WorldWideScience

Sample records for technology development fy83

  1. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  2. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  3. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  4. FY83 Posture Report: Research, Development, Engineering and Acquisition.

    Science.gov (United States)

    1983-01-01

    to provide staff management and con- fluids, corrosion preventives, chemistry , chemical trol of Belvoir R&D Center’s force structure through the...vialiing boith FV82 antI FY83 fundsi. Early mianagenlerit r atar refletotrs anti c4tint racting fair sei-imi-generat itir iietlingp estabrlisliedi the phi...ft) to accommodate boats such as the fabrics. paper chemistry , preservatives, fuels, optical LCU, LCM-8. Ribbon Bridge Erection Boat, Small Tug. and

  5. Office of Crystalline Repository Development FY 83 technical project plan

    International Nuclear Information System (INIS)

    1983-03-01

    The technical plan for FY 83 activities of the Office of Crystalline Repository Development is presented in detail. Crystalline Rock Project objectives are discussed in relation to the National Waste Terminal storage (NWTS) program. The plan is in full compliance with requirements mandated by the Nuclear Waste Policy Act of 1982. Implementation will comply with the requirements and criteria set forth in the Nuclear Regulatory Commission regulations (10 CFR 60) and the Environmental Protection Agency standard (40 CFR 191). Technical approaches and the related milestones and schedules are presented for each of the Level 3 NWTS work Breakdown Structure Tasks. These are: Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities and Excavations, Land Acquisition, and Program Management

  6. Fire protection research for DOE facilities: FY 83 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

    1984-01-01

    We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  7. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace.

  8. Technology development, evaluation, and application (TDEA) FY 1997 progress report

    International Nuclear Information System (INIS)

    Hoffman, L.G.

    1998-05-01

    The public expects that the Los Alamos National Laboratory (LANL) will operate in a manner that prevents negative impacts to the environment and protects the safety and health of its employees and the public. To achieve this goal within budget, the Department of Energy (DOE) and LANL must develop new and improved environment, safety, and health (ES and H) technologies and implement innovative, more cost-effective ES and H approaches to operations. In FY95, the Environment, Safety, and Health (ESH) Division initiated a Technology Development, Evaluation, and Application (TDEA) program. The purpose of this unique program is to test and develop technologies that solve LANL ES and H problems and improve the safety of LANL operations. This progress report presents the results of 10 projects funded in FY97 by the TDEA Committee of the Environment, Safety, and Health Division. Products generated from the projects funded in FY97 included implementation of radiation worker dosimetric monitoring systems (two); evaluation and validation of cost-effective animal-tracking systems for environmental studies (two); evaluation of personal protective equipment (two); and development of a method for optimal placement of continuous air monitors in the workplace

  9. Near-dome geologic findings - Richton Dome, Mississippi: annual status report for FY 83

    International Nuclear Information System (INIS)

    1984-10-01

    Basin Analysis is a study of the regional and local stratigraphic, tectonic, and salt-tectonic conditions that influenced the development of the Mississippi Salt Basin and Richton Dome, an element within that basin. During FY 83, work was concentrated on the local area surrounding Richton Dome and included the writing of the Midyear FY 83 Richton Dome Screening and Suitability Review, input to the Site Characterization Plan that is being prepared by the Southern Region Geologic Project Manager, and initial development of a near-dome geologic model. The geologic model was compiled using information from approximately 300 oil and gas well geophysical logs and 128 line km (80 line mi) of seismic-reflection profiles. In addition to analysis and interpretation of the logs and profiles, stratigraphic data from each were assembled in a computer-based file and were used to produce computer-generated structural contour maps. Major findings from the analyses include a new configuration for the northern end of Richton Dome and improved definitions of near-dome faults and the rim syncline on the northern and eastern flanks of Richton Dome. 4 references, 6 figures

  10. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution

  11. Repository Technology Program activities, FY 1988

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.; Wijesinghe, A.M.; Thorpe, R.K.; Knapp, R.B.

    1989-07-01

    Our technical activities in FY 1988 included instrument selection and evaluation, calculational work, and simulator development. Near the end of the fiscal year, we began preparing several topical reports to document our results. This fiscal year, we continued developing three-dimensional numerical simulators to model coupled hydrologic-and mechanical-rock mass responses and, thus, to provide representative numerical tools for understanding and calculating these in situ processes. We also began scoping calculations in the second half of FY 1988 to evaluate ERE design criteria, but this work was redirected late in the year when the DOE/AECL Subsidiary Agreement was set aside. Our work in developing and evaluating experimental techniques focused on total pressure measurements, moisture content measurement, and tracer detection instrumentation for sealing experiments and for rock-mass-response field tests. At the end of the fiscal year, we completed a review of measurement technology for instrumenting migration/sorption tests to help define the technological requirements in these areas. By the end of FY 1988, we had completed a review of the existing codes for simulating reactive transport; we are using the results of this review to help formulate plans for future activities in this area. The following sections describe the major RTP tasks and activities at LLNL in more detail, and they include our FY 1988 accomplishments in these areas. 8 refs., 22 figs

  12. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  13. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    International Nuclear Information System (INIS)

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT ampersand E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT ampersand E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section

  14. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  15. Tanks Focus Area retrieval process development and enhancements FY96 technology development summary report

    International Nuclear Information System (INIS)

    Rinker, M.W.; Bamberger, J.A.; Hatchell, B.K.

    1996-09-01

    The Retrieval Process Development and Enhancements (RPD ampersand E) activities are part of the Retrieval and Closure Program of the U.S. Department of Energy (DOE) EM-50 Tanks Focus Area. The purposes of RPD ampersand E are to understand retrieval processes, including emerging and existing technologies, and to gather data on those processes, so that end users have the requisite technical basis to make retrieval decisions. Work has been initiated to support the need for multiple retrieval technologies across the DOE complex. Technologies addressed during FY96 focused on enhancements to sluicing, borehole mining, confined sluicing retrieval end effectors, the lightweight scarifier, and pulsed air mixing. Furthermore, a decision tool and database have been initiated to link retrieval processes with tank closure to assist end users in making retrieval decisions

  16. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  17. FY2000 Hanford Technology Deployment Accomplishments Fact Sheets

    International Nuclear Information System (INIS)

    WIBLE, R.A.

    2001-01-01

    Cleaning up the Hanford Site is one of the top priorities for the U. S. Department of Energy. The department is continually looking for ways to expedite cleanup and reduce costs. During Fiscal Year (FY) 2000. Hanford Site staff deployed 24 new technologies, which produced an estimated lifecycle cost savings of 479 million dollars. This is a clear indicator of the impacts new technology has had and will have on the cleanup efforts. The Hanford Site cleanup is focused on the following: Restoring the Columbia River Corridor; Building and operating the tank waste treatment complex to complete the cleanup of highly radioactive tank waste at Hanford; and Transitioning the Central Plateau. Applying innovative science and technology from national laboratories, universities, and private industry is critical to our complex cleanup mission. The 24 new technologies deployed in FY 2000 are significantly higher than our goal of 14 technological deployments. Eleven of these technologies supported restoring the Columbia River Corridor, and seven were involved with the remediation of radioactive tank waste. These deployments produced valuable information to determine the effectiveness of the new technologies in the field and the efficiencies gained over existing cleanup methods. In several cases, the technology deployed presented a solution to a problem where a clear path of remediation had not yet been determined. New and innovative technologies will play a significant role in the cleanup of the Hanford Site and enable remediation to be done more efficiently. Technology is being developed at a staggering pace. This requires excellent communication throughout the scientific and industry arenas. To effect this communication, we have implemented a technology needs process in conjunction with the multi-year work planning process. Through the combination of these two processes, technology developments and deployments address the near-term technology needs and enable us to plan for the

  18. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  19. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  20. Nevada Test Site-Directed Research and Development, FY 2007 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2008-01-01

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R and D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL

  1. Nevada Test Site-Directed Research and Development, FY 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2008-02-20

    The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory

  2. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  3. Nevada Test Site-Directed Research and Development: FY 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2007-08-01

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  4. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Will [comp.

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

  5. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  6. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  7. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE's goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD's RDDT and E

  8. Separations and Waste Forms Research and Development FY 2013 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.

  9. Research and development project plans for FY 1995; 1995 nendo kenkyu kaihatsu jigyo keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The present research and development project plans for FY 1995 administrated by NEDO consist of research and development of new energy, and research and development of industrial technology. Are illustrated further enhancement of new energy introduction promotion measures, new stage of international projects, promotion of new energy and new energy technology development, further enhancement of industrial and scientific technology research and development, integrated measures against global and urban environment problems, and budget of NEDO projects in FY 1995. The research and development of new energy includes coal conversion technology, solar energy technology, geothermal energy technology, energy conversion and storage technology, hydrogen, alcohol and biomass energy technology, geothermal energy resources, coal resources development, new energy promotion department activities, NEDO information center activities, and so on. On the other hand, the research and development of industrial technology includes research and development of industrial technology, and global environment technology. The research and development of industrial technology consists of superconductivity, new materials, biotechnology, electronics, information and communications, machinery and aerospace, natural resources, humanity, life and society, and various leading researches.

  10. Research and development project report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report summarizes results of research and development projects administered by NEDO for FY 1996. Overview of new energy projects and twelve chapters for individual projects are provided in the report. The new energy technology development projects administered by NEDO are classified into twelve categories, i.e., Development of technologies for solar energy utilization, Development of geothermal resources, Development of technologies for exploration and utilization of geothermal energy, Development of coal energy utilization technologies, Development of coal resources, Development of energy conversion and storage technologies, Development of hydrogen, alcohol and biomass technologies, Development of other oil-alternative energy technologies, Introduction and promotion of new energy sources, International energy-promotion activities, Promotion of development and introduction, and Activities of the NEDO Information Center. To ensure energy security and actively cope with environmental problems such as by taking carbon dioxide emission control measures, NEDO has stepped up its efforts to develop new energy- and energy saving-related technologies and introduce and diffuse them. 79 figs., 37 tabs.

  11. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  12. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  13. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  14. Assessment report of research and development activities in FY2006 activity. 'Fast reactor cycle technology development project' (Interim report)

    International Nuclear Information System (INIS)

    2007-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') asked the advisory committee 'evaluation Committee of Research and Development (R and D) Activities for Advanced Nuclear System/Nuclear Fuel Cycle Technology' (hereinafter referred to as 'Committee') to assess the interim report on Fast Reactor Cycle Technology Development Project ' (former 'Feasibility Study on Commercialized Fast Reactor Cycle Systems') in FY2006, in accordance with 'General Guideline for the Evaluation of Government R and D Activities' by Japanese Cabinet Office, 'Guideline for Evaluation of R and D in Ministry of Education, Culture Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to JAEA's request, the Committee assessed the R and D program over five years, the criteria for adoption judgment on innovative technologies at the end of 2010 (Project Review), and the organization structure for R and D. etc. (Management Review). As a result of review, the Committee concluded that this R and D program and its organization structure are almost reasonable. (author)

  15. Federal Research and Development Funding: FY2011

    Science.gov (United States)

    2011-03-25

    NSF’s offices in 54 Arden L. Bement, Jr., Transformative Research: The Artistry and Alchemy of the 21st... financing for the Technology Innovation Program (TIP) increases 14.3% over FY2010 funding to $79.9 million. The construction budget declines 15.1% to $124.8...Extension Partnership Program received $124.7 million, 13.4% more than FY2009, while financing for TIP increased 7.5% to $69.9 million. Construction

  16. Federal Research and Development Funding: FY2009

    Science.gov (United States)

    2009-05-22

    are funded through the NIH Management Fund, financed by taps on other NIH appropriations.) President Bush’s FY2009 budget proposal gave most of the... Alchemy of the 21st Century,” remarks, Texas Academy of Medicine, Engineering and Science Fourth Annual Conference, Austin, Texas, January 4, 2007...significant decrease in financing for MEP. Funding for in-house research and development under the Scientific and Technology Research and Services (STRS

  17. FY 2005 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Supplement to the President`s FY 2005 Budget reports on the FY 2004 research and development R and D activities and FY 2005 plans of the multiagency Networking...

  18. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    International Nuclear Information System (INIS)

    Rinker, M.W.; Bamberger, J.A.; Alberts, D.G.

    1997-09-01

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT)

  19. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  20. Fusion Safety Program. Annual report, FY 1982

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  1. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  2. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  3. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  4. Los Alamos Waste Management FY96 and FY97 Tactical Plan, March 1, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Los Alamos National Laboratory (LANL) Waste Management Program (WMP) began a transition to become a open-quotes best of classclose quotes waste management program during fiscal year 1995 (FY95). A best of class waste management program means that LANL will provide cost-effective and compliant management of the minimum amount of waste. In FY94, the WMP could be characterized as a level of effort program requiring several new facilities and new LANL-developed technologies to carry out its waste management responsibilities. By the end of FY95, significant progress had been made in the transition to best of class. The FY96 WMP is realigned and reorganized. Its budget and scope of work are built upon discrete work packages. It is committed to achieving improved cost-effectiveness, providing significant tangible technical results, and to having its performance measured. During FY95, over $11,000,000 in facility and operational costs were avoided. The need for three new major facilities was reexamined and lower cost solutions, not requiring the development of new facilities, were agreed to. Technology development activities were terminated and replaced with the use of commercial facilities to achieve aggressive reductions in the Low-Level Mixed Waste legacy inventory. In addition, over $14,000,000 in improved cost-effectiveness has been included in the FY96 Baseline. An overall WMP vision, specific milestones, performance measures, and commitments are in place for FY96 to ensure that LANL continues the transition to a best of class waste management program. The following table identifies the overall vision and success indicators for FY96

  5. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  6. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    International Nuclear Information System (INIS)

    Hoffman, Larry G.

    2000-01-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division

  7. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  8. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  9. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  10. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  11. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  12. FY 1998 result report. Research/development on the energy overall development/utilization technology of gas hydrate resource; 1998 nendo seika hokokusho. Gas haidoreto shigen no energy sogo kaihatsu riyo gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study is aimed at studying for survey of gas hydrate (GH) deposit required for GH resource development and gathering of it, and further at studying for industrial utilization technology development of GH which is different in formation condition depending on kind of gas with which it reacts. The results of FY 1998 are as follows. In the study of the situation of existence of gas hydrate in the tundra, the sedimentary environment of the tundra where natural gas hydrate exists was simulated in laboratory to measure thermal conductivity of the sediments including GH. In this fiscal year, design/fabrication/calibration were conducted of the GH synthesizer and thermal analyzer. In the study of GH gathering technology in the tundra, a technology is discussed for recovering gas from GH layer and at the same time substituting CO2 hydrate for GH by blowing CO2 into the geologic layer. In FY 1998, formation/dissociation behaviors were first studied of methane/CO2 mixture hydrate. For the overall energy development of GH resource and promotion of R and D of the utilization technology, studies were made on physical properties of GH and development of the usage. (NEDO)

  13. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  14. ISV technology development plan for buried waste

    International Nuclear Information System (INIS)

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K)

  15. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  16. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  19. Progress of technological innovation on electric power in FY2014

    International Nuclear Information System (INIS)

    Nishikawa, Yoshikazu; Fujii, Yutaka; Sasagawa, Toshiro

    2015-01-01

    This paper overviews the technological development in FY2014 at Tokyo Electric Power Company, Chubu Electric Power Company, Hokuriku Electric Power Company, Shikoku Electric Power Company, and Electric Power Development Company. In this overview, further breakdown was made for the following departments of each company: nuclear power generation, thermal power generation, hydraulic power generation, power transmission, power distribution, transformation, research and development and technological development, and information and communication. In addition, this paper outlines the achievement of technological development at Japan Atomic Power Company, such as the technological development related to the existing power station, development of new technology, and the development of future reactor. Fukushima Daiichi Nuclear Power Station has developed an investigative system using a high altitude survey robot and a movable monitoring system. Hamaoka Nuclear Power Station examined the feasibility of state diagnostic technique based on multi-point analysis, and studied stress corrosion cracking at the newly established Nuclear Safety Research Laboratory. Shika Nuclear Power Station (Unit 1) applied a pipe stress improvement process by means of high frequency induction heating as a stress corrosion cracking countermeasure. Ikata Nuclear Power Station newly adopted high degree cross-linking cation resin, and high cracking strength anion resin as the primary resins. Oma Nuclear Power Station worked on the all reactor core utilization technology of MOX fuel. (A.O.)

  20. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the

  1. FY 2000 report on the results of the R and D of 'frontier carbon technology.' Development of the technology to rationalize energy utilization; 2000 nendo 'tansokei kokino zairyo gijutsu' no kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This report summarized the FY 2000 results. In Chapter 1, development of electrically high functional diamond process technology, electric characteristics which frontier carbon materials have were made clear by the following four subjects, and the development was executed of original production process technology for realizing energy saving by heightening efficiency of electric devices, displays, etc. 1) development of morphology control; 2) development of technology to control electron emission characteristics; 3) development of technology to control oriented growth; 4) development of technology to enlarge single crystals. In Chapter 2, the basement technology of electron emission control was studied. Namely, conditions for film formation were investigated to elucidate the formation mechanism of carbon nano structure films by Dual RF CVD method, IPC CVD method and thermal CVD method. As to the electron emission mechanism of diamond, electron emission characteristics were outlined of the boron dope diamond thin film formed by micro wave plasma CVD method in FY 1999. In Chapter 3, investigational study of original production process technology of electrically high function materials, test study was made of the element technology needed to make high quality/large area diamond substrates. (NEDO)

  2. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  3. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  4. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of drilling technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen kussaku gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the purpose of developing deep geothermal resources, development of 'drilling technology of deep geothermal resources' was made from FY 1991 to FY 2001, and the results were summarized. As to the development of bits, the bit that can be used for 30 hours or more at a temperature of 250 degrees C was developed, and the demonstrative test was made in FY 1997. Relating to the development of the high temperature use drilling mud, the mud that can be used at a temperature of 350 degrees C was developed, and the test using the actual well was conducted in FY 1997. Concerning the development of the high temperature use cement slurry, the cement slurry with specific gravity of 1.35 or below that can be used under the environment of a temperature of 350 degrees C was developed, and the hanging test of the specimen was made in the actual well in FY 1998. About the development of the high temperature use downhole motor, a prototype of 1/12 scale was fabricated in FY 1998, and the performance test at high temperature was conducted. As to the development of the high temperature use high strength cement slurry, a cement slurry with specific gravity of 1.50 or below and compressive strength of 19.61 MPa that is used under the environment of a temperature of 300 degrees C was developed, and the test on the long-term compressive strength was made in FY 2001. (NEDO)

  5. FY 2004 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...This Supplement to the Presidents Budget for Fiscal Year (FY) 2004 summarizes the NITRD agencies coordinated research activities and FY 2004 plans, as required by...

  6. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittal, Vijay [Arizona State Univ., Tempe, AZ (United States); Lampis, Anna Rosa [Arizona State Univ., Tempe, AZ (United States)

    2018-01-16

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such as renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting

  7. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  8. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  9. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  10. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  11. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of production technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen seisan gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For making effective/economical collection of deep geothermal resources, development was made from FY 1991 to FY 2001 of the 'drilling technology for deep geothermal resources' and 'production technology for deep geothermal resources,' and the results were summarized. As to the development of logging technology, the PTSD logging system was developed which can measure temperature/pressure/flow velocity/fluid density in geothermal well under the environment of temperature of 400 degrees C. Concerning the development of monitoring technology, development was made of the PT monitoring system that can make the long-term continuous measuring of temperature/pressure in deep geothermal observation well under the environment of temperature of 400 degrees C and of the C monitoring system that samples geothermal fluids at regular intervals to grasp changes in chemical component. Relating to the development of high temperature tracer monitoring technology, the following were conducted: extraction of high temperature tracer agent that can be used in geothermal reservoirs under the environment of temperature of 300 degrees C, development of simulator, and establishment of how to put tracer agent into the reservoir and how to analyze tracer agent. Further, the R and D were made of scale monitoring technology and scale prevention/removal technology. (NEDO)

  12. FY 2000 research cooperation project on plastic processing technology/quality inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  13. Environmental control technology activities of the Department of Energy in FY 1977

    International Nuclear Information System (INIS)

    1977-11-01

    The Department of Energy is responsible for the research, development, and demonstration of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures be taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design. This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the research, development, and demonstration of energy systems. Only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities

  14. FY 1998 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (land area shallow seam survey); 1998 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (rikuiki senso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This is a compilation of the data on the coal resource land area shallow seam survey conducted in FY 1998 as the basic survey for coal resource development. The trend survey was made from July 26 to August 6, 1998. The purposes of the survey are to study the image analysis method, examples of application of the reflection seismic survey to coal, and inversion technology. The data compilation includes the following: 1. Minutes of the proceedings of the FY 1998 Japan-Australia steering committee (in English). 2. Data/proceedings of the FY 1998 Japan-Australia technical study committee (in English). 3. Results of the GPS measurement of reflection seismic survey traverse lines in Caroona district. 4. List of parameters in the FY 1998 reflection seismic survey data processing. 5. Report on the work of inspection/repair of seismic pulse generator. 6. List of the data on diameter of the test boring conducted in FY 1998. 7. NEDO-DMR CAROONA DDH borehole core pictures. 8. Estimated curves. 9. Report on the trend survey of the FY 1998 coal resource development basic survey (land area shallow seam survey). 10. Pictures. 11. Data on the 1st (FY 1998) new exploration technology study committee. (NEDO)

  15. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  16. FY 1999 report on the results of the R and D of femtosecond technology. Development of ultra-short pulse optoelectronics technology; 1999 nendo femutobyo technology no kenkyu kaihatsu seika hokokusho. Chotan pulse hikari electronics gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the R and D of femtosecond technology. For the purpose of creating new industrial basement technology which supports the highly information-oriented society in the 21st century, the ultra-high speed electronics technology is indispensable which is beyond speed limits of the existing electronics technology and has new functionality. The ultra-high speed electronics basement technology is established through the R and D of the technology to control the state of light and electronics in the femtosecond time domain (10{sup -15} - 10{sup -12} second). Themes of the R and D are technology to generate/transmit femtosecond optical pulse, technology for control/distribution, and ultra-short pulse optoelectronics common basement technology. In FY 1999, a lot of results were obtained in the following: generation of the pulse train highly repeated at 500GHz in semiconductor laser; 139km transmission of 250fs optical pulse; switching movement at ultra-high speed of 150fs-1.2ps in transition among subbands of GaN base and Sb base materials; DEMUXA movement toward 160-10Gb/s in Mach-Zehnder type optical switch. (NEDO)

  17. FY 1998 report on the result of the R and D of human sense measurement application technology. II. Main issue (1); 1998 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu itaku kenkyu seika hokokusho. 2. Honronhen (1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper reported the results of the FY 1998 R and D on human sense measurement application technology. Term I of this project is FY 1990-1994, when the interim evaluation was made. The project entered Term II of FY 1995-1998. In Term II, developments were made of the human sense measuring technology to make a 'measure' for health/safety and amenity/convenience which are important to human life, study of application examples for studying effectiveness by concretely applying this measuring technology to examples of products and working place/residential environment, evaluation simulation technology to qualitatively/objectively measure/evaluate amenity and adaptability in stead of humans, human sense database models which collected various human sense data obtained in measuring, etc. Through these technology development, the systematization of human sense indexes is attempted, and finally the following are conducted: development of measuring technology of kindness and evaluation equipment, environment/product design support, manual making for human sense measurement, construction of human sense database, etc. In FY 1998, the results of the measuring technology were mainly obtained. (NEDO)

  18. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  19. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  20. Federal Research and Development Funding: FY2010

    Science.gov (United States)

    2010-01-12

    Foundation, “Transformative Research: The Artistry and Alchemy of the 21st Century,” remarks, Texas Academy of Medicine, Engineering and Science Fourth Annual...Administration’s budget and both House and Senate bills. Financing for the Technology Innovation Program (TIP) is budgeted at $69.9 million, an increase...would have increased 13.3% to $534.6 million. The Manufacturing Extension Program received $124.7 million, 13.4% more than FY2009, while financing for

  1. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  2. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  3. FY 1997 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (water area medium depth seam survey); 1997 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (suiiki chushindoso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In 'the new exploration technology test on coal resource' (water area medium depth seam exploration) jointly conducted between Japan and China, tests have been carried out for 5 years on the BDR-5 test boring measurement monitoring system and the diamond bit which are items of the technology development of high resolution seismic survey system and high efficiency test boring system. As a result, the new technology test was successful, and technical economic effects were obtained. The situation of the test was summarized. The following data were compiled as shown in Data No.1-12. 1. The proceedings of the FY 1997 Japan-China steering committee (No.9). 2. Report on the survey of China verification field South Sihu water level situation. 3. The proceedings of the FY 1997 Japan-China steering committee (final). 4. Report on the FY 1997 reflection seismic exploration survey. 5. Report on the FY 1997 No.2 test boring survey. 6. Summarization of the test on 'the new exploration technology of coal source' conducted between Japan and China. 7. Report on the drilling data measurement. 8. Various sections of the reflection seismic survey data processing. 9. Traverse line chart. 10. T3 isochrone chart. 11. T3 depth structural chart. 12. Report on the new exploration technology survey development (water area medium depth seam exploration) geological model making. (NEDO)

  4. FY 2000 report on the results of the project for the promotion of industrial technology development for the global environment. Project on the investigational research of high technology; 2000 nendo NEDO seika hokokusho. Chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo - Sentan gijutsu chosa kenkyu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    High-tech study was conducted for fields of CO2 fixation/effective utilization, technical development of low environmental load substances and technical development of environmentally friendly type production process, and the FY 2000 results were summarized. Out of the proposals for research projects collected in FY 1999, 25 projects that were recognized to be excellent were consigned to contract research. Research Institute of Innovative Technology for the Earth also selected 4 projects for research. Through research activities, 179 projects were made public, and 2 patents were applied for. The number of research themes was 29 including the following themes: development of food resource resistant to the future global environment, study on new circulation type polymer chemical recycling by bio-process, development of dioxin decomposition technology using artificial enzyme and absorption resin, design of rare metal free cathode substance for large lithium ion secondary battery, and reforming of carbon circulation system in the Australian desert by natural humus supply. (NEDO)

  5. FY 2010 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2010 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  6. FY 2007 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2007 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  7. FY 2008 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2008 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  8. FY 2011 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Supplement to the President`s Fiscal Year FY 2011 Budget provides a technical summary of the budget request for the Networking and Information Technology...

  9. Department of Defense Manpower Requirements Report, FY 1985. Volume III. Force Readiness Report.

    Science.gov (United States)

    1984-02-01

    normally on a reimburs - able basis unless they support the mission of DoD. The Army Reserve increase in FY 1985 is a result of increased support of...Normally, such cross assignment is made on a reimbursable basis. Navy Federal Agency Support Manpower (End Strength in Thousands) FY 83 FY 84 FY 85 (Actual... reimburses the Air Force Industrial Funds for depot maintenance costs with the exception of military personnel costs. For items procured from the Stock

  10. FY 1999 research and development results. Technological development of superconducting power storage systems; Chodendo denryoku chozo system gijutsu kaihatsu 1999 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for technological surveys on the superconducting power storage system (SMES) for cost reduction and high-temperature SMES, and the FY 1999 results are reported. The SMES cost analysis/evaluation program establishes the (basic flow for cost analysis/evaluation) for cost evaluation. The program for the SMES systems for system stabilization sets the specifications of 100MW as output and 15kWh as storage capacity at the generator end and intermediate switching station. The program for SMES systems for load fluctuation compensation and frequency control sets the specifications of 100MW as output and 500kWh as storage capacity at the installation site as the load end, and the investigation of high-temperature SMES technology is conducted on the conceptual designs of the SMES for system stabilization application (100MW, 15kWh) of toroidal coil type. The optimization designs are made for these systems. The investigation of the technology for high-temperature superconducting wires involves fabrication on a trial basis and evaluation for the characteristic evaluation coils, and characteristic measurement and applicability investigation for the large-current short conductor. (NEDO)

  11. Supporting Data FY 1991 Amended Budget Estimate Submitted to Congress - January 1990: Descriptive Summaries of the Research Development Test and Evaluation Army Appropriation

    Science.gov (United States)

    1990-01-01

    Cont D492 Space Technology Integration - 0 - 3941 4101 Cont Cont PE TOTAL 6871 7878 9334 *FY 1989 work accomplished under PE #0602784A/AH71 and PE... D492 - Space Technology Integiation: Restructured and aggregated previously separate space program activities into D492 beginning in FY 1990. FY 1988

  12. LSTA Allotments (FY 2003-2016)

    Data.gov (United States)

    Institute of Museum and Library Services — Review Library Services and Technology Act (LSTA) allotments by state from FY 2003 to FY 2016. The Grants to States program is the largest source of federal funding...

  13. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  14. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  15. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  16. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  17. FY 1996 report on the results of the development of superconductor power application technology. Study of a total system, etc. (Investigational study of the introductory effect); 1996 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. Total system nado no kenkyu (donyu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Under the secondary interim assessment made in FY 1995 between the assessment committee of the energy/environment technology development sectional meeting of the Industrial Technology Deliberation Council and NEDO, in this project, the following were conducted in FY 1996: study of trial manufacture of superconductor motor model machine and R and D of element technology (conductor technology/refrigerator technology). The study was proceeded mainly with Super-GM, and as to the motor, the preparation for test on a part of the model machines was finished. Considering FY 1998 which is the final year of this project, the investigational study in FY 1996 aims at accumulating/arranging/analyzing the data which help judge how to proceed with the future R and D of superconductor power application technology continuously based on the secondary interim assessment. For superconductor motor and various superconductor power appliance, economical/technical feasibilities and methods of R and D and surveys of trends in Japan and abroad for the R and D were made important items. Further, 'R and D of the basement of superconductor power application' proposed in the secondary interim assessment (R and D of the combination of elements which become the basement of equipment technology over a stage of parallel R and D of element technology of conductor, etc.) targeted the presentation of concrete details. (NEDO)

  18. Development of coal hydro gasification technology

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Nomura, Kazuo; Asaoka, Yoshikiyo; Kato, Shojiro; Seo, Tomoyuki

    1997-01-01

    Taking a potential future decrease in natural gas supply into consideration, we are looking for a way to secure a stable supply of high quality substitute natural gas made from coal (which occurs abundantly throughout the world) in large volumes at low cost. We are working towards our goal of commercializing coal hydro gasification technology in the 2010's and have started developing elemental technology from FY, 1996 as a part of the governmental new energy program. (au)

  19. Technology development needs summary, FY 1995

    International Nuclear Information System (INIS)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included

  20. Technology development needs summary, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  1. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  2. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  3. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. Tanks Focus Area Site Needs Assessment - FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

    2001-04-30

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

  5. FY 1999 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 1999 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 1999 results of development of the photon-aided instrumentation and processing technologies. The photon technologies will be widely applicable to various industrial areas, e.g., medical, diagnostic, communication, transmission and chemical areas, in addition to instrumentation and processing, and the FY 1999 project is directed to the survey and analysis of the information, and prediction of their effects. The high-sensitivity light-receiving elements enlarged up to 5mm diameter (effective area) are developed, based on the technologies to grow the thin films using an MOVPE (metal-organic vapor-phase epitaxy) device and the results of development of the infrared ray-receiving InGaAs photodiode sensitive in a 2.5 to 2.7{mu}m wavelength range. The surface roughness of 0.4nmRMS is achieved by the bowl feed liquid polishing method, to develop the processing technologies for high-precision substrates for optical mirrors. The results are used to develop the prototype X-ray mirrors with surface accuracy of {lambda}/10 to {lambda}/20 and roughness of 0.3 to 0.5nmRMS. In the development of the technologies for the light sources which can sufficiently supply photons for exciting semiconductor lasers, the technologies are developed to efficiently converge the laser beams. Also developed are the apparatus which can converge the beams to a diameter of around 0.6mm, and the apparatus which uses optical fibers to evaluate the beam diameter. (NEDO)

  6. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  7. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  8. FY 1992 report on the Coal Liquefaction Committee; 1992 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper reported activities of the Coal Liquefaction Committee in FY 1992. In the 1st committee meeting, report/discussion were made of the summary of the FY 1992 R and D plan on the bituminous coal liquefaction, brown coal liquefaction and the common/basic technology. Further, the following were reported as topics: results of the operation by bituminous coal liquefaction PSU and small equipment, state of arrangement of the results of the brown coal liquefaction project, making of the basic policy for development of the common/basic technology, construction of package of coal liquefaction technology. In the 2nd committee meeting, the summary of the results of the FY 1992 R and D was reported/discussed. As to the development of bituminous coal liquefaction technology, study using pilot plant and support study were reported. Concerning the development of brown coal liquefaction technology, study using a 50t/d pilot plant and complementary study of operation. Relating to the development of the common/basic technology, trial manufacture/development of plant equipment/materials, survey of selection of coal kind, etc. The paper also reported a scheme on the evaluation of efficiency of the brown coal liquefaction process. (NEDO)

  9. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  10. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  11. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    International Nuclear Information System (INIS)

    1998-03-01

    Consistent with the Environmental Management's (EM's) plan titled, ''Accelerating Cleanup: Paths to Closure'', and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided

  12. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  13. Integral Fast Reactor Program annual progress report, FY 1994

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R ampersand D

  14. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  15. Integral Fast Reactor Program. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  17. Institutional research and development, FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance

  18. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  19. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  20. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    International Nuclear Information System (INIS)

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems

  1. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  2. FY 1990 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1990 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Described herein are the FY 1990 results of the research and development project for the optoelectronic materials, implemented to cope with the highly information-oriented societies. The FY 1990 is the second year for the phase-I project of the basic plan, and the R and D efforts are directed to elucidation of the mechanisms involved in the nonlinear phenomena, exploration and designs of various materials, and investigations of the technologies for, e.g., the material synthesis and evaluation. The themes to be investigated by the long-term project include exploration and preparation of the superfine particles and base materials for the organic materials; and crystal growth, dispersion of the fine particles and development of the superlattices for development of the materials. The comprehensive investigation and research program investigates the trends of the related technologies, both domestic and foreign. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  3. FY 1998 Report on development of technologies for commercialization of industrial solar systems. Summary of the abstracts (Research and development management); 1998 nendo sangyoyonado solar system jitsuyoka gijutsu kaihatsu seika gaiyo sogoban. Kenkyu kaihatsu kanri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The FY 1998 programs for development of technologies for commercialization of industrial solar systems include those for freezing/refrigeration systems utilizing solar heat, and international joint programs for development of technologies for the solar heat-utilizing systems. The studies are also conducted to draw the technological development programs for the solar heat-utilizing systems to be developed in the future. For development of the solar heat-utilizing freezing/refrigeration systems, the efforts are directed to extending service life of hydrogen occluding alloy to at least 10 years, which is one of the final targets. High reversibility up to 1,000 cycles is confirmed with the alloy working at low temperature for generating low-temperature heat. The international joint programs for technological development include technology evaluation of lumber drying by solar heat by operating the pilot plant, training of engineers and study on commercialization of the concept in Republic of Indonesia. The studies on technological development of solar heat-utilizing systems include those on classification of the solar heat-utilizing systems by area and utilization type, and evaluation of operating temperature levels and the merits and themes/problems. (NEDO)

  4. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  5. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  6. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R&D) demonstrations, non-INEL R&D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document.

  7. Buried Waste Integrated Demonstration FY-95 Deployment Plan

    International Nuclear Information System (INIS)

    Stacey, D.E.

    1995-03-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The FY-95 effort will fund 24 technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. Ten of these technologies will take part in the integrated field demonstration that will take place at the Idaho National Engineering Laboratory (INEL) facilities in the summer of 1995. This document is the basic operational planning document for deployment of all BWID projects funded in FY-95. Discussed in this document are the BWID preparations for the INEL integrated field demonstration, INEL research and development (R ampersand D) demonstrations, non-INEL R ampersand D demonstrations, and office research and technical review meetings. Each project will have a test plan detailing the specific procedures, objectives, and tasks of the test. Therefore, information that is specific to testing each technology is intentionally limited in this document

  8. Integral Fast Reactor Program annual progress report, FY 1991

    International Nuclear Information System (INIS)

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  9. Integral Fast Reactor Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  10. Integral Fast Reactor Program. Annual progress report, FY 1993

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D

  11. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  12. Federal Research and Development Funding: FY2014

    Science.gov (United States)

    2014-02-19

    1.12 billion for FY2014. The FY2014 request proposed $155 million to replace the agency’s Southeast Poultry Disease Research Laboratory in Athens...formula funding, and special grants. 94 U.S. Department of Agriculture, “Statement by Thomas J

  13. The NITRD Program: FY2004 Interagency Coordination Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This Interagency Coordination Report ICR provides a comprehensive description of the FY 2004 activities of the multi-agency $2 billion Federal Networking and...

  14. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  15. Tanks focus area multiyear program plan - FY96-FY98

    International Nuclear Information System (INIS)

    1995-07-01

    The Tanks Focus Area (TFA) Multiyear Program Plan (MYPP) presents the recommended TFA technical program. The recommendation covers a 3-year funding outlook (FY96-FY98), with an emphasis on FY96 and FY97. In addition to defining the recommended program, this document also describes the processes used to develop the program, the implementation strategy for the program, the references used to write this report, data on the U.S. Department of Energy (DOE) tank site baselines, details on baseline assumptions and the technical elements, and a glossary

  16. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  17. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  18. Institutional research and development, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  19. FY 2009 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Published: February 2008 Pages: 37 This Supplement to the President`s Fiscal Year FY 2009 Budget provides a technical summary of the budget request for the...

  20. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  1. FY 2012 Lightweight Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  2. FY 1992 research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems; 1992 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the R and D project aimed at establishment of the technologies for development of, e.g., machine and electronic device members of superhigh precision and high functions by processing and superhigh-precision machining aided by excited beams. The elementary researches on superhigh-precision machining achieve the given targets for precision stability of the feed positioning device. The researches on development of high-precision rotating devices, on a trial basis, are directed to improvement of rotational precision of pneumatic static pressure bearings and magnetism correction/controlling circuits, increasing speed and precision of 3-point type rotational precision measurement methods, and development of rotation-driving motors, achieving rotational precision of 0.015{mu}m at 2000rpm. The researches on the surface modification technologies aided by ion beams involve experiments for production of crystalline Si films and thin-film transistors of the Si films, using the surface-modified portion of a large-size glass substrate. The researches on superhigh-technological machining standard measurement involve development of length-measuring systems aided by a dye laser, achieving a precision of {+-} 10nm or less in a 100mm measurement range. (NEDO)

  3. FY 2003 Supplement to the President`s Budget

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Supplement to the President?s Budget, also known as the Blue Book, reports on the coordinated research priorities and activities of the NITRD agencies for FY...

  4. FY 2000 report on the results of the development of the next generation chemical process technology; 2000 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted on the next generation chemical process by which no energy losses are produced and the amount of the waste is made extremely small by the new catalytic reaction, the reaction using next generation separation/reaction membrane, etc., and the FY 2000 results were summed up. As to the development of the selective oxidation technology of saturated hydrocarbon, the basic knowledge/information were obtained on the following: construction of the catalytic principle toward the highly selective catalytic partial oxidation, elucidation of the reaction mechanism in alkane oxidation and design of the high functional catalyst, functional design in butane oxidation, characterization of the alkane oxidation catalyst and the application to the catalytic development, synthesis of the alkane selective oxidation catalyst, etc. Relating to the development of the process technology using the new reaction mechanism, a target value of equilibrium conversion of 10% or more was achieved using membrane reactor in the dehydrogenation of ethyl benzene. Further, as to the high performance selective membrane and low temperature active catalyst that are indispensable to the element technology, the continuous study was made, and at the same time themes in this study were arranged. (NEDO)

  5. Appendix E: Wind Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  6. Appendix G: Building Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  7. 7 CFR 1948.83 - Performance of site development work.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Performance of site development work. 1948.83 Section 1948.83 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE... Development Assistance Program § 1948.83 Performance of site development work. Site development work will be...

  8. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  9. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  10. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. Cluster ion beam process technology; 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seido seika hokokusho. Cluster ion beam process technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of cluster ion beams. This technology generates the strong ion beams of atom and molecule clusters, and irradiate them onto the solid surfaces, to create new materials or treat materials. It allows the nano-level treatment. The program for high-current cluster ion beam generation/irradiation technology for industrial purposes attains the target high-current beam of 500{mu}m. It is necessary to establish the optimum cluster size, irradiated energy and ion species for the highly functional surface treatment, for which applicable technologies, e.g., those related to time of flight and molecular dynamics, are developed. Studies on high-current, large-area irradiation technologies are started. The program for material processing technologies involves evaluation of crystalline defects formed during the beam implantation by photoluminescence spectroscopy, and studies on semiconductor surface processing technologies. The surface smoothening technology is investigated to reduce crystalline defects and stress-induced strains for difficult-to-process materials, e.g., SiC and diamond, and the good results are produced. The program for development of superflat/superhard thin film formation technology involves irradiation of the Ar ion beams during the deposition of C{sub 60}(fullerene), to produce the superhard thin film. (NEDO)

  11. FY 1999 Report on research and development results of photon-applied instrumentation/processing technologies. Research and development of advanced measuring/processing technologies for oil production systems; 1999 nendo foton keisoku kako gijutsu seika hokokusho. Sekiyu seisan system kodo keisoku kako gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 results of the research and development of photon (laser) beam utilization as part of the R and D project of the advanced measuring/processing technologies for oil production systems. For the high-reliability laser welding technology, the tests are conducted for welding 15 mm thick steel plates and 5 mm thick aluminum alloy plates by synthesized iodine/YAG laser beams, producing high-quality welding results. For the microscopic processing technology, attempts have been made for development of quantum functional optoelectronic devices which have nanometer-sized ultrafine dots. For the non-destructive composition measuring technology, the internal transmission measurement program produces the target light quantity by increasing brightness of the short-wavelength light source. The three-dimensional digital tomography (DT) images with a space resolution of several micrometers are obtained. For the tightly-focusing all-solid-state laser technology, a fiber-structured fiber laser is developed, on a trial basis, to attain a power of 15 W. A high-power, high-brightness laser diode, required for exciting the fiber laser is developed, and a power of 30 W or more is obtained by an InGa(As)P device. The comprehensive investigation results are also presented. (NEDO)

  12. FY 1999 report on the results of the technology development of next-generation chemical process; 1999 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted on the naphtha catalytic cracking, selective oxidation reaction of saturated hydrocarbon, new reaction mechanism utilization process, etc., as next-generation chemical process technology in FY 1999, and the results were summarized. As to the technology of naphtha catalytic cracking, developed was La203/p/ZMS-5 zeolite catalyst which is high in cracking activity and high in light-olefin selectivity. By the FS, it was confirmed that this is more excellent in case of the fixed bed reactor than in the present process. Concerning the technology of selective oxidation reaction of saturated hydrocarbon, the basic information/knowledge were obtained about the construction of catalytic principle toward the high selective catalytic partial oxidation, elucidation of a reaction mechanism in alkane oxidation and design of high functional catalysts, elucidation of a mechanism in butan oxidation, synthesis of alkane selective oxidation catalysts, etc. In relation to the technology of new reaction mechanism utilization process, the following were carried out: study of ethyl benzene dehydrogenation using the membrane reactor trially fabricated in the previous fiscal year, development of high efficiency hydrogen penetration membranes and low temperature high activity catalysts, study of the new process by membrane reactor. (NEDO)

  13. Summary of BISON Development Activities: NEAMS FY14 Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, W. [Anatech, Inc.; Pastore, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perez, D. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gardner, R. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stafford, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    This summary report contains an overview of work performed under the work package entitled “FY2014 NEAMS INL-Engineering Scale Fuel Performance & Interface with RPL Tools.” A first chapter identifies the specific FY-14 milestones, providing a basic description of the associated work and references to related detailed documentation. Where applicable, a representative technical result is provided. A second chapter summarizes substantial additional work including 1) efforts to improve numerical convergence and contact in BISON, 2) development of capability to simulate hydrogen behavior in Zircaloy cladding and 3) efforts to enhance collaborative work with the Halden Research Program. A final chapter briefly outlines planned future work.

  14. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  15. Electronics Engineering Research. Final report, FY 1979

    International Nuclear Information System (INIS)

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80

  16. CAES Annual Report FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kortny Rolston

    2011-10-01

    The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

  17. Development of position measuring technology by GPS; GPS ni yoru sokui gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, T [Ministry of Transportation, Tokyo (Japan)

    1994-07-25

    With regard to the GPS (global positioning system) which uses the satellites launched and administered by the U.S.A. and has been utilized worldwide for ships, automobiles and geodetic surveys in recent years, Ministry of Transport started investigation and research on the application of its position measuring system from FY 1989. In this fiscal year, a study on position measuring methods and selection of the position measuring system to be developed were made, in FY 1991, the real-time functioning and track display were developed, in FY 1992, the initialization aboard the ship, the measure to prevent cycle slip, and the radio data communication technology were developed, and in FY 1993, a long term demonstration experiment presuming its practical use was conducted attaining the expected purpose. In this article, the developed real-time kinematic position measuring system is introduced. Regarding the position measuring methods by the GPS, there are the one point position measuring method and the relative position measuring method. Regarding this newly developed position measuring device, its application to work ships and structures can be considered in various ways. 4 figs.

  18. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs. FY 2005 - FY 2050

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-05-01

    This report describes a benefits analysis undertaken by EERE to better understand the extent to which the technologies and market improvements funded by its FY 2005 budget request will make energy more affordable, cleaner, and more reliable. It summarizes the results of the analysis, which focused on economic, environmental, and security benefits related to energy. The report identifies specific measures or indicators of estimated benefits for FY 2005.

  19. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  20. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  1. Retrieval process development and enhancements project Fiscal year 1995: Simulant development technology task progress report

    International Nuclear Information System (INIS)

    Golcar, G.R.; Bontha, J.R.; Darab, J.G.

    1997-01-01

    The mission of the Retrieval Process Development and Enhancements (RPD ampersand E) project is to develop an understanding of retrieval processes, including emerging and existing technologies, gather data on these technologies, and relate the data to specific tank problems such that end-users have the requisite technical bases to make retrieval and closure decisions. The development of waste simulants is an integral part of this effort. The work of the RPD ampersand E simulant-development task is described in this document. The key FY95 accomplishments of the RPD ampersand E simulant-development task are summarized below

  2. FY 1989 report on the section meeting of gasification technology of the Coal Gasification Committee; 1989 nendo sekitan gasuka iinkai gasuka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The paper reported activities of the Coal Gasification Committee in FY 1989. The 1st Coal Gasification Committee Meeting was held on July 21,1989, and report/discussion were made about an outline of the FY 1989 research plan. In the 2nd Meeting, report/discussion were made about activities of each of the section meetings and the progress of the development of coal gasification technology. In FY 1998, as the 4th design/construction of pilot plant, manufacture/installation were conducted of a part (equipment of coal supply system/char recycle system) of the gasification process equipment/facilities. As to recycle gas facilities, manufacture of equipment/facilities was conducted. Concerning a part of the pipe rack/central control panel/electric panel, manufacture/installation of equipment were made. In the support study of a pilot plant (trial development of materials for plant use equipment), refractory was studied in terms of the evaluation of durability of furnace materials against liquefaction residue slag, study of furnace materials responsive to liquefaction residue and gasification of high ash melting point coal, etc. (NEDO)

  3. FY 1999 Report on research and development project results of industrial science and technology. Research and development of quantum functional devices; 1999 nendo ryoshika kino soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 research and development results of quantum functional devices. This project is aimed at establishment of the basic technologies related to quantum functional devices, which utilize various quantum mechanical effects appearing in superfine regions, for development of the microelectronics technologies serving as the bases for superhigh-speed, superhigh-function information processing. The technologies are developed for advancing the elementary devices by quantum functions and development of integrated devices. The results include development, on a trial basis, of the world smallest MOS transistor with a gate length of 10 nm or less and analysis of its behavior, improved characteristics of the tunnel devices, and development, on a trial basis, of a semiconductor memory working based on the principle of single electron capturing/releasing and evaluation thereof. The device-building techniques are developed. The results include demonstration of the logic circuit which controls a small number of electrons, and development of an opto-electronic device on a trial basis, which are the world first results. Progresses are noted in confirmation of behavior of the 3-value basic logic circuit which uses an InGaAs-based tunnel device, demonstration of behavior of the SRAM circuit which uses ME-RHET device, confirmation of possibility of terabit-size memory integration, advancing performance of the quantum MMIC, and designs of the single electron-CMOS integrated circuit. (NEDO)

  4. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  5. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  6. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  7. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  8. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. Development of high-efficiency production process technologies; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies, aimed at improving efficiency of the production processes which have been massively consuming energy, e.g., those for welding, joining, surface treatment and granulation for producing fine particles. The program for production of the functional composite compounds by the microscopic processing technologies prepares the electrically resistant films and dielectric films by in-situ mixing two types of the ultrafine particles. The program for the in-situ measuring technology is aimed at measuring contents of the constituent components of fine particles, 30nm or less in size, to an accuracy of 10% by the emission spectroscopy, after making them plasmatic. The program for the high-power, all-solid-state laser technology is developing the excited chamber for the high-power, all-solid-state slab type laser, in order to realize the energy-efficient laser-aided processing. The program for the tightly-focusing, all-solid-state laser technology develops the highly uniform crystals by growing the GLBO crystals for producing the high-power ultraviolet laser beams, is developing the techniques for production of the wavelength converting elements, including the GLBO crystal package, and develops the wavelength conversion method by the fourth-harmonic generation with the all-solid-state laser beams as the fundamental wave, realizing the high harmonic power of 23W, for generating the high-power ultraviolet laser beams at a high efficiency. (NEDO)

  9. FY 1998 report on the results of the development of utilization technology of biological resources such as bioconsortia. Development of the bioconsortia system utilization/production technology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of developing the industrial utilization technology, analysis was made of functions and interactions of the specified functional biological groups, and at the same time the developmental study was made of the technology to isolate/culture the constitutive biological groups. The FY 1998 results were summed up. As to the technology to detect microorganisms in soil, the SFDA method was improved and the new dyeing method was developed. And, there almost was hope for the development. Concerning the functional analysis technology, the functional substances peculiarly manifested only in the complex system in the ocean environment are searched. Several kinds of compounds were found out, and at the same time the test to confirm the biological activity is under way. Relating to the isolation/culture technology, study was made on rotten fruit, and the existence in the sample of the microorganisms which are difficult in isolation/culture was newly confirmed. In regard to the culture of the microorganisms which are difficult in isolation/culture, availability of the replica method was found out. As to the technology to produce functional substances, studies were made on the following: utilization technology of the environmental harmony type oil/water separation polymer producing microbial consortia, method to artificially make gene exchanges in the microbial consortia, etc. (NEDO)

  10. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year

  11. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  12. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    International Nuclear Information System (INIS)

    Appel, Gordon John

    2016-01-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  13. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  14. FY 1992 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1992 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the research and development project for the optoelectronic materials. The FY 1992 is the last year for the phase-I project of the basic plan, and the results are evaluated mainly viewed from extent of attainment of the interim targets. For the organic materials, the highly unique chiral nonlinear compounds are further developed, and direction for the investigations of the conjugated low-molecular-weight compounds is established. The excellent high-molecular-weight films are developed. For the dispersed materials, those developed include CuCl-dispersed glass, CdTe laminated glass developed by the laser evaporation method, glass dispersed with semiconductors at high concentrations, and dispersed materials with high-molecular-weight materials as the matrices. For the material development, those technologies investigated are orientation controlling of the crystals for thin organic films, and development of superlattices. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  15. FY 1998 annual report on the solar energy technology research and development working group. 19th R and D activity report; 1998 nendo taiyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the solar energy R and D working group, extracted from the 19th R and D activity report by NEDO. Mr. Kadoi, a NEDO's director, gave a lecture titled (Expectation on and problems involved in power generation by solar light and wind power), and Mr. Kamon, a managing researcher of NEDO's solar technology development group, reported (Technological development trends of solar technology development group). The other topics reported by the individual groups include development of large-size wind power generation systems, development of techniques for increasing throughputs of high-efficiency, large-area amorphous solar cells, development of techniques for manufacturing high-reliability CdTe solar cell modules, development of techniques for manufacturing CIS solar cell modules, analysis/assessment of thin-film silicon-based solar cells, development of processes for manufacturing silicon of rationalized energy use, R and D of (new multi-layer structure) modules assembled into building materials to form monolithic structures, and development of techniques for manufacturing amorphous thin-film polycrystalline silicon hybrid thin- film solar cells. (NEDO)

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  17. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  18. Summary of FY 17 Assessments Sandia National Laboratories: Evaluation of FY16 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John

    2017-03-01

    This report is the milestone deliverable M4FT-17SN111102091 “Summary of Assessments Performed FY17 by SNL QA POC” for work package FT-17SN11110209 titled “Quality Assurance – SNL”. This report summarizes the FY17 assessment performed on Fuel Cycle Technologies / Spent Fuel and Waste Disposition efforts.

  19. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems; 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Chosentan kako system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. The researches on the superprecision machining technologies involve design and development, on a trial basis, of the totally static pressure type positioning device, for which automatically controlling drawing is adopted to improve its rigidity. The researches on the surface modification technologies aided by ion beams involve scanning the ion beams onto the metallic plate to be provided around the glass substrate. The results indicate that the secondary electrons generated can be used to control charge-up. In addition, part of a 30cm square glass substrate is modified by implantation of the spot type ions of high current density, and the modified portion is used to produce a thin-film silicon transistor. The researches on superhigh-technological machining standard measurement involve improvement of precision of the system aided by a dye laser, which attains a precision of 0 to 30nm in a 0.1m measurement range. (NEDO)

  20. The America COMPETES Act and the FY2009 Budget

    National Research Council Canada - National Science Library

    Stine, Deborah D

    2008-01-01

    .... An issue for Congress is whether FY2009 appropriations will. The Presidents s Office of Science and Technology Policy reports that the FY2009 budget request includes funding for America COMPETES Act initiatives at 88...

  1. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  2. Development of a multi-functional scarifier dislodger with an integral pneumatic conveyance retrieval system for single-shell tank remediation. FY93 summary report

    International Nuclear Information System (INIS)

    Bamberger, J.A.; McKinnon, M.A.; Alberts, D.A.; Steele, D.E.; Crowe, C.T.

    1994-10-01

    The Underground Storage Tank Integrated Demonstration (UST-ID) is evaluating several hydraulic dislodger concepts and retrieval technologies to develop specifications for system that can retrieve wastes from single-shell tanks. Each of the dislodgers will be evaluated sequentially to determine its ability to fracture and dislodge various waste simulants such as salt cake, sludge, and viscous liquid. The retrieval methods will be evaluated to determine their ability to convey this dislodged material from the tank. This report describes on-going research that commenced in FY93 to develop specifications for a scarifier dislodger coupled with a pneumatic conveyance retrieval system. The scarifier development is described in Section 3; pneumatic conveyance development is described in Section 4. Preliminary system specifications are listed in Section 5. FY94 plans are summarized in Section 6

  3. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R ampersand D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER ampersand WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER ampersand WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT ampersand E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs

  5. NITRD Program Supplement to the President`s Budget - FY 2017

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This document is a supplement to the President`s 2017 Budget Request to Congress. It describes the activities planned for FY2017 by the Federal agencies...

  6. NITRD Program Supplement to the President`s Budget - FY 2018

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This document is a supplement to the President`s 2018 Budget Request to Congress. It describes the activities planned for FY2018 by the Federal agencies...

  7. FY 1990/FY 1991 Biennial Budget Descriptive Summaries for the Strategic Defense Initiative Organization

    Science.gov (United States)

    1989-01-01

    reduction in cryccooler size. o (U) Develop the first diamond ME_2 with monocrystalline , semiconductor quality thin-film diamcnd. o (U) Develop Atomic Layer...stiffness and dynamic response. A lightweight thermal radiator panel will also be fabricated and tested. Fabrication of tubes and sheets in gauges...FY 91 o Precision Gimbal Test IQ FY 91 C Cx:mlete Deveic..ent of Integrated Structures Model 2Q FY 91 c Light’weight Ccmpcsitas Radiator Panel Demo 2Q

  8. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  9. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  10. FY-94 buried waste integrated demonstration program report

    International Nuclear Information System (INIS)

    1994-01-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a multitude of advanced technologies. These technologies are being integrated to form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER/WM) needs and objectives. This document summarizes previous demonstrations and describes the FY-94 BWID technology development and demonstration activities. Sponsored by the DOE Office of Technology Development (OTD), BWID works with universities and private industry to develop these technologies, which are being transferred to the private sector for use nationally and internationally. A public participation policy has been established to provide stakeholders with timely and accurate information and meaningful opportunities for involvement in the technology development and demonstration process

  11. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  12. Nuclear fuels technologies fiscal year 1998 research and development test plan

    International Nuclear Information System (INIS)

    Alberstein, D.; Blair, H.T.; Buksa, J.J.

    1998-06-01

    A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO 2 and UO 2 feed materials. Fuel fabrication development efforts include studies with a new UO 2 feed material, alternate sources of PuO 2 , and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities

  13. Summary of NREL's FY13-FY15 Photovoltaic Subprogram

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-31

    In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.

  14. Research on deep electromagnetic induction methods (Fy 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroshi; Uchida, Toshihiro; Tanaka, Shin' ichi

    1987-06-01

    Geological Survey of Japan started from FY 1984 a research of deep electomagnetic induction methods as a part of the research on deep geothermal resources prospecting technology, the Sunshine Project. This article is the report of its second fiscal year. These methods are a generic term of the methods to survey specific resistance structure in the deep part of the earth by utilizing the technique of the electromagnetic induction method and the time domain CSMT method aiming to survey about estimated depth of 5Km as well as the CA method to estimate the general structure of the earth of the depth of 5Km or more are now being developed. This article reports the respective methods separately. Concerning the former, the reception of useful signals were successfully made during the FY 1984 field experiment and based on this, field experiments in a geothermal area were conducted in FY 1985 verifying its effectivenss. With regard to the latter, following FY 1984, CA observations were conducted in the northern part of Tohoku Region and the deep specific resistance structure in a wide area was surveyed. (43 figs, 1 tab, 11 refs)

  15. FY 1992 work plan and technical progress reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

  16. Force Projection Technology Overview

    Science.gov (United States)

    2011-08-12

    Technologies • Fuel Efficient Powertrain Lubricant • Nanotechnology for Fuels and Lubes • Water from Air • Water Reuse • In-line Water Monitoring...purification systems with new pretreatment, desalination and post treatment technologies. Payoff: • Reduces the logistical footprint associated with water...FY11 FY12 FY13 FY14 FY15 FY16 FY17 •Water From Air •Water Quality Monitoring •Water Reuse •Pre and Post Treatment • Desalination 6 5 5

  17. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  18. FY 1991 report on the Coal Gasification Committee; 1991 nendo sekitan gasuka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The paper reported activities of the Coal Gasification Committee, gasification power generation section and gasification technology section in FY 1991. The 1st Coal Gasification Committee Meeting was held on July 16,1991, and report/discussion were made about an outline of the FY 1991 research plan on the development of coal gasification technology. The 2nd Meeting was held on March 12, 1992, and report/discussion were made about activities of each section meeting and the progress of the development of coal gasification technology. In the section meeting of coal gasification power generation, report/discussion were made about the progress and study object of the development of entrained bed coal gasification power plant and support study for the development of the plant. In the 1st section meeting of coal gasification technology, as to the developmental plan on coal utilization hydrogen production technology, report/discussion were made about design/construction/operational study of pilot plant and support study for pilot plant (study using small equipment, study of trial manufacture of plant use equipment/materials). In the 2nd section meeting, report/discussion were made about the results of the development of coal utilization hydrogen production technology. (NEDO)

  19. Summaries of research and development activities by using supercomputer system of JAEA in FY2015. April 1, 2015 - March 31, 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on. (author)

  20. Summaries of research and development activities by using supercomputer system of JAEA in FY2014. April 1, 2014 - March 31, 2015

    International Nuclear Information System (INIS)

    2016-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2014, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2014, as well as user support, operational records and overviews of the system, and so on. (author)

  1. Summaries of research and development activities by using supercomputer system of JAEA in FY2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    2015-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. About 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2013, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue. This report presents a great amount of R and D results accomplished by using the system in FY2013, as well as user support, operational records and overviews of the system, and so on. (author)

  2. Summaries of research and development activities by using supercomputer system of JAEA in FY2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2012, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as apriority issue. This report presents a great amount of R and D results accomplished by using the system in FY2012, as well as user support, operational records and overviews of the system, and so on. (author)

  3. Summaries of research and development activities by using supercomputer system of JAEA in FY2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2011, the system was used for analyses of the accident at the Fukushima Daiichi Nuclear Power Station and establishment of radioactive decontamination plan, as well as the JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great amount of R and D results accomplished by using the system in FY2011, as well as user support structure, operational records and overviews of the system, and so on. (author)

  4. The IIASA'83 scenario of energy development

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1984-01-01

    The prospects for natural gas as a major source of energy supply are good. Spurred by the energy crises of the 'seventies, recent exploration for gas resources as well as technological advances in deep drilling have enhanced the picture of gas as a plentiful fossil resource. Technological improvements in transporting gas over large distances, as piped gas and as a liquid, suggest the strong possibility of gas as an important commodity in energy trade. In addition, gas is a high quality and relatively clean fuel, which is especially attractive in today's world of environmental concern for pollution emissions from energy combustion. Such developments led to the design of the IIASA'83 Scenario of Energy Development, which explored the techno-economic feasibility of the expanded use of gas in energy systems. The work drew on the findings of the IIASA global energy analysis, documented in 'Energy in a Finite World'. All countries of the world were covered in the quantitative analysis, grouped regionally by similarity in energy resources and economic structure and not necessarily on the basis of geographic proximity. The period studied was necessarily the next half century, from 1980 to 2030, in view of the inertia in technological and economic systems and this constraint on the development of energy infrastructures. Global primary energy consumption increases some twofold from 10 TW.a/a to 21.9 TW.a/a over the next 50 years, while economic output globally grows some threefold. The breakdown of global primary energy consumption indicates an absolute increase in the use of all primary energy sources over the study period, with fossil fuels continuing to supply the lion's share of primary energy. The buildup of non-fossil energy sources to global supply levels by 2030 is likely to be constrained by the high capital investments required at a period of modest economic growth and by the sociopolitical controversy surrounding the use of some of these technologies. (author)

  5. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  6. FY 1991 Research and development project for large-scale industrial technologies. Report on results of R and D of superhigh technological machining systems (Development of advanced machining devices for power-generating members); 1991 nendo chosentan kako system no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo buzai kodo kako sochi kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    Described herein are the FY 1991 results of the R and D project aimed at establishment of superprecision machining technologies for developing machining technologies and nano-technologies aided by excited beams. For increasing the excimer laser output, the discharge-exciting technologies necessary for designing the 2kW laser as the final target are established. The service life tests are started to demonstrate the member service life of 10{sup 9} shots or more. For development of the technologies for large-current composite ion beams, the plant is constructed to attain the final targets (100keV, 2A, width: 500mm or more). The currents reaching the substrate are developed to have 2.8mA with the Ar ion and 2.9mA with the Ca ion by, e.g., developing the ion sources and improving functions of the ion beam controlling systems. Researches on the surface modification technologies for producing the superhigh-quality metallic surfaces involve composite ion implantation and providing the modified layer of Ti-B-based hard compound. Corrosion rate of the modified titanium surface in a boiling sulfuric acid solution is reduced from 300mm/year to around 0.13mm/year. (NEDO)

  7. Oak Ridge National Laboratory institutional plan, FY 1992--FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    In operation for fifty years, the Oak Ridge National Laboratory (ORNL) is managed by Martin Marietta Energy Systems, Inc., for the US Department of Energy (DOE). ORNL is one of DOE's major multiprogram national laboratories. Activities at the Laboratory are focused on basic and applied research, on technology development, and on other technological challenges that are important to DOE and to the nation. The Laboratory also performs research and development (R D) for non-DOE sponsors when such activities complement DOE missions and address important national or international issues. The Laboratory is committed to the pursuit of excellence in all its activities, including the commitment to carry out its missions in compliance with environmental, safety, and health laws and regulations. The principal elements of the Laboratory's missions in support of DOE include activities in each of the following areas: (1) Energy production and conservation technologies; (2) physical and life sciences; (3) scientific and technical user facilities; (4) environmental protection and waste management; (5) science technology transfer; and, (6) education. This institutional plan for ORNL activities is for the next five years: FY 1992--1997.

  8. FY 1998 annual report on the solar energy technology research and development working group. 19th R and D activity report; 1998 nendo taiyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the solar energy R and D working group, extracted from the 19th R and D activity report by NEDO. Mr. Kadoi, a NEDO's director, gave a lecture titled (Expectation on and problems involved in power generation by solar light and wind power), and Mr. Kamon, a managing researcher of NEDO's solar technology development group, reported (Technological development trends of solar technology development group). The other topics reported by the individual groups include development of large-size wind power generation systems, development of techniques for increasing throughputs of high-efficiency, large-area amorphous solar cells, development of techniques for manufacturing high-reliability CdTe solar cell modules, development of techniques for manufacturing CIS solar cell modules, analysis/assessment of thin-film silicon-based solar cells, development of processes for manufacturing silicon of rationalized energy use, R and D of (new multi-layer structure) modules assembled into building materials to form monolithic structures, and development of techniques for manufacturing amorphous thin-film polycrystalline silicon hybrid thin- film solar cells. (NEDO)

  9. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  10. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  11. Technology Integration Division FY 1992 Public Participation Program Management and Implementation Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Office of Technology Development (OTD), to develop and apply existing and innovative environmental restoration and waste management technologies to the cleanup to Department of Energy (DOE) sites and facilities in accordance with applicable regulations, is to be carried out through the central mechanisms of the Integrated Demonstration (ID) and Integrated Program (IP). Regulations include provisions for public participation in DOE decision making regarding IDs. Beyond these requirements, DOE seeks to foster a more open culture in which public participation, based on two-way communication between DOE and the public, is not only welcomed, but actively encouraged. The public to which the Program is addressed actually consists of several distinct ''publics:'' state and local government officials; Indian tribes; citizen groups and individuals concerned about specific issues; citizen groups or individuals who are opinion leaders in their communities; other federal agencies; private industry; and academia involved in IDs. Participation of these publics in decision making means that their concerns, needs, objectives, and other input are identified by two-way communication between them and DOE, and that these factors are considered when decisions made about OTD activities. This plan outlines the TIPs Public Participation Program goals, objectives, and steps to be taken during Fiscal Year (FY) 1992 to move toward those goals and objectives, based on the challenges and opportunities currently recognized or assumed

  12. Mississippi State University Center for Air Sea Technology FY95 Research Program

    Science.gov (United States)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  13. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    International Nuclear Information System (INIS)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP)

  14. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  15. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  16. Safeguards and security deficiencies fulfilled through technology development

    International Nuclear Information System (INIS)

    Smoot, W.

    1996-01-01

    The Office of Safeguards and Security (OSS) sponsors research and development activities based on identified field and headquarters customer requirements. Annually, a formal solicitation of safeguards and security user needs is conducted. Currently, there are over 300 valid safeguards and security deficiencies that have been identified. These user needs serve as the basis for formulating the OSS Technology Development Program (TDP). Due to budget constraints, the TDP can only address approximately 47% of these needs in FY 1996. This paper will discuss, in a general sense, the current deficiencies and how the TDP is responding to each. Specifically, the paper will highlight technologies in the areas of Material Control and Accounting, Physical Security, and Information Security. A brief discussion of unfulfilled user requirements will also be presented as a catalyst for leveraging available or developing technologies from other similar programs or from private industry

  17. Physics of the Cosmos (PCOS) Technology Development Program Overview

    Science.gov (United States)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  18. KEK Engineering Department -activity report FY 2003

    International Nuclear Information System (INIS)

    2005-03-01

    This report includes all kinds of activities of the Engineering Department of KEK from 2002 to 2003 FY. There are fourteen chapters, which contain KEK Prize for engineering, KEK meeting of engineering technologies, Engineering Seminar, COACK (Component Oriented Advanced Control Kernel) for cooperation R and D project, Forum on engineering technologies from 1998 to 2003 FY, Engineering Department Symposium, service trainings, Engineering Department research study, English training, training for professional worker, training for technical expert, report on joint training for technical expert, training for middle school students, and the Engineering Department system and the main events from 1971 to 2003. (S.Y. )

  19. Arid-site SLB technology development at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1981-01-01

    The program goal for shallow land burial (SLB) Technology Development at the Los Alamos National Laboratory is to field test new disposal concepts and strategies for all aspects of arid SLB on an accelerated basis and on a reasonable scale. The major accomplishments during FY-1981 were the development of the Los Alamos Experimental Engineered Test Facility, the emplacement of the biointrusion barrier testing experiments, the design and emplacement of the moisture cycling experiments, the design and construction of the experiment clusters, and the planning for the experiments to be emplaced in these units. This paper will describe the site development work, the design and construction of the experiment clusters, and the experiments planned for these units. The experimental Engineered Test Facility was brought from idea to reality and two experiments were emplaced (biointrusion barrier and moisture cycling). The experiment clusters were designed and constructed, and are now available for experimentation. These units are reusable. After an experiment is complete it can be removed and another experiment put in its place. Several of the experiments were planned and designed while some of the other experiments are still in the planning stage. Based on the work done in FY-1981, significant progress toward Milestones, C, D, and E should be made in FY-1982

  20. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mccloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lepry, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Carmen P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Windisch, Charles F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rieck, Bennett T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pierce, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  1. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  2. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  3. FY 1998 report on the results of the development of utilization technology of biological resources such as bioconsortia. Development of the bioconsortia system utilization/production technology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Fukugo seibutsukei riyo seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of establishing the technology to use high grade functions of the bioconsortia system, the R and D were conducted, and the FY 1998 results were summed up. As to the study of functional material producing technology, screening of the 2400 strains owned by Marine Biotechnology Institute was conducted using reporter strain, and about 400 strains of homoserine lactone producing bacteria which are interbiological information convey substances were obtained. Concerning the effective decomposing/purifying technology of petroleum products, study of petroleum decomposition analysis technology was finished in the development of culture/control technology of petroleum decomposition microbial consortia constitutive bacteria. Relating to the analysis of the petroleum decomposition microbial consortia, changes in the bacteria population at the site of the heavy oil pollution accident on the Sea of Japan were investigated for the past one year by the PCR/DGGE method. It was found out that levels of the oil pollution in ocean could be assessed by measuring the concentration of Alcanivorax. As to the technology for highly utilizing unused petroleum fractions, conducted were the chemical analysis of photolytic crude oil, selection of the decomposition microbial consortia, etc. (NEDO)

  4. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  5. Decision Analysis Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Boudreaux, J.F.

    1998-01-01

    The purpose of this two-year investigation is to field test innovative technologies for coating and surface removal on concrete floors and compare the compiled data to baseline technologies, thereby ensuring that the best and most cost-effective options are developed and subsequently used during the decontamination and decommissioning (D and D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Comprehensive and comparable data will be collected in the areas of health and safety, operations, and secondary waste management. The technologies tested will include DOE-EM funded technologies and commercial non-nuclear technologies that have the potential to meet the environmental restoration objectives. This report summarizes the activities performed during Fiscal Year 1996 (FY96) and describes the planned activities for Fiscal Year 1997 (FY97). Accomplishments for FY96 include the completion of preparatory work to begin field testing of innovative technologies. A total of seven technologies will be tested during FY97. As a part of this project, interactive computer software will be developed during FY97, allowing site-specific parameters and technology performance data to be considered when determining the best option given site-specific conditions

  6. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    International Nuclear Information System (INIS)

    NA

    2005-01-01

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OSTandI) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OSTandI's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program

  7. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  8. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    International Nuclear Information System (INIS)

    Meier, W; Bibeau, C

    2005-01-01

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of ∼2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies

  9. FY 10 Multifamily Initial Endorsements

    Data.gov (United States)

    Department of Housing and Urban Development — In FY 2010, HUD's Multifamily's 18 Hubs initially endorsed 1011 loans totaling $11.3 billion and providing 170,672 units/ beds. FY 10's $11.3 billion is the highest...

  10. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the bioconsortium system utilization/production technology); 1999 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Fukugou seibutsukei riyo seisan gijutsu no kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the functional substance production technology, petroleum degrading/cleaning technology and high-grade utilization technology of the unused petroleum fraction, study was conducted of the culture control technology in substance production and substance decomposition by bioconsortia, and the FY 1999 results were reported. As to the functional material production technology, study was made of the separation/culture technology, functional substance production technology using bioconsortia (control substance searching method in the ocean microbial consortia system, isolation of control substance/structure determination/separation of production bacteria, elucidation of the inter-species communication substance function, heightening of function of the production microbial consortia), etc. Concerning the effective degrading/cleaning technology of petroleum compounds, study was made of the molecular genetic analysis technology, histochemical analysis technology, analysis technology of the solvent resistance mechanism, bioconsortia analysis system technology, global environmental purification technology such as the effective decomposition of environmental pollutants, etc. Relating to the high-grade utilization technology of the unused petroleum fraction, study was made of the chemical analysis of the photolysis crude oil, selection of the decomposition microbial consortia, etc. (NEDO)

  11. Data book on new energy technology development in FY 1997. Fuel cells; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Nenryo denchi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this survey is to grasp the trends of technology development of fuel cells and their market, and to provide data required for supporting the introduction and diffusion of fuel cells. This report consists of Part 1 titled as `Trends of development of fuel cells in FY 1997`, and Part 2 titled as `Compiled data`. The Part 1 consists of three chapters, i.e., Chapter 1 titled as `Introduction`, Chapter 2 as `Development trends of fuel cells for on-site power generation`, and Chapter 3 as `Trends of development of fuel cells for mobile objects and fuel cell-powered vehicles`. The introductory chapter not only outlines the development trends but also describes the results of the 5th Grove Fuel Cell Symposium noticed as the major global international symposium on fuel cell in general and the environmental problems discussed at the COP3 Kyoto Conference, both held in TY 1997. The Part 2 contains the principles, system configurations and applications of fuel cells, PAFC, MCFC, SOFC, PEFC, modifier, DMFC, development trend of fuel cell-powered vehicles, and national policies for fuel cells in Japan. The Appendix features a report of the new technique investigation working group and information on fuel cells from newspapers. 100 refs., 4 figs.

  12. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  13. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  14. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  15. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  16. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  17. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  18. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  19. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  20. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  1. Appendix F: FreedomCAR and Vehicle Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  2. FY 1991 Report on the results of the research and development of the processing technologies for creating advanced functions. Development of the technologies for preventing corrosion of oil production systems; 1991 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisan system fushoku boshi gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The research and development project has been started to develop the technologies for superhigh-purity separation/processing; controlling ultrafine crystal particles, including creating composites by the aid of a plasma laser; synthesizing highly functional organic materials; and supporting these technologies, for creating functions, e.g., advanced sensing functions, highly functional electromagnetic characteristics, and corrosion resistance, heat resistance and high strength. The R and D program for the technologies for superhigh-purity separation/processing covers development of highly corrosion-resistant, high-sensitivity gas sensors and highly functional thin oxide film sensors. The R and D program for controlling ultrafine crystal particles covers the researches on the technologies for creating inclined structures by the ion composite vapor-phase process, and the technologies for producing composites by the aid of a plasma laser. The R and D program for the organic material synthesis technologies includes researches on the technologies for controlling higher structures in a molecular beam composite reaction field, and on the technologies for synthesizing materials in a photon composite reaction field and in an interfacial composite reaction field. The R and D program for the supporting technologies includes the researches on the technologies for diagnosing a composite reaction field by the laser-aided ionization method. In the FY 1991, which is essentially the first year for the project, the efforts are directed to designs and construction of the required facilities, and preliminary tests. (NEDO)

  3. FY 1998 R and D project on industrial science technology; 1998 nendo ryoshi kino soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D on quantum functional devices (QFDs) were conducted, and the FY 1998 results were summed up. In the comprehensive survey on QFDs, the following were carried out for the efficient R and D promotion: R and D progress state survey/problem extraction/analytical study, technical trend survey, overseas survey ordered from overseas supplier, common basement technology study, etc. In the R and D on technology for QFDs, integration of multivalued logical devices using tunneling control functional devices, integration of logical memory devices using quantum levels, integration of quantum band combination-type multi-functional devices, silicon insulating film tunnel memory devices, assembly quantum dot functional memory, quantum wave switching functional devices, integration of single electron logical devices, integration of CMOS combination-type single electron devices, etc. Moreover, in the development of the basement technology of single electron devices, technology to construct element devices using quantum functions, basement technology of single electron device integration devices, architecture of single electron device information processing circuit system, etc. (NEDO)

  4. A plan for administrative computing at ANL FY1991 through FY1993

    Energy Technology Data Exchange (ETDEWEB)

    Caruthers, L.E. (ed.); O' Brien, D.E.; Bretscher, M.E.; Hischier, R.C.; Moore, N.J.; Slade, R.G.

    1990-10-01

    In July of 1988, Argonne National Laboratory management approved the restructuring of Computing Services into the Computing and Telecommunications Division, part of the Physical Research area of the Laboratory. One major area of the Computing and Telecommunications Division is Management Information Systems (MIS). A significant aspect of Management Information Systems' work is the development of proposals for new and enhanced administrative computing systems based on an analysis of informational needs. This document represent the outcome of the planning process for FY1991 through FY1993. The introduction of the FY1991 through FY1993 Long-Range Plan assesses the state of administrative computing at ANL and the implications of FY1991 funding recommendations. It includes a history of MIS planning for administrative data processing. This document discusses the strategy and goals which are an important part of administrative data processing plans for the Laboratory. It also describes the management guidelines established by the Administrative Data Processing Oversight Committee for the proposal and implementation of administrative computing systems. Summaries of the proposals for new or enhanced administrative computing systems presented by individual divisions or departments with assistance of Management Information Systems, to the Administrative Data Processing Oversight Committee are given. The detailed tables in this paper give information on how much the resources to develop and implement a given systems will cost its users. The tables include development costs, computing/operations costs, software and hardware costs, and efforts costs. They include both systems funded by Laboratory General Expense and systems funded by the users themselves.

  5. Physics of the Cosmos Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Cardiff, Ann H.

    2015-01-01

    What's in this Report? What's New? This fifth Program Annual Technology Report (PATR) summarizes the Programs technology development activities for fiscal year (FY) 2015. The PATR serves four purposes.1. Summarize the technology gaps identified by the astrophysics community;2. Present the results of this years technology gap prioritization by the PCOS Technology Management Board (TMB);3. Report on newly funded PCOS Strategic Astrophysics Technology (SAT) projects; and4. Detail progress, current status, and activities planned for the coming year for all technologies supported by PCOS Supporting Research and Technology (SRT) funding in FY 2015. .

  6. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. Research and development of the advanced instrumentation and processing technologies for oil production systems; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Sekiyu seisan system kodo keisoku kako gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies, as part of development of the advanced instrumentation and processing technologies for oil production systems. The program for the microscopic processing technology combines iodine and YAG laser beams as the high-power laser beams of wavelength of the order of 1{mu}m, in order to realize laser-aided welding of high-quality thick plates, the welding demonstration tests producing good results; improves an in-process monitoring sensor, to confirm its high reliability; and improves size controllability for ultrafine semiconductor particles for development of quantum functional optoelectronic devices, and extends the electric conductivity for production of the transparent conducting films. The program for the non-destructive composition measuring technology develops a light source which produces short wavelength ray of sufficient brightness; produces three-dimensional CT images with a resolution of 2{mu}m, and is developing superconducting X-ray detectors. The program for the high-power all-solid-state laser technology starts development of a rod-type oscillation-controlling laser which can provide mixed operations of CW, pulsed and Q-switched oscillation modes at an average power of 1kW level. The program for the tightly-focusing all-solid-state laser technology develops the prototype of disk type fiber laser using silica fibers of rectangular cross-section, which produces a power of 103W, and starts development of a laser diode. (NEDO)

  7. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  8. FY 1988 report on the committee of the Coal Gasification Committee; 1988 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    The paper reported activities of the committee of the Coal Gasification Committee in FY 1988. In the 1st committee meeting, report/discussion were made on the outline of the FY 1988 research plan on the coal gasification technology development. The distributed data were those on the development of entrained bed coal gasification power generation plant (the state of the development of a 200t/d gasification power generation pilot plant), the results of the operation using entrained bed coal gasification equipment, development of coal utilization hydrogen production technology (design/construction of pilot plant) and development of coal utilization hydrogen production technology (support study of pilot plant, study using small equipment). In the 2nd committee meeting, report/discussion were made on activities of sections such as the gasification power generation section and gasification technology section and the state of progress of the coal gasification technology development. The distributed data were those on the development of an entrained bed coal gasification power generation plant, support study of the development of an entrained bed coal gasification power generation plant, etc. (NEDO)

  9. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  10. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  11. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  12. Advanced Fuels Campaign FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carmack, William Jonathan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  13. FY 1999 report on the results of the research and development project for new industry creating type industrial science and technology. Innovated casting simulation technology; 1999 nendo kakushinteki chuzo simulation gijutsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the results of the FY1999 research and development project, implemented for development of the casting process simulation technologies, with the objectives to improve productivity, reduce cost, reduce the development periods, and so on for casting. For development of the mold filling and solidification process simulation programs, the fundamental algorithm and basic designs of the three-dimensional programs are developed, and the two-dimensional programs are made on a trial basis. For the analysis of the two-dimensional mold filling models, it is found that gas entrapment may occur even in the case of sand mold casting with low permeability. For development of the solidification structure and defect formation simulation programs, the basic investigations are done for the fundamental algorithms to simulate the solidification structures and porosity defects, and for the mechanisms involved in formation of these defects. These efforts lead to adoption of the CA method, and development of the algorithms for reducing CPU time and computational memory requirements by the active block method. For development of the related measurement techniques, the construction plans and specifications of an electromagnetic levitation furnace are investigated for the underground microgravity test center. (NEDO)

  14. Fusion technology development annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    In FY96, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Design Studies (Section 2), Plasma Interactive Materials (Section 3), SiC/SiC Composite Material Development (Section 4), Magnetic Diagnostic Probes (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, the authors carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry

  15. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  16. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies. The technological and R and D trends of the photon-aided instrumentation and processing technologies are surveyed, in order to clarify the directions of their impacts and ripple effects on creation of new industries and development of the existing industries. The survey committee is organized, for exchanging opinions and information, and collection of information. For the trends of the photon-aided processing technologies, information on the elementary and peripheral technologies is collected by literature survey and academic meetings for processing, applied instrumentation and analysis, and photon generation/controlling, to grasp, analyze and study the latest trends. For the photon-utilizing technologies, information is collected viewed from their application to wide industrial areas, e.g., medical, diagnostic, communication/transmission, multimedia and chemical areas, other than those for instrumentation and processing. Also surveyed and analyzed/studied are the technologies for environmental protection, sensing, information, and the new areas, e.g., terahertz photonics and agriculture. (NEDO)

  17. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    International Nuclear Information System (INIS)

    Kriikku, E.M.

    1994-01-01

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control

  18. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  19. 17th Business Report Meeting of New Energy Industrial Technology Development Organization (NEDO). Outline of business; Dai 17 kai NEDO jigyo hokokukai. Gyomu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-25

    This is a report on the 17th Business Report Meeting of NEDO held in September, 1997. In Chapter 1, NEDO's business activities were outlined in terms of new energy, industrial technology, coal policy, compensation for coal mine pollution, alcohol production, etc. In Chapter 2, described were NEDO's budget and account settlement. In Chapter 3, reported were the FY 1996 results of the development of new energy, that is, the development of solar energy utilization technology, geothermal resource development, development of geothermal energy utilization technology, development of coal energy utilization technology, development of coal resource, development of fuel/storage technology, development of hydrogen/alcohol/biomass technology, development of other petroleum substituting energy technology, project for promotion of new energy introduction, project on international energy policy, project on development/introduction survey, and project on information service by NEDO Information Center. In Chapter 4, as the FY 1996 results of the R and D of industrial technology, etc., described were R and D projects, medical/welfare equipment related project, R and D projects on environmental technology, and international industry technology related projects. In Chapters 5 and 6, stated was the coal related project. In Chapter 7, mentioned was the alcohol production project. (NEDO)

  20. FY 1992 Research and development project for industrial science and technology. Part 1/2. Report on results of the R and D project for atomic/molecular level extreme manipulation technologies; 1992 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. 1/2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-01

    Described herein are the FY 1992 results of the survey, research and development project aimed at establishment of the technologies for observing/manipulating atoms and molecules as the common basic technologies for various industrial areas, e.g., new materials, electronics, biotechnology and chemistry. The R and D program for the technologies for observing/manipulating atoms/molecules on solid surfaces involve studies on possibility of surface process controlling aided by, e.g., various mechanical probing techniques and electron beams, and on device structures and analytical procedures for measurement/analysis of the dynamic steps of atomic/molecular processes, producing the basic findings. Observation of hydrogen atoms adsorbed on Si surfaces is started anew, using a newly introduced superhigh-precision surface analysis/controlling device. Knowledge is obtained for research and development of the technologies for observing/manipulating a group of atoms within a space, observing/manipulating structures of organic compounds or the like, and atomic/molecular process theories , among others, through surveys of overseas situations, invitation of researchers, international workshops, technological information exchanges, etc. (NEDO)

  1. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  2. Report on the FY 1999 survey for making a data book related to new energy technology development. Trends of solar energy utilization, waste power generation, clean energy vehicle, geothermal power generation, clean coal technology, other new energy technology and new energy technology development; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Taiyonetsu riyo, haikibutsu hatsuden, clean energy jidosha, chinetsu hatsuden, clean coal technology, sonota no shin energy gijutsu, shin energy gijutsu kaihatsu kanren doko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper collected/arranged the most up-to-date data made public in the new energy technology field. As to the solar energy utilization, the utilization is on the decrease with the beginning of the 1980s as a peak, and the solar systems introduced in FY 1998 totaled 15,000 and the water heaters 56,000. The waste power generation is showing a steady growth both in the general use and in the industrial use, and the introduction of 5 million KW is expected for FY 2010. The sale of the hybrid car started at the end of 1997, and the subjects are the price/performance/fuel supply system. Concerning the geothermal power generation, 497,000 KW and 36,000 KW were introduced for business use and non-utility use, respectively. Japan ranks sixth among nations of the world. Relating to the coal liquefaction, the pilot plant (PP) of Japan's original bituminous coal liquefaction NEDOL process finished operation in 1998, and the construction of technology package, international cooperation, etc. are being conducted. About the coal gasification, the construction of demonstrative equipment and operation are planned during FY 2002 - FY 2007, making use of the PP achievements of IGCC. In regard to the biomass-based waste power generation, the lignocellulose system is large in potential quantity. As to the hydrogen energy, the WE-NET project entered Period II. With respect to the ocean thermal energy conversion, the demonstrative study started. In relation to the wave power generation, a small size of approximately several hundred W was commercialized. (NEDO)

  3. FY2007 NREL Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.

    2007-11-01

    The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.

  4. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  5. Appendix B: Hydrogen, Fuel Cells, and Infrastructure Technologies Program inputs for FY 2008 benefits estimates

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  6. FY 1998 achievement report on the R and D project on industrial science technology. Development of a functional biomolecule analysis/synthesis system; 1998 nendo kinosei seitai bunshi kaiseki gosei system no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the technology required for the biotechnology industry, a study was made on proteins having ligand recognition function, and the FY 1998 results were reported. In the technology development of a system for various/diversified syntheses of functional molecules, a system was designed/trially manufactured which enables the simultaneous synthesis of various biological/functional substances (compound library) at high-efficiency. In the development of the structure analysis system of ligand recognized proteins, a high-efficient biopolymer analysis system was developed which is based on TOF (time-of-flight) mass spectrometer and analyzes proteins produced by recombined genes quickly and precisely. In the R and D of functional molecules using ligand recognized proteins, the cloning was successfully made of the human estrogen receptor gene hER {alpha}, which is composed of 1,785 bp, from MCF-7-BOS. Further, the bioassay system for estrogen-like substances using MCF-7 cells was established. (NEDO)

  7. FY 1986 report on the committee of the Coal Gasification Committee; 1986 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The paper reported on activities of the committee of the Coal Gasification Committee in FY 1986. In the 1st Committee Meeting, after selecting the chairperson, report/discussion were made about the outline of the FY 1986 coal gasification technology development plan. The distributed data were the outline of the development of an entrained bed coal gasification power plant, outline of the development of a 40t/d fluidized bed coal gasification plant, outline of the design of a 1,000t/d 100,000KW-class demonstrative plant, outline of the development of coal utilization hydrogen production technology, and outline of the development of high-calorie gas production technology. In the 2nd Committee Meeting, report/discussion were made about activities of each section of the committee and the state of progress of the development of coal gasification technology. The distributed data were those on the development of an entrained bed coal gasification power plant, development of a 40t/d fluidized bed coal gasification plant, design of a 1,000t/d 100,000KW-class demonstrative plant, and development of coal utilization hydrogen production technology (design/construction of pilot plant, study using small equipment). (NEDO)

  8. FY2011 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-01-31

    The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  9. 2014 Annual Report, Geothermal Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  10. FY 1998 Annual report on research and development of industrial science and technology. R and D of carbon-based high-functional materials technology (R and D of highly functional management systems for power generation); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report summarizes the FY 1998 research results of, e.g., materials creation technology, technology for creating mechanically high-performance materials, and comprehensive surveys as part of the research and development of carbon-based high-performance materials technology. For the researches on materials creation technology, electron-excited plasma CVD was used to produce the diamond-like carbon and carbon nitride films. Fine particles of BCN diamond particles were also synthesized under high temperature and pressure. For the researches on technology for creating mechanically high-performance materials, a precision film-making apparatus was introduced and adjusted, to create carbon-based coating films excellent in tribological properties (low friction and wear type) for development of compositionally inclined film making technology. For technology of large-area film making, a small-sized microwave plasma CVD apparatus was made on a trial basis and used, to develop large-area diamond film making technology. The comprehensive surveys covered synthesis technology for application of high-performance materials to machines and tools, their application to tool members, and evaluation of tribological properties. (NEDO)

  11. FY 1997 report on the results of the industrial technology R and D project. Development of technology to use biological resources such as the complex biological system (Development of biological use petroleum substitution fuel production technology); 1997 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Experimental researches were conducted and the FY 1997 results were reported with the aim of establishing analytical technology for the complex biological system by which the complex biological system can be analyzed in such a state as it is using the molecular biological method. In the study of the molecular genetic analytical technology, PCR primers used for amplification of topoisomerase II genes of the whole eukaryote was designed. As to the histochemical analytical technology, a study was made on the new constitution microorganism detection method by the hybridization method and the antibody specific dyeing method, and the following were conducted: manifestation in quantity of colibacillus and the recovery, refining, and construction of peptide library by fuzzy display method. Concerning the functional analytical technology, technological researches were made such as the environmental adaptation mechanism of high thermophile and the information transfer mechanism among bacteria through cell membranes for elucidation of the special environment detection/response mechanism and the special environment adaptation/resistance mechanism. As to the separation/culture technology, various anaerobic microorganisms were separated from marine sponge for the development of a method of culturing in 3D matrices. (NEDO)

  12. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  13. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 x 10 -7 cm/s. In-place measurements using a new field falling head technique show an average of 3.66 x 10 -8 cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 x 10 -9 cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 x 10 -11 cm/s

  14. Buried waste integrated demonstration FY 94 deployment plan

    International Nuclear Information System (INIS)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document

  15. FY 1997 - FY 2000 reports on the results of the development of commercialization technology of the photovoltaic power system. Summary. R and D of the photovoltaic power generation utilization system/periphery technology (R and D of high reliability storage batteries); 1997-2000 nendo New sunshine keikaku seika hokokusho (Sokatsu ban). - Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (Koshinraisei chikuden sochi no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D/evaluation were made from FY 1997 to FY 2000 of lead storage batteries that are applicable to the use for the absorption of abrupt power variations in photovoltaic power generation and peak shift/emergency use power source, and the results were summed up. In the study for prolonging the life, the following were carried out: development of the inexpensive corrosion-resistant lead alloy positive grid applicable to the photovoltaic power generation, development of the negative active material with a high sulfation control effect, selection of silica powder as electrolyte retainer, development of the charging control technology by the multi-stage constant current method, etc. As a result, energy density of the battery was more than 70W/L as a target, and the target life of 3,000 cycles was achieved in the life test. Further, cost reduction and deterioration judgment were studied. In the study of the group of batteries, a management system for group of batteries was developed. As a result of the 1-year field test, there were no problems on durability of the storage case, temperature difference among batteries, rise in temperature, etc. As to the developed seal type lead storage battery, the applicability to the photovoltaic power generation was acquired. (NEDO)

  16. Annual report of JMTR, FY 1996. April 1, 1996 - March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Norikazu; Fujiki, Kazuo; Nishiwaki, Kei-ichiro [eds.; Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; and others

    1998-02-01

    During FY 1996, the JMTR was operated for 2 complete cycles (118th and 119th cycles) and was utilized for the research and development programs on the reactor technology for LWRs, HTTR and fusion reactor, as well as for basic research of fuels and materials, and for radio-isotope productions. With regard to technology development in the JMTR, improvement of evaluation technique for local neutron spectrum, development of new oxygen sensor for oxide fuel pellet are proceeded. A research on the blanket material for thermonuclear fusion reactor was also progressed. (author)

  17. FY97 nuclear-related budgets total 493 billion yen (4.4 billion dollars)

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    On September 13, the Atomic Energy Commission of Japan announced the estimated nuclear-related budget requests for FY1997 (April, 1997 - Mach, 1998), giving the breakdowns for eight ministries and agencies. The total amount requested by the government bodies was 493.3 billion yen, 0.8% increase as compared with FY96. this figure includes the budget requests of the Science and Technology Agency (STA), the Ministry of International Trade and Industry (MITI), the Ministry of Foreign Affairs, the Ministry of Transport, the Ministry of Agriculture, Forestry and Fisheries, the Okinawa Development Agency, and the Ministry of Home Affairs, but excludes the budget request made by the Ministry of Education. The budget requests of STA and MITI are 360 billion yen and 126 billion yen, respectively. On August 29, STA released its estimated FY97 budget request. The nuclear-related 360.4 billion yen is 0.9% more than that in year before. Of this sum, 199.9 billion yen is in the general account, and 160.6 billion yen is in the special account for power source development. The details of the nuclear-related amounts are explained. On August 26, MITI released its estimated budget request for FY97, and of the nuclear-related 125.7 billion yen (0.1% increase from FY96), 200 million yen is in the general account, and 98.9 billion yen and 26.6 billion yen are in the special accounts for power resource development and power source diversification, respectively. (K.I.)

  18. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  19. A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions

    Science.gov (United States)

    Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.

    2000-07-01

    A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.

  20. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  1. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  2. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  3. Nuclear waste treatment program: Annual report for FY 1987

    International Nuclear Information System (INIS)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs

  4. FY 1992 report on the results of the R and D of advanced function creation processing technology. Development of technology to create high efficiency power generation use members; 1992 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper described the FY 1992 results of the technology to create high efficiency power generation use members. To enhance characteristics of super-high property permanent magnet up to the theoretical level, the development was proposed of a technology to control the size/configuration of micro crystal phase in association with the crystallization of alloy amorphous. For the development of environmental purification use high functional catalysts, a refining method using laser excitation was studied. The observation was also made of molecular adsorption on the Pd thin film catalyst prepared by RF sputtering. The multi-source excitation plasma CVD was proposed which was film-formed by exciting plasma as raw gas independently for each component and supplying it to the substrate of which the periphery was separately controlled. The paper also described the development of technology for ion/light combined assist ultra-thin film production for development of gas turbine combustion sensor. The study was also made of the synthesis of higher-order structure controlled high functional organic materials using the electrode interface combined field which is composed of electrode reaction/high grade photon/extreme magnetic field. In the development of the higher-order structure control technology using the photon combined reaction field, studies were made of the photo reaction film formation technology, the basic film formation technology in the combined reaction field, and the molecular orientation technology. (NEDO)

  5. FY 2000 report on the results of the R and D of fundamental technologies of superconductivity applications. Development of technology to process low consumption power ultra high speed signals; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In relation to the project on the R and D of fundamental technologies of superconductivity applications, the FY 2000 results of the design/fabrication of superconducting circuits were summarized. As to the development of technology to design superconducting circuits, an increase in circuit scale was tried targeting AD converter use modulator and decimation filter. As a result, operation was confirmed in element circuits of flux quantum multiplier circuit, feed back driver, DC isolator, etc. Concerning the development of technology for standard junction and integration, RHEED observations on the thin film surface before/after etching and YBa{sub 2}Cu{sub 3}O{sub 7-x} re-deposition were tried to be made, and the potentiality as monitoring technology was indicated. With respect to the fabrication of small scale circuits for demonstration, the design/trial fabrication were made of the basic pattern of SFQ circuit elements such as DC-SFQ, T-FF and SQUID for inductance rating. In regard to the development of technology to measure characteristics of superconducting circuits, a system was fabricated for processing and measuring output signals from {sigma}-{delta} modulators by semiconductor circuits, and it made the evaluation of AD converter performance possible. (NEDO)

  6. FY 1991 report on the bituminous coal liquefaction section; 1991 nendo rekiseitan ekikabukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The paper reported activities of the bituminous coal liquefaction section in FY 1991. In the 1st bituminous coal liquefaction section meeting, report/discussion were made on the outline of the plan on the FY 1991 research using pilot plant and the support study of pilot plant. In the 2nd section meeting, report was made on 'How the development of coal liquefaction technology should be in the 21st century,' a report made by the joint section of bituminous coal/brown coal liquefaction. In the 3rd section meeting, report/discussion were made on the state of progress of the FY 1991 R and D and results. In the study using the bituminous coal liquefaction pilot plant, report was made on the outline of construction of a 150t/d pilot plant, study on the acquisition of material balance, analytical study of the data on liquefaction tower, testing survey on properties of coal slurry, and testing survey on slurry preheating furnace. In the support study of pilot plant, report was made on the study using 1t/d PUS, study on the development of the optimum coal refining technology and improvement in the distillate distribution, study of conditions for coal liquefaction and study of solvent hydrogenation catalyst. (NEDO)

  7. FY 1991 Report on the results of the research and development of the processing technologies for creating advanced functions; 1991 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    This project is aimed at development of the technologies for materials to be used in a living body, which is required to be compatible with a living body, durable and mechanically strong, wherein a metallic structure surface is coated with multi-layered film with metallic composition continuously changing to ceramic composition to have inclined functions. First, a titanium base is coated with a film of inclined functions, comprising ultrafine particles of alumina and titanium, and then with a film of hydroxyapatite, to form the artificial root of tooth. The forming/processing process comprises preparation (forming) of the titanium base, preparation of the ultrafine particles of titanium and alumina separately, mixing these two types of ultrafine particles in a state of aerosol, sintering of the mixture, and coating the sinter with hydroxyapatite. The base is coated with layers of aerosol mixtures with ultrafine metal particle content continuously changing from the metal to alumina, to form the film of inclined functions. The FY 1991 efforts are directed to development of the technologies for producing aerosol of the ultrafine ceramic particles utilizing the technologies for dry process of dispersing the agglomerated particles and rf plasma. (NEDO)

  8. FY 1998 industrial technology R and D project. Report on the results of the development of utilization technology of biological resource such bioconsortia system (Development of production technology of biological use petroleum substituting fuels); 1998 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugo seibutsukeinado seibutsu shigen riyo gijutsu kaihatsu (seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Technology development was conducted for production of useful substances using the bioconsortia system. In FY 1998, the development of element technology was studied. As to the utilization technology of gut symbiotic microorganisms such as termite and longhorn beetle, clone types of gut microorganism complex system were analyzed to find out the diversification. In the decay of wood, co-culture of two species of mold fungus was increased in efficiency than single culture. More than 90% was classified/identified of the mold fungi accumulated (in wood piece)/separated for the utilization of plant symbiotic microorganisms. For the production of petroleum substituting useful resource, conditions were established of callus induction from immature embryos of tropical oil crops, especially oil palm, and of regeneration of a lot of small plants from the callus. To establish the Agrobacterium-mediated transformation system of oil palm, the binary vector harboring the reporter gene and selectable marker gene was constructed. Using the vector, oil palm tissues are inoculated and infected with agrobacteria. To heighten the function of palm oil, 10 particular clones were selected from the complementary DNA library obtained from oil palm fruit tissues. The genetic study of germs was also made. (NEDO)

  9. FY 1995 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1995 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report summarized the results of the research survey carried out by Japan Space Utilization Promotion Center (JSUP) under the contract with NEDO's industrial technology research and development department. This research survey is aimed at creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas from viewpoints of energy diversification and global environmental preservation in consideration of the stabilized energy supply. Established inside JSUP is a research/development committee on high-grade combustion technology which is organized by men of learning and experience from universities, national institutes, private companies, etc. Following FY 1994, the following were continuously conducted: (1) joint research with NASA as an international research cooperation; (2) test using microgravity test facilities and analysis/evaluation of the test data. The experiment was conducted using facilities, etc. of the underground gravity-free test center established as a part of the national research base arrangement project. A lot of experimental data were obtained and stored which are useful for elucidation of the combustion mechanism and the development of ground combustor. (NEDO)

  10. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  11. FY 2000 report on the research cooperation project on the research cooperative follow-up for development of the manufacturing technology supported by advanced and integrated information system through cooperation; 2000 nendo kenkyu kyoryoku jigyo. 2000 nendo kan'i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku follow up jigyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The manufacturing technology supported by advanced and integrated information system through cooperation (MATIC), that is, a project supporting the production technology including the international information system and CAD/CAM system, etc. was carried out from FY 1994 to FY 1998. From FY 1999, the follow-up project is being implemented for the spread of the MATIC results, support for the independent R and D and the technical guidance. China, Indonesia, Malaysia and Singapore participated in this project, by which the support and technical guidance were given in three fields: automobiles/the parts; household electric appliances/the parts; fiber/apparel. At present, each country is continuing its own activity for using the system developed in the MATIC project in its country. In this fiscal year, researchers were sent to each country for supporting the activities. Further, the MATIC follow-up committee was established to conduct the drawing-up of a business plan, grasp of the state of the spread/R and D, discussion about problems/subjects, comprehensive evaluation of the MATIC project, etc. (NEDO)

  12. FY 2000 Development of technologies for optimization control of reducing power loss during the service period. Report on the research and development results of the 'building total cooperation control by micro-internet technologies'; 2000 nendo kadoji denki sonshitsu sakugen saiteki seigyo gijutsu kaihatsu seika hokokusho. Micro internet gijutsu ni yoru biru total kyocho seigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The research and development project is implemented for development of the energy-saving optimization/control system which continuously monitors/controls all of the energy-consuming appliances in a building for their optimization, and the FY 2000 results are reported. The program for the sensing technologies involves a human tracking system aided by fish-eye images and human region sensing technologies based on the neuro technologies, and introduces an animated image simulation system aided by a personal computer. The researches on the building total cooperation control involve establishment of the system designs for controlling heat sources, based on the thermal loads predicted by the information network system. The researches on the micro-internet technologies involve development of the prototype unit which collects information from indoor environment sensors (e.g., for room temperature, luminous intensity and CO2 concentration), and interface devices which collect information from the sub-systems, e.g., air conditioners and heat sources. These systems are completed. The demonstration and assessment program involves designs of the instrumentation systems and network environments. The designs are completed, and various sensors and monitors are installed. (NEDO)

  13. FY 1999 report on the results of the research and development project for new industry creating type industrial science and technology. Innovated casting simulation technology (Development project for commercialization of technologies related to rational use of energy); 1999 nendo kakushinteki chuzo simulation gijutsu seika hokokusho. Energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the results of the FY1999 research and development project, implemented for development of the casting process simulation technologies, with the objectives to improve efficiency and energy-saving for the various industrial areas, e.g., industrial machines, aircraft, automobiles and vehicles, and power generation plants. For development of the mold filling and solidification process simulation programs, the efforts are directed to development of the fundamental algorithms for simulation of unidirectional solidification casting used for, e.g., turbine blades, and also to the basic works for validation of the programs. For development of the solidification structures and defect formation simulation programs, the fundamental works are done for simulation of solidification structures and channel-type segregation, which are the main problems for columnar blades, to predict the defects formed in, e.g., turbines. For development of the related measurement techniques, investigations are made for evaluation of the levitation characteristics of nickel alloys by the electromagnetically levitated droplet method and problems involved therein, prior to the tests in the the underground microgravity test center. (NEDO)

  14. FY 1998 Annual report on research and development of industrial science and technology. R and D of carbon-based high-functional materials technology (R and D of highly functional management systems for power generation); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report summarizes the FY 1998 research results of, e.g., materials creation technology, technology for creating mechanically high-performance materials, and comprehensive surveys as part of the research and development of carbon-based high-performance materials technology. For the researches on materials creation technology, electron-excited plasma CVD was used to produce the diamond-like carbon and carbon nitride films. Fine particles of BCN diamond particles were also synthesized under high temperature and pressure. For the researches on technology for creating mechanically high-performance materials, a precision film-making apparatus was introduced and adjusted, to create carbon-based coating films excellent in tribological properties (low friction and wear type) for development of compositionally inclined film making technology. For technology of large-area film making, a small-sized microwave plasma CVD apparatus was made on a trial basis and used, to develop large-area diamond film making technology. The comprehensive surveys covered synthesis technology for application of high-performance materials to machines and tools, their application to tool members, and evaluation of tribological properties. (NEDO)

  15. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs: FY 2005 Budget Request

    Energy Technology Data Exchange (ETDEWEB)

    National Renewable Energy Laboratory

    2004-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Government's efforts to provide reliable, affordable, and environmentally sound energy for America, through its 11 research, development, demonstration, and deployment (RDD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2005 Budget Request. EERE has adopted a benefits framework developed by the National Research Council (NRC) to represent the various types of benefits resulting from the energy efficiency technology improvements and renewable energy technology development prompted by EERE programs. EERE's benefits analysis focuses on three main categories of energy-linked benefits-economic, environmental, and security. These metrics are not a complete representation of the benefits or market roles of efficiency and renewable technologies, but provide an indication of the range of benefits provided. EERE has taken steps to more fully represent the NRC framework, including two key improvements to the FY 2005 analysis-adding an electricity security metric and extending the analysis through the year 2050.

  16. Annual report of Fusion Research and Development Directorate of JAEA for FY2008 and FY2009

    International Nuclear Information System (INIS)

    Isei, Nobuaki

    2011-03-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) for FY2008 (from April 1, 2008 to March 31, 2009) and FY2009 (from April 1, 2009 to March 31, 2010), including those performed in collaboration with other research establishments of JAEA, research institutes, and universities. Concerning the ITER project, JAEA was nominated as the domestic agency by the Japanese government after the ITER Agreement took effect, and has fulfilled the obligations. In the development of superconducting conductors, JAEA constructed a technical platform for the fabrication of superconducting conductors for toroidal field (TF) coils ahead of other countries. JAEA immediately started and completed the construction of a plant to fabricate superconducting conductors, and started their fabrication ahead of other countries. In the development of gyrotron high-frequency heating equipment, since only the JAEA satisfies the ITER's procurement specifications among supplier countries, the ITER Organization requested JAEA to conduct confidence tests, and achieved results such as data acquisition that could contribute to the development of the ITER's operational scenario. For the development of neutral beam injectors, advantages of the multi-stage acceleration system developed by JAEA was recognized as a result of comparative experiments with single-stage acceleration systems developed in Europe for the particle acceleration system, and was adopted in the ITER's technical specifications. For the Broader Approach (BA) activities, JAEA was designated as the implementing agency by the Japanese government after the BA Agreement took effect, and has fulfilled the obligations and promoted three projects in the BA activities steadily through domestic cooperation and coordination with Europe. Concerning activities related to the International Fusion Energy

  17. Advanced Fuels Campaign FY 2011 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  18. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  19. Production of 83Rb and development of a generator for the separation of sup(83m)Kr from 83Rb

    International Nuclear Information System (INIS)

    Krueger, A.; Lieser, K.H.

    1975-01-01

    83 Rb was produced from rubidium by a (γ,2n)-reaction. The specific activity in the irradiated samples of RbCl was 0.2 to 0.3mCi 83 Rb/gRb. For the separation of the sup(83m)Kr in the liquid phase the cation exchanger Dowex-50WX12 proved to be a suitable carrier. sup(83m)Kr was eluted by bidistilled water. The yield ranged from 85-95%, at an elution time of 3 minutes. The decontamination factor was > 10 6 . The separation of sup(83m)Kr in the gaseous phase was effected by floating a 83 Rb loaded column with an elution gas. The best results were obtained with a generator containing aluminium oxide as carrier for 83 Rb. The yield of sup(83m)Kr was 90-100%, the decontamination factor > 10 4 , the time needed for the separation 20-60 seconds. All generators proved to be very safe even after long time of use. (orig.) [de

  20. FY 2000 study report on the study on technological development of the chemical processes of the next generation; 2000 nendo jisedai kagaku process gijutsu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The technological development of the innovative chemical reaction processes is studied, in order to accomplish further energy saving, and reduction of resource consumption and environmental loads. Described herein are the FY 2000 study results. The program for systematization of the next-generation chemical processes systematically pigeonholes the undergoing projects and subjects to be studied, based on the principles of simplification, and sets the study fields of organic bulk chemicals, organic fine chemicals, highpolymer materials and inorganic materials. The program for investigation on next-generation chemical processes reviews creation and technological use of tailor-made biocatalysts, polymer materials which utilize wood resources, tailor-made reaction process engineering for handling fine particles in high-temperature reaction fields, production and processing of materials for high-performance polymer batteries, and extreme energy saving process for polyolefins, and proposes the revisions. The newly proposed study themes include novel C1 catalytic processes toward minimal wastes, and high utilization of biotechnology for novel processes to create materials. (NEDO)

  1. Nevada National Security Site-Directed Research and Development FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Howard Bender, comp.

    2012-04-25

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R&D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R&D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  2. Development of reconstitution technique of irradiated specimens. 3. Report for FY 1995 and FY 1996 on JAERI-IHI cooperated research program (joint research)

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yutaka; Fukaya, Kiyoshi; Onizawa, Kunio; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Terumi; Kaihara, Shoichiro; Yoshida, Kazuo; Sato, Akira

    1998-10-01

    The cooperated research between Japan Atomic Energy Research Institute and Ishikawajima-Harima Heavy Industries Co., Ltd. on the development of reconstitution technique of irradiated reactor pressure vessel surveillance specimens has been performed from FY 1993. In FY 1993-1994, the method of surface activated joining (SAJ) was applied to reconstitution of Charpy impact specimens. Some verification tests using unirradiated reactor pressure vessel plate materials have shown that SAJ is feasible for a reconstitution technique, in particular, owing to low joining temperature. The present paper reports the results of the cooperated research performed in FY 1995-1996. To improve the quality of the SAJ, the configuration of the end tab surface to be joined with the insert material was modified. The torque measured during joining was also introduced in joining parameters. A nondestructive inspection, temperature measurements in the specimens during joining were performed. The effect of joining on Charpy impact properties was discussed. For practical application of the technique to irradiated specimens, we confirmed that the impact specimens with joining interface gave rise to no failure at the joining position during impact test after neutron irradiation. (author)

  3. High performance computing and communications: FY 1996 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  4. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  5. In-Operation Inspection Technology development. Development of the degradation prediction technique

    International Nuclear Information System (INIS)

    Nakamuta, Yasushi; Miyoshi, Toshiaki; O'shima, Eiji

    1999-01-01

    As In-Operation Inspection Technology (IOI) , we selected primary loop recirculation (PLR) pump, sea water pump, small diameter pipe branch in the steam generator (SG) room and motor driven valve for the typical component of the nuclear power plant, and we are developing the technology which can forecast the residual life of parts in the plan until FY2000. With respect to PLR pump and sea water pump, technical procedure for predicting the propagation of bearing wear, under the combined effect of several degradation conditions of each pump during the plant operation are under development. With respect to pipe branch, we are developing the non-contact laser sensors, and we are constructing the system which forecasts high cycle fatigue in the root of pipe branch by monitoring the vibration of pipe branch. With respect to motor driven valve, technical procedure for predicting the thermal degradation of gaskets and gland packing, technical procedure for predicting the stem nut wear and wear of hunging portion of valve disc, and technical procedure for detecting the degradation of driving parts, without disassembling the motor driven valve, are under development. (author)

  6. A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    Science.gov (United States)

    Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall

    2013-01-01

    funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.

  7. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of technology for effective utilization of power produced by polymer electrolyte fuel cell systems); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Kotai kobunshigata nenryo denchi no shutsuryoku yuko riyo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of technologies for effective utilization of power produced by polymer electrolyte fuel cell (PEFC) systems and waste heat, to spread cogeneration systems incorporating PEFC systems for residential purposes. Described herein are the FY 2000 results. The program for high-efficiency peripherals for residential PFEC systems attempts use of GaN-FET as the semiconductor device of wide band gap and high breakdown voltage to realize conversion efficiency over 90% by improving inverter efficiency. Two types of the prototype heat recovery systems are developed for the PEFC, one incorporating a latent heat cooling system and the other a water cooling system, to improve heat recovery efficiency and increase heat recovery temperature. The program for technology to fit PEFC output to energy demand develops hot water supply systems provided with a hot water storage function for stable supply of hot water irrespective of the heat recovery conditions, and also with a back-up function with burners. The program also develops the PEFC system of fine load following characteristics, for which pure hydrogen is used as the fuel to allow the system to instantaneously follow fluctuating loads. The program for high-efficiency partial load operation technology studies a 1kW-class residential PEFC cogeneration system incorporating a power storage device for high-efficiency operation at partial loads, where the former operates in a high output mode while the latter absorbs fluctuating loads. (NEDO)

  8. FY 1992 report on the results of the R and D of advanced function creation processing technology. Development of technology to create high efficiency power generation use members; 1992 nendo senshin kino soshutsu kako gijutsu no kenkyu kaihatsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper described the FY 1992 results of the technology to create high efficiency power generation use members. To enhance characteristics of super-high property permanent magnet up to the theoretical level, the development was proposed of a technology to control the size/configuration of micro crystal phase in association with the crystallization of alloy amorphous. For the development of environmental purification use high functional catalysts, a refining method using laser excitation was studied. The observation was also made of molecular adsorption on the Pd thin film catalyst prepared by RF sputtering. The multi-source excitation plasma CVD was proposed which was film-formed by exciting plasma as raw gas independently for each component and supplying it to the substrate of which the periphery was separately controlled. The paper also described the development of technology for ion/light combined assist ultra-thin film production for development of gas turbine combustion sensor. The study was also made of the synthesis of higher-order structure controlled high functional organic materials using the electrode interface combined field which is composed of electrode reaction/high grade photon/extreme magnetic field. In the development of the higher-order structure control technology using the photon combined reaction field, studies were made of the photo reaction film formation technology, the basic film formation technology in the combined reaction field, and the molecular orientation technology. (NEDO)

  9. Technical plan for nondestructive examination technology development

    International Nuclear Information System (INIS)

    Anderson, B.C.

    1982-12-01

    This report provides a description of the development of the nondestructive examination (NDE) equipment to be used in the Stored Waste Examination Pilot Plant (SWEPP) for certifying transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). NDE equipment is being developed for waste identification and container integrity. Real-time x-ray radiography is the basic method being used for waste identification. Acoustic (ultrasonic) testing is being used to obtain measurements to verify container integrity. This report describes the decisions made to date, the decisions to be made, and the activities planned for FY 1983 through FY 1985

  10. FY 2000 Development of technologies for optimization control of reducing power loss during the service period. Report on the research and development results of the 'building total cooperation control by micro-internet technologies'; 2000 nendo kadoji denki sonshitsu sakugen saiteki seigyo gijutsu kaihatsu seika hokokusho. Micro internet gijutsu ni yoru biru total kyocho seigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The research and development project is implemented for development of the energy-saving optimization/control system which continuously monitors/controls all of the energy-consuming appliances in a building for their optimization, and the FY 2000 results are reported. The program for the sensing technologies involves a human tracking system aided by fish-eye images and human region sensing technologies based on the neuro technologies, and introduces an animated image simulation system aided by a personal computer. The researches on the building total cooperation control involve establishment of the system designs for controlling heat sources, based on the thermal loads predicted by the information network system. The researches on the micro-internet technologies involve development of the prototype unit which collects information from indoor environment sensors (e.g., for room temperature, luminous intensity and CO2 concentration), and interface devices which collect information from the sub-systems, e.g., air conditioners and heat sources. These systems are completed. The demonstration and assessment program involves designs of the instrumentation systems and network environments. The designs are completed, and various sensors and monitors are installed. (NEDO)

  11. Annual Progress Report FY-82. Volume I.

    Science.gov (United States)

    1982-01-01

    Comparison of Binaural Versus 316 Monaural Amplification. (FY-81PI) 2535 Development of Method for Generating 318 Individualized Aural Rehabilitation...Oncology Group. 428 (FY-74 I ) 4116 The Evaluation of Petal Systolic Time Intervals 429 and Beat interval Variation in Fetal heart Rate as Early

  12. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  13. Fiscal year 1996 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Waste Management Program, Decontamination and Decommissioning Projects Department

    International Nuclear Information System (INIS)

    1996-01-01

    The Photobriefing Book describes the Decontamination and Decommissioning (D and D) Program at the Argonne National Laboratory-East Site (ANL-E) near Lemont, Illinois. This book summarizes current D and D projects, reviews fiscal year (FY) 1996 accomplishments, and outlines FY 1997 goals. A section on D and D Technology Development provides insight on new technologies for D and D developed or demonstrated at ANL-E. Past projects are recapped and upcoming projects are described as Argonne works to accomplish its commitment to, ''Close the Circle on the Splitting of the Atom.'' Finally, a comprehensive review of the status and goals of the D and D Program is provided to give a snap-shot view of the program and the direction it's taking as it moves into FY 1997. The D and D projects completed to date include: Plutonium Fuel Fabrication Facility; East Area Surplus Facilities; Experimental Boiling Water Reactor; M-Wing Hot Cell Facilities; Plutonium Gloveboxes; and Fast Neutron Generator

  14. Conceptual design report for environmental, safety and health phase III FY-91 line item

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-09-01

    The Mound Facility (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety, and Health (ES&H) Program designed to protect its employees, the public, and the environment from adverse effects caused by the facility`s activities. Design has been completed, and construction is in progress for Phase I of this multiphase program. Phase II has been submitted for fiscal year (FY) 89 funding and Phase IV is being submitted as an FY 92 line item. This Conceptual Design Report (CDR) addresses Phase III of the ES&H program.

  15. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  16. FY 1996 report on the cooperative research on the development of environmentally friendly high efficiency mineral resource extraction/treatment technology. Basic design of pilot plant and a part of the detailed design; 1996 nendo kankyo chowagata kokoritsu kobutsu shigen chushutsu shori gijutsu no kaihatsu ni kansuru kenkyu kyoryoku. Pilot plant no kihon sekkei oyobi ichibu shosai sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project is a cooperative research on the development of environmental harmony type high efficiency mineral resource extraction/treatment technology. It aims to study/develop a system to recover valuable metals from unused resources in the Republic of Kazakhstan using the environmental harmony type technology which is easy to operate/maintain and is environmentally friendly with no mine pollution caused. In the project, which started in FY 1994, a pilot plant is finally constructed in Kazakhstan, a recovery system to be applied is demonstrated, and the comprehensive assessment of the system is made. Concretely, the recovery of Cu, Au, Ag, etc. is tried from the Nikolayevska low grade ore and Zhezkent tailings. This is a system into which the following techniques are integrated: treatment before dressing such as flotation, leaching of Cu, etc. by acid including bacteria, solvent leaching, electrowinning, cyanogen leaching activated carbon treatment and wastewater treatment of Au and Ag. As to the design/fabrication of pilot plant, conducted was the conceptual design in FY 1995, and the basic design, a part of the detailed design (crushing/grinding/leaching/dewatering facilities of the process of the acid (bacteria) leaching of Cu, etc.), and the fabrication in FY 1996. (NEDO).

  17. DEVELOPMENT AND SELECTION OF TECHNOLOGIES FOR MERCURY MANAGEMENT ON U.S. DEPARTMENT OF ENERGY SITES: THE MER01-MER04 AND MERCURY SPECIATION DEMONSTRATIONS

    International Nuclear Information System (INIS)

    Morris, Michael I.; Hulet, Greg A.

    2003-01-01

    The U.S. Department of Energy's (DOE's) Transuranic and Mixed Waste Focus Area (TMFA), funded from fiscal year (FY) 1996 though FY 2002, was tasked with finding solutions for the mixed waste treatment problems of the DOE complex. During TMFA's initial technical baseline development process, three of the top four technology deficiencies identified were the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury-contaminated mixed waste. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, assisted TMFA in soliciting, identifying, initiating, and managing efforts to address these areas. Solicitations and contract awards were made to the private sector to demonstrate both the amalgamation and stabilization processes using both actual mixed wastes and surrogate samples. The goal was to develop separation and removal processes that will meet DOE's needs. This paper discusses the technology selection process, development activities, and the accomplishments of TMFA through these various activities

  18. FY 2000 report on the results of the R and D of the immediately effective/innovative energy technology. Development of the regenerative technology of energy saving type metal dust; 2000 nendo sokkoteki kakushinteki energy gijutsu kenkyu kaihatsu seika hokokusho. Sho energy gata kinzoku dust kaisei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of the technology to recover iron and zinc components directly from high temperature exhaust gas emitted from the steel-making use electric furnace, etc. This process is more simplified than the conventional dust treatment process and markedly reduces the energy needed for zinc recovery. In FY 2000, the following were carried out: 1) development of the element technology to recover metal components in high temperature exhaust gas; 2) development of the technology to optimize the recovery process for metal components in high temperature exhaust gas. In 1), the following were proceeded with: grasp of conditions for metal recovery; development of the equipment to select/separate low vapor-pressure metal components; development of the heavy metal separation equipment to select/condensate zinc. As to the development of the equipment to select/separate low vapor-pressure metal components, it was confirmed by the element test that it was possible to separate iron by carbon material filter. Further, the reaction amount of gasification of carbon material was estimated to be small by the element test and simulational calculation. In 2), the bench-scale test device and small pilot test device were designed/fabricated. (NEDO)

  19. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  20. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  1. Training report of the FBR cycle training facility in 2004FY

    International Nuclear Information System (INIS)

    Watanabe, Toshio; Sasaki, Kazuichi; Sawada, Makoto; Ohtsuka, Jirou

    2004-07-01

    The FBR cycle training facility consists of sodium handling training facility and maintenance training facility, and is being contributed to train for the operators and maintenance workers of the prototype fast breeder reactor 'Monju'. So far, some training courses have been added to the both training courses of sodium handling technologies maintenance technologies in every year in order to carry out be significant training for preparation of Monju restarting. As encouragement of the sodium handling technology training in 2003FY, the sodium heat transfer basic course was equipped as the 9th sodium handling training course with the aims of learning basic principal technology regarding sodium heat transfer. While, for the maintenance training course, a named 'Monju Systems Learning Training Course', which aims to learn necessary knowledge as the engineers related Monju development, was provided newly in this year as an improvement concerned the maintenance course. In 2003FY, nine sodium handling technology training courses were carried out total 33 times and 235 trainees took part in those training courses. Also, nine training courses concerning the maintenance technology held 15 times and total 113 trainees participated. On the other hand, the 4th special lecture related sodium technology by France sodium school instructor was held on Mar. 15-17 and 34 trainees participated. Consequently, a cumulative trainees since October in 2000 opened the FBR cycle training facility reached to 1,236 so far. (author)

  2. Annual report of JMTR, No.15. FY2000. April 1, 2000-March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    During the FY2000 (April 2000 to March 2001), the JMTR (Japan Materials Testing Reactor) was operated in 6 operation cycles (130 days) for irradiation studies on the IASCC of the LWR materials, development of actinide contained uranium-hydride fuels, development of fusion blanket materials, and so on. The total number of capsules and hydraulic rabbis irradiated were 132 and 79, respectively. Technology development programs were conducted in the following fields. As concerning to the utilization of JMTR, a irradiation facility for the IASCC studies, irradiation capsules for RPV surveillance specimen and automatic temperature control system for irradiation capsules were developed. New efficient production process was developed for pebble type tritium breeder material for fusion reactor blanket, and tritium generation/recovery behavior under irradiation was investigated using pebble packed test piece. This report summarizes these activities performed in the department of JMTR during the FY2000. (author)

  3. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. R and D of the intellectual material and structural systems (Development of technologies for rational use of energy); 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Chiteki zairyo kozo system no kenkyu kaihatsu (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the R and D project for development of intellectual materials and structural systems, as part of development of technologies for rational use of energy. The program for development of health monitoring technologies produces the bright prospects for commercialization of the fine FBG (Fiber Bragg Grating) sensor which can be embedded in a CFRP prepreg, and establishes the crack detecting method. The program for development of smart manufacturing technologies describes the dielectric constant sensor capable of monitoring the curing process, detection of the cured conditions by the optical fiber sensor, and development of the performs by RTM (Resin Transfer Molding). The program for technological development of the active-adaptive structures conducts the vibration- and noise-controlling tests for the small-size structural elements, confirming that the damping coefficient is improved by at least 20% and acoustic power is reduced by at least 30%. The program for developing the actuator materials and elements improves the piezoelectric characteristics of the PZT-based materials by hybrid sintering, and develops the actuators of high-durability FGM (Function-Gradient Materials). It also develops the foil- and belt-shaped shape memory alloys by arc-aided dissolution and rapid solidification of Ti-Ni-Cu-based alloys. (NEDO)

  4. FY 1999 report on the results of the technology development of super metal (R and D of the undersea oil production support system). Development of technology of aluminum-base high corrosion resistant fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kaitei sekiyu seisan shien system kenkyu kaihatsu (aluminium kei kotaishokusei bisai kozo seigyo kinzoku zairyo gijutsu kaihtsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing aluminum materials excellent in industrial characteristics, a study was conducted to create large-sized aluminum materials having mesoscopic crystal structure, and the FY 1999 results were summarized. In this fiscal year, to create the fine crystal grain structure, the following were conducted: fundamental study of high strain accumulation process, study of a mechanism of fine crystal grain formation, development of the processing method, and development of evaluation technology. In the study of high strain accumulation process, effects were examined of conditions of molten metal rolling on castability. Fundamental studies were also made of innovative technologies such as ECAP method, pre-forged structure controlling rolling, accumulative roll bonding and thermomechanical treatment. In the study of the mechanism of fine crystal grain structure formation, the following were conducted: Al-Mn base alloys produced by molten metal rolling, 6061 alloys by warm rolling with different peripheral speed rolling, and 7000 group alloys by warm rolling. As to the processing method, study was made on low-temperature rolling technology and rapid heat treatment technology. As to the evaluation technology, study was made on evaluation of crystal grain diameter by EBSP. (NEDO)

  5. Nevada National Security Site. Site-Directed Research and Development FY 2011 Annual Report

    International Nuclear Information System (INIS)

    Bender, Howard

    2012-01-01

    This fiscal year 2011 annual report of the Site-Directed Research and Development program, the 10th anniversary edition, recognizes a full decade of innovative R and D accomplishments in support of the Nevada National Security Site (NNSS). Last year the NNSS itself was renamed to reflect a diversifying mission, and our R and D program has contributed significantly to shape emerging missions that will continue to evolve. New initiatives in stockpile stewardship science, nonproliferation, and treaty verification and monitoring have had substantial successes in FY 2011, and many more accomplishments are expected. SDRD is the cornerstone on which many of these initiatives rest. Historically supporting our main focus areas, SDRD is also building a solid foundation for new, and non-traditional, emerging national security missions. The program continues its charter to advance science and technology for a broad base of agencies including the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), U.S. Department of Homeland Security (DHS), and many others.

  6. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  7. Integrated Data Collection Analysis (IDCA) Program: FY2011 Project Descriptions

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC-IHD), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelley, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reyes, Jose A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-02-03

    This document provides brief descriptions of research topics for consideration by the IDCA for potential funding in funding in FY 2011. The topics include the utilization of the results from the Proficiency Test developed during FY 2010 to start populating the small-scale safety and thermal testing (SSST) Testing Compendium and revising results from methods modifications. Other research topics were also developed for FY 2011 from issues that arose in the Proficiency Test.

  8. Development and Characterization of Mouse Monoclonal Antibodies Reactive with Chicken CD83

    Science.gov (United States)

    This study was carried out to develop and characterize mouse monoclonal antibodies (mAbs) against chicken CD83 (chCD83), a membrane-bound glycoprotein belonging to the immunoglobulin superfamily that is primarily expressed on mature dendritic cells (DCs). A recombinant chCD83/IgG4 fusion protein con...

  9. Federal Research and Development Funding: FY2013

    Science.gov (United States)

    2013-12-05

    NIA ) 1,120 1,103 1,102 1,124 1,040 Arthritis/Musculoskeletal/Skin (NIAMS) 535 536 535 537 505 Deafness/Communication Disorders (NIDCD) 416 417...Secretary’s net transfer of $18.273 million for Alzheimer’s disease research to National Institute on Aging ( NIA ) from other ICs. FY2012 figures are shown on

  10. FY 1999 Report on research and development of energy utilization rationalization superhigh-technological liquid crystal technologies. Superhigh-technological electronic technology development promotion project for new functional electronic material design, control and analysis technologies; 1999 nendo energy shiyo gorika chosentan ekisho gijutsu kaihatsu seika hokokusho. Chosentan denshi gijutsu kaihatsu sokushin jigyo shinkino denshi zairyo sekkei seigyo bunseki nado gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    Described herein are the FY 1999 results of the liquid crystal technology development project. For the researches on multi-layer reflection, composite panels of flattened resins of different refractive index are developed to improve 2-layer monochromic contrast ratio. The guest/host liquid crystal compositions of high orientation order are investigated as the those useful for high contrast. Compounds are pursued for superanisotropic light absorption, and modification with a substituent is found to be effective. Molecular orientation controlling is also studied. For researches on memory-sustaining type liquid crystals, the studied items include formation of thin ferroelectric films on glass substrates, improvement of voltage-sustaining characteristics by composites (including compounds), and doping of trace quantities of ionic impurities. For development of image element colors, the studied items include multi-lattice-structured, oriented HPDLC devices, composites of high birefringence (high order light scattering), and light interference, high order light scattering type light control devices. The multi-dimensionally anisotropic structure of configuration divided into 3 parts of R, G and B is developed to create directive reflection which improves brightness of the reflection type color liquid crystal. A group of compounds are pursued to develop liquid crystal compositions of high refractive index anisotropy, and promising ones are found. The results of the comprehensive investigations are also described. (NEDO)

  11. FY1983 HTGR summary level program plan

    International Nuclear Information System (INIS)

    1983-01-01

    The major focus and priority of the FY1983 HTGR Program is the development of the HTGR-SC/C Lead Project through one of the candidate lead utilities. Accordingly, high priority will be given to work described in WBS 04 for site and user specific studies toward the development of the Lead Project. Asessment of advanced HTGR systems will continue during FY1983 in accordance with the High Temperature Process Heat (HTPH) Concept Evaluation Plan. Within the context of that plan, the assessment of the monolithic HTPH concepts has been essentially completed in FY1982 and FY1983 activities and will be limited to documentation only. the major advanced HTGR systems efforts in FY1983 will be focused on the further definition of the Modular Reactor Systems concepts in both the reforming (MRS-R) and Steam Cycle/Cogeneration 9MRS-SC/C) configurations in WBS 41. The effort will concentrate upon key technical issues and trade studies oriented to reduction in expected cost and schedule duration. With regard to the latter, the most significant will be trade study addressing the degree of modularization of reactor plant structures. particular attention will be given to the confinement building which currently defines the critical path for construction

  12. FY 2000 research cooperation project on plastic processing technology/quality inspection technology; 2000 nendo kenkyu kyoryoku jigyo. Plastic kako gijutsu hinshitsukensa gijutsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of improving the production technology of plastic products in Saudi Arabia, the joint development was made of the formation technology/quality inspection technology of agricultural use and food packaging use polyolefin film optimum to environmental conditions of the site, in the light of the needs there, and the FY 2000 results were reported. In the field survey/joint study, for the xenon type weather resistant testing machine and the extruder of the inflation film forming machine which were transported from Japan, the following were carried out: confirmation of the situation of accepting them on the site, functional test of computer of the extruder, installation of the machine testing weather resistance, and the trial operation. In the domestic support study, the extrusion test at laboratory was conducted using the polyethylene resin produced on the site to acquire the basic data for formation stability. Further, the film formation test was made using the equipment with the same specifications as those of the equipment introduced to the site to study the performance of screw extrusion and the formation stability of film. Also conducted were the analytical test/quality evaluation of resin materials/film. (NEDO)

  13. FY 2000 report on the results of the development of the environmentally friendly type high efficiency energy utilization system. Part 2. Study of the effective utilization technology of high efficiency energy (Study of the optimum system design technology); 2000 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu seika hokokusho. 2. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The paper conducted the development of the environmentally friendly type high efficiency energy utilization system and the R and D of the high efficiency energy effective utilization technology, and the FY 2000 results were summed up. As to the energy transportation/storage technology, the R and D were made on the following: methanol/energy system, non-equilibrium high efficiency methanol decomposition reaction technology, development of multiple functions of catalyst, high efficiency heat pump technology using hydrogen storage alloys, heat-hydrogen recovery/transportation/utilization technology, vacuum insulated heat transport piping system, surfactant used for high density heat transport, high density latent heat transportation technology, etc. Concerning the energy supply/utilization technology, the R and D were made of the heat supply system using high efficient heat pump corresponding to multiple fuels. Relating to the environmental load reduction technology, the energy conserved heat pump system using natural coolant. As to the optimum system design technology, the comprehensive preparation of element technology, etc. (NEDO)

  14. Disability Compensation and Patient Expenditures: FY2000 to FY2013

    Data.gov (United States)

    Department of Veterans Affairs — This report contains FY2000 through FY2013 data on disability compensation expenditures and recipients and on VA healthcare system patients and patient expenditures.

  15. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the petroleum substituting fuel production technology using living organisms); 1999 nendo sangyo gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the technology for producing and degrading useful substances using bioconsortia, study was made of the handling technology of bioconsortia, the basic element technology, etc., and the FY 1999 results were reported. In the study of the high-grade utilization technology of lignocellulose/the components, an sample was obtained in which the effect of the bacteria culture supernatant treatment was recognized in the biobleaching by co-treatment of the bacteria culture filtrate - MnP. As to the search for control factor of lignin degrading enzyme and the utilization technology, it was found out that bisphenol A was efficiently degraded by a combination of laccase and mediator production bacteria. Concerning the utilization technology of plant symbiotic bacteria, classification/identification have been finished of approximately 60% of the stored bacteria. In the study of the production technology of the petroleum substituting useful resource, a system was constructed in which immature embryos were used for callus induction and regeneration of plantlets, and plants were regenerated at high frequency via the formation of adventitious embryos. By this, the culture cell with high propagation ability was obtained. (NEDO)

  16. Annual report of JMTR, No.16. FY2001. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    During the FY2001 (April 2001 to March 2002), the JMTR (Japan Materials Testing Reactor) was operated in 5 operation cycles (113 days) for irradiation studies on the IASCC of the LWR materials, development of fusion blanket materials, radioisotope productions, and so on. The total number of capsules and hydraulic rabbits irradiated were 105 and 59, respectively. Technology development programs were conducted in the following fields. As concerning to the IASCC studies, an advanced water control system and saturation temperature capsules' were developed and installed in the JMTR, and the performance tests were carried out. Also a crack growth testing device for irradiated specimens was developed and installed in the hot laboratories. An efficient recycle process of {sup 6}Li was developed for the production of pebble type tritium breeder material, and the properties of beryllides were examined, both for the development of fusion reactor blanket. This report summarizes these activities performed in the department of JMTR during the FY2001. (author)

  17. HTGR generic technology program plan (FY 80)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs

  18. Supporting Data Amended FY 1992/FY 1993 Biennial Budget Estimate Submitted to Congress - January 1992. Descriptive Summaries of the Research, Development, Test and Evaluation, Army Appropriation

    Science.gov (United States)

    1992-01-01

    dessert and snack items to increase acceptability and 31$,) UNCLASSIFIED UNCLASSIFIED AMENDED FY 1992/1993 BIENNIAL RDTE DESCRIPTIVE SUMMARY Program...Planned Program: " (U) Finalize development of non-organic and non-polluting processing bids for extruded and molded energetic materials * (U

  19. FY2012 CoC Competition Grants (New and Renewal)

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the FY2012 renewal and new homeless assistance projects awarded by HUD for the FY2012 Continuum of Care (CoC) Program competition. Approximately...

  20. Annual report of JMTR, No.14. FY1999 (April 1, 1999 - March 31, 2000)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    During the FY1999 (April 1999 to March 2000), the JMTR (Japan Materials Testing Reactor) was operated 5 operation cycles (130 days) for irradiation studies on the IASCC of the LWR materials, power ramp tests of high burn-up BWR fuels, development of actinoid contained uranium-hydride fuels, development of fusion blanket materials, and so on. Total number of capsules and hydraulic rabbits irradiated were 138 and 80, respectively. Technology development programs were conducted in the following fields. As concerning to the utilization of JMTR, improvements were made in local gamma spectrum evaluation technique and advanced oxygen potential sensor for the fuel irradiation. Remote controlled high temperature fatigue test machine was developed at the hot laboratories. Efficient production process was developed for new pebble type tritium breeder material for fusion reactor blanket, and tritium generation/recovery behavior was investigated under irradiation using pebble packed test piece. This report summarizes these activities performed in the department of JMTR during the FY1999. (author)

  1. FY 1999 report on the results of the R and D of the environmental technology of recycling, etc. 1; 1999 nendo recycle nado kankyo gijutsu kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing environmental loads of waste and recycling waste, etc., the R and D were carried out, and the FY 1999 results were summarized. In the study of the technology for high-grade recycling of PET bottles, construction work for stabilization of the quality of drainage water was done of a demonstration plant with a treating capacity of 8,000t/y which was constructed in FY 1996, and the stability in long-term operation was examined. In the survey of fluctuations in flake quality, the verification data indicated that the plant could be stably operated. As to the alteration of the bottle cleaning process from wet method to dry method, stabilization of the label separation performance was recognized. By the above-mentioned matters, the technology to recycle/treat PET bottles was established. In the development of the technology to recycle waste plastics which are difficult to treat, assessment was made of the treatment capacity in dry distillation gasification furnace of shredder dust and gasification characteristics. As to the removal of wire harness, separation of glass from fine copper wire, etc., methods which are promising were proposed, and it was concluded that those were not valid as a treatment method in the plant scale in terms of economical efficiency. (NEDO)

  2. Used fuel disposition research and development roadmap - FY10 status.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  3. Used fuel disposition research and development roadmap - FY10 status

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2010-01-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R and D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R and D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been

  4. PDX experimental results in FY82

    International Nuclear Information System (INIS)

    Kaye, S.M.; Bell, M.; Bol, K.

    1983-08-01

    This report presents a detailed summary of the major experimental results of PDX in FY82 and represents the efforts of the entire PDX group. Topics covered include β-scaling and fishbone studies, fluctuations, disruptions, impurities and impurity transport, power handling, limiter conditioning, edge studies, plasma fueling, counter-injection, and diagnostic development. A less detailed version will appear as the FY82 PDX contribution to the PPPL Annual Report

  5. FY 1999 report on the results of the project on the industrial science technology R and D. Development of utilization technology of biological resources such as bioconsortium system (Development of the petroleum substituting fuel production technology using living organisms); 1999 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo. Fukugou seibutsukei tou seibutsu shigen riyo gijutsu kaihatsu (Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of establishing the high-grade utilization technology of unused seaweed/algae and production technology of useful substances using high-grade functions of bioconsortia, study was conducted, and the FY 1999 results were reported. In the analysis of the ocean environment adaptation mechanism, the R and D were made of a selection method of the marine microbial consortia using korormicin. In the study of the high-grade utilization technology of unused resources/substances such as marine-producing algae, several tens of the carrageenase producing microbial consortia were acquired from the surface of seaweed, and some carrageenase producing bacteria and non-producing bacteria were acquired by isolating as pure strains. In the study of the petroleum substituting useful resource production technology, developed was a monitoring system of the environmental stress using marine-product invertebrate/micro-algae symbiotic system. In the study of the high-grade utilization of large useful algae, elucidation of the related genes, fabrication of variants and analysis of genes were carried out for the bacterium BUP-7 which indicates activity of growth acceleration/shape formation of seaweed. (NEDO)

  6. Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    1999-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the S&H resources that support these activities. The fiscal year (FY) 1999 and 2000 information (Sieracki 1999) and data contained in the ''Hanford Site Environment, Safety and Health Fiscal Year 2001 Budget-Risk Management Summary'' (RL 1999) were the basis for preparing this report. Fiscal year 2000 finding of Office of Environmental Management (EM) and Office of Nuclear Energy, Science and Technology (NE) activities is based on the President's budget of $1,065.1 million and $28.0 million, plus $2.7 million carryover finding, respectively, as of October 31, 1999. Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2002 ES&H Budget-Risk Management Summary to be issued in May 2000. This report provides the end-of-year status of FY 1999 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2000 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H ''Guidance for FY200l Budget Formulations and Execution'' (DOE 1999).

  7. NCPV FY 1998 Annual Report

    International Nuclear Information System (INIS)

    McConnell, R. D.; Hansen, A.

    1999-01-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) from October 1, 1997 through September 30, 1998 (FY 1998). The NCPV is part of the U.S. Department of Energy's (DOE's) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996-2000. The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy--as an industry and as an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV provides leadership and support to the national program toward achieving its mission and goals

  8. Technology and the Future of Mental Health Treatment

    Science.gov (United States)

    ... Health Intervention Technology? Join a Study Learn More Technology and the Future of Mental Health Treatment Introduction ... What is NIMH’s Role in Mental Health Intervention Technology? Between FY2009 and FY2015, NIMH awarded 404 grants ...

  9. FY 1992 Report on the results of the research and development of micromachine technologies. R and D of highly functional maintenance technologies for power generating systems; 1992 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the R and D project aimed at development of microcapsules, mother machines, examination modules without retrieval and working modules with retrieval, and their application to total systems for development of the highly functional maintenance technologies for power generating systems. Researches on the microgenerators involve studies and extraction of technical problems for structures, thin-film magnet production methods, coil winding methods, high-speed microbearings and microaccelerators. Researches on the mother machines involve development of the basic elements, on a trial basis, of the electrostatic actuators for the mechanisms of driving the main bodies, and evaluation of their characteristics by a minute torque analyzer. Researches on the examination modules without retrieval involve basic studies on, e.g., expansion driving, supersonic and microwave energy conversion devices for the expansion transfer mechanisms, development of these devices on a trial basis, evaluation of their functions, and extraction of the problems. Researches on the working modules with retrieval involve studies on shape memory alloy materials for tubular manipulators and actuator mechanisms. (NEDO)

  10. FY-2001 Accomplishments in Off-gas Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William

    2001-09-01

    This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

  11. WINCO Metal Recycle annual report, FY 1993

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94

  12. WINCO Metal Recycle annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, T.E. [ed.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  13. Technology Catalogue

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  14. FY 2000 report on research and development of combustion technology utilizing microgravity conditions for fuel diversification; 2000 nendo bisho juryoku kankyo wo riyoshita nenryo tayoka nensho gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of optimum combustion technology with diversified fuels, e.g., naphtha and LCO, for gas turbines and others as power sources for topographical energy supply. The combustion under the microgravity is also investigated using the underground facilities at Japan Microgravity Center. Described herein are the FY 2000 results. For construction of combustion model and simulation, the combustion reactions for various liquid fuels are simplified to calculate ignition delay, adiabatic flame temperature and laminar burning velocity with an error less than about 3%. The microgravity combustion experiments are conducted for spray dispersed into a cylinder, to find flame propagation velocities changing with the vaporization characteristics of liquid fuels, and also to construct the combustion models. The premixed turbulent combustion simulation program is developed using a probability density function and analyzed. Development of new combustion technologies includes the study themes of flame propagation and combustion of the air mixture of the multi-component fuel in which the spray exists, combustion characteristics of the droplets of diversified fuels, and combustion of gas turbines with diversified fuels. A propane/air mixture shows different flame propagation characteristics whether it contains kerosene or LCO droplets. The effects of electrical field intensity in the combustion zone on combustion of fuel droplets are elucidated. (NEDO)

  15. Report on the FY 1999 leading R and D of technology of the MGC (melt-growth composites) ultra-high efficiency turbine system; 1999 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of using MGC which maintain the strength even at high temperature and also have plastic deformability as power generation use gas turbine system structural member, a leading research is conducted from FY 1998 to FY 2000. Based on the results of the FY 1998 research, the following were conducted in FY 1999: study through the trial manufacturing test to obtain the material design guide related to the heightening of efficiency of MGC and improvement of production process technology of MGC; evaluation from various angles of the data needed to elucidate the mechanism to manifest high-temperature characteristics of MGC. Further, through the following, a draft was drawn up for the developmental plan on the MGC ultra-high efficiency turbine system technology: establishment of gas turbine cycle (secondary draft); definition of developmental targets in the full-scale R and D after the leading research; extraction of technical subjects and study of contents of the R and D. The 5-year R and D plan was able to be worked out by setting up an R and D target that the generating end efficiency is 38% at turbine inlet temperature of 1,700 degrees C. (NEDO)

  16. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  17. Annual report of the Neutron Irradiation and Testing Reactor Center. FY 2008. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    2009-12-01

    The JMTR, one of the most high flux test reactors in the world, has been used for the irradiation experiments of fuels and materials related to LWRs, fundamental research and radioisotope productions. The JMTR was stopped at the beginning of August 2006 to conduct refurbishment works, and the reoperation will be planned from FY 2011. After reoperation, the JMTR will contribute to many fields, such as the lifetime extension of LWRs, expansion of industrial use, progress of science and technology. This report summarizes the activities on refurbishment works, development of new irradiation techniques, enhancement of reactor availability, etc. in FY 2008. (author)

  18. High Technology Engineering Services, Inc. fiscal year 1993 and 1994 research and development report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document has been prepared by the Professional Staff of High Technology Engineering Services, Inc. (HTES) for fiscal year (FY) 1993. Work was performed for various aspects of mechanical design and analysis, materials development and properties quantification, nuclear environment performance, and engineering program prioritization. The tasks enumerated in the subcontract, attachment B are: 1. Assist in preparation of final R&D report for SDC detector development. 2. Subcontractor shall make contributions to the development of innovative processes for the manufacture of quasi- isotropic, enhanced thermal conductivity compression molded advanced composite materials. 3. Perform finite element analysis as it relates to the Superconducting Super Collider Silicon Tracking System, both mechanical and thermal, of very thin section advanced composite materials. 4. Subcontractor shall perform technical studies, reviews, and assessments of the current program for advanced composites materials processing and testing. 5. Subcontractor shall attend meetings and discussions as directed by MEE-12 technical representative. Unfortunately during the course of FY93, technical and financial challenges prevailed against the aggressive goals set for the program. In point of fact, less than 25% of the contract value was able to be expended due to technical delays and programmatic funding cuts. Also, contracting difficulties with the SSC Lab and financial burdens at Los Alamos totally stopped progress on the subject subcontract during the whole of FY94. This was a great blow to me and the HTES, Inc. technical staff. Despite the negative influences over the years, significant progress was made in materials properties quantification and development of essential research and development documentation. The following brief report and attendant appendices will address these achievements.

  19. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  20. Nevada nuclear waste storage investigations: FY 1980 Project Plan and FY 1981 forecast

    International Nuclear Information System (INIS)

    1980-02-01

    The DOE is responsible for developing or improving the technology for safely and permanently isolating radioactive wastes from the biosphere. The National Waste Terminal Storage Program, which is a part of the US Nuclear Waste Management Program, is concerned with disposing of the high-level wastes associated with DOE and commercial nuclear reactor fuel cycles. The DOE/NV has been delegated the responsibility to evaluate the geohydrologic setting and underground rock masses of the Nevada Test Site (NTS) area to determine whether a suitable site exists for constructing a repository for isolating highly radioactive solid wastes. Accordingly, the Nevada Nuclear Waste Storage Investigations (NNWSI) were established by NV to conduct these evaluations. The NNWSI are managed by the DOE/NV, but the field and laboratory investigations are being performed by scientific investigators from several organizations. The four primary organizations involved are: Los Alamos Scientific Laboratory (LASL), Lawrence Livermore Laboratory (LLL), Sandia Laboratories (SL), and the US Geological Survey (USGS). DOE/NV is responsible for coordinating these investigations. This document presents the Project Plan for the NNWSI for FY 1980 and forecasts activities for FY 1981. Each task is divided into subtasks and described. This Plan is subject ot periodic review and revision by the DOE/NV. Changes will be addressed as they occur in NNWSI Quarterly Reports. This document also presents information on the Project's technical approach as well as its history, organization, and management

  1. 78 FR 31535 - Assistive Technology Alternative Financing Program

    Science.gov (United States)

    2013-05-24

    ... DEPARTMENT OF EDUCATION Assistive Technology Alternative Financing Program AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Notice. Catalog of Federal... developed for the Assistive Technology (AT) Alternative Financing Program (AFP) in fiscal year (FY) 2012 to...

  2. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  3. FY 2000 report on the results of the regional consortium R and D project. First year report. Regional new technology creation R and D. Development of the technology to produce useful substances by biosynthesis engineering; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki shingijutsu soshutsu kenkyu kaihatsu. Seigosei kogaku ni yoru yuyo busshitsu seisan gijutsu no kaihatsu (shonendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    On the basis of the basement technology such as the cloning technology of biosynthesis enzyme gene groups of secondary metabolite of plant and the identification technology of the expression protein enzyme function in the heterologous expression system, the development was proceeded with of the technology to produce useful substances using the biosynthesis function of plant components. Studies were made in the following four fields: 1) cloning of genes of useful biosynthetic plants and functional elucidation/application of the related genes; 2) analytical technology of genes and proteome; 3) development of plant genome database; 4) comprehensive investigational study. In FY 2000, in 1), the cloning was conducted of biosynthetic enzyme genes of oxidation resistant polyphenol, bioactive triterpenoid saponin, etc., and the function of a part of the enzyme proteins was elucidated. In 2), as the basic technology for improving producibility of secondary electrophoresis, fabricated was the electrophoresis chip so structured that slide glasses on which micro-channels were two-dimensionally fabricated were joined. (NEDO)

  4. FY 1996 Report on the industrial science and technology research and development project. R and D of brain type computer architecture; 1996 nendo nogata computer architecture no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    It is an object of this project to develop an information processing device based on a completely new architecture, in order to technologically realize human-oriented information processing mechanisms, e.g., memory, learning, association of ideas, perception, intuition and value judgement. Described herein are the FY 1996 results. For development of an LSI based on a neural network in the primary visual cortex, it is confirmed that the basic circuit structure comprising the position-signal generators, memories, signal selectors and adders is suitable for development of the LSI circuit for a neural network function (Hough transform). For development of realtime parallel distributed processor (RPDP), the basic specifications are established for, e.g., local memory capacity of RPDP, functions incorporated in RPDP and number of RPDPs incorporated in the RPDP chip, operating frequency and clock supply method, and estimated power consumption and package, in order to realize the RPDP chip. For development and advanced evaluation of large-scale neural network silicon chip, the chip developed by the advanced research project is incorporated with learning rules, cell models and failure-detection circuits, to design the evaluation substrate incorporated with the above chip. The evaluation methods and implementation procedures are drawn. (NEDO)

  5. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  6. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  7. Summary of BISON Development and Validation Activities - NEAMS FY16 Report

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Folsom, C. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, W. [ANATECH Corp., San Diego, CA (United States); Veearaghavan, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gardner, R. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This summary report contains an overview of work performed under the work package en- titled “FY2016 NEAMS INL-Engineering Scale Fuel Performance (BISON)” A first chapter identifies the specific FY-16 milestones, providing a basic description of the associated work and references to related detailed documentation. Where applicable, a representative technical result is provided. A second chapter summarizes major additional accomplishments, which in- clude: 1) publication of a journal article on solution verification and validation of BISON for LWR fuel, 2) publication of a journal article on 3D Missing Pellet Surface (MPS) analysis of BWR fuel, 3) use of BISON to design a unique 3D MPS validation experiment for future in- stallation in the Halden research reactor, 4) participation in an OECD benchmark on Pellet Clad Mechanical Interaction (PCMI), 5) participation in an OECD benchmark on Reactivity Insertion Accident (RIA) analysis, 6) participation in an OECD activity on uncertainity quantification and sensitivity analysis in nuclear fuel modeling and 7) major improvements to BISON’s fission gas behavior models. A final chapter outlines FY-17 future work.

  8. Summary of BISON Development and Validation Activities - NEAMS FY16 Report

    International Nuclear Information System (INIS)

    Williamson, R. L.; Pastore, G.; Gamble, K. A.; Spencer, B. W.; Casagranda, A.; Folsom, C. P.; Liu, W.; Veearaghavan, S.; Novascone, S. R.; Gardner, R. J.; Hales, J. D.

    2016-01-01

    This summary report contains an overview of work performed under the work package en- titled “FY2016 NEAMS INL-Engineering Scale Fuel Performance (BISON)” A first chapter identifies the specific FY-16 milestones, providing a basic description of the associated work and references to related detailed documentation. Where applicable, a representative technical result is provided. A second chapter summarizes major additional accomplishments, which in- clude: 1) publication of a journal article on solution verification and validation of BISON for LWR fuel, 2) publication of a journal article on 3D Missing Pellet Surface (MPS) analysis of BWR fuel, 3) use of BISON to design a unique 3D MPS validation experiment for future in- stallation in the Halden research reactor, 4) participation in an OECD benchmark on Pellet Clad Mechanical Interaction (PCMI), 5) participation in an OECD benchmark on Reactivity Insertion Accident (RIA) analysis, 6) participation in an OECD activity on uncertainity quantification and sensitivity analysis in nuclear fuel modeling and 7) major improvements to BISON’s fission gas behavior models. A final chapter outlines FY-17 future work.

  9. DOE Hydropower Program Annual Report for FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  10. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the high-performance maintenance technologies for power generation plants; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies, as part of the R and D of the high-performance maintenance technologies for power generation plants. Production of the fine, functional circuits is studied for microscopic processing technology. The light source with variable wavelength-in a range of 2 to 5{mu}m for the solid-state laser, to measure concentration and composition of gases by the infrared absorption laser. The photon wave front compensator is being developed, to prevent disturbance-induced sensitivity deterioration for measurement of high temperature by the laser-aided ultrasonic instrumentation. The prototype of superconducting X-ray detector is developed, for high-sensitivity detection of impurities by measuring fluorescent X-ray. Development of the 10kW-class solid-state, rod-type laser is started for high-speed, high-precision laser-aided welding and cutting, and output of 11.3kW and electrical/optical conversion efficiency of 21.5% are achieved. An electrical/optical conversion efficiency of 17% is also achieved with the slab-type laser. An all-solid-state laser is being developed. It will produce high-energy pulses and high-quality beams capable of generating the beams which are converged very finely on the work with an average output power of 1KW (fundamental wave) and electrical/optical conversion efficiency of at least 20%. (NEDO)

  11. Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    1994-09-01

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work

  12. FY 2000 Project of international clean energy network using hydrogen conversion (WE-NET)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the research and development project aimed at construction of the international clean energy network using hydrogen conversion (WE-NET). The projects include 12 tasks; system evaluation for, e.g., optimum scenario for introduction of hydrogen energy; experiments for hydrogen safety; study on the international cooperation for WE-NET; development of power generation technology using a 100kW cogeneration system including hydrogen-firing diesel engine; developmental research on vehicles driven by a hydrogen fuel cell system; developmental research on the basic technologies for PEFC utilizing pure hydrogen; developmental research on a 30Nm{sup 3}/hour hydrogen refueling station for vehicles; developmental research on hydrogen production technology; developmental research on hydrogen transportation and storage technology, e.g., liquid hydrogen pump; research and development of the databases of and processing technology for cryogenic materials exposed to liquid hydrogen; developmental research on hydrogen absorbing alloys for small-scale hydrogen transportation and storage systems; and study on innovative and leading technologies. (NEDO)

  13. FY 1992 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1992 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1992 as the third year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  14. FY 1991 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1991 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1991 as the second year include on-the-spot surveys, tests for validating elementary techniques, designs and fabrication of part of the demonstration plant, and invitation of Philippine researchers to Japan. (NEDO)

  15. FY 1990 report on the development of wood-waste/agri-waste pyrolytic gasification technology and utilization technology of gas product; 1990 nendo mokushitsukei haikibutsu no netsubunkai gas ka gijutsu to seisei gas no riyo gijutsu kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    It is urgently necessary for the Philippines, which has no promising energy source to replace imported oil and lacks hard currencies, to reduce dependence on oil. The country, consisting of a number of islands, has faced many difficulties in construction of large-scale power transmission grids covering wide areas, which greatly retard development of local industries and dissemination of electricity. Therefore, great expectations have been placed on the techniques this project plans to develop for utilization of wastes as the energy source. This 5-year project (FY 1990 to 1994) is aimed at joint research and development of (thermal decomposition/gasification and power generation system) for transforming large quantities of wood-wastes/agri-wastes left unutilized into electric power, in which thermal decomposition/gasification of the wastes is combined with gas engine/power generator systems, and thereby to establish the systems suitable for the developing country. The major R and D results obtained in FY 1990 as the initial year include negotiations with the Philippines, on-the-spot surveys for the demonstration plant sites and conditions, and conceptual designs of the demonstration plant. (NEDO)

  16. Summary of FY 1998 research and development activities. 19th R and D activity report; 1998 nendo gyomu gaiyo. Dai 19kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by New Energy and Industrial Technology Development Organization (NEDO). The activities for new energy include those for the R and D for utilization of solar energy, commercialization of solar systems for industrial purposes, utilization of wind power, utilization of geothermal energy, utilization of coal energy, promotion of coal utilizing techniques, development of coal resources, development of fuel/storage techniques, development of techniques for hydrogen, alcohol and biomasses, promotion of new energy introduction, measures for international energy, surveys on development and introduction of new energy, and information services by NEDO's Information Center. The activities for industrial technology R and D include those for the R and D programs, medical/welfare-related equipment, industrial techniques for local environments, international industrial techniques, and establishment of research bases. Also summarized are the activities for coal mining structure adjustment, compensations for hazards resulting from coal mining, and alcohol production. (NEDO)

  17. Summary of FY 1998 research and development activities. 19th R and D activity report; 1998 nendo gyomu gaiyo. Dai 19kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by New Energy and Industrial Technology Development Organization (NEDO). The activities for new energy include those for the R and D for utilization of solar energy, commercialization of solar systems for industrial purposes, utilization of wind power, utilization of geothermal energy, utilization of coal energy, promotion of coal utilizing techniques, development of coal resources, development of fuel/storage techniques, development of techniques for hydrogen, alcohol and biomasses, promotion of new energy introduction, measures for international energy, surveys on development and introduction of new energy, and information services by NEDO's Information Center. The activities for industrial technology R and D include those for the R and D programs, medical/welfare-related equipment, industrial techniques for local environments, international industrial techniques, and establishment of research bases. Also summarized are the activities for coal mining structure adjustment, compensations for hazards resulting from coal mining, and alcohol production. (NEDO)

  18. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter.

  19. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    International Nuclear Information System (INIS)

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter

  20. HWVP NCAW melter feed rheology FY 1993 testing and analyses: Letter report

    International Nuclear Information System (INIS)

    Smith, P.A.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) program has been established to immobilize selected Hanford nuclear wastes before shipment to a geologic repository. The HWVP program is directed by the U.S. Department of Energy (DOE). The Pacific Northwest Laboratory (PNL) provides waste processing and vitrification technology to assist the design effort. The focus of this letter report is melter feed rheology, Process/Product Development, which is part of the Task in the PNL HWVP Technology Development (PHTD) Project. Specifically, the melter feed must be transported to the liquid fed ceramic melter (LFCM) to ensure HWVP operability and the manufacture of an immobilized waste form. The objective of the PHTD Project slurry flow technology development is to understand and correlate dilute and concentrated waste, formatted waste, waste with recycle addition, and melter feed transport properties. The objectives of the work described in this document were to examine frit effects and several processing conditions on melter feed rheology. The investigated conditions included boiling time, pH, noble metal containing melter feed, solids loading, and aging time. The results of these experiments contribute to the understanding of melter feed rheology. This document is organized in eight sections. This section provides the introductory remarks, followed by Section 2.0 that contains conclusions and recommendations. Section 3.0 reviews the scientific principles, and Section 4.0 details the experimental methods. The results and discussion and the review of related rheology data are in Sections 5.0 and 6.0, respectively. Section 7.0, an analysis of NCAW melter feed rheology data, provides an overall review of melter feed with FY 91 frit. References are included in Section 8.0. This letter report satisfies contractor milestone PHTD C93-03.02E, as described in the FY 1993 Pacific Northwest Hanford Laboratory Waste Plant Technology Development (PHTD) Project Work Plan

  1. Material Recover and Waste Form Development--2016 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vienna, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Paviet, Patricia [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. This report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.

  2. FY 1999 Report on the technical results. Part 1. Development of fuel cell power generation technologies (Research and development of molten carbonate fuel cell power generation system); 1999 nendo nenryo denchi hatsuden gijutsu kaihatsu seika hokokusho. 1. Yoyu tansan'engata nenryo denchi (hatsuden system no kenknyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    This research and development project is aimed at development of the stacking, cooling and operating technologies for the molten carbonate fuel cell power generation systems, to improve service life and performance of these systems and reduce their cost, based on the results obtained so far by the FY 1993. The R and D efforts are directed to (1) technologies for improving stack performance, (2) development of the plant system by operating a 1,000kW class power generation system, and (3) support technologies, e.g., those for stack materials. The item (1) studies 3 stack types, cross-flow, parallel-flow and internal reforming types, including the electrodes, electrolyte-supporting bases and improvement of performance and service life by separator reforming for the cross-flow and parallel-flow types, and installation and operation of a 200kW class stack system for the internal reforming type, where cells are assembled into the system and tested for their operability, after the auxiliary units are PAC-tested. The item (2) installs a 1,000kW class plant, which is operated, after clearing the requirements set by the related laws, e.g., Electric Utility Industry Law, for starting the operation, to achieve the intended targets. The item (3) includes development of the technologies for stack materials, technologies for handling gases produced by coal gasification, and studies on the total systems. (NEDO)

  3. NCPV FY 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R. D.; Hansen, A.

    1999-07-19

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) from October 1, 1997 through September 30, 1998 (FY 1998). The NCPV is part of the U.S. Department of Energy's (DOE's) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996-2000. The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy--as an industry and as an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV provides leadership and support to the national program toward achieving its mission and goals.

  4. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  5. FY16 Strategic Themes White Paper.

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    The Science and Technology (S&T) Division 1000 Strategic Plan includes the Themes, Goals, and Actions for FY16. S&T will continue to support the Labs Strategic plan, Mission Areas and Program Management Units by focusing on four strategic themes that align with the targeted needs of the Labs. The themes presented in this plan are Mission Engagement, Bold Outcomes, Collaborative Environment, and the Safety Imperative. Collectively they emphasize diverse, collaborative teams and a self-reliant culture of safety that will deliver on our promise of exceptional service in the national interest like never before. Mission Engagement focuses on increasing collaboration at all levels but with emphasis at the strategic level with mission efforts across the labs. Bold Outcomes seeks to increase the ability to take thoughtful risks with the goal of achieving transformative breakthroughs more frequently. Collaborative environment strives for a self-aware, collaborative working environment that bridges the many cultures of Sandia. Finally, Safety Imperative aims to minimize the risk of serious injury and to continuously strengthen the safety culture. Each of these themes is accompanied by a brief vision statement, several goals, and planned actions to support those goals throughout FY16 and leading into FY17.

  6. Status Report on the High-Temperature Steam Electrolysis Plant Model Developed in the Modelica Framework (FY17)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-29

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those

  7. In Situ Remediation Integrated Program: FY 1994 program summary

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials

  8. In Situ Remediation Integrated Program: FY 1994 program summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  9. FY 2000 research cooperation project on the research cooperation for the commercialization of the waste water treatment technology for global warming prevention. Final report on subsidy work; NEDO kenkyu kyoryoku jigyo. Chikyu ondanka boshi haisui shori gijutsu no jitsuyoka ni kansuru kenkyu kyoryoku jose gyomu (Saishu hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As to the commercialization of the waste water treatment technology for food plant, the research cooperation with Thailand was carried out from FY 1998 to FY 2000, and the results were summed up. In this project, the R and D were made for the following purposes: treatment of organic matters in waste water for reduction in water pollutants, recovery of the methane gas emitted in the atmosphere for the effective use, reduction in sludge generation in the anaerobic + aerobic treatment system, simplification of operation/maintenance of the system, reduction in running cost. In FY 1998, conducted were the design of the total process and the manufacture/construction of a part of the anaerobic treatment process. In FY 1999, conducted was the manufacture/construction of the total process including the aerobic treatment process. After the completion of the construction work, operational study was made. In FY 2000, the demonstrative operation was conducted at the demonstrative plant, and the technology transfer was made in terms of analysis of operational data, maintenance of equipment, operational management, etc. Further, the technical explanatory meeting such as seminar was held as activities for the spread of this technology. (NEDO)

  10. High performance computing and communications: FY 1995 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  11. DOE Hydropower Program Annual Report for FY 2004

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hunt, Richard T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ahlgrimm, James [U.S. Dept. of Energy, Washington, D.C. (United States); Acker, Tomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  12. FY 1998 Annual report on research and development of industrial science and technology. R and D of carbon-based high-performance materials technology (R and D for rationalization of energy consumption); 1998 nendo tansokei kokino zairyo gijutsu no kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This report summarizes the FY 1998 research and development results of carbon-based high-performance materials technology. For (control technology of morphology and electrical conduction), a large-sized morphology controlling film-making apparatus was used, to confirm synthesis of crystalline diamond films. For research on growth of large-sized single-crystal diamond, the simulated results of the vapor-phase reactions and gas flow in a plasma were compared with the observed ones, to collect the data necessary for designing a high-speed homoepitaxial growth apparatus. For R and D of heteroepitaxial growth of thin diamond films, highly single-crystalline thin platinum films were successfully formed on a sapphire substrate. For (control technology of surface-interface and electron emission characteristics), the tests were conducted using newly introduced apparatuses, an (electron emission analysis/evaluation apparatus), (high-quality carbon-based thin film synthesizing apparatus) and (element processing/treatment apparatus). It is found that electron emission efficiency is greatly improved when the substrate with diamond particle seeds is plasma-treated under specific conditions. (NEDO)

  13. FY 1999 annual work plan for infrastructure program WBS 6

    Energy Technology Data Exchange (ETDEWEB)

    Donley, C.D.

    1998-08-27

    The Fiscal Year (FY) 1999 DynCorp Annual Work Plan (AWP) relates DOE-RL work breakdown structure (WBS) to Cost Accounts and to Organizational Structure. Each Cost Account includes a workscope narrative and justification performance and service standards, goals, and deliverables. Basis of estimates are included within each Cost Account to demonstrate the relationship of budget to defined workscope. The FY 1999 AWP reflects the planning assumptions and initiatives that are included in the PHMC Strategic Plan for Infrastructure Optimization which was established in FY 1998. Development of the FY 1999 AWP was in accordance with a sequential series of events and efforts described in the Infrastructure Annual Work Planning and Budget Cycle which was developed and established in conjunction with the Strategic Plan. The Strategic Plan covers a rolling five year span of time and is updated at the start of each fiscal year as the beginning of the annual work planning and budget cycle for the following fiscal year. Accordingly the planning for the FY 1999 AWP began in January 1998. Also included in the annual work planning and budget cycle, and the basis for the budget in this AWP, is the development of a requirements-based budget.

  14. FY 1999 research and development of technologies for commercialization of photovoltaic power generation systems. Development of technologies for fabrication of thin-film solar cells/materials and substrates (Development of technologies for fabrication of high-quality amorphous materials and substrates); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / zairyo kiban seizo gijutsu kaihatsu (kohinshitsu amorphous kei zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the amorphous/microcrystalline solar cells with the thin microcrystalline silicon film as the i layer, and the FY 1999 results are reported. The fabrication technologies are investigated for the microcrystalline silicon solar cells of pin or nip structure by RF or VHF plasma CVD using SiH{sub 4} and H{sub 2} as the stock gases. The tests are conducted for evaluating characteristics of the thin microcrystalline silicon film, to investigate the effects of film-making pressure, power and hydrogen dilution rate on the characteristics at a constant film-making temperature of 180 degrees C. The researches on the fabrication technologies for the microcrystalline solar cell of pin structure confirm that use of VHF plasma CVD improves crystallinity, electrical and optical characteristics of the p-type thin microcrystalline silicon film. The researches on the fabrication technologies for the microcrystalline solar cell of nip structure covers transparent substrates, film-making speed of the p layer, power and substrates, and a conversion efficiency of 7.5% is realized by the solar cell formed on a texture substrate. (NEDO)

  15. Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997

    International Nuclear Information System (INIS)

    1998-03-01

    In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry

  16. Richland Operations (DOE-RL) Environmental Safety Health (ES and H) FY 2000 and FY 2001 Execution Commitment Summary

    Energy Technology Data Exchange (ETDEWEB)

    REEP, I.E.

    2000-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the Safety and Health (S&H) resources that support these activities. The fiscal year (FY) 2000 and 2001 information and data contained in the Richland Operations Environment, Safefy and Health Fiscal Year 2002 Budget-Risk Management Summary (RL 2000a) were the basis for preparing this report. Fiscal year 2001 activities are based on the President's Amended Congressional Budget Request of $689.6 million for funding Ofice of Environmental Management (EM) $44.0 million for Fast Flux Test Facility standby less $7.0 million in anticipated DOE, Headquarters holdbacks for Office of Nuclear Energy, Science and Technology (NE); and $55.3 million for Safeguards and Security (SAS). Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2003 ES&H Budget-Risk Management Summary to be issued in May 2001. This report provides the end-of-year status of FY 2000 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2001 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H guidance contained in the FY 2002 Field Budget Call (DOE 2000).

  17. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 7. Survey/study on hydrogen utilization technology; 1998 nendo suiso riyo kokusai clean energy system (WE-NET). 7. Suiso riyo gijutsu ni kansuru chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The paper described the results of survey/study of the FY 1998 WE-NET project. In Subtask 7, survey/study have been made on the main hydrogen utilization technologies except the hydrogen combustion gas turbine since FY 1993. Based on the survey results having been obtained, study was made on conditions for introducing promising technology, future prospects, etc. in FY 1998. As to the power generation, the basic combustion test and test on hydrogen injection equipment as element test, and test on ignition equipment were carried out using rapid compression/expansion equipment. A scenario for introducing hydrogen vehicle was made, and at the same time environmental LCA was conducted by which environmental influences can be assessed. The survey of the market of pure hydrogen polymer electrolyte fuel cells were made in terms of the electric utility use, industrial use, residential/commercial use, and movement/vehicle use. Study was conducted on the combined process of oxygen production equipment and He Brayton cycle in the subzero fractionation/low-temperature VSA method. Various methods including performance, price, etc. were surveyed/studied, making it a precondition that hydrogen supply stations are installed in stand-alone distribution near places of consumption. (NEDO)

  18. Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The FY 1988 Summary is the eleventh consecutive yearly report providing an overview of the hydrogen-related programs of the DOE offices represented on the HECC. A historical summary of the hydrogen budgets of these offices is given. The distribution by mission-related program element for FY 1988, and the non-mission-related activities are given. Total DOE funding in FY 1988 for mission-related hydrogen research was $5.2 million; DOE non-mission-related hydrogen research funding totaled $30.0 million. The individual program elements are described in the body of this report, and more specific program information is given in the Technology Summary Forms in Appendix A. 2 tabs

  19. FY 1998 annual report on the environmental technology working group. 19th R and D activity report; 1998 nendo kankyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 activities by the environmental technology working group, extracted from the 19th R and D activity report by NEDO. Mr. Mitsukawa, a NEDO's director, outlines the measures for diversifying environmental problems, prevention of global warming, waste disposal/recycling, and toxic chemical substances in the report entitled (Outlines of environmental technology development projects). The report entitled (Eco-cement production techniques for comprehensive utilization of urban type wastes (For efforts for construction of Ichihara eco-cement production facilities)) outlines characteristics of eco-cement production techniques, recyclability of eco-cement, and the facilities. The report entitled (Techniques for reutilization of plastics present in wastes as the blast furnace stocks) outlines the system, R and D project and commercialization, and vinyl chloride recycling system, to be developed by the financial support by NEDO. The other reports include (Development of universal controllers for coping with environmental problems) and (R and D of techniques of simplified dioxine analysis). (NEDO)

  20. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  1. Report on the FY 1999 survey on long-term energy technology strategy/basic survey for working out industrial technology strategy. Part 1. Technology strategy by field - material technology field (fine ceramics technology field); 1999 nendo choki energy gijutsu senryaku ni kansuru chosa. 1. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (zairyo gijutsu bun'ya (fine ceramics gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results of the survey of the fine ceramics technology field relating to the FY 1999 long-term energy technology strategy. The fine ceramics industry is a new industry for which the future development is expected. It has far-reaching effects on other industries. Japan has the advantage over other countries. As subjects to remarkably develop the industry, needed are the long-term basic preparation which promotes technology innovation such as the promotion of the fundamental/creative R and D, construction of an industry/university liaison system, and arrangement of the intellectual base. Preparation of the competitive environment and promotion of policies paying attention to the market are needed which make the development under the private control by creative study/corporate activities possible. Also important are the demonstration of leadership and secure international competitive force in the light of Japan's international position. For the private-control development, the role and course of various groups should be made clear from a long-term aspect. It is desirable that university/government will newly develop innovative technology, and industry will make the present technology force more developmental and competitive. Support from the nation is requested for researches large in scale. (NEDO)

  2. Development and Evaluation of Passive Integrated Transponder Tag Technology, 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Sandra L.; Prentice, Earl F.; Nunnallee, Edmund P. [National Marine Fisheries Service

    2009-04-03

    Since 1984, the National Marine Fisheries Service (NMFS) in cooperation with the Bonneville Power Administration (BPA) has conducted a research project to develop and evaluate technology for passive-integrated-transponder tags (PIT tags) throughout the Columbia River Basin (CRB). Work conducted as part of this project between October 2000 and September 2002 (FY01 and FY02) was divided into seven individual elements, which are covered separately in this report. The efforts by personnel associated with this project have produced and will continue to produce products that aid resource stakeholders in assessing the effectiveness of actions taken to enhance the survival of juvenile and adult salmonids. These products and their uses include: (1) Survival and migration timing information on stocks to evaluate water management strategies and fish passage/collection facilities; (2) Data needed for the management and restoration of salmonids and other fish stocks listed under the Endangered Species Act (ESA); (3) Information required for the management of multiple species in a variety of habitats; and (4) Tools that enable fisheries researchers and managers to address previously unanswerable questions and critical uncertainties These products are also used in genetic, physiology, behavior, and captive broodstock research on endangered species. The continued development of PIT-tag technology will enable researchers and fisheries managers to address issues expressed in both of NMFS biological opinions for operation of the Federal Columbia River Power System (FCRPS)(NMFS 1995a, 2000) and the proposed Snake River Recovery Plan (NMFS 1995b; tasks 2.1.d, 2.3.b.4, 2.4.a, 2.6.c.2, and 2.9.d).

  3. FY 1994 Annual Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This is the third Office of Inspector General (OIG)Annual Work Plan. Its purpose is to summarize work completed in Fiscal Year (FY) 1993, identify ongoing projects from previous fiscal years which the OIG intends to continue into FY 1994, and announce planned projects which the OIG intends to begin in FY 19994.

  4. Voluntary research results for five years along the master plan on nuclear safety research. FY 2001 - 2005

    International Nuclear Information System (INIS)

    Sato, Yoshinori

    2006-05-01

    Safety Research has been conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005) in Japan Atomic Energy Agency which took over former Japan Nuclear Cycle Development Institute. This report shows the voluntary research results for five years conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005). (author)

  5. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  6. Fusion Reactor Safety Research program. Annual report, FY-80

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1981-06-01

    The report is in three sections. Outside contracts includes a report of newly-started study at the General Atomic Company to consider safety implications of low-activation materials, portions of two papers from ongoing work at PNL and ANL, reports of the lithium spill work at HEDL, the LITFIRE code development at MIT, and risk assessment at MIT, all of which are an expansion of FY-79 outside contracts. EG and G Activities includes adaptations of four papers of ongoing work in transient code development, tritium system risk assessment, heat transfer and fluid flow analysis, and fusion safety data base. Program Plan Development includes the Executive Summary of the Plan, which was completed in FY-80, and is accompanied by a list of publications and a brief outline of proposed FY-81 activities to be based on the Program Plan

  7. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  8. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  9. Summaries of research and development activities by using JAEA computer system in FY2010. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    2012-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. The number of R and D results in JAEA by utilizing computational science and technology increased significantly to more than double in five years. Large computer system has become an important infrastructure to support computational science and technology utilization. In March 2010, Center for Computational Science and e-Systems (CCSE) introduced the nation's largest system and started operations to meet growing demand of calculation. Although the performance of new system is 14 times higher than that of old system, the utilization of new system reached 90% in the first three days, bearing out the strong demand of calculation in JAEA. This report presents a great amount of R and D results accomplished by using the system in its the first year of operation (FY2010), as well as user support structure, operational records and overviews of the system, and so on. (author)

  10. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  11. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  12. Development of a Hydrologic Characterization Technology for Fault Zones Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Onishi, Celia Tiemi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ulrich, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-31

    This is the final report for the five-year program of the NUMO-LBNL collaborative project (hereafter called the Project): Development of Hydrologic Characterization Technology for Fault Zones, under a NUMO-DOE/LBNL collaboration agreement. Detailed results from the past four years of study can be found in the each year’s year-end report (Karasaki et al., 2008, 2009, 2010, and 2011; Kiho et al., 2008, 2009, 2010, and 2011). In this report, we discuss the results of the studies conducted in FY2011. We also give a summary of the overall results and findings, as well as the lessons learned during the course of the Project.

  13. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    International Nuclear Information System (INIS)

    1993-10-01

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations

  14. FY 1998 report on the project for development of hot water utilizing power generating plants and others, supported by New Sunshine Project. Development of extraction technologies and development of production technologies for the deep-seated geothermal resources; 1998 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the activities for development of extraction and production technologies for the deep-seated geothermal resources, which are expected to contribute to increased geothermal power generation capacity. The program for the PTSD logging technology connects the S probe to PT probe, to simultaneously measure temperature, pressure and volumetric flow, producing the data of good quality even in a high temperature environment over 327 degrees C. Thus, possibility of the commercial system is confirmed. The D probe also produces a density calibration curve showing very good linearity, and operates normally in a high temperature environment of 406 degrees C. The program for the PTC monitoring technology conducts the field tests at Larderello, Italy, to confirm the sampler functions in a high temperature environment. The program for the tracer monitoring technology extracts promising tracers stable at high temperature from those for the liquid, vapor and liquid/vapor mixed phases. Silica is observed to be massively dissolved at 400 to 1,000mg/kg in the fluid under deep geothermal conditions. Scale precipitation rate is minimal for the first 21 days, but increases linearly with time thereafter. The experiments are also conducted for formation and prevention of the Fe-Si-based scales during the flushing period. (NEDO)

  15. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  16. FY 2000 report on the results of the leading research and development of the carburetion technology using sensible heat of coke oven gas; 2000 nendo seika hokokusho. Kokusuro gas kennetsu riyo zonetsu gijutsu sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of recovering sensible heat of coke oven gas (COG), the paper conducted a potential study of 'the carburetion technology using COG sensible heat,' of which the basic design is to give the endothermic catalyst reforming hydrogen production reaction directly to the components mainly including methane, and the R and D for establishing it as an industrial technology. In the R and D, the optimum process was studied in terms mainly of the dry pretreatment technology and the catalyst reformation reaction of hydrocarbons such as methane. As a result, the inhibition of the progress of the reforming reaction, which was a difficult problem at first because of the catalyst poison of associated components, could be avoided by making conditions for development/reaction of solid solution appropriate. Further, as to the associated coal tar which was regarded as carbon deposition source, a possibility of the process for converting it into the light chemical energy was recognized. Further, in FY 2000, survey was made on the solid electrolyte oxygen separation technology to which attention was paid as a chemical energy conversion technology for heat energy and which is closely related also to the energy structure of iron making plant. (NEDO)

  17. Extravehicular Activity (EVA) Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  18. FY2015 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-29

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  19. FY2014 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  20. FY2016 Electric Drive Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-03

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  1. FY 1999 report on the results of the technology development of super metal. Development of technology of high corrosion resistant iron-base fine structure controlling metal materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Kotaishokusei tetsukei bisai kozo seigyo kinzoku zairyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing iron/steel materials which enable remarkable improvement of maintenance loads and longevity of oil field developmental materials, study was conducted for remarkable improvement of strength and corrosion resistance by making crystal grain of iron/steel materials micro-fine to the limit, and the FY 1999 results were summed up. The study was conducted on the technology of fine structure formation using strong magnetic field and technology to predict material quality of micro structure using computational science. As a result, it was found that the fine grain even in size can be obtained by a combination of magnetic field orientation and recrystallization. By this, an image was constructed of the industrialization process of fine grained steel production which was combined with warm rolling process and applied strong magnetic field. Using the method to homogenize the finite element method, the basement was established for the method to evaluate an effect of the second phase on mechanical characteristics of fine multi-phase structure steel. The cementite single-phase film which is an important structural phase of carbon steel was successfully formed, and the Young's modulus and Poison ratio were determined as basic data for material design. (NEDO)

  2. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  3. Department of Defense Strategic Sustainability Performance Plan FY 2012

    Science.gov (United States)

    2012-01-01

    interoperability of equipment; and the management and oversight of contingency basing. Improved contingency base sustainability will also enhance mission...with communicating classified information from alternate work locations. In FY 2011, NGA developed and began implementing a telecommuting policy...operating procedures. DLA Disposition Services strengthened its oversight of the electronics demanufacturing process in FY 2011 by tightening

  4. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  5. Mixed Waste Management Facility, revised FY94 Plan

    International Nuclear Information System (INIS)

    Streit, R.

    1994-01-01

    This revision of the FY94 Plan incorporates changes to work during FY94 in response to the DOE request in the DOE KD-1 decision letter of June 28,1994. This letter provided guidance of both scope and budget profile in response to the Conceptual Design Report (CDR) issued by the MWMF Project in April, 1994. This work plan only addresses work for the remainder of FY94. A revised plan for the complete project is in development and will be issued separately. Since February, 1994, the MWMF Project has been operating on DOE guidance directing that work on the CDR be completed, that only other essential work be continued to maintain the project, and that costs be maintained at approximately the January, 1994 spending levels until a KD-1 decision was made. This has formed the basis for monthly reports through June, 1994. The baseline contained in this report will become the basis for reports during the remainder of FY94

  6. FY 1996 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1996 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With the aim of creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas, the high-grade combustion technology research development committee was established inside JSUP (Japan Space Utilization Promotion Center), using the underground gravity-free test center. Following FY 1995, the following were conducted: (1) international joint research with NASA, and (2) tests using microgravity test facilities, etc. and analysis/evaluation of the test data. As to the international joint research, a lot of new information was obtained through the adjustment conference with NASA. Further, there were a lot of results obtained from joint tests and researches. Moreover, the leading experimental device and measuring device which are usable in the microgravity field were developed/prepared. Conducted were combustion/evaporation evaluation experiments on fuel droplet and groups of droplet, combustion characteristics elucidation evaluation experiments on high-density fuels, evaluation experiment on flammability limits, and elucidation evaluation experiments on emission mechanism of NOx, etc. Through those, abundant experimental data were able to be accumulated, and a lot of precious knowledge/information were obtained. Besides, the fabrication of high-class combustor test equipment for ground demonstration was started. (NEDO)

  7. FY 2000 report on the results of the R and D of fundamental technologies for semi conductivity applications; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In relation to the project on the R and D of fundamental technologies for semi conductivity applications, the FY 2000 results were summed up. As to the study of the high temperature superconductivity mechanism, it was found out that a theoretical model of the strong scattering limit in d-wave superconductor can be used for the breaking of superconductivity due to Zn impurities. Concerning the study of the critical current mechanism, the elucidation was proceeded with of the magnetic flux pinning and grain-boundary conduction mechanism. Relating to the development of element technology of bulks with great electromagnetic force, the mechanical strength of superconducting bulk materials was raised to 100MPa or more by the epoxy resin impregnation method. As to the development of the basic technology for fabrication of high next-generation current conductors, the expansion was confirmed of conditions for growing single grains in the zone-melt process for very fine filaments. About the development of technology of single crystal substrates, in the development of the pseudo single crystalline film growth process by LPE method, a yield ratio of high quality crystal of 63% was achieved. Concerning the development of technology of thin film/multi-layer, the area of uniform composition/thickness of NdBa{sub 2}Cu{sub 3}O{sub 7-x} MOCVD films was enlarged up to 20mm square. (NEDO)

  8. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  9. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  10. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  11. FY 1982 annual report on the research and development of automatic sewing systems; 1982 nendo jido hosei system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    The automatic sewing system technique research association has been commissioned by the Agency of Industrial Science and Technology for (research and development of automatic sewing systems). This program covers R and D of the elementary techniques for total systems and sewing preparation/processing, sewing/assembling, cloth handling, and system management/control. The total system is designed and studied, and automation of the production systems is studied, in order to reduce time for producing unit quantity of diversified types of clothes in small quantities at least by 50% from the current level. The test plant is designed, constructed and operated, to evaluate and confirm its functions for the above purposes. In the FY 1982, the conceptual designs are drawn to establish the overall production systems for producing diversified types of clothes in small quantities. The program for the sewing preparation/processing evaluates various characteristics of cloth to be processed by the sewing system, based on which the cloth characteristics evaluation, cloth stabilization, high-function pattern preparation, and cloth measuring/unfolding/cutting techniques are studied to establish the automatic cloth unfolding/cutting techniques. The FY 1982 efforts are directed to the conceptual designs. (NEDO)

  12. FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties

    Science.gov (United States)

    2015-09-30

    albedo retrieval from MERIS data–Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. The Cryosphere, 9...and spectral sea ice albedo retrieval from MERIS data-Part 1: Validation against in situ, aerial, and ship cruise data. The Cryosphere, 9, 1551-1566. ...1 FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties Chris Polashenski USACE-CRREL Building 4070

  13. DOE Hydropower Program Biennial Report for FY 2005-2006

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Acker, Thomas L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Northern Arizona State Univ., Flagstaff, AZ (United States); Carlson, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  14. Technology Catalogue. First edition

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  15. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  16. Roadmapping or development of future investments in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D. (Dianne)

    2002-01-01

    This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and

  17. FY 1985 annual report on the research and development of automatic sewing systems. Sewing/assembling techniques; 1985 nendo jido hosei system no kenkyu kaihatsu seika hokokusho. Hosei kumitate gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-03-01

    The automatic sewing system technique research association has been commissioned by the Agency of Industrial Science and Technology for (research and development of automatic sewing systems). This program covers R and D of the elementary techniques for total systems and sewing preparation/processing, sewing/assembling, cloth handling, and system management/control. This report describes the results of the R and D efforts for the sewing/assembling techniques. The sewing/assembling techniques cover a range from pretreatment of cut pieces for clothes to finishing pressing via parts sewing/assembling. They fall into 3 sub-elementary technical groups, (1) sewing pretreatment techniques, (2) high-function sewing techniques and (3) high-function pressing techniques. The FY 1985 efforts are mainly directed to designs and construction of a prototype and evaluation thereof, based on the FY 1984 results for designs/construction/evaluation of a principle-confirming model. These techniques are evaluated in comparison with those for the current sewing works. The results have confirmed that the elementary techniques have been developed to a level that their validity is concretely recognized. (NEDO)

  18. FY 2000 report on the results of the R and D of 'frontier carbon technology.' Development of the high function control system for power generation; 2000 nendo 'tansokei kokino zairyo gijutsu' no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This report summarized the FY 2000 results. Items for study were as follows: 1) original production technology of substrates; 2) original production process technology of mechanically high function materials; 3) comprehensive survey; 4) formation of common basement technology. In 1), for the purpose of developing carbon materials with heat resistance and corrosion resistance in the oxidation atmosphere at 650 degrees C or more, the development of the rail gun spraying method and the device was conducted. It enabled the spraying of high melting point/high hardness materials. It was very difficult to do it by the existing technology. In 2), subjects are the composition gradient film forming technology, large area film forming technology, etc. By making positive use of characteristics such as low friction/low abrasion and high temperature corrosion resistance which can be expected of frontier carbon materials, it is planned to apply them to the operational part of various industrial machines and for the protection of the surface of high temperature members. In 3), study was made to widen the application field of frontier carbon materials excellent in environmental harmony by the mechanical field. In 4), R and D were carried out of the basic theory/principle/conception, realization of them, systematical arrangement, acquisition/arrangement of the data on new characteristics. (NEDO)

  19. Security Engineering FY17 Systems Aware Cybersecurity

    Science.gov (United States)

    2017-12-07

    Security Engineering – FY17 Systems Aware Cybersecurity Technical Report SERC-2017-TR-114 December 7 2017 Principal Investigator: Dr...December 7, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research Center (SERC...supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD

  20. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  1. Report on the FY 1999 survey on long-term energy technology strategy/basic survey for working out industrial technology strategy. Technology strategy by field - chemical/process field (chemical/process technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (kagaku process bun'ya (kagaku process gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As to long-term energy technology strategy, the paper described the results of the FY 1999 survey of chemical/process technology. The future chemical technology should be transformed from the material production technology in which priority used to be given to convenience to new chemical technology in which the functions needed are to be created. The shortage of the developmental period and minimization of the waste are also desired by the use of new methods. For it, the industry/government/university should gather wisdom together and fulfil the requests from other industries of the country under the circumstances of the society which is aging, is decreasing in birthrate, and is being highly information-oriented. At the same time, the technology should be contributional to constructing the circulating type society which has environmental harmony. If not, it cannot be the technology which is recognized by the society. Efforts should be made for the fundamental technology development, technology to create the materials needed in the society, and development of new process technology to be recognized in the society. Further, the development of technology to meet the needs/restraints from the society should be promoted as seen in the environmental hormone. At the same time, the intellectual base should be prepared such as arrangement of the technology database for advancing smooth technology development. (NEDO)

  2. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory's ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory's previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory's Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  3. ANL site response for the DOE FY1994 information resources management long-range plan

    Energy Technology Data Exchange (ETDEWEB)

    Boxberger, L.M.

    1992-03-01

    Argonne National Laboratory`s ANL Site Response for the DOE FY1994 Information Resources Management (IRM) Long-Range Plan (ANL/TM 500) is one of many contributions to the DOE information resources management long-range planning process and, as such, is an integral part of the DOE policy and program planning system. The Laboratory has constructed this response according to instructions in a Call issued in September 1991 by the DOE Office of IRM Policy, Plans and Oversight. As one of a continuing series, this Site Response is an update and extension of the Laboratory`s previous submissions. The response contains both narrative and tabular material. It covers an eight-year period consisting of the base year (FY1991), the current year (FY1992), the budget year (FY1993), the plan year (FY1994), and the out years (FY1995-FY1998). This Site Response was compiled by Argonne National Laboratory`s Computing and Telecommunications Division (CTD), which has the responsibility to provide leadership in optimizing computing and information services and disseminating computer-related technologies throughout the Laboratory. The Site Response consists of 5 parts: (1) a site overview, describes the ANL mission, overall organization structure, the strategic approach to meet information resource needs, the planning process, major issues and points of contact. (2) a software plan for DOE contractors, Part 2B, ``Software Plan FMS plan for DOE organizations, (3) computing resources telecommunications, (4) telecommunications, (5) printing and publishing.

  4. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  5. Hanford, diversification, and the Tri-Cities Economy FY 1998

    International Nuclear Information System (INIS)

    SCOTT, M.J.

    1999-01-01

    The missions of the U.S. Department of Energy's Richland Operations Office (DOE/RL) are to safely manage the Hanford Site, to manage and clean up its legacy wastes, and to develop and deploy new science and technology in the environmental and energy fields. Collectively, DOE/RL and its contractors are the most important single entity in the Tri-Cities local economy (Pasco, Kennewick, and Richland, Washington, and the surrounding area). Although the relevant economic region affected by DOE/RL and its contractors actually embraces a geographic area reaching from Yakima in the west to Walla Walla in the east and from Moses Lake in the north to Pendleton, Oregon, in the south, over 90% of economic impacts likely occur in Benton and Franklin Counties. These two counties are defined as the ''local'' Tri-Cities economy for purposes of this study (see Figure 1). In the federal fiscal year (IV) 1998 (October 1, 1997 through September 30, 1998), the total impact of DOEs local $1.6 billion budget was felt through payrolls of $519 million and local purchases of goods and services of $246 million. The total local spending of $765 million was down slightly from the FY 1997 total of $774 million. Taking into account the slightly greater multiplier effects of this spending due to changes in its mix, the DOE/RL budget sustained an estimated 36% of all local employment (31,200 out of 86,000 jobs) and up to 64% of local wage income ($1.55 billion out of $2.40 billion). This was up slightly from the year before (29,500 jobs, $1.49 billion income). DOE budget increases in FY 1999 are expected to result in a net increase of about 200 local DOE contractor jobs over the September 30, 1998 level, or about equal to the FY 1998 average. In addition, economic diversification more than offset the impact of the local DOE losses in FY 1998 and, together with an initial economic boost from privatization of Hanford's tank waste cleanup, is expected to play a significant expansive role in FY 1999

  6. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  7. Multifamily Hubs' Initial Endorsements FY12

    Data.gov (United States)

    Department of Housing and Urban Development — Describes the program, geographic & lender distribution of multifamily loans initially endorsed for FHA insurance or risk sharing in FY 12. A loan is initially...

  8. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  9. Establishment of advanced integration technology for site characterization of deep geological repository. Development of information synthesis and interpretation system. Annual report 2007

    International Nuclear Information System (INIS)

    Osawa, Hideaki; Umeki, Hiroyuki; Ota, Kunio; Maekawa, Keisuke; Kunimaru, Takanori; Niizato, Tadafumi; Asamori, Koichi; Yamanaka, Yoshiaki; Shigehiro, Michiko; Abe, Hironobu; Hama, Katsuhiro; Takeuchi, Shinji; Amano, Kenji; Saegusa, Hiromitsu; Matsukawa, Toshiyuki; Miyamoto, Tetsuo; Toyoda, Gakuji; Sawada, Atsushi; Shimada, Akiomi

    2008-11-01

    This project is planned as a five-year program aiming to develop an advanced integration technology for characterization of a site for radioactive waste geological disposal. It is carried out by the Geological Isolation Research and Development Directorate of Japan Atomic Energy Agency with the fund of Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry. This report summarizes the outcome of the first year (FY 2007) activities of the project. The site characterization is a dynamic and complex process and needs close linkage with repository design and performance assessment (PA). A geosynthesis methodology has been developed for integrating site characterization information into design and PA, and applied for e.g. on-going JAEA's studies at two generic URLs at Mizunami and Horonobe. This methodology explicitly presents an information flow (often referred to as geosynthesis data flow diagram or data flow diagram, in short) from measurements by site investigation to generating data sets for design and PA. It is a useful tool for guiding the site characterization in a transparent and traceable manner. As site investigation proceeds and information being obtained on geological environments of the site increases, the site characterization plan is iteratively reviewed and modified reflecting the updated information. Such modification would also be needed when changes would occur on socio-political boundary conditions. In fact, the data flow diagrams for two generic URL projects have been revised several times so far due to the increase in the amount of information on geological environments and changes of societal conditions. An advanced technology aimed at in this project is therefore focused on developing flexible approach and tools, which is named as Information Synthesis and Interpretation System (ISIS), to support the stepwise 'optimization' of the site characterization plan. In FY 2007, a basic concept for ISIS has been developed

  10. Fire-protection research for DOE facilities: FY 82 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-01-01

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  11. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  12. DOE Hazardous Waste Remedial Actions Program: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1987-05-01

    The activities of HAZWRAP for the past fiscal year were organized into seven principal areas: technical analysis and technology transfer; regulatory analysis; strategic planning;information systems; program administration; technology adaptation; and technology demonstration. The scope, major FY 1986 accomplishments, and future directions for each of these areas are described in the following sections of this report. Listings of reports produced through the SCO are given in Appendixes A and B for the current year and since the program started, respectively

  13. FY 1998 survey report. Industrial technology history/succession survey (Survey of originality and creativity of machinery technology of the Japanese industry); 1998 nendo chosa hokokusho. Sangyo gijutsu rekishi keisho chosa (kokunai sangyo kikai gijutsu no dokusosei to sozosei no chosahen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    From a viewpoint of long-term development/creative R and D promotion of the industrial technology of Japan, this survey clarifies where there are originality/creativity for technological innovations of Japan and contributes to selecting future technical themes and working out developmental methods. Aiming at succeeding to the industrial technology, this report arranges the results of the examinational research on machinery technology legacy conducted in FY 1998. The total number of registration is 530. The items of classification are as follows: machine tool (cutting processing, plastic processing), power/energy machine (external combustion engine, internal combustion engine, fluid machine, generator/motor), traffic machine (automobile, rolling stock, ship, aircraft, bicycle), industrial machine 1 (iron/steel-making machine, casting machine, mining machine, food producing machine, woodworking machine, textile machine, paper-making machine, printing machine, chemical machine), industrial machine 2 (agriculture/forestry/fisheries machine, civil engineering/construction machine, medical machine, ceramics machine), measuring device/experimental equipment (measuring device, experimental device, design device, machine watch/calculator), machine structure (plant, bridge), etc. (NEDO)

  14. Exploratory research and development FY90

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G.

    1990-01-01

    In general, the Exploratory Research and Development (ER ampersand D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR ampersand D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER ampersand D projects are included in the Publications List at the back of this report

  15. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  16. Present status of technology development on decommissioning and waste management in Nuclear Cycle Backend Directorate. Progress in 2009

    International Nuclear Information System (INIS)

    Takahashi, Kuniaki; Ishigami, Tsutomu; Funabashi, Hideyuki; Meguro, Yoshihiro; Tachibana, Mitsuo

    2010-11-01

    It is an important issue to take measures against the matters on decommissioning of retired nuclear facilities and management of low-level radioactive waste arising from research activities and operation of nuclear facilities, and the measures must be taken with rational way by ensuring the safety. As the development, improvement, and proper deployment of technologies will be key factors, a technology development program is under way in Nuclear Cycle Backend Directorate taking account of these matters in cooperation with research and development institutes/centers in Japan Atomic Energy Agency. The technology development items are selected from the viewpoints of systematic implementation of measures and cost reduction; these include the development of computer systems for planning and evaluation of decommissioning programs, supercritical CO 2 fluid leaching method for decontamination, nitrate-ion degradation method, simple and rapid determination method for radioactivity of radioactive waste, safety assessment for waste disposal and so on. This report describes outline and progress of the technology development program conducted in FY2009 by the research and development unit. (author)

  17. Annual Performance Report - FY 2011

    Science.gov (United States)

    This report summarizes OIG activity, performance, results, and challenges, and provides a financial accounting of resources for fiscal year (FY) 2011 compared to our FY 2011 annual performance targets.

  18. Institutional plan. FY 1997-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

  19. Innovative technologies for the remediation of transuranic- contaminated landfills

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1995-01-01

    The US Department of Energy (DOE) has initiated a comprehensive research,development, demonstration, testing and evaluation program to provide innovative technology systems to achieve its environmental management responsibilities. The Office of Technology Development (OTD) is responsible for this research in support of the Offices of Environmental Restoration and Waste Management efforts. In fiscal year (FY) 1992 the OTD established the Buried Waste Integrated Demonstration (BWID). The BWID mission was to support the development of emerging technologies for their application to the remediation of DOE buried waste site. During FY95, the BWID program was transitioned into a larger program which will focus its attention to DOE Landfills and Contaminated Soils. There search and activities formerly referred to as the BWID will now be associated with the Transuranic-contaminated Arid Landfill Stabilization Program.(TALS). The TALS Program supports these buried waste remediation efforts by seeking out the best talent to solve the technology challenges as identified in baseline remediation strategies. Experts from throughout the DOE complex, universities, private sector, and the international community are being included in this program to solve these challenges and ensure implementation and commercialization of innovative technologies

  20. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Projects for international research exchanges and international seminars; 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo chosa hokokusho. Kokusai kenkyu koryu jigyo / kokusai seminar kaisai jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the international research exchange projects promoted by Research Institute of Innovative Technology for the Earth (RITE) in FY 2000. The international research exchanges are important for creation of new research areas and technological systems for solving the global environmental problems. In order to promote these activities, RITE invites and dispatches researchers to international conferences and symposiums, promotes research exchanges with major foreign research institutes and academic organizations, and invites and dispatches researchers for medium to long periods. These projects promote exchanges of the latest researches with various institutes, both domestic and foreign, and confirm that the research and development projects now RITE is promoting are closely related to those promoted by various organizations. In the FY 2000, RITE invites 5 foreign researchers for joint researches, and invites 3 foreign researchers to international conferences. RITE also dispatches 3 Japanese researchers to American and European universities, and 12 Japanese researchers to international conferences and the like, to effectively promote the domestic researches and grasp development tendencies at institutes of various countries. RITE holds 5 international seminars for exchanging and discussing broad topics over advanced researches related to global environmental technologies by researchers, both domestic and foreign. (NEDO)

  1. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  2. Optimal imaging for treaty verification FY2014 annual report

    International Nuclear Information System (INIS)

    Hilton, Nathan R.; Johnson, William C.; Brubaker, Erik M.; Kupinski, Matthew Alan; MacGahan, Christopher Jonathan

    2014-01-01

    FY2014 technical report of our project funded by DNN R&D that leverages advanced inference methods developed for medical and adaptive imaging to address arms control applications. We seek a method to acquire and analyze imaging data of declared treaty-accountable items without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers. We present our progress on FY2014 tasks defined in our life-cycle plan. We also describe some future work that is part of the continuation of this project in FY2015 and beyond as part of a venture that joins ours with a related PNNL project.

  3. Optimal imaging for treaty verification FY2014 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Nathan R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Johnson, William C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kupinski, Matthew Alan [Univ. of Arizona, Tucson, AZ (United States); MacGahan, Christopher Jonathan [Univ. of Arizona, Tucson, AZ (United States)

    2014-10-01

    FY2014 technical report of our project funded by DNN R&D that leverages advanced inference methods developed for medical and adaptive imaging to address arms control applications. We seek a method to acquire and analyze imaging data of declared treaty-accountable items without creating an image of those objects or otherwise storing or revealing any classified information. Such a method would avoid the use of classified-information barriers. We present our progress on FY2014 tasks defined in our life-cycle plan. We also describe some future work that is part of the continuation of this project in FY2015 and beyond as part of a venture that joins ours with a related PNNL project.

  4. Exploratory Research and Development Fund, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  5. Oak Ridge TNS Program: summary of FY 1978 activities

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Brown, T.G.

    1979-07-01

    The Next Step (TNS) represents the stage of fusion energy development in which the major emphasis is on engineering testing and demonstration. In this document, the activities of the Oak Ridge TNS Program for FY 1978 are described and summarized. The Reference Design that has evolved from these activities is described, its operating characteristics are examined, and project planning issues are considered. Major conclusions from the FY 1978 effort are stated

  6. The Chinese FY-1 Meteorological Satellite Application in Observation on Oceanic Environment

    Science.gov (United States)

    Weimin, S.

    meteorological satellite is stated in this paper. exploration of the ocean resources has been a very important question of global strategy in the world. The exploration of the ocean resources includes following items: Making full use of oceanic resources and space, protecting oceanic environment. to observe the ocean is by using of satellite. In 1978, US successfully launched the first ocean observation satellite in the world --- Sea Satellite. It develops ancient oceanography in to advanced space-oceanography. FY-1 B and FY- IC respectively. High quality data were acquired at home and abroad. FY-1 is Chinese meteorological satellite, but with 0.43 ~ 0.48 μm ,0.48 ~ 0.53 μm and 0.53 ~ 0.58 μm three ocean color channels, actually it is a multipurpose remote sensing satellite of meteorology and oceanography. FY-1 satellite's capability of observation on ocean partly, thus the application field is expanded and the value is increased. With the addition of oceanic channels on FY-1, the design of the satellite is changed from the original with meteorological observation as its main purpose into remote sensing satellite possessing capability of observing meteorology and ocean as well. Thus, the social and economic benefit of FY-1 is increased. the social and economic benefit of the development of the satellite is the key technique in the system design of the satellite. technically feasible but also save the funds in researching and manufacturing of the satellite, quicken the tempo of researching and manufacturing satellite. the scanning radiometer for FY-1 is conducted an aviation experiment over Chinese ocean. This experiment was of vital importance to the addition of oceanic observation channel on FY-1. FY-1 oceanic channels design to be correct. detecting ocean color. This is the unique character of Chinese FY-1 meteorological satellite. meteorological remote sensing channel on FY-1 to form detecting capability of three visible channels: red, yellow and blue

  7. Research and Technology, 1995

    Science.gov (United States)

    1996-01-01

    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed.

  8. FY 1999 report on the results of the development of the preparation system technology for recycling of mixed waste plastics; 1999 nendo seika hokokusho. Kongo haipura saishohinka no tameno chukan shori system gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By operating the demonstrative plant for the preparation system to recycle mixed waste plastics and process them into such a shape that the transportation can be easier, conducted were the development of element technology necessary for the preparation and the evaluation study of process cost, economical efficiency, environmental effects, etc. The FY 1999 results were summed up. As to the operation of the demonstrative plant for the preparation completed in September 1999, the target waste plastic processing capacity of 3,000 t/y was expected to be achieved. Further, conditions were obtained for effectively separating/removing metal foreign matters such as iron and aluminum and heavy materials such as glass and plaster and for separating/removing chlorine resins such as PVC and reducing the chlorine concentration of the agglomerate to 2% or below. Concerning the development of the agglomeration technology by frictional heat, the target processing capacity of about 350 kg/h was expected to be achieved. In the plant assumed of the actual machine of process capacity of 6,000 t/y, the waste plastic processing cost was estimated to be about 70,000 yen/t. Moreover, the CO2 emission reduction amount of the agglomerate by coke substitution was quantitatively evaluated. (NEDO)

  9. FY 1998 report on the results of the development of the utilization technology of biological resources such as bioconsortia. Development of the petroleum substituting fuel production technology using biology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of establishing the analysis technology and industrial utilization technology required for the establishment of the utilization technology of consortia's high functions which are already used in the fermentation technology field over the limit of the conventional bio-technology using functions of single biological species, study was made. As a part of the study, the establishment was aimed at of the high-grade utilization technology of seaweed/algae using the degradation/conversion functions of the consortium base and the useful substance production technology by interaction of the consortium base of organism and flora/fauna. Studies for the establishment of the technology were made in the following two fields: technology to use unused resources such as lignocellulose and technology to produce petroleum substituting useful resources. As to the technology to use unused resources, the establishment was proceeded with of the technology to degrade/convert the seaweed-origin acidic polysaccharide into the useful substance using the consortium system. In FY 1998, in search of the excellent microorganism consortia which can degrade/solubilize carageenan, samples were picked up from the underwater of the Republic of Palau and incubated in the flat culture medium. Thirty-eight kinds of the degraded bacterium group were acquired. Using the degraded bacterium group, {kappa}-carrageenan was degraded and analyzed of the products. (NEDO)

  10. FY 1998 report on the results of the development of the utilization technology of biological resources such as bioconsortia. Development of the petroleum substituting fuel production technology using biology; 1998 nendo fukugo seibutsukei nado seibutsu shigen riyo gijutsu kaihatsu seika hokokusho. Seibutsu riyo sekiyu daitai nenryo seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of establishing the analysis technology and industrial utilization technology required for the establishment of the utilization technology of consortia's high functions which are already used in the fermentation technology field over the limit of the conventional bio-technology using functions of single biological species, study was made. As a part of the study, the establishment was aimed at of the high-grade utilization technology of seaweed/algae using the degradation/conversion functions of the consortium base and the useful substance production technology by interaction of the consortium base of organism and flora/fauna. Studies for the establishment of the technology were made in the following two fields: technology to use unused resources such as lignocellulose and technology to produce petroleum substituting useful resources. As to the technology to use unused resources, the establishment was proceeded with of the technology to degrade/convert the seaweed-origin acidic polysaccharide into the useful substance using the consortium system. In FY 1998, in search of the excellent microorganism consortia which can degrade/solubilize carageenan, samples were picked up from the underwater of the Republic of Palau and incubated in the flat culture medium. Thirty-eight kinds of the degraded bacterium group were acquired. Using the degraded bacterium group, {kappa}-carrageenan was degraded and analyzed of the products. (NEDO)

  11. Annual report of JMTR. FY1997 (April 1, 1997 - March 31, 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Norikazu; Hoshiya, Taiji; Tabata, Toshio [eds.; Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; and others

    1999-03-01

    During FY1997, the JMTR was operated for 3 complete cycles (120th, 121st and 122nd cycles) and was utilized for the research and development programs on the technology of LWRs and fusion reactor, as well as for fundamental research of fuels and materials, and for radioisotope productions. The improvement of evaluation technique in a local neutron spectrum for irradiation utilization and development of capsule having the vertical migration, the reinstrumentation and loading mechanism have been carried out. Development of a new oxygen potential sensor for oxide fuel pellets has been done as an elemental technology of irradiation for high burn-up fuels. As for post irradiation examination, the techniques for measuring of crack length using an alternating current potential drop method and machining of miniaturized specimen by the remote handling have been developed. A research on the blanket materials and components for thermonuclear fusion reactor were also progressed. (author)

  12. Report on the FY 1999 medical/engineering joint research project. Basic research on a high-sensitivity gene diagnosis system for cancer by free DNA in blood; 1999 nendo kecchu yuri DNA ni yoru gan no kokando idenshi shindan system ni kansuru kiban kenkyu jisseki hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A 3-year (FY 1999-FY 2002) research plan titled 'The basic research on a high-sensitivity gene diagnosis system for cancer by free DNA in blood' was worked out and the study was started. The plan is as follows. It is confirmed that the quantitative study of peripheral blood free DNA becomes the information useful for early finding-out of cancer carriers, and the reliability and limits are made clear. By widely searching for gene anomaly of cancer itself, it is confirmed that it is possible to diagnose anomaly in quality of genes in peripheral blood free DNA. For those purposes, technology is developed for high-sensitively detecting/quantifying free DNA of peripheral blood, etc. and further detecting anomaly of the genes comprehensively, and the medical/engineering joint research is conducted to realize the early diagnosis of cancer. In FY 1999, the following studies were started using detection/analysis technology mainly by polymerase chain reaction (PCR): development of high-sensitivity detection technology of free DNA, development of high-sensitivity detection technology of gene anomaly, study of the cancer-origin gene anomaly, etc. (NEDO)

  13. Annual Technology Transfer Report FY 2017

    Science.gov (United States)

    2018-04-01

    The U.S. Department of Transportation (U.S. DOT) is the Federal steward of the Nation's transportation system. U.S. DOT consists of multiple modal operating administrations (OAs) that carry out mission-related research, development, and technology (R...

  14. FY 1993 task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1991-10-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to individuals and populations. The primary objective of work to be performed in FY 1993 is to complete the source term estimates and dose estimates for key radionuclides for the air and river pathways. At the end of FY 1993, the capability will be in place to estimate doses for individuals in the extended (32-county) study area, 1944--1991. Native American research will continue to provide input for tribal dose estimates. In FY 1993, the Technical Steering Panel (TSP) will decide whether demographic and river pathways data collection should be extended beyond FY 1993 levels. The FY 1993 work scopes and milestones in this document are based on the work plan discussed at the TSP Budget/Fiscal Subcommittee meeting on August 19--20, 1991. Table 1 shows the FY 1993 milestones; Table 2 shows estimated costs. The subsequent work scope descriptions are based on the milestones. This document and the FY 1992 task plans will form the basis for a contract with Battelle and the Centers for Disease Control (CDC). The 2-year dose reconstruction contract is expected to begin in February 1992. This contract will replace the current arrangement, whereby the US Department of Energy directly funds the Pacific Northwest Laboratory to conduct dose reconstruction work. In late FY 1992, the FY 1993 task plans will be more fully developed with detailed technical approaches, data quality objectives, and budgeted labor hours. The task plans will be updated again in July 1993 to reflect any scope, milestone, or cost changes directed during the year by the TSP. 2 tabs

  15. Exploratory research and development FY90

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

    1990-01-01

    In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

  16. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  17. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  18. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  19. Exploratory Research and Development Fund, FY 1990

    International Nuclear Information System (INIS)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R ampersand D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R ampersand D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics

  20. MIxed Waste Integrated Program (MWIP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE's mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel

  1. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  2. FY 1999 report on the research and development project of industrial scientific technology - quantum functional devices. Systematical arrangement of the development technology (FY 1991 - 1999); 1999 nendo ryoshika kino soshi no kenkyu kaihatsu. Kaihatsu sareta gijutsu no keitoteki seiri (1991 nendo kara 1999 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The FY 1991 to 1999 R and D results of quantum functional devices are systematically summarized. The basic action of the MIM-based single electron tunneling devices is succeeded for the first time in the world. The quantum fine-wire device transistor is realized. The surface tunnel transistor is proposed, application to action demonstration and memories is suggested, and possibility of applicability to multi-value logic circuits is suggested. The multi-emitter RHET is developed to have one device provided with memory and multi-input logic functions, and increase integration 10 times. The TSR quantum dot HEMT memory is developed on a trial basis, to demonstrate 150 K action. The principle of a tera-bit class high-capacity memory is demonstrated using the InAs dot memory. Integration of the quantum band-bonded multi-functional device is described. Possibility is demonstrated for the Si insulation film tunnel device multi-value memory, working on the principle of tunneling between bands via the Si insulation film. The integrated quantum dot functional memory and polariton switch are also described. The single electron logic circuit works for the first time in the world. The integrated CMOS/SET device, which uses high driving force of CMOS, is proposed. (NEDO)

  3. Descriptive Summaries of the Research Development Test & Evaluation Army Appropriation FY 1983. Supporting Data FY 1983, Budget Estimate Submitted to Congress February 1982. Volume II.

    Science.gov (United States)

    1982-02-01

    government in support of the hational Command Authority ( NCA ) during and aftr a nuclear attack on the United States. C. (U) BASIS FOR FY 19b3 RITE...ratrif Tt 1i 1, 11Coinil nca t Iiror System I N rA:S) thlat must be Iritpropetalile with MRTT to Insure a viatili atnd Integrate pi rogrram...station on a cathode ray tube (CRT) sad will allow software-controlled time compression at the tracks made by moving targets. The E-SCAN development

  4. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented

  5. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  6. FY 2000 report on the results of the technology development of energy use reduced machine tools, etc. Development of the linear motor system for realization of energy conservation and commercialization; 2000 nendo energy shiyo gorika kosaku kiki nado gijutsu kaihatsu seika hokokusho. Shoeneka to jitsuyoka wo jitsugensuru linear motor system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation to the drive system of machine tools widely used as production facilities for automobiles, home electric appliances, etc., the R and D were made of a high efficiency linear motor system of which attention was paid to energy rationalization and environmental loads, and the FY 2000 results were summed up. In the study of the development of the system, studies were made not only on the lowering of heating, cost reduction and heightening of speed, but on the mechanism and control by which machine natural vibration can relatively be cut off, technology of damping for cutting vibration, technology to meet the deformation, etc. by cutting loads, sliding loads, and acceleration of accelerating/decelerating, technology to reduce the machine weight, etc. In the study of the basic technology of linear motor, the finite element method analysis was conducted on the typical linear motor. Concerning the control system, specs were studied which can deal with natural vibration and cutting vibration of the machine system. As to the development of the steel scale type linear encoder, scale sample for evaluation of basic characteristics was designed/trially manufactured. In the study of the detection optical system, the design/trial manufacture of photodiode array were made. (NEDO)

  7. Application of micro-PIXE and imaging technology to life science (Joint research)

    International Nuclear Information System (INIS)

    Satoh, Takahiro; Ishii, Keizo

    2011-03-01

    The joint research on 'Application of micro-PIXE and imaging technology to life science' supported by the Inter-organizational Atomic Energy Research Program, had been performed for three years, from 2006FY to 2009FY. Aiming to apply in-air micro-PIXE analytical system to life science, the research was consisting of 7 collaborative themes related to beam engineering for micro-PIXE and applied technology of element mapping in biological/medical fields. The system, so-called micro-PIXE camera, to acquire spatial element mapping in living cells was originally developed by collaborative research between the JAEA and the department of engineering of Tohoku University. This review covers these research results. (author)

  8. FY 2000 report on the results of the R and D of 'frontier carbon technology.' Development of the high function control system for power generation; 2000 nendo 'tansokei kokino zairyo gijutsu' no kenkyu kaihatsu seika hokokusho. Hatsuden'yo kokino kanri system kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This report summarized the FY 2000 results. Items for study were as follows: 1) original production technology of substrates; 2) original production process technology of mechanically high function materials; 3) comprehensive survey; 4) formation of common basement technology. In 1), for the purpose of developing carbon materials with heat resistance and corrosion resistance in the oxidation atmosphere at 650 degrees C or more, the development of the rail gun spraying method and the device was conducted. It enabled the spraying of high melting point/high hardness materials. It was very difficult to do it by the existing technology. In 2), subjects are the composition gradient film forming technology, large area film forming technology, etc. By making positive use of characteristics such as low friction/low abrasion and high temperature corrosion resistance which can be expected of frontier carbon materials, it is planned to apply them to the operational part of various industrial machines and for the protection of the surface of high temperature members. In 3), study was made to widen the application field of frontier carbon materials excellent in environmental harmony by the mechanical field. In 4), R and D were carried out of the basic theory/principle/conception, realization of them, systematical arrangement, acquisition/arrangement of the data on new characteristics. (NEDO)

  9. Cementitious Barriers Partnership FY2013 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2013-11-01

    In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released “Version 1.0” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the “Version 2.0” Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non-fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant

  10. A Cost Estimation Analysis of U.S. Navy Ship Fuel-Savings Techniques and Technologies

    Science.gov (United States)

    2009-09-01

    Horngren , C. T., Datar, S . M., & Foster, G. (2006). Cost Accounting : A Managerial Emphasis. 12th ed. Saddle River, NJ: Pearson...COVERED Master’s Thesis 4. TITLE AND SUBTITLE A Cost Estimation Analysis of U.S. Navy Ship Fuel-Savings Techniques and Technologies 6. AUTHOR( S ...FY12 FY13 FY14 FY15 FY16 FY17 FY18 N P V   C u m   S a v i n g s   ( $ / y r / S D   s h i p s ) Time

  11. New decision-making processes for the pricing of health technologies in Japan: The FY 2016/2017 pilot phase for the introduction of economic evaluations.

    Science.gov (United States)

    Shiroiwa, Takeru; Fukuda, Takashi; Ikeda, Shunya; Takura, Tomoyuki

    2017-08-01

    Economic evaluation is used for decision-making processes in healthcare technologies in many developed countries. In Japan, no health economic data have been requested for drugs, medical devices, and interventions till date. However, economic evaluation is gradually gaining importance, and a trial implementation of the cost-effectiveness evaluation of drugs and medical devices has begun. Discussions on economic evaluation began in May 2012 within a newly established sub-committee of the Chuikyo, referred to as the "Special Committee on Cost Effectiveness." After four years of discussions, this committee determined that during the trial implementation, the results of the cost-effectiveness evaluation would be used for the re-pricing of drugs and medical devices at the end of fiscal year (FY) 2017. Chuikyo selected 13 products (7 drugs and 6 medical devices) as targets for this evaluation. These products will be evaluated until the end of FY 2017 based on the following process: manufacturers will submit the data of economic evaluation; the National Institute of Public Health will coordinate the review process; academic groups will perform the actual review of the submitted data, and the expert committee will appraise these data. This represents the first step to introducing cost-effectiveness analysis in the Japanese healthcare system. We believe that these efforts will contribute to the efficiency and sustainability of the Japanese healthcare system. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  13. FY 1981 HTGR program summary-level program outline (revision 1/30/81)

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of the DOE HTGR Program is the development of technology for the most important HTGR applications. Through this support, DOE seeks to encourage private sector initiatives which will lead to the development of commercially attractive HTGR applications that concurrently support national energy goals. Currently perceived as important to national energy goals are applications that primarily address the process heat market with a view toward reduction of national requirements for oil, natural gas and coal. A high priority during FY 1981, therefore, will be to further identify and define the details of the Technology Program so as to assure that it is both necessary and sufficient to provide the required support. In the establishment of a supportive Technology Program, key elements which will be addressed are as follows: studies will be conducted to further identify and characterize important unique HTGR applications and to evaluate their potential in the context of market opportunities, utility/user interest, and national objectives to develop new energy supply options; based upon the configurations and operating characteristics projected for selected applications, Technology Program requirements must be identified to support development, verification, and ultimately licensing of components and systems comprising the facilities of interest; and in the context of limited resources, sufficient analysis and evaluation must be accomplished so as to prioritize technology elements in accordance with appropriately developed criteria

  14. FY 1994 report on the results of the development of a large wind power system. Development of control technology of the array type wind power system; 1994 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Shugogata furyoku hatsuden system no seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This technology development aims at developing the design technology of the array type wind power system and the control technology to efficiently operate the system. As a result, the wind turbine produced by Micon was selected. The rated power is 100kW, and the number of the wind turbine is three. The three-phase short-circuit capacity at the generating end of the wind power generation facilities is 26,25 MVA, which can fully be broken. A simulation of voltage variation/frequency variation was made to grasp various phenomena of the output of the wind power system influencing the power source system and power distribution system. As a result, it was confirmed that it is possible to operate the system safely without lowering the quality of power. As to the overall monitor/control system which controls wind turbines, five wind turbines as many as possible are grid-interconnected and the number of wind turbine is to be controlled by a ratio of the total demand power to the gross generating output of wind power in the Miyako system, for the purpose of increasing the rate of equipment utilization of the wind power system also at the time of the lowest load of the Miyako system. In the operation of two-system interconnection, the gross power generating amount was 1,321,250 kWh, which increased 9.7% over the results in FY 1993. (NEDO)

  15. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Science.gov (United States)

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  16. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs: FY 2006 Budget Request

    Energy Technology Data Exchange (ETDEWEB)

    Norland, D.; Jenkin, T.

    2005-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Government's efforts to provide reliable, affordable, and environmentally sound energy for America, through its 11 research, development, demonstration, and deployment (RDD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. EERE designs its RDD&D activities to improve the Nation's readiness for addressing current and future energy needs. This document summarizes the results of the benefits analysis of EERE's programs, as described in the FY 2006 Budget Request. EERE has adopted a benefits framework developed by the National Research Council (NRC) to represent the various types of benefits resulting from the energy efficiency technology improvements and renewable energy technology development supported by EERE programs. Specifically, EERE's benefits analysis focuses on three main categories of energy-linked benefits--economic, environmental, and security.

  17. Tokamak power systems studies, FY 1985

    International Nuclear Information System (INIS)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs

  18. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  19. Independent Research and Independent Exploratory Development Programs: FY92 Annual Report

    Science.gov (United States)

    1993-04-01

    others (e.g., Myers- Briggs Type inventory and Paper Formboard) will be obtained from publishers. The primary analytical technique will be structural...Reports TRIlED FY92 Annual Report 77 Biodata and Personality: Are They Related? Stephanie Booth-Kewley and Marie D. Thomas Abstract Despite the demonstrated

  20. Review of Sandia National Laboratories - Albuquerque New Mexico DOE/DP Critical Skills Development Progrmas FY04.

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Anna K; Wilson, Dominique; CLARK, KATHERINE

    2005-09-01

    Sandia National Laboratories has developed a portfolio of programs to address the critical skills needs of the DP labs, as identified by the 1999 Chiles Commission Report. The goals are to attract and retain the best and the brightest students and transition them into Sandia - and DP Complex - employees. The US Department of Energy/Defense Programs University Partnerships funded ten laboratory critical skills development programs in FY04. This report provides a qualitative and quantitative evaluation of these programs and their status. 3