the program review was to provide a forum for sharing information, reviewing current programs (especially recent unpublished research), and reviewing industry and regulatory needs regarding water use and reuse issues. PERF and DOE/NETL can use this information to plan for future water-related research projects. The water program review provided a unique opportunity in several ways. First, DOE was able to have all of the contractors currently receiving DOE funds for water research present in one room at the same time. Each contractor described his or her research and was able to learn about the research being conducted by the other researchers. Second, this forum allowed representatives of many large oil and gas companies to hear about the DOE research projects and offer their reactions to DOE

  7. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  8. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  9. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  10. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  11. 2017 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  12. 2016 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-01

    The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  13. Maximizing DOE R and D efforts in tru waste management learning from international programs

    International Nuclear Information System (INIS)

    Saxman, P.A.; Loughead, J.S.C.

    1990-01-01

    Through the International Technology Exchange Program, Department of Energy (DOE) technical specialists maintain a formal dialogue with research and Development (R and D) specialists from nuclear programs in other countries. The objective of these exchanges is to seek innovative waste management solutions, maximize progress for ongoing R and D activities, and minimize the development time required for implementation of transuranic (TRU) waste processing technologies and waste assay developments. Based on information provided by PNC during the exchange, DOE specialists evaluated PNC's efforts to implement technologies and techniques from their R and D program activities. This paper presents several projects with particular potential for DOE operations, and suggests several ways that these concepts could be used to advantage by DOE or commercial programs

  14. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  15. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  16. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  17. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  18. Program and Abstracts: DOE Solar Program Review Meeting 2004, 25--28 October 2004, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This booklet contains the agenda and abstracts for the 2004 U.S. DOE Solar Energy Technologies Program Review Meeting. The meeting was held in Denver, Colorado, October 25-28, 2004. More than 240 abstracts are contained in this publication. Topic areas for the research papers include laboratory research, program management, policy analysis, and deployment of solar technologies.

  19. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    International Nuclear Information System (INIS)

    Nakanishi, K.K.

    1993-01-01

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory's (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy's (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE's Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE's weapons laboratories

  20. DOE Hydropower Program Annual Report for FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  1. Geothermal Technologies Program 2011 Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Hollett, Douglas [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Stillman, Greg [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    On June 6-10, 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (GTP or the Program) conducted its annual program peer review in Bethesda, Maryland. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the program and is a forum for feedback and recommendations on future program planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the Program and to assess progress made against stated objectives.

  2. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  3. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  4. Geothermal Technologies Program: Direct Use

    Energy Technology Data Exchange (ETDEWEB)

    2004-08-01

    This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

  5. Resolution of regulatory issues facing the DOE in situ vitrification program

    International Nuclear Information System (INIS)

    Corathers, L.A.

    1992-03-01

    In situ vitrification (ISV) is being developed by researchers at the Pacific Northwest Laboratory (PNL), Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL) as a technology for remediating soils, underground storage tank residuals, and buried materials that have been contaminated with hazardous, radioactive, and mixed wastes (i.e., wastes containing both radioactive and hazardous wastes) at US Department of Energy (DOE) facilities. The goal of the DOE ISV technology development program (i.e., the ISV Integrated Program) is to ensure that ISV is a workable technology for environmental restoration applications for DOE and other agencies. A DOE complex-wide plan was prepared during Fiscal Year 1991 to coordinate all levels of activities associated with the deployment of ISV. As part of this plan, a programmatic regulatory strategy was developed which focused on the federal environmental, health, safety, and nuclear regulations, including the US Environmental Protection Agency (EPA) and DOE regulations, believed to have the most significant near-term impact on the use of ISV as a remediation technology. The portion of the programmatic regulatory strategy addressing compliance with the Comprehensive Environmental Response, Compensation and Liability Act, as amended, and the Resource Conservation and Recovery Act, as amended, is presented in this paper

  6. DOE Hydropower Program Biennial Report for FY 2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington

  7. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  8. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  9. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  10. D and D technology development program

    International Nuclear Information System (INIS)

    Hyde, J.M.

    1998-01-01

    This paper describes the content of the current program of work for the Deactivation and Decommissioning Focus Area (DDFA) located in the Office of Science and Technology (EM-50). The authors began using large-scale demonstration projects (LSDPs) in 1996 to demonstrate and test innovative decommissioning and decontamination (D and D) technologies in ongoing US Department of Energy (DOE) decommissioning projects. These LSDPs have been conducted in and are planned for different types of DOE facilities such as research and production reactors; highly enriched uranium, tritium, and plutonium processing facilities; fuel reprocessing canyons; weapons production facilities; gaseous diffusion plants; hot cells; and waste processing facilities. The concept has been to focus on addressing DOE's high-priority deactivation and decommissioning needs through the LSDP strategy. In an LSDP, the focus area demonstrates improved technologies side by side with the current baseline technologies in ongoing site decommissioning projects. This approach helps reduce the risk and liability for the DOE users associated with the first-time use of a technology and promotes creative solutions that expand the D and D tool box beyond standard practices and technologies along with other benefits. As of January 1998, more than 50 technologies have been demonstrated covering the areas of characterization, decontamination, dismantlement, waste disposition, stabilization, and health and safety

  11. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  12. Mixed Waste Integrated Program interim evaluation report on thermal treatment technologies

    International Nuclear Information System (INIS)

    Gillins, R.L.; DeWitt, L.M.; Wollerman, A.L.

    1993-02-01

    The Mixed Waste Integrated Program (MWIP) is one of several US Department of Energy (DOE) integrated programs established to organize and coordinate throughout the DOE complex the development of technologies for treatment of specific waste categories. The goal of the MWIP is to develop and deploy appropriate technologies for -the treatment of DOE mixed low-level and alpha-contaminated wastes in order to bring all affected DOE installations and projects into compliance with environmental laws. Evaluation of treatment technologies by the MWIP will focus on meeting waste form performance requirements for disposal. Thermal treatment technologies were an early emphasis for the MWIP because thermal treatment is indicated (or mandated) for many of the hazardous constituents in DOE mixed waste and because these technologies have been widely investigated for these applications. An advisory group, the Thermal Treatment Working Group (TTWG), was formed during the program's infancy to assist the MWIP in evaluating and prioritizing thermal treatment technologies suitable for development. The results of the overall evaluation scoring indicate that the four highest-rated technologies were rotary kilns, slagging kilns, electric-arc furnaces, and plasma-arc furnaces. The four highest-rated technologies were all judged to be applicable on five of the six waste streams and are the only technologies in the evaluation with this distinction. Conclusions as to the superiority of one technology over others are not valid based on this preliminary study, although some general conclusions can be drawn

  13. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R ampersand D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER ampersand WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT ampersand E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs

  14. Mine Waste Technology Program Electrochemical Tailings Cover

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 40, Electrochemical Tailings Cover, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). MSE Technology A...

  15. The accelerated site technology deployment program presents the segmented gate system

    International Nuclear Information System (INIS)

    Patteson, Raymond; Maynor, Doug; Callan, Connie

    2000-01-01

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country

  16. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  17. DOE enforcement program roles and responsibilities: DOE handbook

    International Nuclear Information System (INIS)

    1995-08-01

    The Price-Anderson Act provides indemnification to DOE contractors who manage and conduct nuclear activities in the DOE complex. The government acts as an insurer for these contractors against any findings of liability from the nuclear activities of the contractor within the scope of its contract. 10 CFR Part 820 establishes the legal framework for implementing DOE's Nuclear Safety Enforcement Program. Integration with other DOE organizations and programs would assure that the enforcement process properly considers the actual or potential safety significance of a violation when determining an appropriate enforcement sanction. Achieving a proactive contractor compliance assurance rather than a heavy enforcement hand, will require a foundation of cooperation and teamwork across DOE organizations. This handbook identifies the areas of interface for the DOE Enforcement Program and provides guidance on roles and responsibilities for the key DOE organizational areas. It complements DOE-HDBK-1087-95 and 1089-95

  18. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  19. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  20. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  1. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  2. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  3. Dry cask storage: a Vepco/DOE/EPRI cooperative demonstration program

    International Nuclear Information System (INIS)

    Smith, M.L.

    1984-01-01

    In response to a Department of Energy (DOE) Solicitation for Cooperative Agreement Proposal, Virginia Electric and Power Company (Vepco) proposed to participate in a spent fuel storage demonstration program utilizing the dry cask storage technology. This proposed program includes dry cask storage at Vepco's Surry Nuclear Power Station and research and development activities at a DOE site in support of the licensed program at Surry. Phase I of Vepco's two-phase program involves a demonstration of the licensed dry cask storage of spent fuel in an inert atmosphere at the Surry Power Station site. Phase II of Vepco's proposed program will involve the demonstration of storing unconsolidated and consolidated spent fuel in dry casks filled only with air. This phase of the program will involve DOE site testing similar to Phase I and is expected to require an additional (fourth) cask to demonstrate storage of unconsolidated spent fuel in air-filled casks

  4. Overview of DOE's field screening technology development activities

    International Nuclear Information System (INIS)

    Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T.; Erickson, M.D.

    1991-01-01

    The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R ampersand D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref

  5. Overview of DOE's transuranic waste program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1988-01-01

    The United States Department of Energy (DOE) has assigned to Albuquerque Operations the Defense Transuranic Waste Program (DTWP) responsibility for long-range planning and management for defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements that support its primary goal of ending interim storage and achieving permanent disposal. These elements include waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities and permanent disposal. This paper briefly discusses these seven elements and how they are integrated to provide for successful achievement of the primary goal

  6. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  7. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  8. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  10. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  11. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  12. US/DOE Man-Machine Integration program for liquid metal reactors

    International Nuclear Information System (INIS)

    D'Zmura, A.P.; Seeman, S.E.

    1985-03-01

    The United States Department of Energy (DOE) Man-Machine Integration program was started in 1980 as an addition to the existing Liquid Metal Fast Breeder Reactor safety base technology program. The overall goal of the DOE program is to enhance the operational safety of liquid metal reactors by optimum integration of humans and machines in the overall reactor plant system and by application of the principles of human-factors engineering to the design of equipment, subsystems, facilities, operational aids, procedures and environments. In the four years since its inception the program has concentrated on understanding the control process for Liquid Metal Reactors (LMRs) and on applying advanced computer concepts to this process. This paper describes the products that have been developed in this program, present computer-related programs, and plans for the future

  13. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  14. DOE EM industry programs robotics development

    International Nuclear Information System (INIS)

    Staubly, R.; Kothari, V.

    1998-01-01

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy's (DOE's) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution

  15. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  16. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE's International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references

  17. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  18. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  19. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  20. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  1. DOE Hydrogen Program: 2010 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2010 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held June 7-11, 2010 in Washington, D.C.

  2. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    International Nuclear Information System (INIS)

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP

  3. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  4. Robotics crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1996-08-01

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology

  5. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  6. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  7. DOE'S remedial action assurance program

    International Nuclear Information System (INIS)

    Welty, C.G. Jr.; Needels, T.S.; Denham, D.H.

    1984-10-01

    The formulation and initial implementation of DOE's Assurance Program for Remedial Action are described. It was initiated in FY 84 and is expected to be further implemented in FY 85 as the activities of DOE's Remedial Action programs continue to expand. Further APRA implementation will include additional document reviews, site inspections, and program office appraisals with emphasis on Uranium Mill Tailings Remedial Action Program and Surplus Facilities Management Program

  8. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  9. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  10. 2009 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-10-01

    This report summarizes comments from the Peer Review Panel at the 2009 DOE Hydrogen Program Annual Merit Review, held on May 18-22, 2009, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; education; safety, codes, and standards; technology validation; systems analysis; and manufacturing R&D.

  11. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The FY 1988 Summary is the eleventh consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. A historical summary of the hydrogen budgets of these offices is given. The distribution by mission-related program element for FY 1988, and the non-mission-related activities are given. Total DOE funding in FY 1988 for mission-related hydrogen research was $5.2 million; DOE non-mission-related hydrogen research funding totaled $30.0 million. The individual program elements are described in the body of this report, and more specific program information is given in the Technology Summary Forms in Appendix A. 2 tabs

  12. International technology transfer to support the environmental restoration needs of the DOE complex

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Jimenez, R.D.; Roberds, W.J.

    1992-01-01

    One of the principal objectives of the International Technology Exchange Program (ITEP) is the exchange of waste management and environmental restoration (WM/ER) technologies between the US and other nations. The current emphasis of ITEP is the transfer of technologies to the US that could provide better, faster, cheaper, or safer solutions to the needs of the DOE complex. The 10 candidate technologies that have been identified thus far by ITEP are discussed. The highlights of preliminary evaluations of these technologies through a systems approach are also described. The technologies have been evaluated by a screening process to determine their applicability to the leading WM/ER needs of the DOE complex. The technologies have been qualitatively compared with the known or anticipated capabilities of domestic, base case technologies

  13. A Laser Technology Program Does Not Start with the Speed of Light.

    Science.gov (United States)

    Gebert, John H.

    1982-01-01

    Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)

  14. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  15. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  16. DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

    1991-07-01

    This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

  17. The DOE fellows program-a workforce development initiative for the US department of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, Leonel E. [Applied Research Center, Florida International University, 10555 West Flagler St, EC2100, Miami, Florida (United States)

    2013-07-01

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student

  18. The DOE fellows program-a workforce development initiative for the US department of energy

    International Nuclear Information System (INIS)

    Lagos, Leonel E.

    2013-01-01

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student

  19. 1992 update of US EPA's Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program

    International Nuclear Information System (INIS)

    Lewis, N.M.; Barkley, N.P.; Williams, T.

    1992-01-01

    The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies for use at hazardous waste sites for five years. The ETP was established under the Superfund Amendments and Reauthorization Act (SARA) of 1986. The ETP complies with the goal of the SITE Program to promote, accelerate and make commercially available the development of alternative/innovative treatment technologies for use at Superfund sites. Technologies are submitted to the ETP through yearly solicitations for Preproposals. Applicants are asked to submit a detailed project proposal and a cooperative agreement application that requires Developer/EPA cost sharing. EPA co-funds selected Developers for one to two years. Second-year funding requires documentation of significant progress during the first year. Facilities, equipment, data collection, performance and development are monitored throughout the project. The US Department of Energy (DOE) and the US Air Force (USAF) are participants in the ETP. DOE has co-funded ETP projects since 1990 and the USAF since 1991. A goal of the ETP is to move developed technologies to the field-demonstration stage. A developer may be considered for participation in the SITE Demonstration Program if performance in the ETP indicates the technology is field-ready for evaluation. Six technology categories: biological, chemical, materials handling, physical, solidification/stabilization and thermal, are presently in the ETP. Technologies of primary interest to EPA are those that can treat complex mixtures of hazardous organic and inorganic contaminants and provide improved solids handling and/or pretreatment. An account of the background and progress of the ETP's first five years is presented in this paper. Technologies currently in the ETP are noted, and developers and EPA Project Managers, are listed. 4 refs., 11 figs., 6 tabs

  20. Efficient Separations and Processing Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems

  1. The Use of DOE Technologies at The World Trade Center Incident: Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, B.; Kovach, J.; Carpenter, C.; Blair, D.

    2003-02-25

    In response to the attack of the World Trade Center (WTC) on September 11, 2001, the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) assembled and deployed a HAZMAT Emergency Management Team (Team) to the disaster site (Site). The response team consisted of a Certified Industrial Hygienist and a rotating team of industrial hygienists, safety professionals, and certified HAZMAT instructors. Through research funded by the Department of Energy (DOE) Office of Environmental Management (EM) and managed by the National Energy Technology Laboratory (NETL), the IUOE conducted human factors assessments on baseline and innovative technologies during real-world conditions and served as an advocate at the WTC disaster site to identify opportunities for the use and evaluation of DOE technologies. From this work, it is clear that opportunities exist for more DOE technologies to be made readily available for use in future emergencies.

  2. The Use of DOE Technologies at The World Trade Center Incident: Lessons Learned

    International Nuclear Information System (INIS)

    McCabe, B.; Kovach, J.; Carpenter, C.; Blair, D.

    2003-01-01

    In response to the attack of the World Trade Center (WTC) on September 11, 2001, the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) assembled and deployed a HAZMAT Emergency Management Team (Team) to the disaster site (Site). The response team consisted of a Certified Industrial Hygienist and a rotating team of industrial hygienists, safety professionals, and certified HAZMAT instructors. Through research funded by the Department of Energy (DOE) Office of Environmental Management (EM) and managed by the National Energy Technology Laboratory (NETL), the IUOE conducted human factors assessments on baseline and innovative technologies during real-world conditions and served as an advocate at the WTC disaster site to identify opportunities for the use and evaluation of DOE technologies. From this work, it is clear that opportunities exist for more DOE technologies to be made readily available for use in future emergencies

  3. 34 CFR 403.150 - What activities does the Secretary support under the Consumer and Homemaking Education Programs?

    Science.gov (United States)

    2010-07-01

    ... EDUCATION STATE VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM What Kinds of Activities Does the...; (ix) Conserving limited resources; (x) Understanding the impact of new technology on life and work... 34 Education 3 2010-07-01 2010-07-01 false What activities does the Secretary support under the...

  4. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  5. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  6. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  7. Greenhouse effect. DOE's programs and activities relevant to the global warming phenomenon

    International Nuclear Information System (INIS)

    Allen, Robert E. Jr.; Iager, Richard E.; Che, Deborah

    1990-03-01

    While considerable understanding of global climate systems has been gained in the past few years, major sources of uncertainty remain, including the role played by factors such as cloud cover, oceans, and vegetation growth. To help fill these information gaps, DOE undertakes direct research and collects data needed for carbon and climate system models used to predict potential climate changes. These direct research and development efforts represent a requested $28 million in fiscal year 1990 funds, an increase of about $5 million over fiscal year 1989 funding. DOE also conducts a wide range of other research development and demonstration programs it considers indirectly related to the global warming issue, including efforts to increase energy efficiencies, promote conservation, and develop non-fossil energy technologies. For fiscal year 1990, DOE requested about $1.3 billion for these program areas, about $330 million more than the fiscal year 1989 funding level. In these program areas DOE has not established any written criteria or guidance to give special priority to projects on the basis of their relevance or potential impact on global climate change. Senior DOE officials stated that management considers the issue when making funding decisions. In July 1989, the Secretary of Energy established six principles that will form DOE's approach to the global climate change issue, and stated that the issue will be a central part of DOE's efforts to develop a new National Energy Strategy. In addition, several management initiatives have been taken that were related to the issue. These efforts have included compiling an inventory of DOE programs relevant to the issue, organizing a global warming conference, and establishing a DOE Climate Issue Response Group. Public and private organizations, including the Environmental Protection Agency and the World Resources Institute, have made many proposals to address global warming. Generally, the proposals suggested increasing

  8. DOE's Phytoremediation Program

    International Nuclear Information System (INIS)

    Levine, R.S.

    1996-01-01

    This presentation contains an outline of the US DOE's phytoremediation program. A brief overview of the goals, infrastructure, and results of the program is presented. Environmental contaminants addressed include chlorinated hydrocarbons, metals, radionuclides, inorganic wastes, and mixed hazardous and radioactive wastes. Studies of soil remediation using phytoextraction and water remediation using rhizofiltration are briefly described

  9. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented

  10. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  11. The DOE Office of Environmental Management International Cooperative Program: Current Status and Plans for Expansion

    International Nuclear Information System (INIS)

    Gerdes, Kurt D.; Han, Ana M.; Marra, James C.; Fox, Kevin M.; Peeler, David K.; Smith, Michael E.; Jannik, Gerald T.; Farfan, Eduardo B.; Kim, Dong-Sang; Vienna, John D.; Roach, Jay; Aloy, A.S.; Stefanovsky, S.V.; Bondarkov, M.D.; Lopukh, D.P.; Kim, Chenwoo

    2009-01-01

    The DOE-EM Office of Engineering and Technology is responsible for implementing EM's international cooperative program. The Office of Engineering and Technology's international efforts are aimed at supporting EM's mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute (KRI) and the SIA Radon Institute in Russia and the Ukraine's International Radioecology Laboratory (IRL). Additionally, a task was recently completed with the Nuclear Engineering Technology Institute (NETEC) in South Korea. The objectives of these collaborations were to explore issues relating to high-level waste and to investigate technologies that could be leveraged to support EM site cleanup needs. In FY09, continued collaboration with the current partners is planned. Additionally, new research projects are being planned to expand the International Program. A collaborative project with Russian Electrotechnical University is underway to evaluate CCIM control and monitoring technologies. A Statement of Intent was recently signed between DOE-EM and the U.K. Nuclear Decommissioning Authority (NDA) to work cooperatively on areas of mutual interest. Under this umbrella, discussions were held with NDA representatives to identify potential areas for collaboration. Information and technical exchanges were identified as near-term actions to help meet the objectives of the Statement of Intent. Technical exchanges in identified areas are being pursued in FY09.

  12. DOE-EERC jointly sponsored research program

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikson, J.G.; Sondreal, E.A.

    1999-09-01

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

  13. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  14. Coding a Weather Model: DOE-FIU Science & Technology Workforce Development Program.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Jon David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    DOE Fellow, Andres Cremisini, completed a 10-week internship with Sandia National Laboratories (SNL) in Albuquerque, New Mexico. Under the management of Kristopher Klingler and the mentorship of Jon Bradley, he was tasked with conceiving and coding a realistic weather model for use in physical security applications. The objective was to make a weather model that could use real data to accurately predict wind and precipitation conditions at any location of interest on the globe at any user-determined time. The intern received guidance on software design, the C++ programming language and clear communication of project goals and ongoing progress. In addition, Mr. Cremisini was given license to structure the program however he best saw fit, an experience that will benefit ongoing research endeavors.

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  18. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Westfall, R.M.; McKnight, R.D.

    2005-01-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG).The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations

  19. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  20. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. G.

    2005-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  1. DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2006-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  2. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  3. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  4. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  5. Kentucky DOE-EPSCoR Program

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  6. Divison of Environmental Control Technology program, 1978

    International Nuclear Information System (INIS)

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above

  7. Divison of Environmental Control Technology program, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Mott, William E.

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above.

  8. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim [ed.

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  9. The US DOE EM international program

    Energy Technology Data Exchange (ETDEWEB)

    Elmetti, Rosa R.; Han, Ana M. [U.S. Department of Energy, Washington, D.C. (United States); Roach, Jay A. [Nexergy Technical, LLC., Falls Church, Virginia (United States)

    2013-07-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) conducts international collaboration activities in support of U.S. policies and objectives regarding the accelerated risk reduction and remediation of environmental legacy of the nations' nuclear weapons program and government sponsored nuclear energy research. The EM International Program supported out of the EM Office of the Associate Principal Deputy Assistant Secretary pursues collaborations with foreign government organizations, educational institutions and private industry to assist in identifying technologies and promote international collaborations that leverage resources and link international experience and expertise. In fiscal year (FY) 2012, the International Program awarded eight international collaborative projects for work scope spanning waste processing, groundwater and soil remediation, deactivation and decommissioning (D and D) and nuclear materials disposition initiatives to seven foreign organizations. Additionally, the International Program's scope and collaboration opportunities were expanded to include technical as well as non-technical areas. This paper will present an overview of the on-going tasks awarded in FY 2012 and an update of upcoming international activities and opportunities for expansion into the remainder of FY 2013 and beyond. (authors)

  10. 77 FR 73458 - Vehicle Technologies Program; Request for Information

    Science.gov (United States)

    2012-12-10

    ... improving the electronic tools it makes available to assist fleets and consumers in reducing petroleum consumption in vehicles. DOE is seeking partners interested in including customized versions of the electronic...-0049] Vehicle Technologies Program; Request for Information AGENCY: Office of Energy Efficiency and...

  11. DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-16

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  12. DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-11-01

    The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2016, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  13. DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, J.

    2007-09-01

    This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  14. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  15. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1985-01-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses program to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  16. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  17. Efficient Separations and Processing Integrated Program (ESP-IP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. These wastes and environmental problems, located at more than 100 contaminated installations in 36 states and territories, are the result of half a century of nuclear processing activities by DOE and its predecessor organizations. The cost of cleaning up this legacy has been estimated to be of the order of hundreds of billions of dollars, and ESPIP's origin came with the realization that if new separations and processes can produce even a marginal reduction in cost then billions of dollars will be saved. The ultimate mission for ESPIP, as outlined in the ESPIP Strategic Plan, is: to provide Separations Technologies and Processes (STPS) to process and immobilize a wide spectrum of radioactive and hazardous defense wastes; to coordinate STP research and development efforts within DOE; to explore the potential uses of separated radionuclides; to transfer demonstrated separations and processing technologies developed by DOE to the US industrial sector, and to facilitate competitiveness of US technology and industry in the world market. Technology research and development currently under investigation by ESPIP can be divided into four broad areas: cesium and strontium removal; TRU and other HLW separations; sludge technology, and other technologies

  18. The applicability of DOE solar cell and array technology to space power

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    An evaluation of the main terrestrial photovoltaic development projects was performed. Technologies that may have applicability to space power are identified. Where appropriate, recommendations are made for programs to capitalize on developed technology. It is concluded that while the funding expended by DOE is considerably greater than the space (NASA and DOD) budget for photovoltaics, the terrestrial goals and the means for satisfying them are sufficiently different from space needs that little direct benefit currently exists for space applications.

  19. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1984-10-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses progress to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  20. Technology Roadmap Research Program for the Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  1. Nuclear science. U.S. electricity needs and DOE's civilian reactor development program

    International Nuclear Information System (INIS)

    England-Joseph, Judy; Allen, Robert E. Jr.; Fitzgerald, Duane; Young, Edward E. Jr.; Leavens, William P.; Bell, Jacqueline

    1990-05-01

    Electricity projections developed by the North American Electric Reliability Council (NERC) appear to be the best available estimates of future U.S. electricity needs. NERC, which represents all segments of the utility industry, forecasts that before 1998 certain regions of the country, particularly in the more heavily populated eastern half of the United States, may experience shortfalls during summer peak demand periods. These forecasts considered the utility companies' plans, as of 1989, to meet electricity needs during the period; these plans include such measures as constructing additional generators and conducting demand management programs. Working closely with the nuclear industry, DOE is supporting the development of several reactor technologies to ensure that nuclear power remains a viable electricity supply option. In fiscal year 1990, DOE's Civilian Reactor Development Program was funded at $253 million. DOE is using these funds to support industry-led efforts to develop light water reactors (LWR), advanced liquid-metal reactors (LMR), and modular high-temperature gas-cooled reactors (MHTGR) that are safe, environmentally acceptable, and economically competitive. The utility company officials we spoke with, all of whom were in the Southeast, generally supported DOE's efforts in developing these technologies. However, most of the officials do not plan to purchase nuclear reactors until after 2000 because of the high costs of constructing nuclear reactors and current public opposition to nuclear power

  2. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991

    International Nuclear Information System (INIS)

    1991-07-01

    The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the body of this report, and more specific program information can be found in the Technology Summary Forms in Appendix A

  3. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  4. The U. S. DOE Carbon Storage Program: Status and Future Directions

    Science.gov (United States)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations

  5. The USAID/DOE Mexico Renewable Energy Program: Using technology to build new markets

    Science.gov (United States)

    Hanley, Charles J.

    1997-02-01

    Under the Mexico Renewable Energy Program, managed by Sandia National Laboratories, sustainable markets for renewable energy technologies are developed through the implementation of pilot projects. Sandia provides technical assistance to several Mexican rural development organizations so they can gain the technical and institutional capability to appropriately utilize renewables within their ongoing programs. Activities in the area of water pumping have shown great replication potential, where the tremendous rural demand for water represents a potential renewable market of over 2 billion. Thirty-six photovoltaic water pumping projects have been installed thus far in the Mexican states of Chihuahua, Sonora, Baja California Sur, and Quintana Roo, and 60 more will be implemented this year. The majority of these projects are in partnership with the Mexican Trust for Shared Risk (FIRCO), which has asked Sandia for assistance in extending the program nationwide. This replication is beginning in five new states, and will continue to grow. Sandia is keeping the U.S. renewable energy industry involved in the program through facilitating partnerships between U.S. and Mexican vendors, and through commercialization assistance with new systems technologies. The program is sponsored by the Department of Energy and the U.S. Agency for International Development.

  6. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  7. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  8. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  9. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  10. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  11. Self-imposed self-assessment program at a DOE Nuclear Facility

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Loud, J.J.; Walter, E.C.

    1996-01-01

    The Nuclear Materials and Technology (NMT) Division at Los Alamos National Laboratory (LANL) has implemented a performance-based self-assessment program at the TA-55 plutonium facility. The program was conceptualized and developed by LANL's internal assessment group, AA-2. The management walkaround program fosters continuous improvement in NMT products and performance of its activities. The program, based on experience from the Institute of Nuclear Power Operations, is endorsed at the site by the U.S. Department of Energy (DOE) Environment, Safety, and Health (ES ampersand H) personnel and by the Defense Nuclear Facility Safety Board. The self-assessment program focuses on how work is actually performed rather than on paperwork or process compliance. Managers critically and continually assess ES ampersand H, conduct of operations, and other functional area requirements

  12. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  13. Retrospective Benefit-Cost Evaluation of U.S. DOE Wind Energy R&D Program: Impact of Selected Energy Technology Investments

    Energy Technology Data Exchange (ETDEWEB)

    Pelsoci, Thomas M. [Delta Research Co., Evanston, IL (United States)

    2010-06-01

    This benefit-cost analysis focuses on the DOE Wind Energy Program's public sector R&D investments and returns. The analysis accounts for the program's additionality – that is, comparing what has happened as a result of the program to what would have happened without it. The analysis does not address the return on the investments of private companies ("private returns"). Public returns on the program's investments from 1976 to 2008 are identified and analyzed using retrospective analysis.

  14. Plutonium stabilization and storage research in the DNFSB 94-1 core technology program

    International Nuclear Information System (INIS)

    Eller, P.G.; Avens, L.R.; Roberson, G.D.

    1998-04-01

    Recommendation 94-1 of the Defense Nuclear Facility Safety Board (DNFSB) addresses legacy actinide materials left in the US nuclear defense program pipeline when the production mission ended in 1989. The Department of Energy (DOE) Implementation Plan responding to this recommendation instituted a Core Technology program to augment the knowledge base about general chemical and physical processing and storage behavior and to assure safe interim nuclear material storage, until disposition policies are formulated. The Core Technology program focuses on plutonium, in concert with a complex-wide applied R/D program administered by Los Alamos National Laboratory. This paper will summarize the Core Technology program's first two years, describe the research program for FY98, and project the overall direction of the program in the future

  15. Office of Industrial Technologies: Summary of program results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  16. Technology Integration Division FY 1992 Public Participation Program Management and Implementation Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Office of Technology Development (OTD), to develop and apply existing and innovative environmental restoration and waste management technologies to the cleanup to Department of Energy (DOE) sites and facilities in accordance with applicable regulations, is to be carried out through the central mechanisms of the Integrated Demonstration (ID) and Integrated Program (IP). Regulations include provisions for public participation in DOE decision making regarding IDs. Beyond these requirements, DOE seeks to foster a more open culture in which public participation, based on two-way communication between DOE and the public, is not only welcomed, but actively encouraged. The public to which the Program is addressed actually consists of several distinct ''publics:'' state and local government officials; Indian tribes; citizen groups and individuals concerned about specific issues; citizen groups or individuals who are opinion leaders in their communities; other federal agencies; private industry; and academia involved in IDs. Participation of these publics in decision making means that their concerns, needs, objectives, and other input are identified by two-way communication between them and DOE, and that these factors are considered when decisions made about OTD activities. This plan outlines the TIPs Public Participation Program goals, objectives, and steps to be taken during Fiscal Year (FY) 1992 to move toward those goals and objectives, based on the challenges and opportunities currently recognized or assumed

  17. Proceedings of the 1995 U.S. DOE hydrogen program review. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 1995 US DOE Hydrogen Program Review was held April 18-21, 1995 in Coral Gables, FL. Volume II of the Proceedings contains 8 papers presented under the subject of hydrogen storage and 17 papers presented on hydrogen production. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  19. The USAID/DOE Mexico Renewable Energy Program: Using technology to build new markets

    International Nuclear Information System (INIS)

    Hanley, C.J.

    1997-01-01

    Under the Mexico Renewable Energy Program, managed by Sandia National Laboratories, sustainable markets for renewable energy technologies are developed through the implementation of pilot projects. Sandia provides technical assistance to several Mexican rural development organizations so they can gain the technical and institutional capability to appropriately utilize renewables within their ongoing programs. Activities in the area of water pumping have shown great replication potential, where the tremendous rural demand for water represents a potential renewable market of over $2 billion. Thirty-six photovoltaic water pumping projects have been installed thus far in the Mexican states of Chihuahua, Sonora, Baja California Sur, and Quintana Roo, and 60 more will be implemented this year. The majority of these projects are in partnership with the Mexican Trust for Shared Risk (FIRCO), which has asked Sandia for assistance in extending the program nationwide. This replication is beginning in five new states, and will continue to grow. Sandia is keeping the U.S. renewable energy industry involved in the program through facilitating partnerships between U.S. and Mexican vendors, and through commercialization assistance with new systems technologies. The program is sponsored by the Department of Energy and the U.S. Agency for International Development. copyright 1997 American Institute of Physics

  20. DOE program for transportation R and D: a progress report

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1978-01-01

    The Transportation Branch of the Division of Environmental Control Technology (ECT), US Department of Energy (DOE), is managing a research and development program oriented toward the environmental and safety aspects of the transportation of energy materials. This program was started under the US Energy Research and Development Administration (ERDA), and in October 1977 became one of the programs of the newly formed DOE. The objectives of the current R and D program include: (1) development of data and methodology for environment and safety (E and S) assessments including development of transportation environmental data, severe accident analysis and risk assessment; (2) confirmatory full-scale testing of package and vehicular systems to improve scale modeling and analytical techniques for transport system safety assessment; (3) development of an improved capability for assessing the dynamic performance of nuclear packaging under severe accident conditions; (4) evaluation and verification of existing transportation standards to assure adequate environmental controls; and (5) development of the needed information system tools such as films, booklets, and exhibits to permit the public and other interested parties to have access to the results of the R and D program. This paper summarizes the history of this program, describes the accomplishments, includes references to published reports, and discusses the current status of the environmental and safety R and D program as related to transportation of energy material. Comments are also included regarding the future direction of the program

  1. The Department of Energy's safeguards and security technology development program

    International Nuclear Information System (INIS)

    Smith, G.D.; Pocratsky, C.A.

    1995-01-01

    The US DOE has had a program that develops technologies to protect sensitive nuclear weapons facilities for more than thirty years. The mission of the program is overwhelmingly diverse, as it must be to protect an array of assets such as nuclear weapons, special nuclear material in various forms, components of nuclear weapons, and classified nuclear weapons design information. Considering that the nuclear weapons complex consists of dozens of facilities that are scattered all over the US, the technology development mission is very challenging. Complicating matters further is the ever uncertain future of the DOE. Some examples of dramatic Departmental mission changes that directly impact their security technology development program are given. A few development efforts are highlighted as examples of efforts currently being sponsored. They are: automated sensor testing devices to help reduce the requirement for personnel to enter vaults containing highly radioactive nuclear materials; a vehicle inspection portal to screen vehicles for hidden passengers, nuclear material, explosives, and other contraband; non-lead and short-range ammunition as an environmentally safe alternative to lead ammunition; a complex-wide visitor access control system to allow all DOE employees to travel to all sites with a commonly recognized credential; automated nuclear material monitoring technologies to provide assurance that material in storage has not been tampered with; laser radar as a potential solution to early warning deficiencies throughout the Department; performance testing standards for many security products to include an automated and consistent standard for assessing the quality of video; low temperature pyrotechnic smoke as a possible adversary delay mechanism; modular vaults to provide temporary protection for nuclear material during D and D activities, and a protection approach for restricted passage areas such as the volume above a tiled ceiling or within a crawl space

  2. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  3. PNNL FY2005 DOE Voluntary Protection Program (VPP) Program Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Patrick A.; Madson, Vernon J.; Isern, Nancy G.; Haney, Janice M.; Fisher, Julie A.; Goheen, Steven C.; Gulley, Susan E.; Reck, John J.; Collins, Drue A.; Tinker, Mike R.; Walker, Landon A.; Wynn, Clifford L.

    2005-01-31

    This document reports the results of the FY 2005 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

  4. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    Smith, D.E.

    1998-01-01

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  5. Laser Science and Technology Program Update 2001

    International Nuclear Information System (INIS)

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LSandT provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LSandT activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers

  6. Overview of the DOE-EM Packaging Certification Program

    International Nuclear Information System (INIS)

    Feldman, M.R.; Bennett, M.E.; Shuler, J.M.

    2009-01-01

    The U.S. Department of Transportation, in 49 CFR 173.7(d) grants the U.S. Department of Energy (DOE) the power to use 'packagings made by or under the direction of the U.S. Department of Energy... for the transportation of Class 7 materials when evaluated, approved and certified by the Department of Energy against packaging standards equivalent to those specified in 10 CFR part 71'. Via DOE Order 460.1B, DOE has established the DOE Packaging Certification Program (PCP) within the Department of Environmental Management for purposes including the certification of radioactive materials packages for DOE use. This paper will provide an overview of the programs and activities currently undertaken by the PCP in support of the safe transport of radioactive materials, including technical review of Safety Analysis Reports for Packaging, development of guidance documents and training courses, a quality assurance audit and field assessment program, database and docket management, and testing and test methodology development. The paper will also highlight the various organizations currently utilized by the PCP to meet the requirements of DOE O 460.1B, as well as some creative and effective methods that are being used to meet program objectives. The DOE Package Certification Program's primary function is to perform technical reviews of SARPs in support of the packaging certification process to ensure that the maximum protection is afforded to the public, all federal regulations are met, and the process is as time-effective and cost-effective as possible. Five additional specific functions are also supported by the PCP: development of guidance documents, training courses, a QA audit and field assessment program, database and docket management, and testing methods development. Each of these functions individually contributes to the overall mission of the PCP as defined in DOE O 460.1B. Taken as a whole, these functions represent a robust program to ensure the safety of workers

  7. Proceedings of the 1994 DOE/NREL Hydrogen Program Review, April 18--21, 1994, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US Department of Energy has conducted programs of research and development in hydrogen and related technologies since 1975. The current program, conducted in accordance with the DOE Hydrogen Program Plan FY 1993--FY 1997 published in June 1992, establishes program priorities and guidance for allocating funding. The core program, currently under the Office of Energy Management, supports projects in the areas of hydrogen production, storage, and systems research. At an annual program review, each research project is evaluated by a panel of technical experts for technical quality, progress, and programmatic benefit. This Proceedings of the April 1994 Hydrogen Program Review compiles all research projects supported by the Hydrogen Program during FY 1994. For those people interested in the status of hydrogen technologies, we hope that the Proceedings will serve as a useful technical reference. Individual reports are processed separately.

  8. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  9. DOE New Technology: Sharing New Frontiers, April 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, A.T.; Henline, D.M. [eds.

    1993-12-01

    The purpose of DOE New Technology is to provide information on how to access specific technologies developed through research sponsored by DOE and performed by DOE laboratories or by DOE-contracted researchers. This document describes technologies identified as having potential for commercial applications in addition to a catalog of current patent applications and patents available for licensing from DOE and DOE contractors.

  10. Update on DOE's Nuclear Energy University Program

    International Nuclear Information System (INIS)

    Lambregts, Marsha J.

    2009-01-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  11. DOE Radiological Control Manual Core Training Program

    International Nuclear Information System (INIS)

    Scott, H.L.; Maisler, J.

    1993-01-01

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program

  12. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  13. An overview of the U.S. Department of Energy's program for liquid metal reactor seismic technology

    International Nuclear Information System (INIS)

    Jetter, R.I.; Seidensticker, R.W.

    1988-01-01

    During the past decade, the U.S. Department of Energy (DOE) has sponsored the development of seismic design technology in support of Liquid Metal Reactors (LMR's). This has been accomplished through 1) major projects such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), 2) base technology programs and 3) support to the design development of innovative LMR's, SAFR and PRISM. These developments have come in the areas of ground motion definition, soil-structure interaction, seismic isolation, fluid-structure interaction and structural analysis methods and criteria for equipment and components such as piping, reactor core and vessels. The initial developments in seismic design technology by DOE and others were directed toward ensuring that the plant, equipment and components had sufficient seismic resistance to ensure availability after an Operations Basis Earthquake (OBE) and to survive a Safe Shutdown Earthquake (SSE). During this period, the emphasis on conservative design had significant cost impacts. The current focus is directed toward a better understanding of seismic design margins and the development of methods to reduce seismic loads on plant and equipment and to enhance siting flexibility. From this perspective, the DOE is currently reassessing the needs and priorities for future seismic technology development. Coordination with University research programs and ongoing seismic technology development sponsored by other governmental agencies and institutions is an integral part of this planning process. The purpose of this paper is to highlight the current status of DOE's seismic technology program for LMR's and to provide an overview of future areas of interest. (author). 7 refs

  14. The DOE Laboratory Accreditation Program 8 years later

    International Nuclear Information System (INIS)

    Cummings, R.; Kershisnik, R.; Taylor, T.; Grothaus, G.; Loesch, R.M.

    1994-01-01

    The DOE Laboratory Accreditation Program was implemented in 1986. Currently, the program is conducting its seventeenth performance testing session for whole body personnel dosimeters. All but two DOE laboratories have gained accreditation for their whole body personnel dosimetry systems. Several test situations which were anticipated in the early stages of DOELAP have not materialized. In addition, the testing standard for whole body personnel dosimetry systems is under review and revision. In the near future, the accreditation programs for extremity dosimetry and bioassay will be implemented. This presentation summarizes the status and anticipated direction of the DOE whole body and extremity dosimetry and bioassay laboratory accreditation program

  15. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  16. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    International Nuclear Information System (INIS)

    Hackel, L; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LSandT activities during 2002 focused on seven major areas: (1) NIF Project-LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LSandT continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LSandT continued development of a 100 kw-class solid-state heat-capacity laser

  17. Laser Science and Technology Program Update 2002

    International Nuclear Information System (INIS)

    Hackel, L A; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LSandT activities during 2002 focused on seven major areas: (1) NIF Project--LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3ω optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  18. RE/SPEC Inc. technical support to the Repository Technology Program

    International Nuclear Information System (INIS)

    Wagner, R.A.

    1992-06-01

    This report presents a summary of all RE/SPEC Inc. technical support activities to the Repository Technology Program (RTP) from September 1, 1988, through June 30, 1992. The RE/SPEC Inc. activities are grouped into the following categories: project management, project quality assurance (QA), performance assessment (PA), support of the Office of Civilian Radioactive Waste Management (OCRWM) through technical reviews and general assistance, participation in the Department of Energy (DOE) International Program, and code evaluation and documentation

  19. Evaluating Realized Impacts of DOE/EERE R&D Programs. Standard impact evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting, Inc. (United States); O' Connor, Alan C. [RTI International, Research Triangle Park, NC (United States); Loomis, Ross J. [RTI International, Research Triangle Park, NC (United States)

    2014-08-01

    This document provides guidance for evaluators who conduct impact assessments of research and development (R&D) programs for the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE). It is also targeted at EERE program staff responsible for initiating and managing commissioned impact studies. The guide specifies how to estimate economic benefits and costs, energy saved and installed or generated, environmental impacts, energy security impacts, and knowledge impacts of R&D investments in advanced energy technologies.

  20. Fossil fuels. Pace and focus of the clean coal technology program need to be assessed

    International Nuclear Information System (INIS)

    Fowler, James A.; Clark, Marcus R. Jr.; Kovalak, Francis J.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1990-03-01

    DOE developed an elaborate process for evaluating, ranking, and selecting round-two project proposals. The criteria used to evaluate and select proposals for funding generally conformed to congressional and other program guidance. Also, the evaluation and selection process provided reasonable assurance that proposals were consistently and thoroughly evaluated and that projects were selected using the applicable criteria. GAO's analysis the evaluation and selection process showed that DOE picked the highest-ranked proposals submitted for the various mix of technologies that it was interested in seeing demonstrated. Of the 16 projects DOE selected in round two, 12 were rated weak in meeting certain of the evaluation criteria. Nine of the projects were rated weak in meeting the criterion that a project's technology has the potential to reduce nationwide emissions that cause acid rain. Although emphasis was to be focused on coal-burning projects nationwide to reduce emissions that cause acid rain, it still was only one of many criteria to be considered in evaluating proposals. If DOE had picked more projects with greater potential to reduce nationwide emissions from coal-fired facilities, it would have resulted in (1) the selection of lower ranked projects demonstrating technologies similar to the projects that were selected, and (2) projects selected which may not be successfully demonstrated or commercialized because of weaknesses in other criteria. GAO also noted that half of the 48 proposals that were evaluated in round-two fared poorly against 3 or more of the evaluation criteria. This could indicate that DOE may have problems in identifying and funding additional promising clean coal technology projects in future rounds. Furthermore, GAO's past work has shown that problems have delayed finalizing project cooperative agreements, delayed completion of various project phases, and extended the estimated completion dates for some projects in round-one. As of December

  1. 48 CFR 952.219-70 - DOE Mentor-Protege program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE Mentor-Protege program... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 952.219-70 DOE Mentor.... DOE Mentor-Protege Program (MAY 2000) The Department of Energy has established a Mentor-Protege...

  2. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  3. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  4. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  5. The DOE/EM facility transition program

    International Nuclear Information System (INIS)

    Bixby, W.

    1994-01-01

    The mission of EM-60 is to plan, implement, and manage receipt of surplus facilities resulting from downsizing of the DOE Weapons Complex facilities and DOE operating program offices to EM, and to ensure prompt deactivation of such facilities in order to reach a minimum surveillance and maintenance condition. The revised organizational structure of EM-60 into four offices (one at headquarters, and the other three at field sites), reflects increased operating functions associated with deactivation, surveillance, and maintenance of facilities. EM-60's deactivation and transition role concerns technical, socioeconomic, institutional, and administrative issues. The primary objective of the deactivation process is to put facilities in the lowest surveillance and maintenance condition safely and quickly by driving down the open-quotes mortgageclose quotes costs of maintaining them until final disposition. EM-60's three key activities are: (1) Inventory of surplus facilities - The 1993 Surplus Facility Inventory and Assessment (SFIA) serves as a planning tool to help the Department and EM-60 determine optimal transition phasing, with safety and cost-effectiveness remaining a priority. (2) Management of accelerated facility life cycle transition - Transitions currently underway illustrate site issues. These include addressing the interests of federal and state regulatory agencies as well as interests of local stakeholders, safe management of large amounts of production residues, and options for treatment, storage, transportation, and disposal. Of equal importance in the transition process is planning the optimal transition of the labor force. (3) Economic development - to address the socio-economic impacts on affected communities of the severe and rapid downsizing of the DOE Weapons Complex, DOE is pursuing an approach that uses the land, equipment, technology assets, and highly skilled local workforces as a basis for alternative economic development

  6. 25 CFR 103.2 - Who does the Program help?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who does the Program help? 103.2 Section 103.2 Indians... INTEREST SUBSIDY General Provisions § 103.2 Who does the Program help? The purpose of the Program is to... direct function of the Program is to help lenders reduce excessive risks on loans they make. That...

  7. 1997 DOE technical standards program workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Department of Energy held its annual Technical Standards Program Workshop on July 8--10, 1997, at the Loews L`Enfant Plaza Hotel in Washington, DC. The workshop focused on aspects of implementation of the National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] and the related revision (still pending) to OMB Circular A119 (OMB A119), Federal Participation in the Development and Use of Voluntary Standards. It also addressed DOE`s efforts in transitioning to a standards-based operating culture, and, through this transition, to change from a developer of internal technical standards to a customer of external technical standards. The workshop was designed to provide a forum to better understand how the new law is affecting Department activities. Panel topics such as ``Public Law 104-113 and Its Influence on Federal Agency Standards Activities`` and ``Update on Global Standards Issues`` provided insight on both the internal and external effects of the new law. Keynote speaker Richard Meier of Meadowbrook International (and formerly the Deputy Assistant US Trade Representative) addressed the subject of international trade balance statistics. He pointed out that increases in US export figures do not necessarily indicate increases in employment. Rather, increased employment results from product growth. Mr Meier also discussed issues such as the US migration to the sue of the metric system, the impact of budget limitations on Government participation in voluntary standards organizations, international standards ISO 9000 and ISO 14000, and DOE`s role in the worldwide transition from weapons production to cleanup.

  8. Technology development for DOE SNF management

    International Nuclear Information System (INIS)

    Hale, D.L.; Einziger, R.E.; Murphy, J.R.

    1995-01-01

    This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites

  9. In Situ Remediation Integrated Program: Evaluation and assessment of containment technology

    International Nuclear Information System (INIS)

    Gerber, M.A.; Fayer, M.J.

    1994-06-01

    Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy's (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities

  10. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  11. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  12. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    Science.gov (United States)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  13. Hydrogen, Fuel Cells & Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    This plan details the goals, objectives, technical targets, tasks and schedule for EERE's contribution to the DOE Hydrogen Program. Similar detailed plans exist for the other DOE offices that make up the Hydrogen Program.

  14. The US DOE Office of Environmental Management International Cooperative Program: Current Status and Plans for Expansion

    International Nuclear Information System (INIS)

    Gerdes, K.D.; Han, A.M.; Marra, J.C.; Fox, K.M.; Peeler, D.K.; Smith, M.E.; Jannik, G.T.; Farfan, E.B.; Kim, D.S.; Vienna, J.D.; Roach, J.A.; Aloy, A.S.; Stefanovsky, S.V.; Bondarkov, M.D.; Lopukh, D.P.; Kim, C.W.

    2009-01-01

    The Department of Energy Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's international cooperative program. The Office of Engineering and Technology's international efforts are aimed at supporting EM's mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute (KRI) and the SIA Radon Institute in Russia and the Ukraine's International Radioecology Laboratory (IRL). Additionally, a task was recently completed with the Nuclear Engineering Technology Institute (NETEC) in South Korea. The objectives of these collaborations were to explore issues relating to high-level waste management and to investigate technologies that could be leveraged to support EM site cleanup needs. The initiatives in Russia and South Korea were aimed at evaluating and advancing technologies to support U.S. high-level waste vitrification initiatives. The work at KRI was targeted at improving the throughput of current vitrification processes by increasing melting rate and/or waste loading. The objectives of the efforts conducted at SIA Radon and NETEC were to evaluate advanced melter technologies to make dramatic increases in waste loading and throughput. The collaborative effort conducted with the IRL in the Ukraine has the following objectives: - Assess the long-term impacts to the environment from radiation exposure within the Chernobyl Exclusion Zone (ChEZ); - Provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories based on the results of long-term field

  15. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  16. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  17. The CFFTP technology applications program

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Canadian Fusion Fuels Technology Project (CFFTP) was originally conceived as having a Technology Applications Program to help fulfill its mandate of extending and adapting existing Canadian technology for use in international fusion programs. This technology was determined to be materials, breeder technology, remote handling, health and saftey, and tritium fuel systems. The CFFTP Applications Program has done work for the STARFIRE, MARS and TFTR reactors as well as developing two computer codes for tritium fuel systems. In the future the Technology Applications Program will be involved in the Tokamak Fusion Core Experiment (TFCX) as well as work for NET, JET and Frascati

  18. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  19. Technology catalogue. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  20. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  1. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  2. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  3. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE's goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD's RDDT and E

  4. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  5. Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM's mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST's primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries

  6. Phase I Report, US DOE GRED II Program

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank Engineering Ltd.

    2003-04-23

    Noramex Corporation Inc, a Nevada company, owns a 100% interest in geothermal leases at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The company is exploring the site for a geothermal resource suitable for development for electric power generation or In the spring of 2002, Noramex drilled the first geothermal observation hole at Blue Mountain, under a cost-share program with the U.S Department of Energy (DOE), under the DOE's Geothermal Exploration and Resource Definition (GRED) program, (Cooperative Agreement No. DE-FC04-00AL66972). DEEP BLUE No.1 was drilled to a total depth of 672.1 meters (2205 feet) and recorded a maximum temperature of 144.7 C (292.5 F). Noramex Corporation will now drill a second slim geothermal observation test hole at Blue Mountain, designated DEEP BLUE No.2. The hole will be drilled under a cost-share program with the DOE, under the DOE's Geothermal Exploration and Resource Definition II (GRED II) program, (Cooperative Agreement No. DE-FC04-2002AL68297). This report comprises Phase I of Cooperative Agreement No. DE-FC04-2002AL68297 of the GRED II program. The report provides an update on the status of resource confirmation at the Blue Mountain Geothermal Area, incorporating the results from DEEP BLUE No.1, and provides the technical background for a second test hole. The report also outlines the proposed drilling program for slim geothermal observation test hole DEEP BLUE No.2.

  7. Development of tritium technology for the United States magnetic fusion energy program

    International Nuclear Information System (INIS)

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos

  8. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  9. DOE Matching Grant Program; FINAL

    International Nuclear Information System (INIS)

    Dr Marvin Adams

    2002-01-01

    OAK 270 - The DOE Matching Grant Program provided$50,000.00 to the Dept of N.E. at TAMU, matching a gift of$50,000.00 from TXU Electric. The$100,000.00 total was spent on scholarships, departmental labs, and computing network

  10. Technology Commercialization Program 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  11. Clean Coal Technology Demonstration Program: Program Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  12. Mixed Waste Integrated Program -- Problem-oriented technology development

    International Nuclear Information System (INIS)

    Hart, P.W.; Wolf, S.W.; Berry, J.B.

    1994-01-01

    The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed

  13. A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

    2008-05-19

    This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energy’s Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped

  14. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  15. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L. [Florida Solar Energy Center, Cocoa, FL (United States); Sleiti, Ahmad [Univ. of North Carolina, Charlotte, NC (United States)

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

  16. Developing a model lifeline protection program for DOE facilities

    International Nuclear Information System (INIS)

    Lowing, A.N.

    1996-01-01

    A National Lifeline Standard Development Program is currently being conducted by FEMA and NIST. The Department of Energy is following these developments and supplementing them to meet Life-Safety and mission requirements for all DOE facilities as part of the Natural Phenomena Hazards Mitigation Plan. The task will be overseen by a DOE management team with technical guidance provided by a Steering Group of management and operating contractor representatives. The DOE will participate in the federal program by conducting a workshop on lifeline protection issues, developing an overall plan, organizing a Steering Group, and conducting a pilot study at a DOE facility

  17. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative

  18. Recommended safety, reliability, quality assurance and management aerospace techniques with possible application by the DOE to the high-level radioactive waste repository program

    International Nuclear Information System (INIS)

    Bland, W.M. Jr.

    1985-05-01

    Aerospace SRQA and management techniques, principally those developed and used by the NASA Lyndon B. Johnson Space Center on the manned space flight programs, have been assessed for possible application by the DOE and the DOE-contractors to the high level radioactive waste repository program that results from the implementation of the NWPA of 1982. Those techniques believed to have the greatest potential for usefulness to the DOE and the DOE-contractors have been discussed in detail and are recommended to the DOE for adoption; discussion is provided for the manner in which this transfer of technology can be implemented. Six SRQA techniques and two management techniques are recommended for adoption by the DOE; included with the management techniques is a recommendation for the DOE to include a licensing interface with the NRC in the application of the milestone reviews technique. Three other techniques are recommended for study by the DOE for possible adaptation to the DOE program

  19. Clean Coal Technology Demonstration Program: Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  20. DOE-EPRI distributed wind Turbine Verification Program (TVP III)

    Energy Technology Data Exchange (ETDEWEB)

    McGowin, C.; DeMeo, E. [Electric Power Research Institute, Palo Alto, CA (United States); Calvert, S. [Dept. of Energy, Washington, DC (United States)] [and others

    1997-12-31

    In 1992, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) initiated the Utility Wind Turbine Verification Program (TVP). The goal of the program is to evaluate prototype advanced wind turbines at several sites developed by U.S. electric utility companies. Two six MW wind projects have been installed under the TVP program by Central and South West Services in Fort Davis, Texas and Green Mountain Power Corporation in Searsburg, Vermont. In early 1997, DOE and EPRI selected five more utility projects to evaluate distributed wind generation using smaller {open_quotes}clusters{close_quotes} of wind turbines connected directly to the electricity distribution system. This paper presents an overview of the objectives, scope, and status of the EPRI-DOE TVP program and the existing and planned TVP projects.

  1. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  2. DOE [Department of Energy] Epidemiologic Research Program

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal

  3. 2015 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-11-01

    The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  4. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  5. DOE Region 6 Radiological Assistance Program plan. Revision 1

    International Nuclear Information System (INIS)

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950's. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety

  6. DOE low-level waste long term technology development

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1982-01-01

    The objective of the Department of Energy's Low-Level Waste Management Program is to provide a low-level waste management system by 1986. Areas of concentration are defined as: (1) Waste Generation Reduction Technology, (2) Process and Handling Technology, (3) Environmental Technology, (4) Low-Level Waste Disposal Technology. A program overview is provided with specific examples of technical development. 2 figures

  7. Integrated wastewater management planning for DOE's Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D ampersand D) , and project management industry. The company is currently the environmental restoration, waste management, and D ampersand D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ''Project Breakthrough'' where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site's Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs

  8. DOE Matching Grant Program

    International Nuclear Information System (INIS)

    Tsoukalas, L.

    2002-01-01

    Funding used to support a portion of the Nuclear Engineering Educational Activities. Upgrade of teaching labs, student support to attend professional conferences, salary support for graduate students. The US Department of Energy (DOE) has funded Purdue University School of Nuclear Engineering during the period of five academic years covered in this report starting in the academic year 1996-97 and ending in the academic year 2000-2001. The total amount of funding for the grant received from DOE is $416K. In the 1990's, Nuclear Engineering Education in the US experienced a significant slow down. Student enrollment, research support, number of degrees at all levels (BS, MS, and PhD), number of accredited programs, University Research and Training Reactors, all went through a decline to alarmingly low levels. Several departments closed down, while some were amalgamated with other academic units (Mechanical Engineering, Chemical Engineering, etc). The School of Nuclear Engineering at Purdue University faced a major challenge when in the mid 90's our total undergraduate enrollment for the Sophomore, Junior and Senior Years dropped in the low 30's. The DOE Matching Grant program greatly strengthened Purdue's commitment to the Nuclear Engineering discipline and has helped to dramatically improve our undergraduate and graduate enrollment, attract new faculty and raise the School of Nuclear Engineering status within the University and in the National scene (our undergraduate enrollment has actually tripled and stands at an all time high of over 90 students; total enrollment currently exceeds 110 students). In this final technical report we outline and summarize how the grant was expended at Purdue University

  9. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  10. Online Information Technologies Certificate Program

    Directory of Open Access Journals (Sweden)

    Erman YUKSELTURK

    2005-01-01

    Full Text Available Online Information Technologies Certificate Program Res. Ass. Erman YUKSELTURK Middle East Technical University Department of Computer Education and Instructional Technology, Faculty of Education, Ankara, TURKEY ABSTRACT In this study, Information Technologies Certificate Program which is based on synchronous and asynchronous communication methods over the Internet offered by cooperation of Middle East Technical University, Computer Engineering Department and Continuing Education Center were examined. This online certificate program started in May 1998 and it is still active. The program includes eight fundamental courses of Computer Engineering Department and comprised of four semesters lasting totally nine months. The main aim of this program is to train the participants in IT field to meet demand in the field of computer technologies in Turkey. As a conclusion, the properties of this program were discussed in a detailed way.

  11. 2014 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 16-20, 2014, in Washington, DC. The review encompassed all of the work done by the FCTO and the VTO: a total of 295 individual activities were reviewed for VTO, by a total of 179 reviewers. A total of 1,354 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  12. 2013 DOE Vehicle Technologies Office Annual Merit Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The 2013 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May 13-17, 2013, in Crystal City, Virginia. The review encompassed all of the work done by the FCTO and the VTO: a total of 287 individual activities were reviewed for VTO, by a total of 187 reviewers. A total of 1,382 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.

  13. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  14. Technology '90

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  15. Technology catalogue. Second edition

    International Nuclear Information System (INIS)

    1995-04-01

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE's clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community

  16. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  17. Assessment of the DOE/NREL Historically Black College and University Photovoltaic Research Associates Program

    Energy Technology Data Exchange (ETDEWEB)

    Posey-Eddy, F.; McConnell, R. D.

    2002-08-01

    This report details the DOE/NREL Historically Black College and University (HBCU) Photovoltaic Research Associates Program, a small but remarkable program that directly affected dozens of minority undergraduate students in ways that changed many of their lives. The progress and accomplishments of undergraduates within the nine participating universities were monitored and assessed through their presentations at an annual NREL-sponsored HBCU conference. Although the funding was small, typically $400,000 per year, the money made a significant impact. The best students sometimes went on to the nation's top graduate schools (e.g., MIT) or important management positions in large companies. Other students had opportunities to learn how renewable energy could positively affect their lives and their neighbors' lives. A few were lucky enough to install photovoltaic lighting and water-pumping systems in Africa, and to see and feel firsthand the technical and emotional benefits of this technology for families and villages. Two of the schools, Texas Southern University and Central State University, were particularly successful in leveraging their DOE/NREL funding to obtain additional funding for expanded programs.

  18. Geothermal Technologies Program Overview - Peer Review Program

    Energy Technology Data Exchange (ETDEWEB)

    Milliken, JoAnn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  19. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  20. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    International Nuclear Information System (INIS)

    Bossart, S.J.; Hyde, J.

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D ampersand D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D ampersand D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment

  1. Potential CERCLA reauthorization issues relevant to US DOE's Environmental Restoration Program

    International Nuclear Information System (INIS)

    Siegel, M.R.; McKinney, M.D.; Jaksch, J.A.; Dailey, R.L.

    1993-02-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is currently scheduled to be reauthorized in 1994. The US Department of Energy (DOE) has a significant stake in CERCLA reauthorization. CERCLA, along with its implementing regulation, the National Contingency Plan (NCP), is the principal legal authority governing DOE's environmental restoration program. The manner in which CERCLA-related issues are identified, evaluated, and dispatched may have a substantial impact on DOE's ability to conduct its environmental restoration program. A number of issues that impact DOE's environmental restoration program could be addressed through CERCLA reauthorization. These issues include the need to (1) address how the National Environmental Policy Act (NEPA) should be integrated into DOE CERCLA actions, (2) facilitate the streamlining of the Superfund process at DOE sites, (3) address the conflicts between the requirements of CERCLA and the Resource Conservation and Recovery Act (RCRA) that are especially relevant to DOE, (4) examine the criteria for waiving applicable or relevant and appropriate requirements (ARARs) at DOE sites, and (5) delineate the appropriate use of institutional controls at DOE sites

  2. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  3. DOE evaluates nine alternative thermal technologies for treatment of mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In June 1993, the U.S. Department of Energy's (DOE's) Office of Technology Development commissioned a study to evaluate 19 thermal technologies for treating DOE's mixed waste. The study was divided into two phases: Phase I evaluated ten conventional incineration techniques (primarily rotary kiln), and Phase II looked at nine innovative, alternative thermal treatment technologies. The treatment processes were evaluated as part of an integrated waste treatment system, which would include all of the facilities, equipment, and methods required to treat and dispose DOE mixed waste. The relative merits and life-cycle costs were then developed for each of the 19 waste treatment systems evaluated. The study also identified the additional research and development, demonstration, and testing/evaluation steps that would be necessary for the waste treatment systems to successfully treat DOE mixed waste. 3 tabs., 2 refs

  4. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  5. Theoretical basis of the DOE-2 building energy use analysis program

    Science.gov (United States)

    Curtis, R. B.

    1981-04-01

    A user-oriented, public domain, computer program was developed that will enable architects and engineers to perform design and retrofit studies of the energy-use of buildings under realistic weather conditions. The DOE-2.1A has been named by the US DOE as the standard evaluation technique for the Congressionally mandated building energy performance standards (BEPS). A number of program design decisions were made that determine the breadth of applicability of DOE-2.1. Such design decisions are intrinsic to all building energy use analysis computer programs and determine the types of buildings or the kind of HVAC systems that can be modeled. In particular, the weighting factor method used in DOE-2 has both advantages and disadvantages relative to other computer programs.

  6. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER ampersand WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER ampersand WM activities at the sites, including potential needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER ampersand WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab

  7. Repository Technology Program: Technical progress report for the period May 29, 1986--June 30, 1987

    International Nuclear Information System (INIS)

    1988-10-01

    This document reports the progress made in the 13-month period from May 29, 1986--June 30, 1987, on the development of a second geologic repository in rocks other than those being considered for a first repository. Subsequent periods will be covered in reports to be issued on a semiannual basis. The reporting elements are arranged by the work breakdown structure so that related studies are presented together. The studies are reported by the Office of Waste Technology Development (OWTD), a prime contractor of the US. Department of Energy (DOE) Repository Technology Program (RTP) Office in the Repository Technology and Transportation Division (RTTD) of the Office of Geologic Repositories (OGR). The studies include work by other DOE prime contractors and by contractors to the OWTD. 50 refs

  8. Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome

    International Nuclear Information System (INIS)

    Bedick, R. C.

    2002-01-01

    The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities

  9. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  10. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes

    International Nuclear Information System (INIS)

    Mason, J. B.; McKibbin, J.; Ryan, K.; Schmoker, D.

    2003-01-01

    THOR Treatment Technologies, LLC (THOR) is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC to further develop, market, and deploy Studsvik's patented THORSM non-incineration, steam reforming waste treatment technology. This paper provides an overview of the THORSM steam reforming process as applied to the denitration and conversion of Department of Energy (DOE) tank wastes to an immobilized mineral form. Using the THORSM steam reforming technology to treat nitrate containing tank wastes could significantly benefit the DOE by reducing capital and life-cycle costs, reducing processing and programmatic risks, and positioning the DOE to meet or exceed its stakeholder commitments for tank closure. Specifically, use of the THORSM technology can facilitate processing of up to 75% of tank wastes without the use of vitrification, yielding substantial life-cycle cost savings

  11. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  12. Radiological Assistance Program, DOE Region 6 response plan

    International Nuclear Information System (INIS)

    Jakubowski, F.M.

    1993-02-01

    This program plan meets all the requirements identified in DOE Order 5530.3, Radiological Assistance Program and supports those requirements leading to the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) as required by DOE 5530-5. Requests for radiological assistance may come from other DOE facilities, Federal or state agencies, tribal officials, or from any private corporation or individual. Many of the requests will be handled by a telephone call, a conference or a letter, teletype or memorandum. Other requests for assistance may involve radioactive material in serious accidents, fire, personal injuries, contamination or possible hazards to the general public. Some occurrences may require the dispatch of trained personnel equipped with radiation monitoring instruments and related equipment necessary to evaluate, control and neutralize the hazard. The primary responsibility for incidents involving radioactive material always remains with the party having custody of the radioactive materials. In addition, the DOE recognizes that the assistance provided shall not in any way preempt state, tribal, or local authority and/or responsibility on state or tribal properties. Toward this end, DOE assistance for non-DOE radioactive materials, is limited to technical assistance, advice, measurement and other resources as deemed necessary by the local authorities but excludes DOE interface with the public media. This is a function handled by the local or state Incident Commander

  13. 1994 DOE Technical Standards Program Workshop: Proceedings

    International Nuclear Information System (INIS)

    Spellman, D.J.

    1994-01-01

    The DOE Technical Standards Program has been structured to provide guidance and assistance for the development, adoption, and use of voluntary standards within the Department. OMB Circular A-119, ''Federal Participation in the Development and Use of Voluntary Standards'' establishes the policy to be followed in working with voluntary standards bodies, and in adopting and using voluntary standards whenever feasible. The DOE Technical Standards Program is consistent with this policy and is dedicated to the task of promoting its implementation. The theme of this year's workshop is ''Standards Initiatives in Environmental Management fostering the development and use of industry standards for safe, environmentally responsible operations.'' The objective of the workshop is to increase the participant's awareness of the standardization activities taking place nationally and internationally and the impact of these activities on their efforts, and to facilitate the exchange of experiences, processes, and tools for implementing the program. Workshop sessions will include presentations by industry and Government notables in the environment, safety, and health arena with ample opportunity for everyone to ask questions and share experiences. There will be a breakout session which will concentrate on resolution of issues arising from the implementation of the DOE Technical Standards Program and a plenary session to discuss the plans developed by the breakout groups. Many organizations provide services and products which support the development, processing, distribution, and retrieval of standards. Those organizations listed at the end of the agenda will have exhibits available for your perusal throughout the workshop. Last year's workshop was very successful in stimulating an understanding of an interest in the standards program. This year, we hope to build on that success and provide an environment for the synergism of ideas to enhance the program and advance its implementation

  14. Oakland Operations Office, Oakland, California: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  15. Pacific Northwest Laboratory tasks supporting the Office of Technology Development national program

    International Nuclear Information System (INIS)

    Slate, S.C.

    1993-01-01

    The purpose of this document is to provide a concise summary of the Pacific Northwest Laboratory's (PNL) tasks being conducted for the Department of Energy's (DOE) Office of Technology Development (OTD). The summaries are useful to principal investigators who want to link their work to others doing similar work, to staff in DOE operating programs who are looking for better solutions to current problems, and to private industry which may be interested in teaming with PNL to commercialize the technology. The tasks are organized within Hanford's overall Work Breakdown Structure (WBS), which is a hierarchical organization of the Hanford mission into subordinate missions. The technology development tasks are all in WBS 3.2. The first subordinate steps under WBS 3.2 are general categories of technology development, such as Soils and Groundwater Cleanup. The next level is the Integrated Program (IP) and Integrated Demonstration (ID) level. An IP is a centrally managed series of projects which explore and develop a particular technology, such as characterization, for application to a wide spectrum of problems. An ID brings multiple technology systems to bear on an actual problem; for example, a carbon tetrachloride plume migrating through the soil is being remediated with biological agents, heating the soil, and destruction of the contamination in vapor removed from the soil. IDs and IPs are identified by an alphanumeric code: GSO2 is the second ID under Groundwater and Soils Cleanup. The final step in the breakout is the Technical Task Plan (TTP). These are individual tasks which support the ID/IP. They are identified by a six-digit number in the format 3211-01. The WBS structure for Technology Development down to the ID/IP level is shown

  16. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  17. US DOE Radiological Assistance Program: personnel, equipment and resources

    International Nuclear Information System (INIS)

    Hull, A.P.; Kuehner, A.V.; Phillips, L.F.

    1982-01-01

    The Radiological Assistance Program (RAP) of the US Department of Energy (DOE) is intended to provide emergency advice and assistance in the event of radiological incidents. Each of DOE's eight Regional Coordinating Offices in the US provide a 24-hour reporting and response capability. Specifically, the Brookhaven Area Office (BHO) is responsible for DOE's Region I, which includes the 11 northeastern states of the US. Although an inventory of dedicated equipment is assigned to BHO-RAP, it draws upon the resources of Brookhaven National Laboratory (BNL) for trained personnel in health physics and for other specialized personnel in both the day to day operation of the program and in the on-the-scene response to an incident. The organization of the BHO-RAP program and its response procedures are described in detail. An inventory and brief description of the contents of a variety of emergency equipment kits and of additional state-of-the-art instruments is included. The BHO-RAP guidelines and requirements for field operations are also indicated, as are other DOE resources upon which it can draw

  18. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  19. MIxed Waste Integrated Program (MWIP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE's mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel

  20. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  1. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  2. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jack S. Brenizer, Jr.

    2003-01-01

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students

  3. 31 CFR 356.31 - How does the STRIPS program work?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How does the STRIPS program work? 356.31 Section 356.31 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued...) Miscellaneous Provisions § 356.31 How does the STRIPS program work? (a) General. Notes or bonds may be “stripped...

  4. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  5. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  6. NASA's Commercial Communication Technology Program

    Science.gov (United States)

    Bagwell, James W.

    1998-01-01

    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  7. State Technologies Advancement Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy

  8. Technology integration plan

    International Nuclear Information System (INIS)

    Henry, R.; Sumpter, K.C.

    1995-01-01

    In 1992, the Secretary of Energy directed the Assistant Secretary for Environmental Management (EM) to develop an integrated, long-term, spent nuclear fuel (SNF) management program. In response, EM created the Integrated SNF Program to assess the US Department of Energy (DOE) SNF and SNF storage facilities. As shown in Figure 1 the Integrated SNF Program is responsible for life-cycle management of DOE SNF; that is characterization, processing, interim storage and preparation for disposal. In order to implement the Program it was recognized that technology needs must be identified. A Technology Integration Program was formed to integrate the DOE complex-wide efforts for establishing timely, cost effective and consistent technical criteria for the development of technical solutions. The program is directed toward identification of: (a) what activities need to be done, (b) when they need to be completed, and (c) what priority should be assigned to the various activities

  9. The Retrieval Knowledge Center Evaluation Of Low Tank Level Mixing Technologies For DOE High Level Waste Tank Retrieval 10516

    International Nuclear Information System (INIS)

    Fellinger, A.

    2009-01-01

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation and Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation and Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  10. 34 CFR 426.5 - What activities does the Secretary fund under the Program for Model Consumer and Homemaking...

    Science.gov (United States)

    2010-07-01

    ... the impact of new technology on life and work; (k) Applying consumer and homemaking education skills... 34 Education 3 2010-07-01 2010-07-01 false What activities does the Secretary fund under the Program for Model Consumer and Homemaking Education Projects? 426.5 Section 426.5 Education Regulations of...

  11. Heavy-Section Steel Technology Program

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1992-11-01

    The Heavy-Section Steel Technology (HSST) Program is conducted for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory (ORNL). The program focus is on the development and validation of technology for the assessment of fracture-prevention margins in commercial nuclear reactor pressure vessels. The HSST Program is organized in 11 tasks: program management, fracture methodology and analysis, material characterization and properties, special technical assistance, fracture analysis computer programs, cleavage-crack initiation, cladding evaluations, pressurized-thermal-shock technology, analysis methods validation, fracture evaluation tests, and warm prestressing. The program tasks have been structured to place emphasis on the resolution fracture issues with near-term licensing significance. Resources to execute the research tasks are drawn from ORNL with subcontract support from universities and other research laboratories. Close contact is maintained with the sister Heavy-Section Steel Irradiation (HSSI) Program at ORNL and with related research programs both in the United States and abroad. This report provides an overview of principal developments in each of the II program tasks from October 1, 1991 to March 31, 1992

  12. Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m 3 ) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF ampersand WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF

  13. Overview of the DOE nuclear data program

    International Nuclear Information System (INIS)

    Whetstone, S.L.

    1991-01-01

    Numerous researchers receive support from the US Department of Energy's (DOE's) nuclear data program; others work closely with it, attending coordination meetings and contributing to data activities. Since fiscal year (FY) 1988, the nuclear data program has been included in the budget of the Division of Nuclear Physics in the DOE's Office of High Energy and Nuclear Physics. The budget for nuclear data consists of two budget categories: nuclear data compilation and evaluation and nuclear data measurements, both of which are contained within the low-energy nuclear physics program. The program has become essentially the sole supporter of the National Nuclear Data Center at Brookhaven National Laboratory. The Center coordinates the production of the ENSDF data base and Nuclear Data Sheets as well as, through the Cross Section Evaluation Working Group (CSEWG138), the production of the ENDF. Two rather large accelerator facilities, completely supported by the program, the Oak Ridge Electron Linear Accelerator and the fast neutron generator at Argonne National Laboratory, form the core of the nuclear data measurement activity together with measurement programs at Los Alamos National Laboratory's LAMPF/WNR facility, and at accelerator laboratories at Ohio University, Duke University, the University of Lowell, the University of Michigan, and the Colorado School of Mines. Some history is discussed and future modernizing plans are identified

  14. The impact of DOE building technology energy efficiency programs on U.S. employment, income, and investment

    International Nuclear Information System (INIS)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.; Anderson, David M.; Cort, Katherine A.

    2008-01-01

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) analyzes the macroeconomic impacts of its programs that are designed to increase the energy efficiency of the U.S. residential and commercial building stock. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirements and investment. In the scenario of the Fiscal Year (FY) 2005 Building Technologies (BT) program, the technologies and building practices being developed and promoted by the BT program have the potential to save about 2.9 x 10 15 Btu in buildings by the year 2030, about 27% of the expected growth in building energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation's future economy

  15. Tidd PFBC Demonstration Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-31

    The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes. One goal of the program is to furnish the energy marketplace with a variety of energy efficient, environmentally superior coal-based technologies. Demonstration projects seek to establish the commercial feasibility of the most promising coal technologies that have proceeded beyond the proof-of-concept stage. This report is a post-project assessment of the DOE CCT Demonstration Program, the Tidd PFBC Demonstration Project. A major objective of the CCT Program is to provide the technical data necessary for the private sector to proceed confidently with the commercial replication of the demonstrated technologies. An essential element of meeting this goal is the dissemination of results from the demonstration projects. This post-project assessment (PPA) report is an independent DOE appraisal of the successes that the completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology, as well as an analysis of the commercial market.

  16. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  17. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  18. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  19. HTGR generic technology program plan (FY 80)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs

  20. DOE Human Reliability Program Removals Report 2004-2006

    International Nuclear Information System (INIS)

    Center for Human Reliability Studies

    2007-01-01

    This report presents results of the comprehensive data analysis and assessment of all U.S. Department of Energy (DOE) and National Nuclear Security Administration (NNSA) facilities that have positions requiring workers to be certified in the Human Reliability Program (HRP). Those facilities include: Albuquerque, Amarillo, DOE Headquarters, Hanford, Idaho, Nevada, Oak Ridge, Oakland, and Savannah River. The HRP was established to ensure, through continuous review and evaluation, the reliability of individuals who have access to the DOE's most sensitive facilities, materials, and information

  1. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.N. [Global Environment & Technology Foundation, Annandale, VA (United States)

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  2. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    International Nuclear Information System (INIS)

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D ampersand D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are 137 Cs, 238 U (and it daughters), and 60 Co, followed closely by 90 Sr and tritium, which account for -30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope

  3. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.; Wilson-Nichols, M.J. [Oak Ridge National Lab., Grand Junction, CO (United States); Morris, M.I. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  4. The Clean Coal Technology Program: Options for SO2, NOx, and particulate control

    International Nuclear Information System (INIS)

    Strakey, J.P.; Hargis, R.; Eastman, M.L.; Santore, R.R.

    1992-01-01

    There are currently 42 active projects in the Clean Coal Technology Program. The Pittsburgh Energy Technology Center (PETC) is responsible for managing 30 of these projects: five projects under Clean Coal 1, ten projects under Clean Coal 2, nine projects under Clean Coal 3, and six projects under Clean Coal 4. This paper describes each of the PETC projects, including the technologies involved and the project status. Many of the projects will use advanced approaches to meet current and future requirements for particulate and air toxic emissions. Discussion of these aspects have been expanded in this summary paper to address the focus of this symposium. Additional information can be provided to interested particles either through DOE, the participant or the technology supplier. Numerous non-federal organizations including state and utility/industry research groups provide important co-funding and other support for these CCT projects. Space limitations prohibit listing them in this paper; however, a complete listing can be found in the Clean Coal Technology Demonstration Program Update 1990. Appendix A to this paper contains flow diagrams for all the projects

  5. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    International Nuclear Information System (INIS)

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-01-01

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts

  6. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  7. Chicago Operations Office: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  8. Idaho Operations Office: Technology summary, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD`s technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  9. Impact of occupational issues on DOE's environmental restoration program

    International Nuclear Information System (INIS)

    Siegel, M.R.; Lesperance, A.M.; Smith, D.

    1992-01-01

    The U.S. Department of Energy (DOE) is in the midst of a 30-yr, multi-billion-dollar environmental restoration program for most of the facilities included in its nuclear weapons complex. Long-term planning efforts are under way to identify strategies and approaches for carrying out this extraordinarily complicated task. The DOE has already entered into interagency agreements with the U.S. Environmental Protection Agency and states for many of its environmental restoration sites. These agreements set legally enforceable deadlines for cleanup activities at these sites. In addition, DOE has made other commitments to Congress and the public regarding its environmental restoration schedule. Thousands of workers will be directly involved in environmental restoration activities at DOE sites. Cleanup activity will be carried out in environments involving potential exposure to highly toxic chemical substances and radionuclides. It is inevitable that occupational safety and health (OSH) issues will become both critical and highly visible to DOE. The OSH issues associated with cleanup activities will likely attract the attention of workers, unions, the media, regulators, and the public. This paper reviews three case studies describing OSH activities in DOE's environmental restoration program. These case studies will help alert DOE officials to ways that various OSH issues should be considered when planning environmental restoration activities. This activity is being coordinated with other DOE work to identify occupational requirements that are applicable to DOE cleanup work

  10. Oak Ridge Operations Office, Oak Ridge, Tennessee, technology summary

    International Nuclear Information System (INIS)

    1994-11-01

    DOE's Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high-payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. Programs of each are discussed in this document. Technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets. OTD's approach to technology development is an integrated process that seeks to identify technologies and development partners, and facilitates the movement of a technology from applied research to implementation

  11. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  12. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  13. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  14. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  15. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  16. U.S. Department of Energy's 'initiatives for proliferation prevention' program: solidification technologies for radioactive waste treatment in Russia - 16037

    International Nuclear Information System (INIS)

    Pokhitonov, Yuri; Kelley, Dennis

    2009-01-01

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopin Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention' (IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present updated details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)

  17. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  18. Graphic overview system for DOE's effluent and environmental monitoring programs

    International Nuclear Information System (INIS)

    Burson, Z.G.; Elle, D.R.

    1980-03-01

    The Graphic Overview System is a compilation of photos, maps, overlays, and summary information of environmental programs and related data for each DOE site. The information consists of liquid and airborne effluent release points, on-site storage locations, monitoring locations, aerial survey results, population distributions, wind roses, and other related information. The relationships of different environmental programs are visualized through the use of colored overlays. Trends in monitoring data, effluent releases, and on-site storage data are also provided as a corollary to the graphic display of monitoring and release points. The results provide a working tool with which DOE management (headquarters and field offices) can place in proper perspective key aspects of all environmental programs and related data, and the resulting public impact of each DOE site

  19. Kentucky DOE EPSCoR Program

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric; Stencel, John [no longer with UK

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  20. OHVT technology roadmap [2000

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  1. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.

    2001-06-14

    An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

  2. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  3. DOE-owned spent nuclear fuel program plan

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) has produced spent nuclear fuel (SNF) for many years as part of its various missions and programs. The historical process for managing this SNF was to reprocess it whereby valuable material such as uranium or plutonium was chemically separated from the wastes. These fuels were not intended for long-term storage. As the need for uranium and plutonium decreased, it became necessary to store the SNF for extended lengths of time. This necessity resulted from a 1992 DOE decision to discontinue reprocessing SNF to recover strategic materials (although limited processing of SNF to meet repository acceptance criteria remains under consideration, no plutonium or uranium extraction for other uses is planned). Both the facilities used for storage, and the fuel itself, began experiencing aging from this extended storage. New efforts are now necessary to assure suitable fuel and facility management until long-term decisions for spent fuel disposition are made and implemented. The Program Plan consists of 14 sections as follows: Sections 2--6 describe objectives, management, the work plan, the work breakdown structure, and the responsibility assignment matrix. Sections 7--9 describe the program summary schedules, site logic diagram, SNF Program resource and support requirements. Sections 10--14 present various supplemental management requirements and quality assurance guidelines

  4. DOE-owned spent nuclear fuel program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Department of Energy (DOE) has produced spent nuclear fuel (SNF) for many years as part of its various missions and programs. The historical process for managing this SNF was to reprocess it whereby valuable material such as uranium or plutonium was chemically separated from the wastes. These fuels were not intended for long-term storage. As the need for uranium and plutonium decreased, it became necessary to store the SNF for extended lengths of time. This necessity resulted from a 1992 DOE decision to discontinue reprocessing SNF to recover strategic materials (although limited processing of SNF to meet repository acceptance criteria remains under consideration, no plutonium or uranium extraction for other uses is planned). Both the facilities used for storage, and the fuel itself, began experiencing aging from this extended storage. New efforts are now necessary to assure suitable fuel and facility management until long-term decisions for spent fuel disposition are made and implemented. The Program Plan consists of 14 sections as follows: Sections 2--6 describe objectives, management, the work plan, the work breakdown structure, and the responsibility assignment matrix. Sections 7--9 describe the program summary schedules, site logic diagram, SNF Program resource and support requirements. Sections 10--14 present various supplemental management requirements and quality assurance guidelines.

  5. Oakland Operations Office, Oakland, California: Technology summary

    International Nuclear Information System (INIS)

    1994-11-01

    DOE's Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention

  6. ANL Technical Support Program for DOE Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J.; Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A.; Ewing, R.C.; Wang, L.M.; Han, W.T.; Tomozawa, M.

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal

  7. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  8. Nuclear security. DOE actions to improve the personnel clearance program

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Bannerman, Carl J.; Daniel, Beverly A.

    1988-11-01

    The status of the Department of Energy's (DOE) implementation of recommendations in our two reports on DOE's personnel security clearance program was determined. The recommendations were aimed at improving the timeliness, accuracy, and efficiency of personnel security clearance decisions. Specifically, the objective was to determine and report on steps DOE is taking to implement these recommendations. In summary, it was found that DOE has either initiated action or is studying ways to address all the recommendations, but none of the recommendations have been completely implemented. The effectiveness of the DOE actions will depend, in part, on the adequacy of its internal control system for overseeing and evaluating program operations. DOE's personnel security clearance program is intended to provide reasonable assurance that personnel with access to classified information and materials are trustworthy. The Department requests that the Office of Personnel Management or the Federal Bureau of Investigation collect personal data on each person who requires such access to do his or her job. Based on these background investigations, DOE officials authorize individuals whose personal histories indicate that they are trustworthy to have access to classified information, secured facilities, and controlled materials as needed to perform their jobs. DOE has five types of these authorizations or personnel security clearances and must update information on personnel holding each type at 5-year intervals to confirm their continuing reliability. The five types are based on the types of security interests to which the person needs access, e.g., persons needing nuclear weapons-related data must have a Q clearance, and persons with a top secret clearance can have access to national security data classified as top secret

  9. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  10. The organization of ALARA program at a DOE facility

    International Nuclear Information System (INIS)

    Setaro, J.A.

    1992-01-01

    The organization of an ALARA Program at a DOE Facility (Oak Ridge National Laboratory), it's relationship with laboratory management, facility operators, and the radiation protection program is described. The use of chartered ALARA committees at two distinct levels is discussed

  11. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.

  12. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  13. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  14. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-12-01

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  15. A technology development summary for the AGT101 advanced gas turbine program

    Science.gov (United States)

    Boyd, Gary L.; Kidwell, James R.; Kreiner, Daniel M.

    1987-01-01

    A summary is presented of significant technology developments that have been made in the AGT101 advanced gas turbine program. The AGT101 design features are reviewed, and the power section testing and results are addressed in detail. The results of component testing and evaluation are described for the compressor, turbine, regenerator, and foil bearing. Ceramic component development is discussed, including that of the static seal, turbine shroud seal, regenerator shield planar seal, regenerator shield piston ring, stator rig, ceramic combustor, and turbine rotor. Important areas to be addressed by the Advanced Turbine Technology Applications Project now in the planning stage at DOE and NASA are briefly reviewed.

  16. Idaho Operations Office: Technology summary, June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Idaho Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. OTD programs are designed to make new, innovative, and more cost-effective technologies available for transfer to DOE environmental restoration and waste management end-users. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD's technology development programs address three major problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

  17. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  18. Education programs catalog

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    Since its formation in 1977, US DOE has been authorized to support education programs that help ensure an adequate supply of scientists, engineers, and technicians for energy-related research, production activities, and technology transfer. A national conference in 1989 produced a clear vision of the important role that DOE, its facilities, and its 169,000 Federal and contract employees can play in the educational life of their communities and the Nation. Many of the programs listed in this catalog are the result of this new vision; others have existed for many years. Purpose of this catalog is to make all DOE education efforts more widely known so that more teachers, students, and others can benefit. Supporting the hundreds of education programs (precollege, undergraduate, graduate, public) is the network of DOE national laboratories, technology centers, and other research facilities. Brief descriptions of each facility, its programs, and contact information for its education personnel are included.

  19. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  20. Chicago Operations Office: Technology summary

    International Nuclear Information System (INIS)

    1994-12-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US Industry's competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets

  1. Innovative technologies for the remediation of transuranic- contaminated landfills

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1995-01-01

    The US Department of Energy (DOE) has initiated a comprehensive research,development, demonstration, testing and evaluation program to provide innovative technology systems to achieve its environmental management responsibilities. The Office of Technology Development (OTD) is responsible for this research in support of the Offices of Environmental Restoration and Waste Management efforts. In fiscal year (FY) 1992 the OTD established the Buried Waste Integrated Demonstration (BWID). The BWID mission was to support the development of emerging technologies for their application to the remediation of DOE buried waste site. During FY95, the BWID program was transitioned into a larger program which will focus its attention to DOE Landfills and Contaminated Soils. There search and activities formerly referred to as the BWID will now be associated with the Transuranic-contaminated Arid Landfill Stabilization Program.(TALS). The TALS Program supports these buried waste remediation efforts by seeking out the best talent to solve the technology challenges as identified in baseline remediation strategies. Experts from throughout the DOE complex, universities, private sector, and the international community are being included in this program to solve these challenges and ensure implementation and commercialization of innovative technologies

  2. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  3. Fossil Energy Program semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-11-01

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  4. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  5. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  7. Development and implementation of information systems for the DOE's National Analytical Management Program (NAMP)

    International Nuclear Information System (INIS)

    Streets, W. E.

    1999-01-01

    The Department of Energy (DOE) faces a challenging environmental management effort, including environmental protection, environmental restoration, waste management, and decommissioning. This effort requires extensive sampling and analysis to determine the type and level of contamination and the appropriate technology for cleanup, and to verify compliance with environmental regulations. Data obtained from these sampling and analysis activities are used to support environmental management decisions. Confidence in the data is critical, having legal, regulatory, and therefore, economic impact. To promote quality in the planning, management, and performance of these sampling and analysis operations, DOE's Office of Environmental Management (EM) has established the National Analytical Management Program (NAMP). With a focus on reducing the estimated costs of over $200M per year for EM's analytical services, NAMP has been charged with developing products that will decrease the costs for DOE complex-wide environmental management while maintaining quality in all aspects of the analytical data generation. As part of this thrust to streamline operations, NAMP is developing centralized information systems that will allow DOE complex personnel to share information about EM contacts at the various sites, pertinent methodologies for environmental restoration and waste management, costs of analyses, and performance of contracted laboratories

  8. The Reusable Launch Vehicle Technology Program and the X-33 Advanced Technology Demonstrator

    Science.gov (United States)

    Cook, Stephen A.

    1995-01-01

    The goal of the Reusable Launch Vehicle (RLV) technology program is formulated, and the primary objectives of RLV are listed. RLV technology program implementation phases are outlined. X-33 advanced technology demonstrator is described. Program management is addressed.

  9. 41 CFR 301-73.1 - What does the Federal travel management program include?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What does the Federal travel management program include? 301-73.1 Section 301-73.1 Public Contracts and Property Management... PROGRAMS General Rules § 301-73.1 What does the Federal travel management program include? The Federal...

  10. OHVT technology roadmap[2000]; TOPICAL

    International Nuclear Information System (INIS)

    Bradley, R.A.

    2000-01-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones

  11. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  12. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  13. Mississippi Curriculum Framework for Drafting and Design Technology (Program CIP: 48.0102--Architectural Drafting Technology) (Program CIP: 48.0101--General Drafting). Postsecondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the two course sequences of the state's postsecondary-level drafting and design technology program: architectural drafting technology and drafting and design technology. Presented first are a program description and…

  14. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  15. Cooperative field test program for wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  16. Next Generation Launch Technology Program Lessons Learned

    Science.gov (United States)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  17. Review of standards and guidelines pertinent to DOE's remedial action programs

    International Nuclear Information System (INIS)

    Soldat, J.K.; Denham, D.H.

    1984-10-01

    A number of radiological standards, guidelines, and dose criteria have been promulgated that may be relevant to the Department of Energy's (DOE) Remedial Action programs. Some of these will be applied to remedial actions undertaken by DOE to ensure that health and safety aspects will be adequately addressed. Pacific Northwest Laboratory staff are reviewing and evaluating existing and proposed environmental radiological standards and criteria for their applicability. National and international environmental standards and criteria, and studies conducted by other DOE contractors are being evaluated. The aim of the review is to identify gaps in these standards and guidelines and to recommend further development as necessary. This paper provides a summary of the standards and guidelines evaluated for applicability to DOE's Remedial Action programs. 33 references, 5 tables

  18. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  19. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    International Nuclear Information System (INIS)

    Harvey, T.N.

    1995-01-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE's clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies

  20. Program Integration for International Technology Exchange

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    Sandia National Laboratories (SNL), Albuquerque, New Mexico, supports the International Technology Exchange Division (ITED) through the integration of all international activities conducted within the DOE's Office of Environmental Management (EM)

  1. Spinoff 2002: Fortieth Anniversary Technology Utilization Program

    Science.gov (United States)

    2002-01-01

    Since its inception 40 years ago, NASA's Technology Transfer Program has led the way for our nation to benefit from cutting-edge aerospace technologies. In addition to contributing to U.S. economic growth, these technologies are improving the quality of life on Earth while finding new ways to protect and preserve it. NASA's research and development efforts have advanced areas in medicine, communications, manufacturing, computer technology, and homeland security. These breakthroughs, translated into commercial products, are enhancing the lives of Americans everywhere. When a congressional mandate led NASA to develop the Scientific and Technical Information (STI) Program, the Agency began a wide dissemination of its research and development results. In doing so, NASA recognized that many of its technologies were transferable to industry for the development of commercial products. As a result, the Technology Utilization Program was born in 1962. The successful program went through several changes over the years, as its philosophy, mission, and goals adapted into the Technology Transfer Program we know today. The program strives to make the latest technologies available to industry as soon as they are developed. Each year, NASA's Spinoff publication showcases new products and services resulting from commercial partnerships between NASA and private industry. In the 2002 issue, the NASA field centers reflect upon the growth that has made these innovations available to the public. The Research and Development section examines past achievements, current successes, and future goals for each of the ten NASA centers. The Commercial Benefits section proudly highlights 51 new spinoff products, including a heart pump for patients needing a heart transplant, as well as an air purifier that destroys anthrax spores. The Technology Transfer and Outreach section describes the outreach achievements and educational successes made possible through the NASA Commercial Technology Network

  2. 12 CFR 361.2 - Why does the FDIC have this outreach program?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Why does the FDIC have this outreach program? 361.2 Section 361.2 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY MINORITY AND WOMEN OUTREACH PROGRAM CONTRACTING § 361.2 Why does the FDIC have this...

  3. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    International Nuclear Information System (INIS)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-01-01

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials

  4. Teaching Machines, Programming, Computers, and Instructional Technology: The Roots of Performance Technology.

    Science.gov (United States)

    Deutsch, William

    1992-01-01

    Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)

  5. Programming and Technology for Accessibility in Geoscience

    Science.gov (United States)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  6. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  7. 75 FR 1591 - Green Technology Pilot Program

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office Green Technology Pilot Program ACTION: Proposed... methods: E-mail: [email protected] . Include A0651-0062 Green Technology Pilot Program [email protected] in... (USPTO) is implementing a streamlined examination pilot program for patent applications pertaining to...

  8. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  9. DOE role in nuclear policies and programs: official transcript of public briefing. Addendum December 13, 1977, Washington, D.C

    International Nuclear Information System (INIS)

    1978-02-01

    A total of 24 questions were read into the official record at the public briefing on nuclear policies and programs. The answers published were researched and written by personnel of DOE's Office of Energy Research, Office of Energy Technology, and the Secretary's Office. A few questions were sent to the Nuclear Regulatory Commission for review and for preparation of answers

  10. Review and Identification of DOE Laboratory Technologies for Countermine/Unexploded Ordnance Detection

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.

    2002-04-03

    Several Department of Energy (DOE) laboratories have worked and/or are working on technologies that are applicable to the detection of landmines and/or unexploded ordnance. This report is a compilation of technical summaries for many of these technologies. For additional information on any technology, appropriate points of contact are provided for each technology.

  11. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  12. DOE Defense Program (DP) safety programs. Final report, Task 003

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 003 of Subcontract 9-X52-W7423-1 was to provide LANL with support to the DOE Defense Program (DP) Safety Programs. The effort included the identification of appropriate safety requirements, the refinement of a DP-specific Safety Analysis Report (SAR) Format and Content Guide (FCG) and Comprehensive Review Plan (CRP), incorporation of graded approach instructions into the guidance, and the development of a safety analysis methodologies document. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided here

  13. Review of standards and guidelines pertinent to DOE's Remedial Action programs

    International Nuclear Information System (INIS)

    Soldat, J.K.; Denham, D.H.

    1985-01-01

    A number of radiological standards, guidelines, and dose criteria have been promulgated that may be relevant to the Department of Energy's (DOE) Remedial Action programs. Some of these are being applied to remedial actions undertaken by DOE to ensure that health and safety aspects are adequately addressed. Pacific Northwest Laboratory staff reviewed existing and proposed environmental radiological standards and criteria for their applicability to DOE's Remedial Action Programs. National and international environmental standards and criteria, and studies conducted by other DOE contractors were reviewed. The review indicated that there is a lack of uniformity between the dose guidelines developed by the various agencies. A uniform dose standard is needed for DandD, at least as an upper limit with application of the ALARA philosophy. 33 references, 5 tables

  14. DOE procurement activities for spent fuel shipping casks

    International Nuclear Information System (INIS)

    Callaghan, E.F.; Lake, W.H.

    1988-01-01

    The DOE cask development program satisfies the requirements of the NWPA by providing safe efficient casks on a timely schedule. The casks are certified by the NRC in compliance with the 1987 amendment to NWPA. Private industry is used to the maximum extent. DOE encourages use of present cask technology, but does not hesitate to advance the state-of-the-art to improve efficiency in transport operations, provided that safety is not compromised. DOE supports the contractor's efforts to advance the state-of-the-art by maintaining a technical development effort that responds to the common needs of all the contractors. DOE and the cask contractors develop comprehensive and well integrated programs of test and analysis for cask certification. Finally, the DOE monitors the cask development program within a system that fosters early identification of improvement opportunities as well as potential problems, and is sufficiently flexible to respond quickly yet rationally to assure a fully successful program

  15. Characterization, Monitoring and Sensor Technology Integrated Program

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D ampersand D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project

  16. Rigid polyurethane foam (RPF) technology for Countermine (Sea) Program -- Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Woodfin, R.L. [Sandia National Labs., Albuquerque, NM (United States). Exploratory Sensors and Munitions Dept.

    1997-01-01

    This Phase 1 report documents the results of one of the subtasks that was initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of a foam that can neutralize mines and barriers and allow the safe passage of amphibious landing craft and vehicles was the objective of this subtask of the Sea Mine Countermeasures Technology program. This phase of the program concentrated on laboratory characterization of foam properties and field experiments with prefabricated foam blocks to determine the capability of RPF to adequately carry military traffic. It also established the flammability characteristics of the material under simulated operational conditions, extended the understanding of explosive cavity formation in RPF to include surface explosions, established the tolerance to typical military fluids, and the response to bullet impact. Many of the basic analyses required to establish the operational concept are reported. The initial field experiments were conducted at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM in November 1995 through February 1996.

  17. 75 FR 64692 - Green Technology Pilot Program

    Science.gov (United States)

    2010-10-20

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office Green Technology Pilot Program ACTION: Proposed...- 0062 Green Technology Pilot Program comment'' in the subject line of the message. Fax: 571-273-0112... United States Patent and Trademark Office (USPTO) implemented a pilot program on December 8, 2009, that...

  18. DOE personnel neutron dosimetry evaluation and upgrade program

    International Nuclear Information System (INIS)

    Faust, L.G.; Stroud, C.M.; Vallario, E.J.

    1988-01-01

    The US Department of Energy (DOE) sponsors an extensive research program to improve the methods, dosimeters, and instruments available to DOE facilities for measuring neutron dose and assessing its effects on the work force. The Total Dose Meter was recently developed for measuring in real time the absorbed dose of mixed neutron and gamma radiation and for calculating the dose equivalent. The Field Neutron Spectrometer was developed to provide a portable instrument for determining neutron spectra in the workplace for flux-to-dose equivalent conversion and quality factor calculation. The Combination Thermoluminescence/Track Etch Dosimeter (TLD/TED) was developed to extend the effective neutron energy range of the conventional TLDs to improve detection of fast-energy neutrons. An Optically Stimulated Luminescence Dosimeter is presently being developed for application to gamma, neutron, and beta radiation. An Effective Dose Equivalent System is being developed to provide guidance in implementing the January 1987 Presidential Directive to determine effective dose equivalent. Superheated Drop Detectors are being investigated for their potential as real time neutron dosimeters. This paper includes discussions of these improvements brought about by the DOE research program

  19. Mixed Waste Integrated Program Quality Assurance requirements plan

    International Nuclear Information System (INIS)

    1994-01-01

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities

  20. Mixed Waste Integrated Program Quality Assurance requirements plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  1. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  2. Annual Program Progress Report under DOE/PHRI Cooperative Agreement: (July 1, 2001-June 30, 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Palafox, Neal A., MD, MPH

    2002-07-31

    OAK B188 DOE/PHRI Special Medical Care Program in the Republic of the Marshall Islands (RMI)Annual Program Progress Report. The DOE Marshall Islands Medical Program continued, in this it's 48th year, to provide medical surveillance for the exposed population from Rongelap and Utrik and the additional DOE patients. The program was inaugurated in 1954 by the Atomic Energy Commission following the exposure of Marshallese to fallout from a nuclear test (Castle Bravo) at Bikini Atoll. This year marks the fourth year in which the program has been carried out by PHRI under a cooperative agreement with DOE. The DOERHRI Special Medical Care Program, awarded the cooperative agreement on August 28, 1998, commenced its health care program on January 15, 1999, on Kwajalein and January 22, 1999, on Majuro. This report details the program for the July 1, 2001, through the June 30, 2002, period. The program provides year-round, on-site medical care to the DOE patient population residing in the Republic of the Marshall Islands (RMI) and annual examinations to those patients living in Hawaii and on the Continental U.S.

  3. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    Energy Technology Data Exchange (ETDEWEB)

    White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States))

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  4. Using Technology to Enhance an Automotive Program

    Science.gov (United States)

    Ashton, Denis

    2009-01-01

    Denis Ashton uses technology in his automotive technology program at East Valley Institute of Technology (EVIT) to positively impact student outcomes. Ashton, the department chair for the automotive programs at EVIT, in Mesa, Arizona, says that using an interactive PowerPoint curriculum makes learning fun for students and provides immediate…

  5. Recent developments in the DOE Waste Minimization Pollution Prevention Program

    International Nuclear Information System (INIS)

    Hancock, J.K.

    1993-01-01

    The U.S. Department of Energy (DOE) is involved in a wide variety of research and development, remediation, and production activities at more than 100 sites throughout the United States. The wastes generated cover a diverse spectrum of sanitary, hazardous, and radioactive waste streams, including typical office environments, power generation facilities, laboratories, remediation sites, production facilities, and defense facilities. The DOE's initial waste minimization activities pre-date the Pollution Prevention Act of 1990 and focused on the defense program. Little emphasis was placed on nonproduction activities. In 1991 the Office of Waste Management Operations developed the Waste Minimization Division with the intention of coordinating and expanding the waste minimization pollution prevention approach to the entire complex. The diverse nature of DOE activities has led to several unique problems in addressing the needs of waste minimization and pollution prevention. The first problem is developing a program that addresses the geographical and institutional hurdles that exist; the second is developing a monitoring and reporting mechanism that one can use to assess the overall performance of the program

  6. Comparison of State-Funded Technology Maturation Programs.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warren, Drake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hess, Marguerite Evelyn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    This study examines the structure and impact of state-funded technology maturation programs that leverage research institutions for economic development throughout the United States. The lessons learned and practices identified from previous experiences will inform Sandia National Laboratories' Government Relations and Technology Partnerships teams as they participate in near-term discussions about the proposed Technology Readiness Gross Receipts Tax Credit and Program, and continue to shape longer-term program and partnership opportunities. This Page Intentionally Left Blank

  7. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  8. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  9. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  10. U.S. DOE Roundtable and Workshop on Advanced Steel Technologies: Emerging Global Technologies and R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, Joan [Energetics, Inc., Columbia, MD (United States); Jamison, Keith [Energetics, Inc., Columbia, MD (United States)

    2015-12-01

    This report is based on the proceedings of the U.S. DOE Roundtable and Workshop on Advanced Steel Technologies Workshop hosted by Oak Ridge National Laboratory (ORNL) in cooperation with the U.S. Department of Energy s (DOE s) Advanced Manufacturing Office (AMO) on held on June 23, 2015. Representatives from industry, government, and academia met at the offices of the National Renewable Energy Laboratory in Washington, DC, to share information on emerging steel technologies, issues impacting technology investment and deployment, gaps in research and development (R&D), and opportunities for greater energy efficiency. The results of the workshop are summarized in this report. They reflect a snapshot of the perspectives and ideas generated by the individuals who attended and not all-inclusive of the steel industry and stakeholder community.

  11. New technologies to meet regulations

    International Nuclear Information System (INIS)

    Frank, C.; Harmon, L.

    1991-01-01

    The US Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management has set the ambitious goal of having all of its facilities cleaned up and in compliance with applicable environmental laws and regulations by the year 2019. This goal is ambitious both because of the magnitude of the effort required and because, in many cases, the means for attaining the goal do not now exist. The DOE's strategy for reaching its goal is based on applied research and development, education, and cooperation with regulators. The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management has instituted a program to assess the magnitude of the cleanup effort and to evaluate the potential technologies to be used. The OTD has program responsibility for providing new and more effective technologies for meeting DOE's goal for compliance and cleanup. Included are research and development of new technologies; demonstration, testing, and evaluation of technologies developed elsewhere; transportation; and educational programs to produce the scientists and engineers needed to maintain the momentum of research, development, demonstration, testing, and evaluation (RDDT and E) until the job is complete

  12. DOE University Reactor Sharing Program. Final technical report for 1996--1997

    International Nuclear Information System (INIS)

    Chappas, W.J.; Adams, V.G.

    1998-01-01

    The Department of Energy University Reactor Sharing Program at University of Maryland, College Park (UMCP) has, once again, stimulated a broad use of the reactor and radiation facilities by undergraduate and graduate students, visitors, and professionals. Participants are exposed to topics such as nuclear engineering, radiation safety, and nuclear reactor operations. This information is presented through various means including tours, slide presentations, experiments, and discussions. Student research using the MUTR is also encouraged. In addition, the Reactor Sharing Program here at the University of Maryland does not limit itself to the confines of the TRIGA reactor facility. Incorporated in the program are the Maryland University Radiation Effects Laboratory, and the UMCP 2 x 4 Thermal Hydraulic Loop. These facilities enhance and give an added dimension to the tours and experiments. The Maryland University Training Reactor (MUTR) and the associated laboratories are made available to any interested institution six days a week on a scheduled basis. Most institutions are scheduled at the time of their first request--a reflection of their commitment to the Reactor Sharing Program. The success of the past years by no means guarantees future success. Therefore, the reactor staff is more aggressively pursuing its outreach program, especially with junior colleges and universities without reactor or radiation facilities; more aggressively developing demonstration and training programs for students interested in careers in nuclear power and radiation technology; and more aggressively up-grading the reactor facilities--not only to provide a better training facility but to prepare for relicensing in the year 2000

  13. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  14. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  15. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  16. DOE role in nuclear policies and programs: official transcript of public briefing. Addendum December 13, 1977, Washington, D. C

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    A total of 24 questions were read into the official record at the public briefing on nuclear policies and programs. The answers published were researched and written by personnel of DOE's Office of Energy Research, Office of Energy Technology, and the Secretary's Office. A few questions were sent to the Nuclear Regulatory Commission for review and for preparation of answers.

  17. DOE standard: Filter test facility quality program plan

    International Nuclear Information System (INIS)

    1999-02-01

    This standard was developed primarily for application in US Department of Energy programs. It contains specific direction for HEPA filter testing performed at a DOE-accepted HEPA Filter Test Facility (FTF). Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), US Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal form (DOE F 1300.3) appearing at the end of this document

  18. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  19. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  20. Wackenhut Services, Incorporated: Report from the DOE Voluntary Protection Program onsite review, August 10--14, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team`s findings from the five-day onsite evaluation of Wackenhut Services, Inc. (WSI) at Savannah River Site (SRS), conducted August 10-14, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five DOE-VPP tenets. The Team determined that WSI has met in varying degrees, all the tenets of the DOE-VPP. In every case, WSI programs and procedures exceed the level or degree necessary for compliance with existing standards, DOE Orders, and guidelines. In addition, WSI has systematically integrated their occupational safety and health (OSH) program into management and work practices at all levels. WSI`s efforts toward implementing the five major DOE-VPP tenets are summarized.

  1. Wackenhut Services, Incorporated: Report from the DOE Voluntary Protection Program onsite review, August 10-14, 1998

    International Nuclear Information System (INIS)

    1999-05-01

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team's findings from the five-day onsite evaluation of Wackenhut Services, Inc. (WSI) at Savannah River Site (SRS), conducted August 10-14, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five DOE-VPP tenets. The Team determined that WSI has met in varying degrees, all the tenets of the DOE-VPP. In every case, WSI programs and procedures exceed the level or degree necessary for compliance with existing standards, DOE Orders, and guidelines. In addition, WSI has systematically integrated their occupational safety and health (OSH) program into management and work practices at all levels. WSI's efforts toward implementing the five major DOE-VPP tenets are summarized

  2. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE@@@s Waste Disposal/Tank Closure Efforts @@@ 15436

    International Nuclear Information System (INIS)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

    2015-01-01

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox @@ @@Version 2.0@@@ which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  3. United States Superconducting MHD Magnet Technology Development Program

    International Nuclear Information System (INIS)

    Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.

    1981-01-01

    A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs

  4. 2013 Building Technologies Office Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  5. US Global Change Research Program Distributed Cost Budget Interagency Funds Transfer from DOE to NSF

    Energy Technology Data Exchange (ETDEWEB)

    Uhle, Maria [National Science Foundation (NSF), Washington, DC (United States)

    2016-09-22

    These funds were transferred from DOE to NSF as DOE's contribution to the U.S. Global Change Research Program in support of 4 internationalnactivities/programs as approved by the U.S. Global Change Research Program on 14 March 2014. The programs are the International Geosphere-Biosphere Programme, the DIVERSITAS programme, and the World Climate Research Program. All program awards ended as of 09-23-2015.

  6. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  7. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  8. Fossil Energy Program annual progress report for April 1994 through March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report covers progress made during the period April 1, 1994, through March 31, 1995, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, and DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The following research areas are covered in this report: Materials research and development; Environmental analysis support; Bioprocessing research; Coal combustion research; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion in the Energy Science an Technology database.

  9. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    International Nuclear Information System (INIS)

    1995-01-01

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic

  10. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  11. Annual report to DOE of the fusion programs in applied plasma physics and development and technology at GA Technologies Inc., fiscal 1984

    International Nuclear Information System (INIS)

    Ohkawa, T.

    1985-04-01

    The GA programs in Applied Plasma Physics and Development and Technology have registered substantial accomplishments during fiscal 1984. Theoretical work in the MHD area has contributed to further understanding of the physics governing low-q, high-β tokamak discharges, including the effects of a cold plasma mantle and an edge-temperature pedestal. The universal scaling law for the maximum β stable to ideal-MHD modes has been verified for Doublet III and has also been validated for JET, DIII-D, and a Double Dee configuration. Experimental work in Applied Plasma Physics included the development of two new high-energy diagnostics, one for gamma rays and one for tritons (or, in a reactor, alpha particles), both of which can yield essential physics information that is not readily obtainable from the panoply of existing diagnostic instruments. The development of a current-density profile diagnostic continued, and it was found that the instrument could also be used to obtain relative density profiles throughout a tokamak discharge. And tests of an ergodic magnetic limiter scheme indicated that the configuration has the potential to create a stable, radiating boundary layer while reducing the heat load to the walls in future high-power devices. The work carried out in the area of Development and Technology included a group of reactor systems design studies that bring into focus some of the challenges that will be faced by the engineers of fusion power equipment. Closer to realization are advanced rf equipment and superconducting magnet developments, both under design in the area of plasma technologies. Technological developments that apply directly to current experiments as well as to future devices comprise the rest of the GA D and T program

  12. Cooperative field test program for wind systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  13. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    International Nuclear Information System (INIS)

    1994-08-01

    This document has been prepared by the Department of Energy's (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology

  14. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  15. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  16. Kansas State University: DOE/KEURP Site Operator Program. Year 4, fourth quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Kansas State University, in support of a DOE and Kansas Electric Utilities Research Program subject contract, continues to test, evaluate, demonstrate, and develop electric vehicle and infrastructure technology. K-State is operating two Soleq EVcort vehicles. During this reporting period both vehicles were brought back to full operational status after warranty service was completed by Soleq. Vehicle failures occurred due to three unrelated battery cable failures in addition to the replacement of one battery. Both vehicles are being operated on a routine basis. K-State, along with York Technical College, has established a relationship with Troy Design and Manufacturing (TDM) Redford, Michigan. K-State has ordered no less than four Ford Ranger electric trucks from TDM. K-State is involved in the steering committee that is monitoring and refining information to direct the design and testing of these new technology vehicles. TDM should become the first automotive manufacturer certified by one of the Big Three under their Quality Vehicle Manufacturer program. Kansas State University and the Kansas Electric Utility Research Program look forward to working with TDM on their new EV program.

  17. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  18. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  19. A progress report on DOE's advanced hydropower turbine systems program

    International Nuclear Information System (INIS)

    Sale, M.J.; Cada, G.F.; Rinehart, B.E.

    1997-01-01

    Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE's advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program

  20. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  1. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    Energy Technology Data Exchange (ETDEWEB)

    Kirwan-Taylor, H.; McCabe, G.H. [Battelle Seattle Research Center, WA (United States); Lesperance, A. [Pacific Northwest National Lab., Richland, WA (United States); Kauffman, J.; Serie, P.; Dressen, L. [EnvironIssues (United States)

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

  2. Transportation System Risk Assessment on DOE Defense Program shipments

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Kimura, C.Y.; Alesso, H.P.; Prassinos, P.G.

    1992-01-01

    Substantial effort has been expended concerning the level of safety provided to persons, property, and the environment from the hazards associated with transporting radioactive material. This work provided an impetus for the Department of Energy to investigate the use of probabilistic risk assessment techniques to supplement the deterministic approach to transportation safety. The DOE recently decided to incorporate the methodologies associated with PRAs in the process for authorizing the transportation of nuclear components, special assemblies, and radioactive materials affiliated with the DOE Defense Program. Accordingly, the LLNL, sponsored by the DOE/AL, is tasked with developing a safety guide series to provide guidance to preparers performing a transportation system risk assessment

  3. Technology and Risk Sciences Program. FY99 Annual Report

    International Nuclear Information System (INIS)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals

  4. Technology and Risk Sciences Program. FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Regens, James L.

    2000-01-01

    In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals.

  5. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  6. Civil Engineering Technology Program Guide.

    Science.gov (United States)

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide presents civil engineering technology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and…

  7. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  8. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  9. Remedial Action Programs annual meeting: Proceedings

    International Nuclear Information System (INIS)

    1988-01-01

    Within the DOE's Office of Nuclear Energy, the Office of Remedial Action and Waste Technology manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. These programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings remedial Action Program and the West Valley Demonstration Project. The programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Surplus Facilities Management Program and was held near DOE Headquarters, in Gaithersburg, Maryland. This volume of proceedings provides the record for the meeting. The proceedings consist of abstracts for each presentation made at the meeting, and the visual aids (if any) used by the speakers. The material is organized in the following pages according to the five different sessions at the meeting: Session 1: Environmental Compliance--Policy; Session 2: Environmental Compliance--Practice; Session 3: Reports from working groups; Session 4: DandD Technology; and Session 5: Remedial Action Technology. The agenda for the meeting and the list of meeting registrants are provided in Appendix A and B, respectively. Individual papers are processed separately for the data base

  10. U.S. Department of Energy national technology information exchange workshops

    International Nuclear Information System (INIS)

    Daub, G.J.; Earle, S.D.; Smibert, A.M.; Wight, E.H.

    1994-01-01

    The U.S. Department of Energy National Technology Information Exchange (TIE) Workshops bring together environmental restoration and technology development personnel to exchange and share problems, needs, technological solutions, ideas, and successes and failures from lessons learned at DOE sites. The success of this forum is measured by the knowledge gained, contacts made, and program dollars saved by the people who actually do the work in the field. TIE is a unique opportunity to unite the DOE community and allow individuals to listen and to learn about each others' problems and solutions. By using today's technologies better, the National TIE Workshops help identify and implement cost-effective and appropriate technologies to meet the needs of the DOE environmental restoration program

  11. Hanford science and technology needs statements document

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.L.

    1997-12-31

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritization of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.

  12. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  13. CICT Computing, Information, and Communications Technology Program

    Science.gov (United States)

    Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)

    2002-01-01

    The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.

  14. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    White, T.; Contos, L.; Adams, L. [Radian Corp., Research Triangle Park, NC (United States)

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  15. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  16. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  17. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  18. Future directions of defense programs high-level waste technology programs

    International Nuclear Information System (INIS)

    Chee, T.C.; Shupe, M.W.; Turner, D.A.; Campbell, M.H.

    1987-01-01

    The Department of Energy has been managing high-level waste from the production of nuclear materials for defense activities over the last forty years. An objective for the Defense Waste and Transportation Management program is to develop technology which ensures the safe, permanent disposal of all defense radioactive wastes. Technology programs are underway to address the long-term strategy for permanent disposal of high-level waste generated at each Department of Energy site. Technology is being developed for assessing the hazards, environmental impacts, and costs of each long-term disposal alternative for selection and implementation. This paper addresses key technology development areas, and consideration of recent regulatory requirements associated with the long-term management of defense radioactive high-level waste

  19. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  20. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions

  1. DOE materials program supporting immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Oertel, G.K.; Scheib, W.S. Jr.

    1979-01-01

    A summary is presented of the DOE program for developing waste-form criteria, immobilization processes, and generation and evaluation of performance characterization data. Interrelationships are discussed among repository design, materials requirements, immobilization process definition, quality assurance, and risk analysis as part of the National Environmental Policy Act and regulatory processes

  2. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  3. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  4. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    International Nuclear Information System (INIS)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT ampersand E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT ampersand E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section

  5. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  6. Weldon Spring Site Remedial Action Project: Report from the DOE voluntary protection program onsite review, November 17--21, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-28

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team`s findings from the five-day onsite evaluation of the Weldon Spring Site Remedial Action Project (WSSRAP), conducted November 17--21, 1997. The site was evaluated against the program requirements contained in ``US Department of Energy Voluntary Protection Program, Part 1: Program Elements`` to determine its success in implementing the five tenets of DOE-VPP. DOE-VPP consists of three programs, with names and functions similar to those in OSHA`s VPP. These programs are STAR, MERIT, and DEMONSTRATION. The STAR program is the core of DOE-VPP. The program is aimed at truly outstanding protectors of employee safety and health. The MERIT program is a steppingstone for contractors and subcontractors that have good safety and health programs but need time and DOE guidance to achieve STAR status. The DEMONSTRATION program is rarely used; it allows DOE to recognize achievements in unusual situations about which DOE needs to learn more before determining approval requirements for the STAR status.

  7. Weldon Spring Site Remedial Action Project: Report from the DOE voluntary protection program onsite review, November 17-21, 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team's findings from the five-day onsite evaluation of the Weldon Spring Site Remedial Action Project (WSSRAP), conducted November 17--21, 1997. The site was evaluated against the program requirements contained in ''US Department of Energy Voluntary Protection Program, Part 1: Program Elements'' to determine its success in implementing the five tenets of DOE-VPP. DOE-VPP consists of three programs, with names and functions similar to those in OSHA's VPP. These programs are STAR, MERIT, and DEMONSTRATION. The STAR program is the core of DOE-VPP. The program is aimed at truly outstanding protectors of employee safety and health. The MERIT program is a steppingstone for contractors and subcontractors that have good safety and health programs but need time and DOE guidance to achieve STAR status. The DEMONSTRATION program is rarely used; it allows DOE to recognize achievements in unusual situations about which DOE needs to learn more before determining approval requirements for the STAR status

  8. Overview of DOE's Transuranic Waste Program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1987-01-01

    The US Department of Energy has assigned to Albuquerque Operations the Defense Transuranic Waste Program responsibility for long-range planning and management of defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements which support it's primary goal of ending interim storage and achieving permanent disposal. These are: waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities, and permanent disposal. This paper will briefly discuss these seven elements and how they are integrated to provide for successful achievement of the primary goal

  9. Clean Coal Technology Demonstration Program: Program update 1991 (as of December 31, 1991)

    International Nuclear Information System (INIS)

    1992-02-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale ''showcase'' facilities built across the country. The program takes the most promising advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The CCT Program has been identified in the National Energy Strategy as major initiative supporting the strategy's overall goals to: increase efficiency of energy use; secure future energy supplies; enhance environmental quality; fortify foundations. The technologies being demonstrated under the CCT Program when commercially available will enable coal to reach its full potential as a source of energy for the nation and the international marketplace. The goal of the program is to furnish the US and international energy marketplaces with a number of advanced, highly efficient, and environmentally acceptable coal-using technologies

  10. Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II

    Energy Technology Data Exchange (ETDEWEB)

    WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.; LATHAM,AMY E.; SCHMIDT,C.O.

    1999-10-01

    This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 and September 1998.

  11. Computer technology and computer programming research and strategies

    CERN Document Server

    Antonakos, James L

    2011-01-01

    Covering a broad range of new topics in computer technology and programming, this volume discusses encryption techniques, SQL generation, Web 2.0 technologies, and visual sensor networks. It also examines reconfigurable computing, video streaming, animation techniques, and more. Readers will learn about an educational tool and game to help students learn computer programming. The book also explores a new medical technology paradigm centered on wireless technology and cloud computing designed to overcome the problems of increasing health technology costs.

  12. Deploying innovative technologies to improve DOE D ampersand D project baselines

    International Nuclear Information System (INIS)

    Rose, R.W.

    1997-05-01

    The insertion of innovative technologies to replace baseline technologies used in cost estimation and planning of DOE D ampersand D projects is considered a high risk endeavor by project and programmatic decision makers. It is almost always considered safer to go with the open-quotes devil you knowclose quotes than use a new or untried technology, methodology or system. The decision on the specific technology to be utilized to remediate a problem is often made months or years in advance of execution, and the highly proscriptive documentation of agreements necessary to obtain stakeholder and regulator approval of remedial plans is often counterproductive to considering improved technologies

  13. Technology development needs summary, FY 1995

    International Nuclear Information System (INIS)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included

  14. Technology development needs summary, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  15. EPA [Environmental Protection Agency] SITE [Superfund Innovative Technology Evaluation] program seeks technology proposals

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    EPA will issue an RFP to initiate the SITE-005 solicitation for demonstration of technologies under the Superfund Innovative Technology Evaluation (SITE) Program. This portion of the SITE program offers a mechanism for conducting a joint technology demonstration between EPA and the private sector. The goal of the demonstration program is to provide an opportunity for developers to demonstrate the performance of their technologies on actual hazardous wastes at Superfund sites, and to provide accurate and reliable data on that performance. Technologies selected must be of commercial scale and provide solutions to problems encountered at Superfund Sites. Primary emphasis in the RFP is on technologies that address: treatment of mixed, low level radioactive wastes in soils and groundwater; treatment of soils and sludges contaminated with organics and/or inorganics, materials handling as a preliminary step to treatment or further processing, treatment trains designed to handle specific wastes, are in situ technologies, especially those processes providing alternatives to conventional groundwater pump and treat techniques

  16. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  17. Permanent certification program for health information technology; revisions to ONC-Approved Accreditor processes. Final rule.

    Science.gov (United States)

    2011-11-25

    Under the authority granted to the National Coordinator for Health Information Technology by section 3001(c)(5) of the Public Health Service Act (PHSA) as added by the Health Information Technology for Economic and Clinical Health (HITECH) Act, this final rule establishes a process for addressing instances where the ONC-Approved Accreditor (ONC-AA) engages in improper conduct or does not perform its responsibilities under the permanent certification program. This rule also addresses the status of ONC-Authorized Certification Bodies (ONC-ACBs) in instances where there may be a change in the accreditation organization serving as the ONC-AA and clarifies the responsibilities of the new ONC-AA.

  18. Roadmapping or development of future investments in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D. (Dianne)

    2002-01-01

    This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and

  19. DOE Hazardous Waste Remedial Actions Program: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1987-05-01

    The activities of HAZWRAP for the past fiscal year were organized into seven principal areas: technical analysis and technology transfer; regulatory analysis; strategic planning;information systems; program administration; technology adaptation; and technology demonstration. The scope, major FY 1986 accomplishments, and future directions for each of these areas are described in the following sections of this report. Listings of reports produced through the SCO are given in Appendixes A and B for the current year and since the program started, respectively

  20. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  1. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  2. DOE role in nuclear policies and programs: official transcript of public briefing, December 13, 1977

    International Nuclear Information System (INIS)

    1978-02-01

    The record for the first of the public briefings in the Consumer Information Series scheduled by the Department of Energy is presented. The series presents, for public information and discussion, those DOE policies and programs of specific interest to consumers and public interest groups. In the first meeting DOE officials responded to questions from the public on the DOE role in nuclear policies and programs

  3. Systems autonomy technology: Executive summary and program plan

    Science.gov (United States)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  4. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  5. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  6. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  7. General program for the advancement of the radionuclide technology

    International Nuclear Information System (INIS)

    1979-12-01

    The 'General Program for the Advancement of the Radionuclide Technology' was elaborated in 1978 by the 'Arbeitsgemeinschaft zur Foerderung der Radionuklidtechnik' (AFR) (Association for the Promotion of Radionuclide Technology). In addition to an inventory of the major applications of radionuclide technology, this General Program includes a comprehensive description of tasks relating to the central topics of raw materials, environment, technology and materials, health and nutrition, scientific developments of radionuclide technology. The 'General Program for the Advancement of the Radionuclide Technology' serves inter alia as a basis of evaluation in opinions on funding applications filed with the Federal Ministry for Research and Technology (BMFT) with respect to the provision of advanced techniques involving radionuclides for industrial application. (orig.) [de

  8. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  9. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  10. Clean Coal Technology Programs: Completed Projects (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  11. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  12. Energy Innovation Portal Brings DOE Technologies to the Market (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    For venture capitalists, energy entrepreneurs, and industry veterans, finding the right renewable energy or energy efficiency solution used to be like looking for a needle in a haystack. Now, a searchable treasure trove of innovative U.S. Department of Energy (DOE) technologies is available. Created by the National Renewable Energy Laboratory (NREL), the online Energy Innovation Portal helps businesses and entrepreneurs access the intellectual property of DOE's 17 national laboratories and other research partners.

  13. A proposed office of technology development education program

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The office of Environmental Restoration and Waste Management (EM) was formed within the US Department of Energy (DOE) to clean up radioactive and hazardous wastes on US government sites associated with the production and use of nuclear weapon materials In order to insure the development and demonstration of technologies necessary for the task, EM established an office of Technology Development (OTD). Furthermore, in order to accomplish this massive effort, DOE and its contractors will need large numbers of technically trained people. Because of the demands on the same pool of such individuals by other government agencies and the private sector, it is not clear that the supply will be sufficient to meet the competing demands.

  14. NASA technology utilization program: The small business market

    Science.gov (United States)

    Vannoy, J. K.; Garcia-Otero, F.; Johnson, F. D.; Staskin, E.

    1980-01-01

    Technology transfer programs were studied to determine how they might be more useful to the small business community. The status, needs, and technology use patterns of small firms are reported. Small business problems and failures are considered. Innovation, capitalization, R and D, and market share problems are discussed. Pocket, captive, and new markets are summarized. Small manufacturers and technology acquisition are discussed, covering external and internal sources, and NASA technology. Small business and the technology utilization program are discussed, covering publications and industrial applications centers. Observations and recommendations include small business market development and contracting, and NASA management technology.

  15. International Technology Exchange Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    International Nuclear Information System (INIS)

    White, T.; Contos, L.

    1991-09-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. These data were collected by implementing the Environmental Monitoring Plan (EMP) for the DOE LIMB Demonstration Project Extension, dated August 1988. This document is the fifth EMP status report to be published and presents the data generated during November and December 1990, and January 1991. These reports review a three or four month period and have been published since the project's start in October 1989. The DOE project is an extension of the US Environmental Protection Agency's (EPA) original LIMB Demonstration. The program is operated under DOE's Clean Coal Technology Program of ''emerging clean coal technologies'' under the categories of ''in boiler control of oxides of sulfur and nitrogen'' as well as ''post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs). 5 figs., 12 tabs

  18. Two Inseparable Facets of Technology Integration Programs: Technology and Theoretical Framework

    Science.gov (United States)

    Demir, Servet

    2011-01-01

    This paper considers the process of program development aiming at technology integration for teachers. For this consideration, the paper focused on an integration program which was recently developed as part of a larger project. The participants of this program were 45 in-service teachers. The program continued four weeks and the conduct of the…

  19. Overview of Advanced Turbine Systems Program

    Science.gov (United States)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  20. US DOE Regional Test Centers Program - 2016 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy that meets a clearly defined set of performance and reliability objectives.

  1. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  2. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  3. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  4. Comparison of DOE and NIRMA approaches to configuration management programs

    International Nuclear Information System (INIS)

    Yang, E.Y.; Kulzick, K.C.

    1995-01-01

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility's design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configuration management program as outlined in the U.S. Department of Energy's (DOE's) DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Program,close quotes with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, open-quotes Position Paper on Configuration Managementclose quotes 2. PP03-1992, open-quotes Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facilityclose quotes 3. PP04-1994 open-quotes Position Paper for Configuration Management Information Systems.close quotes

  5. How Does Early Feedback in an Online Programming Course Change Problem Solving?

    Science.gov (United States)

    Ebrahimi, Alireza

    2012-01-01

    How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…

  6. 78 FR 31535 - Assistive Technology Alternative Financing Program

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF EDUCATION Assistive Technology Alternative Financing Program AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Notice. Catalog of Federal... developed for the Assistive Technology (AT) Alternative Financing Program (AFP) in fiscal year (FY) 2012 to...

  7. Overview of international fusion technology programs

    International Nuclear Information System (INIS)

    Coffman, F.E.; Baublitz, J.E.; Beard, D.S.; Cohen, M.M.; Dalder, E.N.C.; Finfgeld, C.R.; Haas, G.M.; Head, C.R.; Murphy, M.R.; Nardella, G.R.

    1979-01-01

    World fusion technology programs, as well as current progress and future plans for the U.S., are discussed. Regarding conceptual design, the international INTOR tokamak study, the Garching Ignition Test Reactor Study, the U.S. Engineering Test Facility conceptual design, the Argonne National Laboratory Commercial Tokamak Study, mirror conceptual designs, and alternate concepts and applications studies are summarized. With regard to magnetics, progress to date in the large coil program and pulsed coil program is summarized. In the area of plasma heating and fueling and exhaust, work on a new positive ion source research and development program at Lawrence Berkeley Laboratory and Oak Ridge National Laboratory is described, as is negative ion work. Tradeoff considerations for radio-frequency heating alternatives are made, and a new 60-100 GHz electron cyclotron heating research and development program is discussed. Progress and plans for solid hydrogen pellet injector development are analyzed, as are plans for a divertor technology initiative. A brief review of the U.S. alternate applications and environment and safety program is included

  8. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  9. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  10. 1996 ICF program overview

    International Nuclear Information System (INIS)

    Correll, D

    1996-01-01

    The continuing objective of the Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship and Management (SSM) Program. The extension of current program research capabilities in the National Ignition Facility (NIF) is necessary for the ICF Program to satisfy its stewardship responsibilities. ICF resources (people and facilities) are increasingly being redirected in support of the performance, schedule, and cost goals of the NIF. One of the more important aspects of ICF research is the national nature of the program. Lawrence Livermore National Laboratory's (LLNL's) ICF Program falls within DOE's national ICF Program, which includes the Nova and Beamlet laser facilities at LLNL and the OMEGA, Nike, and Trident laser facilities at the University of Rochester (Laboratory for Laser Energetics, UR/LLE), the Naval Research Laboratory (NRL), and Los Alamos National Laboratory (LANL), respectively. The Particle Beam Fusion Accelerator (PBFA) and Saturn pulsed-power facilities are at Sandia National Laboratories (SNL). General Atomics, Inc. (GA) develops and provides many of the targets for the above experimental facilities. LLNL's ICF Program supports activities in two major interrelated areas: (1) target physics and technology (experimental, theoretical, and computational research); and (2) laser science and optics technology development. Experiments on LLNL's Nova laser primarily support ignition and weapons physics research. Experiments on LLNL's Beamlet laser support laser science and optics technology development. In addition, ICF sciences and technologies, developed as part of the DP mission goals, continue to support additional DOE objectives. These objectives are (1) to achieve diversity in energy sources

  11. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    International Nuclear Information System (INIS)

    Kirwan-Taylor, H.; McCabe, G.H.; Lesperance, A.; Kauffman, J.; Serie, P.; Dressen, L.

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area's (SCFA) External Integration Team (EIT) in supporting DOE's technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders

  12. Private industry opportunity and challenge: Participation in the DOE/NWPA transportation program

    International Nuclear Information System (INIS)

    Barrett, L.H.

    1986-01-01

    The program within the Office of Civilian Radioactive Waste Management (OCRWM) of the DOE has been structured so as to tap all of our resources and the author briefly describes in this paper how it does so. Then, he describes one of the greatest challenges of obtaining a certificate of compliance from the Nuclear Regulatory Commission (NRC) for innovative cask designs. The program consists of four major elements: Cask system acquisition; institutional planning and coordination; environmental and economic analyses; and operations. The purpose of this paper is to describe system acquisition and its technical aspects

  13. DOE Hydropower Program Annual Report for FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  14. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  15. 40 CFR 1048.405 - How does this program work?

    Science.gov (United States)

    2010-07-01

    ... Section 1048.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.405 How does this program work? (a) You must test in-use engines, for exhaust emissions, from the...

  16. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  17. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  18. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program

  19. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  20. Final Report on the Proposal to Provide Asian Science and Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Kahaner, David K. [Asian Technology Information Program

    2003-07-23

    The Asian Technology Information Program (ATIP) conducted a seven-month Asian science and technology information program for the Office:of Energy Research (ER), U.S: Department of Energy (DOE.) The seven-month program consists of 1) monitoring, analyzing, and dissemiuating science and technology trends and developments associated with Asian high performance computing and communications (HPC), networking, and associated topics, 2) access to ATIP's annual series of Asian S&T reports for ER and HPC related personnel and, 3) supporting DOE and ER designated visits to Asia to study and assess Asian HPC.