WorldWideScience

Sample records for technology development effort

  1. Personal Professional Development Efforts of Science and Technology Teachers in Their Fields

    Science.gov (United States)

    Bilgin, Aysegul; Balbag, Mustafa Zafer

    2018-01-01

    The aim of this study is to examine the personal professional development efforts of science and technology teachers in their fields with regard to some variables. These variables were determined as gender, year of seniority and sufficiency level of the laboratory equipment. Moreover, the relation between the actual efforts exerted by science and…

  2. Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields

    Science.gov (United States)

    Bilgin, Aysegül; Balbag, Mustafa Zafer

    2016-01-01

    This study has developed "Personal Professional Development Efforts Scale for Science and Technology Teachers Regarding Their Fields". Exploratory factor analysis of the scale has been conducted based on the data collected from 200 science and technology teachers across Turkey. The scale has been observed through varimax rotation method,…

  3. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    Science.gov (United States)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  4. Chile and Its Efforts to Present High-Level Technologies to the Developed World

    Science.gov (United States)

    Young, Nathan

    2007-01-01

    Chile is rich in natural resources. Like many other resource-dependent nations, it has never made technology transfer a subject of intense focus. This article sheds light on the technological state of Chile today and its efforts to promote development, increase innovation and move towards a knowledge-based economy. The paper summarizes current…

  5. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  6. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    Science.gov (United States)

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  8. Significance of promoting innovative efforts and technology transfer for industry

    Energy Technology Data Exchange (ETDEWEB)

    Rembser, J [Bundesministerium fuer Forschung und Technologie, Bonn-Bad Godesberg (Germany, F.R.)

    1978-11-01

    Technological know how and innovations will be of considerable future importance for West German industry. Changes in the reliability of sources of supply (energy, raw materials), the burden imposed on the environment by intensive industrial production and numerous private sources, and the stiffening of international competition necessitate cLoser collaboration between industry and government. Public aid in research and development efforts will assume an important role. In West Germany there is a wide variety of such governmental aids. The range extends from direct grants to enterprises for research and development work to the furnishing of advice to promote innovative efforts and technology transfer. Banks provide risk capital with governmental aid to firms trying to indroduce high-risk innovations into the market. In recent years the aim has been to provide small and medium-size firms with better access to technological know how and governmental aids.

  9. Zero Effort Technologies Considerations, Challenges, and Use in Health, Wellness, and Rehabilitation

    CERN Document Server

    Mihailidis, Alex; Hoey, Jesse

    2011-01-01

    This book introduces zero-effort technologies (ZETs), an emerging class of technology that requires little or no effort from the people who use it. ZETs use advanced techniques, such as computer vision, sensor fusion, decision-making and planning, and machine learning to autonomously operate through the collection, analysis, and application of data about the user and his/her context. This book gives an overview of ZETs, presents concepts in the development of pervasive intelligent technologies and environments for health and rehabilitation, along with an in-depth discussion of the design princ

  10. AMRDEC's HWIL Synthetic Environment Development Efforts for LADAR Sensors

    National Research Council Canada - National Science Library

    Kim, Hajin J; Cornell, Michael C; Naumann, Charles B

    2004-01-01

    .... With the emerging sensor/electronics technology LADAR sensors are becoming more viable option as an integral part of weapon systems, and AMCOM has been expending efforts to develop the capabilities...

  11. Technology Development and Innovation | Wind | NREL

    Science.gov (United States)

    Technology Development and Innovation Technology Development and Innovation Technology Development Technology Center (NWTC) supports efforts to reduce bird and bat fatalities at wind energy projects and photo of wind turbines at the National Wind Technology Center. Wildlife technology research and

  12. HTGR technology development: status and direction

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas

  13. Industry's efforts toward technology development related to aging management of PWR plants

    International Nuclear Information System (INIS)

    Tanaka, Hideo

    2010-01-01

    The term, 'aging plants', which refers to nuclear power plants operating more than 30 years, has become popular among local residents around nuclear power plants as well as among the media. The term 'aging' was first used in the title of the document issued by Agency of Natural Resources and Energy in 1996, 'The Basic Concept of Aging Management'. In addressing aging degradation, it was a matter of question which measure of time (date, month or year) should be used as a unit to consider an events. Although the aging plant was defined as a plant operating more than 30 years, the mode and timing of aging degradation depend on the environment and service conditions under which a component has been operating. Previous efforts made by related parties have contributed to the prevention of potential aging events which may challenge the reactor safety. Owing to such efforts, causes of some events attributable to defective design have been clarified and preventive maintenance measures, including the replacement and mitigation, have been taken accordingly. As a result, the number of events resulting from such aging phenomena has been reduced. On other other hand, the events caused by aging phenomena attributable to manufacturing processes (welding, surface treatment, etc.), which hardly emerge, are slightly increasing. There have been many cases that a shorter weld line due to lack of penetration in the narrow gap has been led to fatigue cracking. More recently, incidents of stress corrosion cracking due to work hardening and local tensile stresses on the surface have been observed. It should be noted that an effort to analyze not only the phenomena but also the mechanisms of the above events to clarify the root causes can improve the quality of preventive maintenance by means of rolling-out the analytical results to relevant plants. This paper introduces valuable experiences with the application of the results of technology development regarding to aging degradation of

  14. Overview 2004 of NASA Stirling-Convertor CFD-Model Development and Regenerator R&D Efforts

    Science.gov (United States)

    Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako

    2005-01-01

    This paper reports on accomplishments in 2004 in development of Stirling-convertor CFD model at NASA GRC and via a NASA grant, a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeor Associates as subcontractors. Also, the Stirling Technology Co. and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, LA is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.

  15. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  16. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  17. Technology-development needs for magnetic fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Baker, C.C.; Conn, R.W.; Krakowski, R.A.; Steiner, D.; Thomassen, K.I.

    1983-03-01

    The technology-development needs for magnetic fusion have been identified from an assessment of the conceptual design studies which have been performed. A summary of worldwide conceptual design effort is presented. The relative maturity of the various confinement concepts and the intensity and continuity of the design efforts are taken into account in identifying technology development needs. A major conclusion of this study is that there is a high degree of commonality among the technology requirements identified for the various confinement concepts

  18. Technology development and applications at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Skriba, M.C.; Warner, R.D.

    1995-01-01

    At the Fernald Environmental Management Project (FEMP) northwest of Cincinnati, Ohio, the U.S. Department of Energy and contractor Fernald Environmental Restoration Management Corporation (FERMCO) are aggressively pursuing both the development and the application of improved, innovative technology to the environmental restoration task. Application of emerging technologies is particularly challenging in a regulatory environment that places pressure on operational managers to develop and meet tight schedules. The regulatory and operational needs make close communication essential between technology developers and technology users (CERCLA/RCRA Unit managers). At Fernald this cooperation and communication has led, not only to the development and demonstration of new technologies with applications at other sites, but also to application of new technologies directly to the Fernald clean up. New technologies have been applied to improve environmental safety and health, improve the effectiveness of restoration efforts, and to cut restoration costs. The paper will describe successful efforts to develop and apply new technologies at the FEMP and will emphasize those technologies that have been applied and are planned for use in the clean up of this former uranium production facility

  19. Korean efforts for education and training network in nuclear technology

    International Nuclear Information System (INIS)

    Han, Kyong-Won; Lee, Eui-Jin

    2007-01-01

    Nuclear energy has been a backbone for Korea's remarkable economic growth, and will continue its essential role with 18 nuclear power plants in operation, 2 more units under construction, 6 more units in planning. Korea is operating its own designed nuclear power plants, such as KSNP, 1400, as well as self-design and operation of 30 MW Hanaro research reactor. Korea makes strong efforts to develop future nuclear technology. They are the System-Integrated Modular Advanced Reactor, SMART, Korea Advanced Liquid Metal reactor, KALIMER, Hydrogen Production reactor, and Proliferation-resistant Nuclear Fuel Cycle. In parallel, Korea is establishing an Advanced Radiation Technology R and D Center and a High Power Proton Accelerator Center. International, next generation nuclear power technologies are being developed through projects such as the IAEA Innovative Nuclear Reactors and Fuel Cycle, INPRO, Generation IV International Forum, GIF, and International thermonuclear Experimental reactor, ITER. In the new millennium, Korea expects that radiation technology combined with bio, nano, and space technology will sustain our civilization. About 21,000 qualified nuclear human resources are engaged in power and non-power fields such as design and manufacturing of equipment, plant operation and maintenance, safety, RI production, R and D, etc. However, it is recognized that the first generation of nuclear work force is getting older and retired, less of our youth are studying nuclear science and engineering. Korean Government has established a promotion program on nuclear human resources development, which is needed until 2010. For the sustainable development of nuclear science and technology, it calls for more qualified human resources. We ought to encourage our youth to become more interested in nuclear studies and careers. Korea is making strong efforts to support nuclear education and training for young generations. It is believed that internationally accepted advanced

  20. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    International Nuclear Information System (INIS)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges

  1. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  2. Working Environment and Technological Development

    DEFF Research Database (Denmark)

    Clausen, Christian; Nielsen, Klaus T.; Jensen, Per Langaa

    1997-01-01

    and their and their concept of working environment2) Technology renewal, which considers the role of the working environment in connection with the development and use of concrete technologies3) Working environment planning, which considers the existing efforts to place the working environment in a planning process.......The paper describes the purpose, themes, overarching research questions and specific projects of the programme: Working Environment and Technological Development. The major research themes are:1) Management concepts and the working environment, which considers the visions...

  3. ARV robotic technologies (ART): a risk reduction effort for future unmanned systems

    Science.gov (United States)

    Jaster, Jeffrey F.

    2006-05-01

    The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.

  4. Overview of NASA/OAST efforts related to manufacturing technology

    Science.gov (United States)

    Saunders, N. T.

    1976-01-01

    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  5. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  6. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  7. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  8. The DOE safeguards and security technology development program

    International Nuclear Information System (INIS)

    Cherry, R.C.; Wheelock, A.J.

    1991-01-01

    This paper reports that strategic planning for safeguards and security within the Department of Energy emphasizes the contributions of advanced technologies to the achievement of Departmental protection program goals. The Safeguards and Security Technology Development Program provides state-of-the-art technologies, systems and technical services in support of the policies and programmatic requirements for the protection of Departmental assets. The Program encompasses research and development in physical security, nuclear material control and accountability, information security and personnel security, and the integration of these disciplines in advanced applications. Technology development tasks serve goals that range from the maintenance of an effective technology base to the development, testing and evaluation of applications to meet field needs. A variety of factors, from the evolving threat to reconfiguration of the DOE complex and the technical requirements of new facilities, are expected to influence safeguards and security technology requirements and development efforts. Implementation of the Program is based on the systematic identification, prioritization and alignment of technology development tasks and needs. Initiatives currently underway are aimed at enhancing technology development project management. Increased management attention is also being placed on efforts to promote the benefits of the Program through technology transfer and interagency liaison

  9. Development of a Virtual Technology Coach to Support Technology Integration for K-12 Educators

    Science.gov (United States)

    Sugar, William; van Tryon, Patricia J. Slagter

    2014-01-01

    In an effort to develop a virtual technology coach for K-12 educators, this article analyzed survey results from sixty teachers with regards to specific resources that a technology coach could provide within a virtual environment. A virtual technology coach was proposed as a possible solution to provide continual professional development for…

  10. Personal Professional Development Efforts Scale for Middle School Mathematics Teachers: An Adaptation Study

    Science.gov (United States)

    Balbag, M. Zafer; Yenilmez, Kürsat; Turgut, Melih

    2017-01-01

    This study aimed at adapting the personal professional development efforts scale developed for science and technology teachers to be applied for middle school mathematics teachers. For this purpose, first of all, the items of the original scale were adjusted for the middle school mathematics teachers by a team of experts. Data obtained by the new…

  11. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  12. The role of a research and development institute in the development and diffusion of technology

    NARCIS (Netherlands)

    Bongenaar, B.; Szirmai, A.

    1999-01-01

    In the context of late industrialisation the effective transfer and adaptation of technology is of great importance for economic development. International technology transfer is not a costless process, but requires considerable technological effort and investments in the development of

  13. The National Institute of Justice's Technology Efforts to Meet the Evolving Needs of the Responder Community

    Science.gov (United States)

    Boyd, D.

    2002-05-01

    The National Institute of Justice (NIJ) is the research arm of the Department of Justice. Through its Office of Science & Technology (OS&T), NIJ has actively pursued development of better tools for public safety agencies to combat terrorism since 1997, when, pursuant to the Anti-Terrorism and Effective Penalty Act of 1996 (P.L. 104 -132), it began development of technology to better enable law enforcement agencies to combat terrorism. NIJ quickly realized that effectively combating terrorism required a multi disciplinary, multi agency response. Additionally, it came to understand that, as noted by the Gilmore Commission, the best way to prepare the responder community to deal with the consequences of terrorist incidents, was to ``emphasize programs and initiatives that build appropriately on existing State and local capabilities for other emergencies and disasters.'' For example, an effective critical incident management system is just as important to the ability to deal with a terrorist attack, such as occurred at the World Trade Center, as with a major natural disaster or the crash of a commercial airliner or passenger train. Consequently, NIJ's efforts have evolved to focus on the responder community's common, unaddressed needs for better tools to deal with critical incidents. The Institutes efforts focus on five technology areas: infrastructure security, personnel location, explosives detection and remediation, communications and information technology and training, and development of standards.

  14. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  15. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  16. Mobilizing technology for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C Jr

    1979-10-01

    Mr. Weiss says that the 15 years since the UN Conference on Science, Technology, and Development in Geneva have taught us that what seem at first to be technological obstacles to development frequently turn out on closer examination to have been policy failures; that introduction of technologies into developing countries must be accompanied by institutional and policy changes if the technologies are to benefit the countries. He points out that choice of alternative technology for a developing country should depend on careful overall assessment of local techno-economic, geographical, ecological, and social factors, as well as the desired balance between growth and equity. Such a technology assessment, a key element in the choice of appropriate (i.e., locally suitable) technology for particular investment projects, should be built into procedures for project preparation and appraisal in governments and development assistance agencies. Turning to technologists, Mr. Weiss says they face a double challenge: (1) to recognize potential for new efforts to harness science and technology for the benefit of the developing countries; and (2) by understanding the social, institutional, and economic framework into which an innovation is to operate, to ease its application and diffusion, and thus speed and increase its practical impact. 25 references.

  17. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  18. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  19. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    Science and Technology Research for Sustainable Development in Africa: The Imperative ... This has placed African countries at a disadvantage. ... In this paper, effort is made to establish the imperative of education to science and technology.

  20. Ten Items of Integrated Technology Developed by CNPC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The technological work of China National Petroleum Corporation (CNPC) was based on the company's general development strategy to become a multinational giant with international competitiveness during the 10th FiveYear Plan Period (2001-2005). The technological efforts were focused on strengthening strategic management of technology to identify the technological development targets, optimizing allocation of technological resources and increasing technological investment to highlight creation of key technology. Aiming at the important and key technologies needed for main business development,CNPC launched 15 technological projects at the State level with a 100 percent completion rate and 379 other projects at the corporate level with a 92.8 percent completion rate. With a number of high-level results achieved, CNPC has developed 10 items of integrated technology.

  1. Policy issues inherent in advanced technology development

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  2. Policy issues inherent in advanced technology development

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1994-01-01

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses

  3. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  4. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  5. Neutronic analyses and tools development efforts in the European DEMO programme

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Bachmann, C. [European Fusion Development Agreement (EFDA), Garching (Germany); Bienkowska, B. [Association IPPLM-Euratom, IPPLM Warsaw/INP Krakow (Poland); Catalan, J.P. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Drozdowicz, K.; Dworak, D. [Association IPPLM-Euratom, IPPLM Warsaw/INP Krakow (Poland); Leichtle, D. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Fusion for Energy (F4E), Barcelona (Spain); Lengar, I. [MESCS-JSI, Ljubljana (Slovenia); Jaboulay, J.-C. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Lu, L. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Moro, F. [Associazione ENEA-Euratom, ENEA Fusion Division, Frascati (Italy); Mota, F. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Sanz, J. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Szieberth, M. [Budapest University of Technology and Economics (BME), Budapest (Hungary); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pampin, R. [Fusion for Energy (F4E), Barcelona (Spain); Porton, M. [Euratom/CCFE Fusion Association, Culham Science Centre for Fusion Energy (CCFE), Culham (United Kingdom); Pereslavtsev, P. [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Ogando, F. [Universidad Nacional de Educación a Distancia (UNED), Madrid (Spain); Rovni, I. [Budapest University of Technology and Economics (BME), Budapest (Hungary); and others

    2014-10-15

    Highlights: •Evaluation of neutronic tools for application to DEMO nuclear analyses. •Generation of a DEMO model for nuclear analyses based on MC calculations. •Nuclear analyses of the DEMO reactor equipped with a HCLL-type blanket. -- Abstract: The European Fusion Development Agreement (EFDA) recently launched a programme on Power Plant Physics and Technology (PPPT) with the aim to develop a conceptual design of a fusion demonstration reactor (DEMO) addressing key technology and physics issues. A dedicated part of the PPPT programme is devoted to the neutronics which, among others, has to define and verify requirements and boundary conditions for the DEMO systems. The quality of the provided data depends on the capabilities and the reliability of the computational tools. Accordingly, the PPPT activities in the area of neutronics include both DEMO nuclear analyses and development efforts on neutronic tools including their verification and validation. This paper reports on first neutronics studies performed for DEMO, and on the evaluation and further development of neutronic tools.

  6. Neutronic analyses and tools development efforts in the European DEMO programme

    International Nuclear Information System (INIS)

    Fischer, U.; Bachmann, C.; Bienkowska, B.; Catalan, J.P.; Drozdowicz, K.; Dworak, D.; Leichtle, D.; Lengar, I.; Jaboulay, J.-C.; Lu, L.; Moro, F.; Mota, F.; Sanz, J.; Szieberth, M.; Palermo, I.; Pampin, R.; Porton, M.; Pereslavtsev, P.; Ogando, F.; Rovni, I.

    2014-01-01

    Highlights: •Evaluation of neutronic tools for application to DEMO nuclear analyses. •Generation of a DEMO model for nuclear analyses based on MC calculations. •Nuclear analyses of the DEMO reactor equipped with a HCLL-type blanket. -- Abstract: The European Fusion Development Agreement (EFDA) recently launched a programme on Power Plant Physics and Technology (PPPT) with the aim to develop a conceptual design of a fusion demonstration reactor (DEMO) addressing key technology and physics issues. A dedicated part of the PPPT programme is devoted to the neutronics which, among others, has to define and verify requirements and boundary conditions for the DEMO systems. The quality of the provided data depends on the capabilities and the reliability of the computational tools. Accordingly, the PPPT activities in the area of neutronics include both DEMO nuclear analyses and development efforts on neutronic tools including their verification and validation. This paper reports on first neutronics studies performed for DEMO, and on the evaluation and further development of neutronic tools

  7. Small Hydropower Research and Development Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackmore, Mo [Near Space Systems, Inc.

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  8. NASA Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  9. Joint development effort Thermonuclear Fusion. Programme budgeting 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The joint KfK and IPP project for the development of thermonuclear fusion device is established as the centerpiece of Federal German efforts in this field. It is meant to enhance the German contribution to the European programme and thus foster the chances of a joint European large-scale experiment to be started in the Federal Republic of Germany. IPP's tasks in the project are to study the physical principles and aspects, whereas KfK is responsible for the technological aspects. Work at IPP is focused on divertor experiments with the ASDEX series in order to go deeper into the problems that could not be solved by the JET experiments, namely those of the plasma boundary and control of impurities. Stellarator experiments are made in order to study the potentials of this toroidal confinement concept for steady-state operation. The IPP which always has been working in the plasma physics field devotes all activities to the joint effort. KfK has established a special project group for this purpose, PKF. The budgeting programme presented therefore covers the IPP entire working schedule, and that of PKF of the KfK. (orig./GG) [de

  10. Launch Effort and NPD Success: A Study of Technology Intensive Companies in Finland

    OpenAIRE

    Matti J. Haverila; Nicholas Ashill

    2014-01-01

    In this paper, we present an exploratory investigation of the types of product launch tactics managers use in technology-intensive companies in Finland and explore the role that such tactics play in differentiating between successful and unsuccessful NPD outcomes. Our findings indicate that managers perceive two types of tactical product launch tactics during the NPD process, which we label "promotions and sales-distribution effort" and "production start-up effort". All tactical launch effort...

  11. Survey and analysis of federally developed technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.E.; Conrad, J.L.

    1983-02-01

    The methodology and results of a test effort to determine whether there exist unexpected opportunities for the direct transfer of technologies from federal laboratories to industry are presented. Specifically, the latest results of six federal laboratories with potential application in the pulp and paper industry, particularly those results applicable to improving energy productivity, were evaluated, cataloged, and distributed to industry representatives to gauge their reaction. The principal methodological steps in this effort were the development of a taxonomy of the pulp and paper industry, identification of industry needs and laboratory capabilities, laboratory visits, review of technology findings with industry, and evaluation and compilation of industry responses.

  12. New Achievements in Technology Education and Development

    Science.gov (United States)

    Soomro, Safeeullah, Ed.

    2010-01-01

    Since many decades Education Science and Technology has an achieved tremendous recognition and has been applied to variety of disciplines, mainly Curriculum development, methodology to develop e-learning systems and education management. Many efforts have been taken to improve knowledge of students, researchers, educationists in the field of…

  13. Estimation of total Effort and Effort Elapsed in Each Step of Software Development Using Optimal Bayesian Belief Network

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Baghiabad

    2017-09-01

    Full Text Available Accuracy in estimating the needed effort for software development caused software effort estimation to be a challenging issue. Beside estimation of total effort, determining the effort elapsed in each software development step is very important because any mistakes in enterprise resource planning can lead to project failure. In this paper, a Bayesian belief network was proposed based on effective components and software development process. In this model, the feedback loops are considered between development steps provided that the return rates are different for each project. Different return rates help us determine the percentages of the elapsed effort in each software development step, distinctively. Moreover, the error measurement resulted from optimized effort estimation and the optimal coefficients to modify the model are sought. The results of the comparison between the proposed model and other models showed that the model has the capability to highly accurately estimate the total effort (with the marginal error of about 0.114 and to estimate the effort elapsed in each software development step.

  14. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  15. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  16. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  17. Breaching the Fortress Wall. Understanding Terrorist Efforts to Overcome Defensive Technologies

    Science.gov (United States)

    2007-01-01

    that affect, in overlapping ways, sequential parts of the terrorist activity chain (Figure 1.2). The purposes of each of these types of technologies...fication lineup .51 The ways in which PIRA chose to manage operations also contrib- uted to its overall counterforensic effort. For example, although

  18. Technological opportunities and paths of development

    DEFF Research Database (Denmark)

    Plichta, Kirsten

    1993-01-01

    the outcome of different firms development effort may also help shape a path at the industry level. This may be because the criteria by which the market selects between the different product may to some extent be anticipated by the developing firms or because the criteria by which the market select betwee...... technological knowledge, their production, development and other routines as well prior investments in products and production equipment play an important role with regard to the technological opportunities that firms' identify and select for development. 3) Because history matters and because firms are bounded...... in the industry. 6) It is argued that such paths of incremental improvement at the industry level may be an outcome of a) the dynamics that produce the technological opportunities; b) the institutions that govern decisions and expectations and c) the criteria by which the chooses between different firms...

  19. Making technological innovation work for sustainable development

    OpenAIRE

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.; Clark, William C.

    2016-01-01

    Sustainable development requires harnessing technological innovation to improve human well-being in current and future generations. However, poor, marginalized, and unborn populations too often lack the economic or political power to shape innovation processes to meet their needs. Issues arise at all stages of innovation, from invention of a technology through its selection, production, adaptation, adoption, and retirement. Three insights should inform efforts to intervene in innovation syste...

  20. Achieving a Prioritized Research and Technology Development Portfolio for the Dust Management Project

    Science.gov (United States)

    Hyatt, Mark J.; Abel, Phillip; Delaune, Paul; Fishman, Julianna; Kohli, Rajiv

    2009-01-01

    Mission architectures for human exploration of the lunar surface continue to advance as well as the definitions of capability needs, best practices and engineering design to mitigate the impact of lunar dust on exposed systems. The NASA DMP has been established as the agency focal point for dust characterization, technology, and simulant development. As described in this paper, the DMP has defined a process for selecting and justifying its R&T portfolio. The technology prioritization process, which is based on a ranking system according to weighted criteria, has been successfully applied to the current DMP dust mitigation technology portfolio. Several key findings emerged from this assessment. Within the dust removal and cleaning technologies group, there are critical technical challenges that must be overcome for these technologies to be implemented for lunar applications. For example, an in-situ source of CO2 on the moon is essential to the CO2 shower technology. Also, significant development effort is required to achieve technology readiness level TRL 6 for the electrostatic cleaning system for removal of particles smaller than 50 pm. The baseline materials related technologies require considerable development just to achieve TRL 6. It is also a nontrivial effort to integrate the materials in hardware for lunar application. At present, there are no terrestrial applications that are readily adaptable to lunar surface applications nor are there any obvious leading candidates. The unique requirements of dust sealing systems for lunar applications suggest an extensive development effort will be necessary to mature dust sealing systems to TRL 6 and beyond. As discussed here, several alternate materials and technologies have achieved high levels of maturity for terrestrial applications and warrant due diligence in ongoing assessment of the technology portfolio. The present assessment is the initial step in an ongoing effort to continually evaluate the DMP technology

  1. United States Superconducting MHD Magnet Technology Development Program

    International Nuclear Information System (INIS)

    Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.

    1981-01-01

    A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs

  2. Technology Development Benefits and the Economics Breakdown Structure

    Science.gov (United States)

    Shaw, Eric J.

    1998-01-01

    This paper describes the construction and application of the EBS (Economics Breakdown Structure) in evaluating technology investments across multiple systems and organizations, illustrated with examples in space transportation technology. The United States Government (USG) has a long history of investing in technology to enable its missions. Agencies such as the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) have evaluated their technology development programs primarily on their effects on mission performance and cost. More and more, though, USG agencies are being evaluated on their technology transfer to the commercial sector. In addition, an increasing number of USG missions are being accomplished by industry-led or joint efforts, where the USG provides technology and funding but tasks industry with development and operation of the mission systems.

  3. The DOE technology development programme on severe accident management

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Moore, R.A.; Theofanous, T.G.

    1998-01-01

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  4. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  5. Development of nuclear technology through International Technical Cooperation programme: Malaysian experience

    International Nuclear Information System (INIS)

    Ainul Hayati Daud

    1997-01-01

    In the advent of new technologies and knowledge, countries need to rely on one another for progress and development. At the same time, new challenges to development, which are beyond the competence of any country to approach individually, have emerged. These have led to greater need for international co-operation, particularly among the developing countries. In Malaysia, international technical co-operation has contributed significantly towards the development of nuclear technology. Malaysia has received technical assistance through the multilateral, regional and bilateral co-operation. This assistance complements the efforts of the government to meet the primary objectives of science and technology programme, which are; intensification of R and D capacity and applications of technologies, both acquired and developed, in national development. Over the last one and a half decade, more than 70 projects valued almost USD 15 millions, were implemented under the Technical Assistance Programme of the International Atomic Energy Agency and the Bilateral Technical Assistance Programme of Japan and Australia. Malaysia also has benefited from the regional technical co-operation programme such Regional Co-operative Agreement for Asia and Pacific Region, United Nation Department Programme, International Nuclear Co-operation in Asia. While receiving assistance, Malaysia continues to assist other developing countries in their development efforts in the fields of nuclear technology, through the various international co-operation programmes. This report reviews the technical assistance received through the international co-operation and its contributions towards the development of nuclear technology in Malaysia for period 1980 - 1996

  6. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  7. Research and Development Opportunities for Technologies to Influence Water Consumption Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    In April 2015, Argonne National Laboratory hosted a two-day workshop that convened water experts and stakeholders from across industry, government, and academia to undertake three primary tasks: 1) identify technology characteristics that are favorable for motivating behavioral change, 2) identify barriers that have prevented the development and market adoption of technologies with these characteristics in the water sector, and 3) identify concrete research and development pathways that could be undertaken to overcome these barriers, increase the penetration of technologies that influence water consumption behavior, and ultimately reduce domestic water consumption. While efforts to reduce water consumption have gained momentum in recent years, there are a number of key barriers that have limited the effectiveness of such efforts. Chief among these is the fact that many consumers have limited awareness of their water consumption patterns because of poor data availability, and/or are unmotivated to reduce their consumption because of low costs and split incentives. Without improved data availability and stronger price signals, it will be difficult to effect true transformative behavioral change. This report also reviews a number of technology characteristics that have successfully motivated behavioral change in other sectors, as well as several technologies that could be developed specifically for the water sector. Workshop participants discussed how technologies that provide active feedback and promote measurable goals and social accountability have successfully influenced changes in other types of behavior. A range of regulatory and policy actions that could be implemented to support such efforts are also presented. These include institutional aggregation, revenue decoupling, and price structure reforms. Finally, several R&D pathways were proposed, including efforts to identify optimal communication strategies and to better understand consumer perceptions and

  8. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  9. Technology development in market networks

    International Nuclear Information System (INIS)

    Olerup, B.

    2001-01-01

    Technology procurement is used as an environmental control means in Sweden to promote the manufacturing and sale of energy-efficient technologies. The public authority in charge makes use of the market mechanism in alternating co-operative and competitive elements. The fragmented market, with its standardised products for many small customers, is brought together to specify desired product developments. These demands also include other qualities besides energy efficiency. A contest is announced in which a possible future market is indicated to manufacturers. Efforts are made to enlarge the market to motivate their investment and to keep down the unit cost. Each side in the deal is thus given an incentive to act in the desired direction. (author)

  10. Overview of NASA Magnet and Linear Alternator Research Efforts

    Science.gov (United States)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  11. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  12. Sustainable Development Technology Canada : partnering for real results

    International Nuclear Information System (INIS)

    Sharpe, V.

    2002-01-01

    The mission of Sustainable Development Technology Canada (SDTC) is to act as the primary catalyst in building a sustainable development technology infrastructure in Canada. Their mandate is to develop new technologies that focus on climate change and clean air, and to foster new partnership throughout Canada. This Power Point presentation identified the combustion research at SDTC with particular reference to the technologies that deal with: (1) the reduction of energy intensity, emissions and waste, (2) the efficient conversion of fuel to electricity, and (3) the capture, treatment and storage of carbon dioxide at large facilities. Graphs and charts depicting the impact of GHG emissions and climate change were also included. The presentation made reference to energy efficiency efforts at the DuPont Adipic Pipe Plant, the Allentown Pennsylvania wastewater treatment plant, and the pulp and paper dryer at Clean Energy Technologies. It was noted that each of the technologies mentioned have commercial value and SDTC helps in funding projects related to energy efficiency in the transportation sector, energy production, and enabling technologies. 2 figs

  13. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  14. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  15. Supporting science in developing countries using open technologies

    International Nuclear Information System (INIS)

    Canessa, Enrique; Zennaro, Marco; Fonda, Carlo

    2009-01-01

    We describe our contributions in using information and communication technologies (ICT) to address the digital and knowledge divides in developing regions. These include the implementation of new prototype systems using state-of-the-art, low-cost technologies based on the scientific audience, the local information technology infrastructure and the level of support available from local technical staff. Efforts are made to provide the necessary capacity and know-how to understand and manage their available information infrastructure with the final goal of supporting their science to allow participation at an international level

  16. Science and technology, development factors

    International Nuclear Information System (INIS)

    Nascimento, J.O.

    1982-01-01

    Attention is drawn to the present effort in science, technology, research and development in the countries of the northern hemisphere. In the ligh to the data collected, some predictions are made about advances, especially in the metallugical field. The corresponding activities in Brazil are examined, both the more important official and state-controlled ones and those of private companies. Finally, a detailed presentation is given of what has been achieved in the specific case of niobium, whose prospects are examined. (Author) [pt

  17. Technology-Enhanced Learning in Developing Nations: A review

    Directory of Open Access Journals (Sweden)

    Shalni Gulati

    2008-02-01

    Full Text Available Learning ‘using’ technologies has become a global phenomenon. The Internet is often seen as a value-neutral tool that potentially allows individuals to overcome the constraints of traditional elitist spaces and gain unhindered access to learning. It is widely suggested that online technologies can help address issues of educational equity and social exclusion, and open up democratic and accessible educational opportunities. The national governments and non-governmental agencies who fund educational endeavours in developing countries have advocated the use of new technologies to reduce the cost of reaching and educating large numbers of children and adults who are currently missing out on education. This paper presents an overview of the educational developments in open, distance, and technology-facilitated learning that aim to reach the educationally deprived populations of the world. It reveals the challenges encountered by children and adults in developing countries as they attempt to access available educational opportunities. The discussion questions whether, in face of these challenges, developing nations should continue to invest money, time, and effort into e-learning developments. Can technology-enhanced learning help address the poverty, literacy, social, and political problems in developing countries?

  18. Maximizing Research and Development Resources: Identifying and Testing "Load-Bearing Conditions" for Educational Technology Innovations

    Science.gov (United States)

    Iriti, Jennifer; Bickel, William; Schunn, Christian; Stein, Mary Kay

    2016-01-01

    Education innovations often have a complicated set of assumptions about the contexts in which they are implemented, which may not be explicit. Education technology innovations in particular may have additional technical and cultural assumptions. As a result, education technology research and development efforts as well as scaling efforts can be…

  19. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  20. Technological transfer. 1. Appropriateness for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W

    1978-12-01

    Capital-intensive projects dominate the technology transferred to developing countries in spite of the need to serve a pool of unskilled labor and small capital reserves. Recent doubts about the appropriateness of large industrialization projects have questioned the social and economic benefits of this approach and led to an emphasis on innovative planning for the benefit of the urban and rural poor. This shift assumed that direct attacks on the roots of poverty will be more effective than the trickle-down approach, but development planners now see that technologies can be planned that are not limited to single groups. Official policies, often working against the adoption of appropriate technologies, must consider local needs and local resources. Farm equipment, for example, must minimize the need for skilled labor and maintenance. Planners for appropriate urban technology should emphasize local capability, but should also risk occasional failure in the effort to improve the efficiency of labor.

  1. Retrieval process development and enhancements project Fiscal year 1995: Simulant development technology task progress report

    International Nuclear Information System (INIS)

    Golcar, G.R.; Bontha, J.R.; Darab, J.G.

    1997-01-01

    The mission of the Retrieval Process Development and Enhancements (RPD ampersand E) project is to develop an understanding of retrieval processes, including emerging and existing technologies, gather data on these technologies, and relate the data to specific tank problems such that end-users have the requisite technical bases to make retrieval and closure decisions. The development of waste simulants is an integral part of this effort. The work of the RPD ampersand E simulant-development task is described in this document. The key FY95 accomplishments of the RPD ampersand E simulant-development task are summarized below

  2. Fundamental Technology Development for Gas-Turbine Engine Health Management

    Science.gov (United States)

    Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.

    2007-01-01

    Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.

  3. Recent Efforts in Communications Research and Technology at the Glenn Research Center in Support of NASA's Mission

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    As it has done in the past, NASA is currently engaged in furthering the frontiers of space and planetary exploration. The effectiveness in gathering the desired science data in the amount and quality required to perform this pioneering work relies heavily on the communications capabilities of the spacecraft and space platforms being considered to enable future missions. Accordingly, the continuous improvement and development of radiofrequency and optical communications systems are fundamental to prevent communications to become the limiting factor for space explorations. This presentation will discuss some of the research and technology development efforts currently underway at the NASA Glenn Research Center in the radio frequency (RF) and Optical Communications. Examples of work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, thin films ferroelectric-based tunable components, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  4. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  5. Engineering Research and Development and Technology thrust area report FY92

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  6. Engineering Research and Development and Technology thrust area report FY92

    International Nuclear Information System (INIS)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering

  7. Development of FBR technology in the FBR 'Joyo'

    International Nuclear Information System (INIS)

    Nara, Yoshihiko; Akiyama, Takao; Sato, Isao; Mizoo, Nobutatsu; Yoshimi, Hirotaka; Shimada, Takashi

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corp. has advanced the construction of the prototype FBR ''Monju'', and the ground breaking ceremony was held on October 28, 1985. For the design and construction of Monju, the experience, achievement, and the results of development by the own effort and international cooperation gained by the experimental FBR ''Joyo'' have been reflected. It is important to develop the core management technology, operation-supporting system, the techniques of regular inspection, maintenance and repair, the reduction of radiation exposure and so on, to accumulate the experience, and to reflect those accurately to Monju. The operation history of the experimental FBR ''Joyo'', the international joint research on FBRs using the Joyo, the results regarding the characteristic technology of FBRs such as the reactor core, fuel and control rods, sodium technology, the construction of machinery and equipment, and the plant system the plan of developing the high grade technology of FBRs such as the development of fuel and materials, the improvement of reliability and the development of operation management techniques, the verifying test of new technology such as spent fuel storage, the new system for sodium purification and the techniques for analyzing earthquake response, and the international cooperation are reported. (Kako, I.)

  8. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  9. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  10. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  11. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  12. Development Efforts Of Oil Companies As Perceived By Rural ...

    African Journals Online (AJOL)

    ... that the host communities are highly satisfied with companies' efforts (projects and services) to them. Based on these findings, recommendations were made. Key words: Oil producing communities; oil exploration/production; company's development efforts; Journal of Agriculture and Social Research Vol.4(1) 2004: 60-71 ...

  13. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  14. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Lee, Byung Sun; Kwon, Kee Choon; Lee, Dong Young; Hwang, In Koo; Lee, Jang Soo; Kim, Jung Soo; Kim, Chang Hwoi; Jung, Chul Hwan; Na, Nan Ju; Dong, In Sook; Kang, Soon Gu; Lyu, Chan Ho; Song, Soon Ja

    1994-07-01

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  15. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  16. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dougan, A.; Dreicer, M.; Essner, J.; Gaffney, A.; Reed, J.; Williams, R.

    2009-01-01

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  17. Marine and Hydrokinetic Technology Development Risk Management Framework

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  18. Development of site remediation technologies in European countries

    International Nuclear Information System (INIS)

    Nunno, T.J.; Hyman, J.A.; Pheiffer, T.

    1988-01-01

    Site remediation is a pressing issue in European countries due to limited availability of land. Therefore, much progress is being made in the development of effective technologies for remediating contaminated sites. The purpose of this program was to investigate the most successful and innovative technologies for potential application into US markets. This EPA-sponsored project was based on a 9-month research effort which identified 95 innovative technologies in use or being researched in foreign countries. The most promising technologies were studied in-depth through personal interviews with the engineers who research and apply these technologies, and tours of laboratory models and full-scale installations. The most successful full-scale technologies investigated were developed in Holland, West Germany and Belgium. These technologies include vacuum extraction of hydrocarbons from soil, in situ washing of cadmium-polluted soil, rotating biocontractors for treating pesticides in ground water, high-temperature slagging incineration of low-level radioactive wastes, in situ steam stripping, and a number of landfarming and soil washing operations. The paper provides description of 13 site remediation techniques that have shown such promise in laboratory studies or in practice to warrant consideration of their use in the US

  19. A proposed office of technology development education program

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The office of Environmental Restoration and Waste Management (EM) was formed within the US Department of Energy (DOE) to clean up radioactive and hazardous wastes on US government sites associated with the production and use of nuclear weapon materials In order to insure the development and demonstration of technologies necessary for the task, EM established an office of Technology Development (OTD). Furthermore, in order to accomplish this massive effort, DOE and its contractors will need large numbers of technically trained people. Because of the demands on the same pool of such individuals by other government agencies and the private sector, it is not clear that the supply will be sufficient to meet the competing demands.

  20. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    Science.gov (United States)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; hide

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA

  1. Development of the advanced CANDU technology

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Min, Byung Joo; Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R.

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs

  2. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y H; Lee, S Y; Choi, J H; Lee, B C; Kim, S N; Jo, C H; Paik, J S; On, M R; Park, H S; Kim, S R [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  3. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  4. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  5. The Management of Innovation and Patterns in Technological Development

    DEFF Research Database (Denmark)

    Howells, John

    2003-01-01

    This paper is a review of efforts to summarise long-term technological development in the management literature in terms of 'paths' or trajectories. They are most useful as a way of understanding the general search for economies of scale, but the management value of such ideas is compromised...... because it is difficult in practice to judge the beginning and end of such patterns of change. The establishment of technolgical standards is seen as a special case of such patterns within technological development. the classic cases of the QWERTY keyboard, the VHS versus Betamax videocassette recorder...... there is a choice between various 'neutral' standards. In such circumstances a blatant attempt to use a particular standard to benefit one technological player against others, when the others have equivalent technological ability, is likely to trigger mutually destructive game-playing, as occurred in the colour TV...

  6. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  7. Technology development and innovation for the bottom of the economic pyramid

    Science.gov (United States)

    Gadgil, Ashok

    2015-04-01

    Directed development of new technologies to solve specific problems of the poor in the developing world is a daunting task. Developing countries can be a wasteland littered with failed technologies sent there with much goodwill and effort from the industrial countries. Drawing on my team's experience I summarize our answers to some key questions for the technology designer or developer: How might one go about it? What works and what doesn't? What lessons can one draw from an examination of select successes and failures? The key lessons from our experience are: (1) successful technology design and implementation can not be separated from each other - they are tightly intertwined, (2) social factors are as critical for a technology's success as factors based on engineering science, and (3) ignorance of political economy, behavioral economics, organizational behavior, institutional imperatives, cultural norms and social drivers can prove fatal flaws when a new technology leaves the laboratory and meets the real world.

  8. Research and development efforts in the implementation of nuclear power programme in Indonesia

    International Nuclear Information System (INIS)

    Suhaemi, T.

    1986-04-01

    Research and development efforts in the implementation of nuclear power programme in Indonesia are presented. According to Indonesia Law, the National Atomic Energy Agency (BATAN) is an official body which is reponsible for all aspects of nuclear development. In implementing the nuclear power, BATAN together with the State Electricity Corporation (PLN) have pioneered the introduction of nuclear power plant in Indonesia by carrying out various activities, studies, seminars, workshops and report writings. A nuclear power planning study was carried out jointly with the International Atomic Energy Agency. The feasibility studies were also carried out by NIRA, an Italian consultant firm in cooperation with BATAN and PLN. To improve research and development, BATAN has established 5 research nuclear centres which function as centres of basic and applied research, isotope and radiation application, standardization and calibration and uranium exploration. Nowadays BATAN is constructing a sophisticated and multidisciplinary complex at Serpong near Jakarta. It is hoped that the participation of the national industry can be synchronized to the construction of the first nuclear power in Indonesia. To endorse the movement towards the industrial and technological future, the National Centre for Research, Science and Technology (known as PUSPITEK) has been established. There will be 12 different laboratories providing facilities for research and development of all aspects of technology. For training manpower, BATAN has established the Education and Training Centre (PUSDIKLAT). BATAN has also collaborated with universities, such as Gadjahmada University in Yogyakarta, in establishing Nuclear Engineering Division in the School of Engineering. 6 refs, 3 figs

  9. Making technological innovation work for sustainable development

    Science.gov (United States)

    Anadon, Laura Diaz; Harley, Alicia G.; Matus, Kira; Moon, Suerie; Murthy, Sharmila L.

    2016-01-01

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  10. Making technological innovation work for sustainable development.

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.

  11. Survey and research for the enhancement of large-scale technology development 2. How large-scale technology development should be in the future; Ogata gijutsu kaihatsu suishin no tame no chosa kenkyu. 2. Kongo no ogata gijutsu kaihatsu no arikata

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A survey is conducted over the subject matter by holding interviews with people, employed with the entrusted businesses participating in the large-scale industrial technology development system, who are engaged in the development of industrial technologies, and with people of experience or academic background involved in the project enhancement effort. Needs of improvement are pointed out that the competition principle based for example on parallel development be introduced; that research-on-research be practiced for effective task institution; midway evaluation be substantiated since prior evaluation is difficult; efforts be made to organize new industries utilizing the fruits of large-scale industrial technology for the creation of markets, not to induce economic conflicts; that transfer of technologies be enhanced from the private sector to public sector. Studies are made about the review of research conducting systems; utilization of the power of private sector research and development efforts; enlightening about industrial proprietorship; and the diffusion of large-scale project systems. In this connection, problems are pointed out, requests are submitted, and remedial measures and suggestions are presented. (NEDO)

  12. Methodological Considerations When Quantifying High-Intensity Efforts in Team Sport Using Global Positioning System Technology.

    Science.gov (United States)

    Varley, Matthew C; Jaspers, Arne; Helsen, Werner F; Malone, James J

    2017-09-01

    Sprints and accelerations are popular performance indicators in applied sport. The methods used to define these efforts using athlete-tracking technology could affect the number of efforts reported. This study aimed to determine the influence of different techniques and settings for detecting high-intensity efforts using global positioning system (GPS) data. Velocity and acceleration data from a professional soccer match were recorded via 10-Hz GPS. Velocity data were filtered using either a median or an exponential filter. Acceleration data were derived from velocity data over a 0.2-s time interval (with and without an exponential filter applied) and a 0.3-second time interval. High-speed-running (≥4.17 m/s 2 ), sprint (≥7.00 m/s 2 ), and acceleration (≥2.78 m/s 2 ) efforts were then identified using minimum-effort durations (0.1-0.9 s) to assess differences in the total number of efforts reported. Different velocity-filtering methods resulted in small to moderate differences (effect size [ES] 0.28-1.09) in the number of high-speed-running and sprint efforts detected when minimum duration was GPS. Changes to how high-intensity efforts are defined affect reported data. Therefore, consistency in data processing is advised.

  13. Cooperative efforts to improve nuclear materials accounting, control and physical protection at the National Science Center, Kharkov Institute of Physics and Technology

    International Nuclear Information System (INIS)

    Zelensky, V.F.; Mikhailov, V.A.

    1996-01-01

    The US Department of Energy (DOE) and the Ukrainian Government are engaged in a program of cooperation to enhance the nonproliferation of nuclear weapons by developing a strong national system of nuclear material protection, control, and accounting (MPC and A). This paper describes the capabilities and work of the Kharkov Institute of Physics and Technology (KIPT) and cooperative efforts to improve MPC and A at this facility. It describes how these cooperative efforts grew out of Ukraine''s decision to become a non-nuclear weapon state and the shortcomings in MPC and A that developed at KIPT after the disintegration of the former Soviet Union. It also envisions expanded future cooperation in other areas of nuclear materials management

  14. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  15. Technology road mapping to guide development planning

    International Nuclear Information System (INIS)

    Goossen, J.E.; Congedo, T.V.

    2004-01-01

    For the past five years, Westinghouse Electric Company, has made ever increasing use of Technology Road Mapping, to direct company development efforts to achieve maximum benefits for our customers and ourselves. Comprised of business units in Nuclear Fuels, Nuclear Services and Nuclear Power Plants, including domestic and international business segments, Westinghouse must pay particular attention to coordinating development to satisfy the diverse needs of our growing international customer base. We must develop products which both benefit the individual Business Unit customer base, and which create synergy to produce the best possible offerings to the broader marketplace. The knowledge we gain through customer contacts and direct customer participation provides the basis from which we develop the Technology Road Map. This Road Map development process can be compared to painting a picture, where the background colors and features correspond to drivers related to the Customer and the prevailing features of the market environment. The subsequent layers of detail include broad Technical Objectives and then specific Technical Goals which will support achieving those objectives. The process is described in detail, and examples are provided. (authors)

  16. Considerations in promoting markets for sustainable energy technologies in developing countries

    International Nuclear Information System (INIS)

    Radka, Mark; Kamel, Sami

    2003-01-01

    The growth in demand for energy in both developed and developing countries is expected to continue an upward trend for many years, with a large portion of the increase projected to occur in developing countries. As these countries undertake various economic development initiatives and programmes it is important from a global environmental perspective that they increase the proportion of efficient, low carbon emitting energy in the energy mix. This paper identifies a number of ways of improving markets that foster increased adoption of clean energy technologies in developing countries. The paper concludes that a holistic approach is needed if new technology promotion efforts are to succeed. Ensuring the appropriateness of the technology, and hence its sustainability, requires proper attention to social, economic and political criteria as well as the fundamental technical characteristics. (au)

  17. Considerations in promoting markets for sustainable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Mark [United Nations Environment Programme, Div. of Technology, Industry and Economics (France); Kamel, Sami [Risoe National Lab., UNEP Risoe Centre for Energy, Climate Change and Sustainable Development, Roskilde (Denmark)

    2003-09-01

    The growth in demand for energy in both developed and developing countries is expected to continue an upward trend for many years, with a large portion of the increase projected to occur in developing countries. As these countries undertake various economic development initiatives and programmes it is important from a global environmental perspective that they increase the proportion of efficient, low carbon emitting energy in the energy mix. This paper identifies a number of ways of improving markets that foster increased adoption of clean energy technologies in developing countries. The paper concludes that a holistic approach is needed if new technology promotion efforts are to succeed. Ensuring the appropriateness of the technology, and hence its sustainability, requires proper attention to social, economic and political criteria as well as the fundamental technical characteristics. (au)

  18. Using technology to develop and distribute patient education storyboards across a health system.

    Science.gov (United States)

    Kisak, Anne Z; Conrad, Kathryn J

    2004-01-01

    To describe the successful implementation of a centrally designed and managed patient education storyboard project using Microsoft PowerPoint in a large multihospital system and physician-based practice settings. Journal articles, project evaluation, and clinical and educational experience. The use of posters, bulletin boards, and storyboards as educational strategies has been reported widely. Two multidisciplinary committees applied new technology to develop storyboards for patient, family, and general public education. Technology can be used to coordinate centralized development of patient education posters, improving accuracy and content of patient education across a healthcare system while streamlining the development and review process and avoiding duplication of work effort. Storyboards are excellent sources of unit-based current, consistent patient education; reduce duplication of efforts; enhance nursing computer competencies; market nursing expertise; and promote nurse educators.

  19. Efforts for nuclear energy human resource development by industry-government-academic sectors cooperation. Nuclear Energy Human Resource Development Council Report

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2009-01-01

    The report consists of eighteen sections such as the present conditions of nuclear energy, decreasing students in the department of technology and decreasing numbers of nuclear-related subjects, The Nuclear Energy Human Resources Development Program (HRD Program), The Nuclear Energy Human Resources Development Council (HRD Council), the industry-academia partnership for human resource development, the present situation of new graduates in the nuclear field, new workers of nuclear industry, the conditions of technical experts in the nuclear energy industry, long-range forecast of human resource, increasing international efforts, nuclear energy human resources development road map, three points for HRD, six basic subjects for HRD, the specific efforts of the industrial, governmental and academic sectors, promoting a better understanding of nuclear energy and supporting job hunting and employment, students to play an active part in the world, and support of the elementary and secondary schools. Change of numbers of nuclear-related subjects of seven universities, change of number of new graduates in nuclear field of various companies from 1985 to 2006, number of people employed by nuclear industries from 1998 to 2007, number of technical experts in the electric companies and the mining and manufacturing industries and forecast of number of technical experts in total nuclear industries are illustrated. (S.Y.)

  20. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  1. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  2. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  3. 48 CFR 35.009 - Subcontracting research and development effort.

    Science.gov (United States)

    2010-10-01

    ... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 35.009 Subcontracting research and development effort. Since the selection of R&D contractors is substantially based on... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Subcontracting research...

  4. Nuclear technology and the developing world

    International Nuclear Information System (INIS)

    Walsh, Kathleen

    2005-01-01

    The early 21st century has magnified the dangers posed by proliferation of weapons of mass destruction (WMD). Nonetheless, cooperative efforts to thwart this trade have grown considerably more difficult and the challenges more complicated. The ubiquitous nature of dual-use technology, the application of terrorist tactics for mass destruction on 9/11, the emergence of a more unilateralist US foreign policy, and the world's ever-expanding economic relations have all made more arduous the task of stemming proliferation of WMD, their precursors, and delivery systems. All of these challenges have been highlighted in recent years, but it is the last of these - the changing nature of the global economy- that is perhaps least analyzed but also most essential to improving international cooperation on nonproliferation. Many of today's proliferation concerns are familiar problems exacerbated by accelerating levels of international trade and investment. For example, controlling sensitive exports has become more complicated as officials, industry leaders, and nonproliferation experts must struggle simultaneously to find ways to ensure the flow of exports to legitimate buyers and supply chain partners who increasingly span the globe. Similarly, competitive enterprises today place a premium on rapid delivery and the speed of transactions. This in turn has increased pressures placed on officials around the world to reduce the time they spend evaluating each licensing decision, even as these assessments become more difficult as global investors move deeper into the developing world. Furthermore, the emergence of developing economies as second-tier suppliers with the potential to transship critically sensitive technologies to third parties is another complicating factor and a consequence of the globalizing economy. Science, technology, and industry research and development activities with dual-use applications are also becoming increasingly international endeavors, facilitated

  5. Technology development for a Stirling radioisotope power system

    International Nuclear Information System (INIS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions

  6. Technological developments and safeguards instrumentation: Responding to new challenges

    International Nuclear Information System (INIS)

    Naito, K.; Rundquist, D.E.

    1994-01-01

    Entering the 1990s, technological tools that were in the research and development stage not so long ago are changing the way inspectors are able to verify nuclear materials at many facilities around the world. Many new instruments - ranging from advanced video monitoring systems to miniature detectors and analysers - already are in place. In some cases, they have been custom-made for specific safeguards tasks, or for placement in locations, such as underwater storage pools for spent reactor fuel, where inspectors cannot go. Standing behind the development of many of these new safeguards instruments are a number of factors. They include: technological advances In computer related fields, such as microprocessing and electronics, and specific areas of instrumentation; technical developments in the nuclear industry and Efficiency improvements and efforts to reduce the costs of safeguards implementation

  7. Medically relevant ElectroNeedle technology development.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  8. Overcoming political, social and economic barriers to promote solar photovoltaic technology in a developing country

    International Nuclear Information System (INIS)

    Wijesooriya, P.; Hande, H.; Gunaratne, L.

    1994-01-01

    This paper narrates the experiences of a private sector commercial company and that of a private developers (non-profit organization) in their efforts to promote solar PV in a developing country. The country chosen is Sri Lanka, in which a considerable PV effort has already been witnessed. However, substantial political, economic and social barriers exist which have hindered PV promotion in that country. The authors point that similar constraints may impede promotional efforts in many developing countries and recommend that a global paradigm to promote the technology must assign an important role to the issue of obstacles

  9. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  10. Technology development needs summary, FY 1995

    International Nuclear Information System (INIS)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included

  11. Technology development needs summary, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  12. Towards the systematic development of medical networking technology.

    Science.gov (United States)

    Faust, Oliver; Shetty, Ravindra; Sree, S Vinitha; Acharya, Sripathi; Acharya U, Rajendra; Ng, E Y K; Poo, Chua Kok; Suri, Jasjit

    2011-12-01

    Currently, there is a disparity in the availability of doctors between urban and rural areas of developing countries. Most experienced doctors and specialists, as well as advanced diagnostic technologies, are available in urban areas. People living in rural areas have less or sometimes even no access to affordable healthcare facilities. Increasing the number of doctors and charitable medical hospitals or deploying advanced medical technologies in these areas might not be economically feasible, especially in developing countries. We need to mobilize science and technology to master this complex, large scale problem in an objective, logical, and professional way. This can only be achieved with a collaborative effort where a team of experts works on both technical and non-technical aspects of this health care divide. In this paper we use a systems engineering framework to discuss hospital networks which might be solution for the problem. We argue that with the advancement in communication and networking technologies, economically middle class people and even some rural poor have access to internet and mobile communication systems. Thus, Hospital Digital Networking Technologies (HDNT), such as telemedicine, can be developed to utilize internet, mobile and satellite communication systems to connect primitive rural healthcare centers to well advanced modern urban setups and thereby provide better consultation and diagnostic care to the needy people. This paper describes requirements and limitations of the HDNTs. It also presents the features of telemedicine, the implementation issues and the application of wireless technologies in the field of medical networking.

  13. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  14. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  15. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  16. Developing an instrument to assess information technology staff motivation

    OpenAIRE

    Belfo, Fernando Paulo; Sousa, Rui Dinis

    2011-01-01

    Motivation is a key factor that influences individual effort, which, in turn, affects individual and organizational performance. Nevertheless, motivation at work depends on the organizational rewards and incentives, according to individual goals. This paper reports on the development of an instrument designed to measure the motivation of Information Technology people at their workplace. Psychology theories and work addressing intrinsic and extrinsic motivation have been studied. Some motivati...

  17. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  18. Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE's environmental management international technology integration program

    International Nuclear Information System (INIS)

    Jordan, G.B.; Reed, J.H.; Wyler, L.D.

    1997-03-01

    This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline

  19. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  20. The Department of Energy's safeguards and security technology development program

    International Nuclear Information System (INIS)

    Smith, G.D.; Pocratsky, C.A.

    1995-01-01

    The US DOE has had a program that develops technologies to protect sensitive nuclear weapons facilities for more than thirty years. The mission of the program is overwhelmingly diverse, as it must be to protect an array of assets such as nuclear weapons, special nuclear material in various forms, components of nuclear weapons, and classified nuclear weapons design information. Considering that the nuclear weapons complex consists of dozens of facilities that are scattered all over the US, the technology development mission is very challenging. Complicating matters further is the ever uncertain future of the DOE. Some examples of dramatic Departmental mission changes that directly impact their security technology development program are given. A few development efforts are highlighted as examples of efforts currently being sponsored. They are: automated sensor testing devices to help reduce the requirement for personnel to enter vaults containing highly radioactive nuclear materials; a vehicle inspection portal to screen vehicles for hidden passengers, nuclear material, explosives, and other contraband; non-lead and short-range ammunition as an environmentally safe alternative to lead ammunition; a complex-wide visitor access control system to allow all DOE employees to travel to all sites with a commonly recognized credential; automated nuclear material monitoring technologies to provide assurance that material in storage has not been tampered with; laser radar as a potential solution to early warning deficiencies throughout the Department; performance testing standards for many security products to include an automated and consistent standard for assessing the quality of video; low temperature pyrotechnic smoke as a possible adversary delay mechanism; modular vaults to provide temporary protection for nuclear material during D and D activities, and a protection approach for restricted passage areas such as the volume above a tiled ceiling or within a crawl space

  1. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  2. Recent progress at NASA in LISA formulation and technology development

    International Nuclear Information System (INIS)

    Stebbins, R T

    2008-01-01

    Over the last year, the NASA half of the joint LISA project has focused its efforts on responding to a major review, and advancing the formulation and technology development of the mission. The NAS/NRC Beyond Einstein program assessment review will be described, including the outcome. The basis of the LISA science requirements has changed from detection determined by integrated signal-to-noise ratio to observation determined by uncertainty in the estimation of astrophysical source parameters. The NASA team has further defined the spacecraft bus design, participated in many design trade studies and advanced the requirements flow down and the associated current best estimates of performance. Recent progress in technology development is also summarized

  3. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  4. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  5. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, Adam D. [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  6. Extravehicular Activity (EVA) Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  7. Technological developments in real-time operational hydrologic forecasting in the United States

    Science.gov (United States)

    Hudlow, Michael D.

    1988-09-01

    The hydrologic forecasting service of the United States spans applications and scales ranging from those associated with the issuance of flood and flash warnings to those pertaining to seasonal water supply forecasts. New technological developments (underway in or planned by the National Weather Service (NWS) in support of the Hydrologic Program) are carried out as combined efforts by NWS headquarters and field personnel in cooperation with other organizations. These developments fall into two categories: hardware and software systems technology, and hydrometeorological analysis and prediction technology. Research, development, and operational implementation in progress in both of these areas are discussed. Cornerstones of an overall NWS modernization effort include implementation of state-of-the-art data acquisition systems (including the Next Generation Weather Radar) and communications and computer processing systems. The NWS Hydrologic Service will capitalize on these systems and will incorporate results from specific hydrologic projects including collection and processing of multivariate data sets, conceptual hydrologic modeling systems, integrated hydrologic modeling systems with meteorological interfaces and automatic updating of model states, and extended streamflow prediction techniques. The salient aspects of ongoing work in these areas are highlighted in this paper, providing some perspective on the future U.S. hydrologic forecasting service and its transitional period into the 1990s.

  8. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Full text: Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focused on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non-destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  9. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focussed on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  10. Landmarks in the historical development of twenty first century food processing technologies.

    Science.gov (United States)

    Misra, N N; Koubaa, Mohamed; Roohinejad, Shahin; Juliano, Pablo; Alpas, Hami; Inácio, Rita S; Saraiva, Jorge A; Barba, Francisco J

    2017-07-01

    Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development efforts on helium vessel for 5 cell - 650 MHz SRF cavity at RRCAT

    International Nuclear Information System (INIS)

    Kumar, Abhay; Kumar, Pankaj; Sandha, R.S.; Dutta, Subhajit; Soni, Rakesh; Dwivedi, Jishnu; Thakurta, A.C.; Bhatnagar, V.K.; Mundra, G.

    2011-01-01

    The work focuses on the development of helium vessel which houses a 5 cell - 650 MHz SRF niobium cavity and serves as a helium bath to maintain the cavity at 2 K. The vessel has provision for changing the axial length of the cavity for tuning purpose by using a tuning mechanism and a large bellow. Titanium has been chosen as a material of construction of the vessel due to its coefficient of thermal expansion being close to that of niobium. Efforts have been initiated to understand the functional requirements, design requirements, acceptance criteria for design and analysis, non-destructive examination requirements, inspection and testing requirements, manufacturing technology of the titanium vessel and its integration with the SRF cavity. The welding assumes a special significance as titanium is highly reactive and ductility of the weld joint is lost in the presence of air and other impurities. A trial vessel has been conceptualised having typical sizes and geometries. The manufacturing features of vessel are based on ASME B and PV Code, Section VIII Division-1 and manufacturing of this vessel has been started at an Indian industry. Quality assurance plan for this work is developed. The paper describes the work done at RRCAT on the functional and integration requirements, overall design requirements, design methodology to achieve code conformance, manufacturing technology and QAP being used in the development of helium vessel. (author)

  12. Extravehicular Activity Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  13. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  14. Current Technology in the Discovery and Development of Novel Antibacterials.

    Science.gov (United States)

    Chung, Pooi Yin

    2018-01-01

    Bacterial resistance to antibiotics is one of the most serious challenge to global public health. The introduction of new antibiotics in clinical settings, i.e. agents that belong to a new class of antibacterials, act on new targets or has a novel mechanisms of action, may not be sufficient to cope with the emergence of multidrug-resistant pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli, which are increasingly prevalent in healthcare settings in Europe, the USA and Asia. Hence, coordinated efforts in minimizing the risk of spread of resistant bacteria and renewing research efforts in the search for novel antibacterial agents are urgently needed to manage this global crisis. This review highlights the challenges and potential in using current technologies in the discovery and development of novel antibacterial agents to keep up with the constantly evolving resistance in bacteria. With the explosion of bacterial genomic data and rapid development of new sequencing technologies, the understanding of bacterial pathogenesis and identification of novel antibiotic targets have significantly improved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  16. NREL Quickens its Tech Transfer Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Lammers, H.

    2012-02-01

    Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research

  17. Chemical sensors technology development planning workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A. [eds.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  18. Fiscal 2000 research achievement report on the research and development of advanced design technologies for system-on-chip; 2000 nendo system on chip sentan sekkei gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    Efforts were made to develop technologies for rapid improvement in SoC (system on chip) design productivity. In concrete terms, the concept of V-core (virtual core) was introduced into SoC design for the establishment of reusing technology and design automation in the uppermost stream region of designing. Activities were conducted in the two fields of (1) research and development of V-core based design technology and (2) research and development of a V-core database. Efforts exerted in field (1) aimed at the research and development of system specifications description technology, architecture generation technology, soft V-core internal structure optimization technology, optimized RTL (register transfer level) description generation technology, and system performance verification technology. In field (2), efforts were made to develop core database technology, core development support tools, core verification technology, and design assets verification technology. The system specifications description technology is a technique to define SoC system level specifications (degree of model abstraction). (NEDO)

  19. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of low-cost large-area module manufacturing technology - Development of next-generation thin-film solar cell manufacturing technology - Development of thin-film polycrystalline solar cell module manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu / jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu (usumaku takessho taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim is to realize the practical application of the above-named solar module expected to exhibit higher efficiency and reliability and achieve cost reduction through consumption of less materials. In fiscal 1998, 1) technologies were developed to reduce substrate warpage during recrystallization for the higher-throughput fabrication of high-quality thin films and 2) technologies were also developed for the realization of higher-throughput fabrication of thin films and for efficiency improvement for thin-film modules. Under item 1), experiments were conducted by simulation for reducing warpage to occur in thin-film polycrystalline Si substrates during fabrication by melting and recrystallization. Under item 2), for the development of thin-film cell high-throughput technologies, studies were started on a more practical hydrogen plasma process to challenge the conventional process of crystal defect inactivation by hydrogen ion injection with which achievement of high throughputs is difficult. For the development of technologies for the enhancement of thin-film module efficiency, efforts were exerted to realize a 10cm times 10cm square shape for the enhancement of efficiency in the process of filling modules with cells. These efforts achieved a great step toward future practical application. (NEDO)

  20. Living systematic reviews: 2. Combining human and machine effort.

    Science.gov (United States)

    Thomas, James; Noel-Storr, Anna; Marshall, Iain; Wallace, Byron; McDonald, Steven; Mavergames, Chris; Glasziou, Paul; Shemilt, Ian; Synnot, Anneliese; Turner, Tari; Elliott, Julian

    2017-11-01

    New approaches to evidence synthesis, which use human effort and machine automation in mutually reinforcing ways, can enhance the feasibility and sustainability of living systematic reviews. Human effort is a scarce and valuable resource, required when automation is impossible or undesirable, and includes contributions from online communities ("crowds") as well as more conventional contributions from review authors and information specialists. Automation can assist with some systematic review tasks, including searching, eligibility assessment, identification and retrieval of full-text reports, extraction of data, and risk of bias assessment. Workflows can be developed in which human effort and machine automation can each enable the other to operate in more effective and efficient ways, offering substantial enhancement to the productivity of systematic reviews. This paper describes and discusses the potential-and limitations-of new ways of undertaking specific tasks in living systematic reviews, identifying areas where these human/machine "technologies" are already in use, and where further research and development is needed. While the context is living systematic reviews, many of these enabling technologies apply equally to standard approaches to systematic reviewing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Guiding recombinant antivenom development by omics technologies

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2017-01-01

    , endogenous animal proteins with toxin-neutralizing capabilities, and recombinant monoclonal antibodies. Harnessing either of these approaches, antivenom development may benefit from an in-depth understanding of venom compositions and the medical importance of individual venom toxins. Focus is thus also...... directed towards the different omics technologies (particularly venomics, antivenomics, and toxicovenomics) that are being used to uncover novel animal toxins, shed light on venom complexity, and provide directions for how to determine the medical relevance of individual toxins within whole venoms. Finally......In this review, the different approaches that have been employed with the aim of developing novel antivenoms against animal envenomings are presented and discussed. Reported efforts have focused on the use of innovative immunization strategies, small molecule inhibitors against enzymatic toxins...

  2. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  3. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  4. Outsourcing R&D Modules of a New Developing Technology

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Perunovic, Zoran

    2004-01-01

    The paper explores some of the dimensions of the R&D processes: modularity, uncertainty and outsourcing. Ways to divide R&D effort into modules and to argue, either in direction of its modularity, or interdependency, are presented. Further on, uncertainties are segmented into the majors and minors......, and reasons to outsource R&D modules, in the light of these uncertainties, have been investigated. The R&D process has been observed from insulin technologies development over time....

  5. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  6. Impact of Hearing Aid Technology on Outcomes in Daily Life II: Speech Understanding and Listening Effort.

    Science.gov (United States)

    Johnson, Jani A; Xu, Jingjing; Cox, Robyn M

    2016-01-01

    Modern hearing aid (HA) devices include a collection of acoustic signal-processing features designed to improve listening outcomes in a variety of daily auditory environments. Manufacturers market these features at successive levels of technological sophistication. The features included in costlier premium hearing devices are designed to result in further improvements to daily listening outcomes compared with the features included in basic hearing devices. However, independent research has not substantiated such improvements. This research was designed to explore differences in speech-understanding and listening-effort outcomes for older adults using premium-feature and basic-feature HAs in their daily lives. For this participant-blinded, repeated, crossover trial 45 older adults (mean age 70.3 years) with mild-to-moderate sensorineural hearing loss wore each of four pairs of bilaterally fitted HAs for 1 month. HAs were premium- and basic-feature devices from two major brands. After each 1-month trial, participants' speech-understanding and listening-effort outcomes were evaluated in the laboratory and in daily life. Three types of speech-understanding and listening-effort data were collected: measures of laboratory performance, responses to standardized self-report questionnaires, and participant diary entries about daily communication. The only statistically significant superiority for the premium-feature HAs occurred for listening effort in the loud laboratory condition and was demonstrated for only one of the tested brands. The predominant complaint of older adults with mild-to-moderate hearing impairment is difficulty understanding speech in various settings. The combined results of all the outcome measures used in this research suggest that, when fitted using scientifically based practices, both premium- and basic-feature HAs are capable of providing considerable, but essentially equivalent, improvements to speech understanding and listening effort in daily

  7. Perspectives of radiological protection facing the development of new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The development of medical technologies with ionizing radiations is always showing a parallel effort on risks control. These technologies are a safe tool for accurate diagnosis and the elaboration of effective treatments. However it is not foreseen to achieve a decrease of the equivalent effective annual dose person due to medical irradiation (1.06 m Sv for OECD countries), because of the population growing and aging

  8. Positron Emission Tomography: Principles, Technology, and Recent Developments

    Science.gov (United States)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  9. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  10. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  11. Construction and Development of CRM Technology and Industry Chain in China

    Science.gov (United States)

    Liu, Chunnian; Wang, Yonglong; Pan, Qin

    CRM is any application or initiative designed to help an organization optimize interactions with customers, suppliers, or prospects via one or more touch points. CRM has been interpreted and used in different ways by researchers in the various disciplines and researchers have identified a variety of technologies related to CRM. This paper highlights the implementation from the technology level and contributes to some successful factors in CRM application. The development of CRM is not fully developed in China. There are many critical factors that determine the CRM market development. Construction and development of CRM industry chain in China is a valuable research field and the paper provided some suggestions and analyses on it. In future, it requires our joint efforts of many aspects from every walk of life to make sure that CRM industry chain can improve and maturate gradually.

  12. Chemical sensors technology development planning workshop

    International Nuclear Information System (INIS)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R ampersand D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R ampersand D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts

  13. Recent developments in engineering and technology concepts for prospective tokamak fusion reactors

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1987-01-01

    The tokamak has become the most developed magnetic fusion system and it appears likely that break-even and possibly ignition will first be demonstrated in existing machines of this type. Yet larger tokamaks could also demonstrate the essential technologies for the production of useful power. World-wide, well over a hundred tritium-breeder/heat-removal blanket concepts have been devised and preliminary engineering design studies undertaken, but the effort deployed on breeding and power recovery systems has been very small compared with that assigned to plasma research and development. The European Communities' NET (Next European Torus) project may offer an opportunity to redress this imbalance. The NET pre-design stage now in progress for some three years has selected many of the best features of plasma and nuclear design from the world's total efforts in these fields, and the NET concept is described in this paper as exemplifying where magnetic fusion power reactor technology stands today. It is concluded that although there are numerous more advanced types of magnetic confinement fusion reactor at early stages of their physics development, the tokamak offers the best opportunity for the early demonstration of fusion power

  14. Detection of suboptimal effort with symbol span: development of a new embedded index.

    Science.gov (United States)

    Young, J Christopher; Caron, Joshua E; Baughman, Brandon C; Sawyer, R John

    2012-03-01

    Developing embedded indicators of suboptimal effort on objective neurocognitive testing is essential for detecting increasingly sophisticated forms of symptom feigning. The current study explored whether Symbol Span, a novel Wechsler Memory Scale-fourth edition measure of supraspan visual attention, could be used to discriminate adequate effort from suboptimal effort. Archival data were collected from 136 veterans classified into Poor Effort (n = 42) and Good Effort (n = 94) groups based on symptom validity test (SVT) performance. The Poor Effort group had significantly lower raw scores (p Span test. A raw score cutoff of Span can effectively differentiate veterans with multiple failures on established free-standing and embedded SVTs.

  15. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    Science.gov (United States)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  16. Roadmapping or development of future investments in environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D. (Dianne)

    2002-01-01

    This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and

  17. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  18. Deployment of energy efficient technologies in developing countries

    International Nuclear Information System (INIS)

    Koch, H.J.

    2000-01-01

    Efficient and reliable power generation and power distribution represent the engine for economic growth in developing countries. A vast majority of the population in these countries does not have access to electricity, and those that do are often faced with an unreliable power distribution system. Now is the ideal time to transfer efficient energy technologies which also adhere to environmental standards. There are a myriad of inexpensive ways to avoid energy losses, such as cogeneration, the addition of natural gas turbines to coal-fired heating boilers. Even power generation itself can be more efficient. These improvements would encourage the financing world to pay closer attention and invest more rapidly in projects aimed at improving efficient power generation. The International Energy Agency was created in 1974 with the participation of 25 countries, and its mandate was expanded to include the deployment of clean and efficient energy technologies in developing countries. Technology transfer involves more than the shipping of equipment combined with some expert assistance. It involves the active participation of several partners, from the private sector, governments, non-governmental organizations (NGO), and academic institutions. The objective is to empower the recipient population, thereby reducing the need for imports. It is a joint international effort where the results benefit all participants. The author also discussed the Climate Technology Initiative (CTI) with the aim of disseminating information concerning climate change in the hope of reducing global emissions of greenhouse gases. Discussions to assist countries in the examination of avenues open to them in the field of energy are also fostered. Training in energy efficient technologies represents an important aspect of the role of CTI. It applies to decision makers to help them establish appropriate guidelines and regulations with regard to these technologies. Sustainable development can be achieved

  19. The development of a field method for evaluating the success of reclamation efforts on abandoned mine lands

    International Nuclear Information System (INIS)

    Hunsberger, E.L.; Michaud, L.H.

    1994-01-01

    Abandoned Mine Lands (AML) are prevalent throughout Pennsylvania and in other areas of the US. Reclamation of these sites has been an ongoing concern of the Pennsylvania Department of Environmental Resources (PA DER) for over 20 yr. As the state of the technology improves, a variety of techniques have been utilized to rehabilitate AML. These reclamation efforts have resulted in vast improvements in the conditions of the sites, especially in water quality, erosion control, and aesthetic beauty. However, little work has been done to evaluate and document the success of individual reclamation techniques. Working with the Bureau of Abandoned Mine Reclamation, PA DER, a study was conducted at The Pennsylvania State University to address this need. The main goal of the project was to develop an evaluation system that could be easily carried out in the field by one person. The result of this study was the development of the Reclamation Success Evaluation System (RSES). The system utilizes three main parameters to evaluate reclamation success: (1) Surface Water Quality, (2) Extent of Erosion, and (3) Success of the Vegetative Cover. A series of guidelines and recommendations was developed for each of these evaluation parameters. The RSES was tested under field conditions by applying it to a watershed that contains both reclaimed and unreclaimed AML sites. This test proved that the RSES is an easily implemented and effective tool for evaluating the success of AML reclamation efforts. The system facilitates the comparison of reclamation efforts at different sites, it can be conducted by one person, and the results are easily interpreted

  20. International cooperation for science and technology development: a way forward for equity in health.

    Science.gov (United States)

    Andrade, Priscila Almeida; Carvalho, Denise Bomtempo Birche de

    2015-01-01

    Since 1990, international organizations have been increasingly involved in building an international sub-regime for research, development and innovation in health. This article analyzes the priorities of developing countries in health since the 1990s. It is a descriptive and analytical study that investigates the literature and contributions of key informants. Calling for the end of global inequities in the support for science and technology in health, international organizations recommend that developing countries focus their efforts on neglected diseases and operational research, an insufficient agenda for science and technology cooperation to effectively overcome the vulnerabilities between countries.

  1. Fiscal 1999 research and verification of geothermal energy exploring technologies and the like. Development of reservoir mass and heat flow characterization (Development of reservoir change prediction technology - Summary); 1999 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho (yoyaku). Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts are exerted to develop technologies for accurately predicting reservoir expansion or other changes through a comprehensive analysis of the fracture hydrology method, gravity monitoring method, electrical and magnetic monitoring method, seismic monitoring method, and their associated technologies. The endeavors cover the development of a post processor system which involves gravity, self-potential, geochemistry, resistivity, etc., and is related to a reservoir simulator, and the development of a reservoir modelling technology. For the development of a post processor system, efforts continue (1) to develop a processor to deal with gravity, self-potential, resistivity, and geochemistry, (2) to carry out basic studies of changes in seismic propagation characteristics, (3) to develop databases, and (4) to develop a simulator interface. Under item (1), development involving gravity, self-potential, and geochemistry is complete, and now manuals are being prepared. A prototype design is complete for resistivity. For the development of a reservoir modelling technology, modelling is under way for the Onikobe and Sumikawa districts. Existing data are taken care of, and productivity predicting simulation is carried out. (NEDO)

  2. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  3. Technology and Sexuality--What's the Connection? Addressing Youth Sexualities in Efforts to Increase Girls' Participation in Computing

    Science.gov (United States)

    Ashcraft, Catherine

    2015-01-01

    To date, girls and women are significantly underrepresented in computer science and technology. Concerns about this underrepresentation have sparked a wealth of educational efforts to promote girls' participation in computing, but these programs have demonstrated limited impact on reversing current trends. This paper argues that this is, in part,…

  4. Human resource development in the beginning phase of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Japan Research Reactor No.1 (JRR-1) was constructed as the first nuclear reactor in Japan and reached the first criticality in 1957. The construction of both the first BWR and the first PWR were started in the same year 1967 and they started power operation in the same year 1970. Engineers of electrical utilities and vendors gave efforts to have knowledge for reactor engineering mainly on the job training with high self-motivation to contribute for nuclear technology development. A part of them participated in the reactor engineering training course of the JAERI. (author)

  5. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  6. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  7. MAPPING POTENTIAL TECHNOLOGY APPROPRIATE SMALL AND MEDIUM ENTERPRISES AS EFFORTS TO IMPROVE TECHNOLOGY PREPARATION LEADERSHIP IN REGION OF PONOROGO

    Directory of Open Access Journals (Sweden)

    Rochmat Aldy Purnomo

    2017-10-01

    Full Text Available Research Objectives "Mapping the Potential of Appropriate Technology for Small and Medium Enterprises as an Effort to Improve the Capability of Technology Readiness in Ponorogo District" is to describe the profile of small and medium enterprises (SMEs, evaluate and measure the level of technological readiness ability (TK2T of SMEs in Ponorogo District. The analytical tool used is a technometer that serves to measure the level of technological readiness capability used for the production of SMEs divided into three stages, basic (level 1 to level 3, medium (level 4 to level 6 and ready (Level 7 to With Level 9. By using teknometer is expected to provide basic information about mapping the potential needs and the use of appropriate technology (TTG both tools, processes and production results in Ponorogo regency. SMEs in Ponorogo Regency are dominated in the field of food, handicraft and textile fields. The SME food business unit still requires major government intervention on production process issues. The majority of SMEs business unit in the field of food still use technology (tools simple and potluck. The production process of SMEs business still neglects the hygienic side of both the production and production. The results of the evaluation and measurement of SME TK2T in Ponorogo District indicate that all samples have passed measurements at level 1 to level 3. Less than 50% pass the middle level ie level 4 to level 6, while less than 10% have passed the top level measurement , Which is level 7 to level 9. This explains that the production of SMEs in Ponorogo Regency still need government intervention both in the use of appropriate technology, as well as supporting indicators such as management, hygiene in production, human resources.

  8. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept technology development overview

    Science.gov (United States)

    Bolcar, Matthew R.

    2017-09-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  9. PROBABILISTIC RISK ANALYSIS OF REMEDIATION EFFORTS IN NAPL SITES

    Science.gov (United States)

    Fernandez-Garcia, D.; de Vries, L.; Pool, M.; Sapriza, G.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2009-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk assessment of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors). Thus, the methodology allows combining the probability of failure of a remediation effort due to multiple causes, each one associated to several pathways and receptors.

  10. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  11. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  12. A Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pracheil, Brenda M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Tsakiris, Achilleas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Kutz, Benjamin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Bishop, Norm [Knight Piesold, Denver, CO (United States); McKeown, Alisha [McKeown and Associates, Moberly, MO (United States); Rabon, Daniel [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Zimmerman, Gregory P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders. To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.

  13. Overview of DOE's field screening technology development activities

    International Nuclear Information System (INIS)

    Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T.; Erickson, M.D.

    1991-01-01

    The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R ampersand D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref

  14. Troll oil. Added value and technological development; Troll olje. Verdiskapning og teknologiutvikling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The story about oil extraction from the Troll petroleum reservoirs in the Troll petroleum project, is the story about a very large petroleum reservoir, but very difficult to access. A project that despite vast, technological challenges created a foundation for one of the genuine pioneer projects on Norwegian continental shelf. The social impact of Troll Oil is substantial. The project has generated big, economic profits, strengthened Norwegian and international contractor companies, and contributed to important technological improvements in both drilling- and completion technology, as well as sub sea production. Many of the technological solutions that have been developed in relation to the Troll Oil project have been further developed and used in new fields both in Norway and in other countries. Troll Oil is an excellent example that much of the added value on Norwegian shelf is inextricably connected to technology and competency developments. The project has become a very important point of reference for Norwegian petroleum industry in international markets, and has been an essential factor in the efforts to demonstrate the possibilities of enhanced oil recovery. The success for Troll Oil has contributed to the authorities - and the oil companies - constantly setting higher extraction goals.

  15. Peace and development through the peaceful uses of nuclear science and technology

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear science and technology can help find solutions to many of the problems people face every day across the globe. When used safely and securely, nuclear science and technology are effective supplements or provide alternatives to conventional approaches, which makes them an important part of the international community’s work for development. In its contribution to global objectives, the IAEA serves the international goals of peace, health and prosperity by assisting countries to adopt nuclear tools for a wide range of peaceful applications. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts.

  16. Task 10 -- Technology development integration. Semi-annual report, April 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Daly, D.J.; Jones, M.L.

    1997-12-31

    Task 10 activities by the Energy and Environmental Research Center (EERC) have focused on the identification and integration of new cleanup technologies for use in the US Department of Energy (DOE) Environmental Management Program to address environmental issues within the nuclear defense complex. Under Subtask 10A, activities focused on a review of technology needs compiled by the Site Technology Coordination Groups as part of an ongoing assessment of the relevance of the EM Cooperative Agreement Program activities to EM site needs. Work under this subtask was completed August 31. Work under Task 10B had as its goal assisting in the definition and development of specific models to demonstrate several approaches to be used by DOE to encourage the commercialization of environmental technologies. This activity included identification and analysis of economic and regulatory factors affecting feasibility of commercial development of two specific projects and two general models to serve as a mechanism for the transfer of federally supported or developed environmental technologies to the private sector or for rapid utilization in the federal government`s efforts to clean up the weapons complex.

  17. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  18. Interests, Effort, Achievement and Vocational Preference.

    Science.gov (United States)

    Sjoberg, L.

    1984-01-01

    Relationships between interest in natural sciences and technology and perceived ability, success, and invested effort were studied in Swedish secondary school students. Interests were accounted for by logical orientation and practical value. Interests and grades were strongly correlated, but correlations between interests and effort and vocational…

  19. Handbook of Research on Technology Tools for Real-World Skill Development (2 Volumes)

    Science.gov (United States)

    Rosen, Yigel, Ed.; Ferrara, Steve, Ed.; Mosharraf, Maryam, Ed.

    2016-01-01

    Education is expanding to include a stronger focus on the practical application of classroom lessons in an effort to prepare the next generation of scholars for a changing world economy centered on collaborative and problem-solving skills for the digital age. "The Handbook of Research on Technology Tools for Real-World Skill Development"…

  20. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  1. Why Business Modeling is Crucial in the Development of eHealth Technologies

    Science.gov (United States)

    van Gemert-Pijnen, Julia EWC; Nijland, Nicol; Ossebaard, Hans C; Hendrix, Ron MG; Seydel, Erwin R

    2011-01-01

    The impact and uptake of information and communication technologies that support health care are rather low. Current frameworks for eHealth development suffer from a lack of fitting infrastructures, inability to find funding, complications with scalability, and uncertainties regarding effectiveness and sustainability. These issues can be addressed by defining a better implementation strategy early in the development of eHealth technologies. A business model, and thus business modeling, help to determine such an implementation strategy by involving all important stakeholders in a value-driven dialogue on what the technology should accomplish. This idea also seems promising to eHealth, as it can contribute to the whole development of eHealth technology. We therefore suggest that business modeling can be used as an effective approach to supporting holistic development of eHealth technologies. The contribution of business modeling is elaborated in this paper through a literature review that covers the latest business model research, concepts from the latest eHealth and persuasive technology research, evaluation and insights from our prior eHealth research, as well as the review conducted in the first paper of this series. Business modeling focuses on generating a collaborative effort of value cocreation in which all stakeholders reflect on the value needs of the others. The resulting business model acts as the basis for implementation. The development of eHealth technology should focus more on the context by emphasizing what this technology should contribute in practice to the needs of all involved stakeholders. Incorporating the idea of business modeling helps to cocreate and formulate a set of critical success factors that will influence the sustainability and effectiveness of eHealth technology. PMID:22204896

  2. Why business modeling is crucial in the development of eHealth technologies.

    Science.gov (United States)

    van Limburg, Maarten; van Gemert-Pijnen, Julia E W C; Nijland, Nicol; Ossebaard, Hans C; Hendrix, Ron M G; Seydel, Erwin R

    2011-12-28

    The impact and uptake of information and communication technologies that support health care are rather low. Current frameworks for eHealth development suffer from a lack of fitting infrastructures, inability to find funding, complications with scalability, and uncertainties regarding effectiveness and sustainability. These issues can be addressed by defining a better implementation strategy early in the development of eHealth technologies. A business model, and thus business modeling, help to determine such an implementation strategy by involving all important stakeholders in a value-driven dialogue on what the technology should accomplish. This idea also seems promising to eHealth, as it can contribute to the whole development of eHealth technology. We therefore suggest that business modeling can be used as an effective approach to supporting holistic development of eHealth technologies. The contribution of business modeling is elaborated in this paper through a literature review that covers the latest business model research, concepts from the latest eHealth and persuasive technology research, evaluation and insights from our prior eHealth research, as well as the review conducted in the first paper of this series. Business modeling focuses on generating a collaborative effort of value cocreation in which all stakeholders reflect on the value needs of the others. The resulting business model acts as the basis for implementation. The development of eHealth technology should focus more on the context by emphasizing what this technology should contribute in practice to the needs of all involved stakeholders. Incorporating the idea of business modeling helps to cocreate and formulate a set of critical success factors that will influence the sustainability and effectiveness of eHealth technology.

  3. International Strategic Alliances and Technology Strategy : The Case of Rotary-Engine Development at Mazda

    OpenAIRE

    HELLER, Daniel Arturo

    2005-01-01

    This case presents Mazda's over forty-year history developing the rotary engine for use in motor vehicles and explores the role played by international alliances in the implementation of technology strategy. Two key touchstones in the discussion are Mazda's initial technology-licensing agreement with NSU/Wankel and Mazda's longstanding alliance with Ford. The case suggests that strong efforts at internal capability-building may be needed for a firm to maximize the use of alliances in innovati...

  4. Current and potential technologies for the detection of radionuclide signatures of proliferation (R and D efforts)

    International Nuclear Information System (INIS)

    Perkins, R.W.; Wogman, N.A.

    1993-03-01

    A country with the goal of developing nuclear weapons could pursue their ambition in several ways. These could range from the purchase or theft of a weapon or of the principal weapons components to a basic development program which may independently produce all the materials and components which are necessary. If the latter approach were pursued, there would be many signatures of such an effort and the more definitive of these include the actual materials which would be produced in each phase of the fuel cycle/weapons production process. By identifying the more definitive signatures and employing appropriate environmental sampling and analysis techniques for their observation, including imaging procedures, it should be possible to detect nuclear proliferation processes. Possible proliferation processes include: uranium acquisition through fuel fabrication; uranium enrichment for weapons production; reactor operation for plutonium production; fuel reprocessing for plutonium extraction; weapons fabrication; and uranium 233 production. Each of these are briefly discussed. The technologies for the detection of proliferation signatures which are in concept or research and development phase are: whole air beta counter; radiokrypton/xenon separator/analyzer; I-129 detector; isotope analyzer; deuterium/tritium analysis by IR/Raman spectroscopy and scintillation counting; noble gas daughter analysis; and airborne radionuclide collector/analyzer

  5. Examining human resources' efforts to develop a culturally competent workforce.

    Science.gov (United States)

    Whitman, Marilyn V; Valpuesta, Domingo

    2010-01-01

    The increasing diversification of the nation's population poses significant challenges in providing care that meets the needs of culturally diverse patients. Human resource management plays a vital role in developing a more culturally competent workforce. This exploratory study examines current efforts by human resource directors (HRDs) in Alabama's general hospitals to recruit more diverse candidates, train staff, and make language access resources available. A questionnaire was developed based on the Office of Minority Health's Culturally and Linguistically Appropriate Services standards. The HRDs of the 101 Alabama general hospitals served as the study's target population. A sample of 61 responses, or 60.4% of the population, was obtained. The findings indicate that most HRDs are focusing their efforts on recruiting racially/ethnically diverse candidates and training clerical and nursing staff to care for culturally and linguistically diverse patients. Less effort is being focused on recruiting candidates who speak a different language, and only 44.3% have a trained interpreter on the staff. The HRDs who indicated that they work closely with organizations that provide support to diverse groups were more likely to recruit diverse employees and have racially/ethnically and linguistically diverse individuals in leadership positions. It is crucial that health care organizations take the necessary steps to diversify their workforce to broaden access, improve the quality and equity of care, and capture a greater market share.

  6. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  7. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  8. Cone penetrometer: Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-04-01

    Cone penetrometer technology (CPT) provides cost-effective, real-time data for use in the characterization of the subsurface. Recent innovations in this baseline technology allow for improved access to the subsurface for environmental restoration applications. The technology has been improved by both industry and government agencies and is constantly advancing due to research efforts. The U.S. Department of Energy (DOE) Office of Science and Technology (formerly Technology Development) has contributed significantly to these efforts. This report focuses on the advancements made in conjunction with DOE's support but recognizes Department of Defense (DOD) and industry efforts

  9. Fly-by-light flight control system technology development plan

    Science.gov (United States)

    Chakravarty, A.; Berwick, J. W.; Griffith, D. M.; Marston, S. E.; Norton, R. L.

    1990-01-01

    The results of a four-month, phased effort to develop a Fly-by-Light Technology Development Plan are documented. The technical shortfalls for each phase were identified and a development plan to bridge the technical gap was developed. The production configuration was defined for a 757-type airplane, but it is suggested that the demonstration flight be conducted on the NASA Transport Systems Research Vehicle. The modifications required and verification and validation issues are delineated in this report. A detailed schedule for the phased introduction of fly-by-light system components has been generated. It is concluded that a fiber-optics program would contribute significantly toward developing the required state of readiness that will make a fly-by-light control system not only cost effective but reliable without mitigating the weight and high-energy radio frequency related benefits.

  10. Strategic Program Planning Lessons Learned In Developing The Long-Term Stewardship Science and Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, B.W.; Hanson, D.J.; Matthern, G.E.

    2003-04-24

    Technology roadmapping is a strategic planning method used by companies to identify and plan the development of technologies necessary for new products. The U.S. Department of Energy's Office of Environmental Management has used this same method to refine requirements and identify knowledge and tools needed for completion of defined missions. This paper describes the process of applying roadmapping to clarify mission requirements and identify enhancing technologies for the Long-Term Stewardship (LTS) of polluted sites after site cleanup has been completed. The nature of some contamination problems is such that full cleanup is not achievable with current technologies and some residual hazards remain. LTS maintains engineered contaminant barriers and land use restriction controls, and monitors residual contaminants until they no longer pose a risk to the public or the environment. Roadmapping was used to clarify the breadth of the LTS mission, to identify capability enhancements needed to improve mission effectiveness and efficiency, and to chart out the research and development efforts to provide those enhancements. This paper is a case study of the application of roadmapping for program planning and technical risk management. Differences between the planned and actual application of the roadmapping process are presented along with lessons learned. Both the process used and lessons learned should be of interest for anyone contemplating a similar technology based planning effort.

  11. Fiscal 1999 achievement report on research and development of industrial technologies. Research and development of synergy ceramics; 1999 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are conducted in the two fields of (1) survey and research and (2) development of technology for evaluating high temperature dynamic corrosion characteristics of heat resistant ceramics. In field (1), a comprehensive survey is conducted, an application study is conducted about high temperature gas separating ceramic membranes, and efforts are made to put to practical use ceramic parts manufactured by a low cost production process. In the application study of ceramic membranes, technologies are developed for a process of manufacturing high temperature gas separating porous ceramic membranes capable of separating and purifying gas emissions and gas ingredients, which involves the development of technologies for improving on gas separation and purification functions, development of technology of providing catalyst support function, technology of porous membrane formation, evaluation of separation characteristics, and so forth. In an application study for ceramic parts manufactured by a low cost manufacturing process, which involves structural ceramics, optimization is accomplished for materials synthesizing technologies by means of mechanical alloying, and cylinder liners are fabricated and evaluated for a natural gas engine made of silicon nitride based ceramics. In field (2), a high temperature dynamic corrosion testing device is built for heat shield coatings. (NEDO)

  12. Robotics Technology Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  13. Robotics Technology Crosscutting Program. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  14. Developing a scalable modeling architecture for studying survivability technologies

    Science.gov (United States)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  15. Development of Korea telecommunication technology

    International Nuclear Information System (INIS)

    1992-06-01

    It concentrates on development of Korea telecommunication technology, which is made up seven chapters. It gives description of manual central telephone exchange or private automatic telephone exchange, transmission technology on wire line and cable line technology and optical transmission, radio communication technology on mobile and natural satellite communication, network technology with intelligent network, broadband ISDN and packet switched Data Network, terminal technology with telephone and data communication terminal and development of Information Technology in Korea. It has an appendix about development of military communication system.

  16. Success Rates by Software Development Methodology in Information Technology Project Management: A Quantitative Analysis

    Science.gov (United States)

    Wright, Gerald P.

    2013-01-01

    Despite over half a century of Project Management research, project success rates are still too low. Organizations spend a tremendous amount of valuable resources on Information Technology projects and seek to maximize the utility gained from their efforts. The author investigated the impact of software development methodology choice on ten…

  17. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  18. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  19. The place of space technology in economic development: Reflections on present and future aspects

    Science.gov (United States)

    Lebeau, A.; Reuter, K. E.

    1980-01-01

    The effects of the development of satellite applications on the orientation of the space effort were examined. The gap between available and exploited technology, the impact of the current economic climate and future trends are discussed. Europe's low level of public funding for its space effort, in comparison to other space powers, and the dangers of complacency regarding Europe's competitiveness in the space market are illustrated. A proposal for the general direction which Europe's future strategy must take if European independence in this field is to be preserved is presented.

  20. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  1. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  2. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  3. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    International Nuclear Information System (INIS)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs

  4. Department of Energy Small-Scale Hydropower Program: Feasibility assessment and technology development summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, B.N.

    1991-06-01

    This report summarizes two subprograms under the US Department of Energy's Small-Scale Hydroelectric Power Program. These subprograms were part of the financial assistance activities and included the Program Research and Development Announcement (PRDA) feasibility assessments and the technology development projects. The other major subprograms included engineering research and development, legal and institutional aspects, and technology transfer. These other subprograms are covered in their respective summary reports. The problems of energy availability and increasing costs of energy led to a national effort to develop economical and environmental attractive alternative energy resources. One such alternative involved the utilization of existing dams with hydraulic heads of <65 ft and the capacity to generate hydroelectric power of 15 MW or less. Thus, the PRDA program was initiated along with the Technology Development program. The purpose of the PRDA feasibility studies was to encourage development of renewable hydroelectric resources by providing engineering, economic, environmental, safety, and institutional information. Fifty-five feasibility studies were completed under the PRDA. This report briefly summarizes each of those projects. Many of the PRDA projects went on to become technology development projects. 56 refs., 1 fig., 2 tabs.

  5. Goddard Technology Efforts to Improve Space Borne Laser Reliability

    Science.gov (United States)

    Heaps, William S.

    2006-01-01

    In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.

  6. Research and Technology 1996: Innovation in Time and Space

    Science.gov (United States)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  7. Achievement report for fiscal 1998. Research and development of technologies for creating new bioaffinity molecules using submicron beads (Energy use rationalization related technology practicalization); 1998 nendo biryushi riyogata seitai ketsugo busshitsunado sosei gijutsu no kenkyu kaihatsu seika hokokusho. Energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the effort to develop chemical substance/bioreceptor analysis technology using submicron beads, polystyrene core/polyglycidyl methacrilate beads are used in a study started about a detachable spacer using newly developed fixation technology. In the development of bioaffinity chemical substance refining technology, two kinds of sugars and several kinds of aromatic aldehydes serve as building blocks in the construction of a library, and studies are made of analyses using liquid chromatography and mass spectrography. In the development of novel substance creation technology based on information on the analysis of chemical substance/bioreceptor, in an effort at developing technologies for creating novel function provided chemical substances, heterocyclic compounds, alkaloids, and sugar compounds are selected and their syntheses in the liquid phase and solid phase are studied, which is again for the construction of a library. (NEDO)

  8. A case history of technology transfer

    Science.gov (United States)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  9. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    Science.gov (United States)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  10. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-23

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  11. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  12. Technology, Political Economy, and Economic Development in the Middle East and North Africa

    DEFF Research Database (Denmark)

    Brach, Juliane

    2009-01-01

    Comparing the pace and extent of economic development across the developing regions yields that Arab countries have displaced a weak economic performance over the past 20 years, despite their favorable geo-strategic location and a high density of national and international structural adjustment...... efforts. Using cross-country regressions, this paper identifies two binding constraints to economic development in the Arab countries of the Middle East and North Africa (MENA): 1) Most countries are not able to apply or adopt existing technologies efficiently and 2) The economically inefficient...

  13. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  14. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  15. NASA Goddard Thermal Technology Overview 2016

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2016-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  16. NASA Goddard Thermal Technology Overview 2018

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  17. Technology in Education, 1988. Working Papers of Planning and Development Research. Working Paper 88-2.

    Science.gov (United States)

    Sharon, Donna

    This report on technology in education has been prepared, primarily for TVOntario staff, to highlight new and growing educational applications and to summarize recent evaluations of earlier application efforts. The descriptions of trends and developments are classified by media format. Representative applications of the media include: (1)…

  18. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  19. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  20. Analysis of international efforts in energy research and development

    International Nuclear Information System (INIS)

    Rezaiyan, A.J.; Gill, R.T.

    1995-09-01

    Research and experimental development comprise innovative and creative work undertaken systematically to increase the stock of knowledge of science, engineering, and society. This knowledge reserve is used to improve living conditions and standards, including economic growth. Research and development (R ampersand D) expenditures are useful measures of the scale and direction of technological innovation within a country, industry, or scientific field. Administrators concerned with economic growth and performance rely on R ampersand D statistics as one possible type of indicator of technological change. R ampersand D statistics are an essential tool in many government programs and evaluations (OECD 1993). The objective of the analysis was to identify and evaluate R ampersand D funding sources, levels, and trends in the energy sectors of selected industrialized countries (Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, United Kingdom, United States) and the European Union (EU). Fossil fuel technologies, particularly fuel cells and advanced gas turbines, were the focus of the analysis, whose results are presented in this report

  1. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  2. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  3. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2015-01-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a ''critical path'' for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain ''minimum'' levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial ''first step'' in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by

  4. Examining the Technology Integration Planning Cycle Model of Professional Development to Support Teachers' Instructional Practices

    Science.gov (United States)

    Hutchison, Amy C.; Woodward, Lindsay

    2018-01-01

    Background: Presently, models of professional development aimed at supporting teachers' technology integration efforts are often short and decontextualized. With many schools across the country utilizing standards that require students to engage with digital tools, a situative model that supports building teachers' knowledge within their…

  5. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  6. New energy technologies. Research, development and demonstration; Denmark; Nye energiteknologier. Forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, B.; Muenster, M.

    2010-12-15

    This report was commissioned by the Danish Climate Commission in 2009 to analyse how research, development and demonstration (RD and D) on sustainable energy technologies can contribute to make Denmark independent on fossil energy by 2050. It focuses on the RD and D investments needed as well as adequate framework conditions for Danish knowledge production and diffusion within this field. First part focuses on the general aspects related to knowledge production and the challenges related to research. Energy technologies are categorized and recent attempt to optimize Danish efforts are addressed, including RD and D prioritisation, public-private partnerships and international RD and D cooperation. Part two describes the development and organisation of the Danish public RD and D activities, including benchmark with other countries. The national energy RD and D programmes and their contribution to the knowledge value chain are described as well as the coordination and alignment efforts. Part Three illustrates three national innovation systems for highly different technologies - wind, fuel cells and intelligent energy systems. Finally, six recommendations are put forward: to make a national strategic energy technology plan; to enforce the coordination and synergy between national RD and D programmes; to strengthen social science research related to the transition to a sustainable energy system; to increase public RD and D expenditure to at least 0.1% of GDP per year; to strengthen international RD and D cooperation; and to make a comprehensive analysis of the capacity and competence needs for the energy sector. (Author)

  7. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  8. Marginalization of end-use technologies in energy innovation for climate protection

    Science.gov (United States)

    Wilson, Charlie; Grubler, Arnulf; Gallagher, Kelly S.; Nemet, Gregory F.

    2012-11-01

    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies.

  9. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  10. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  11. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, B. G.; Kim, S. H.

    2007-06-01

    Uranium kernel fabrication technology using a wet chemical so-gel method, a key technology in the coated particle fuel area, is established up to the calcination step and the first sintering of UO2 kernel was attempted. Experiments on the parametric study of the coating process using the surrogate ZrO2 kernel give the optimum conditions for the PyC and SiC coating layer and ZrC coating conditions were obtained for the vaporization of the ZrCl4 precursor and coating condition from ZrC coating experiments using plate-type graphite substrate. In addition, by development of fuel performance analysis code a part of the code system is completed which enables the participation to the benchmark calculation and comparison in the IAEA collaborated research program. The technologies for irradiation and post irradiation examination, which are important in developing the HTGR fuel technology of its first kind in Korea was started to develop and, through a feasibility study and preliminary analysis, the technologies required to be developed are identified for further development as well as the QC-related basic technologies are reviewed, analyzed and identified for the own technology development. Development of kernel fabrication technology can be enhanced for the remaining sintering technology and completed based on the technologies developed in this phase. In the coating technology, the optimum conditions obtained using a surrogate ZrO2 kernel material can be applied for the uranium kernel coating process development. Also, after completion of the code development in the next phase, more extended participation to the international collaboration for benchmark calculation can be anticipated which will enable an improvement of the whole code system. Technology development started in this phase will be more extended and further focused on the detailed technology development to be required for the related technology establishment

  12. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  13. Maize transformation technology development for commercial event generation

    Science.gov (United States)

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  14. Maize transformation technology development for commercial event generation.

    Science.gov (United States)

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  15. Introduction to nuclear technology

    International Nuclear Information System (INIS)

    Goldsmith, M.W.

    1985-01-01

    In the late 1940s and early 1950s when nuclear technology emerged, there was no oil embargo or any obvious signs of an energy crisis. The driving forces for the rapid development of the atom were its fuel efficiency and its potential cost-effectiveness compared to its alternatives. Uranium was a cheap and abundant domestic fuel and the development of the technology provided new vistas and challenges for the engineering community. It was the goal of providing environmentally clean, abundant, and reasonably priced energy that motivated engineers then as now. Nuclear technology developed under a mixture of government regulation and promotion and utility industry commercialization. This paper discusses the development and implementation of a technology largely resulting from the efforts of government to make the production of nuclear-powered electricity a commercial enterprise. This effort has largely succeeded, as greater than 10% of the electricity generated nationally is now provided by nuclear power

  16. Dealing with metadata quality: the legacy of digital library efforts

    OpenAIRE

    Tani, Alice; Candela, Leonardo; Castelli, Donatella

    2013-01-01

    In this work, we elaborate on the meaning of metadata quality by surveying efforts and experiences matured in the digital library domain. In particular, an overview of the frameworks developed to characterize such a multi-faceted concept is presented. Moreover, the most common quality-related problems affecting metadata both during the creation and the aggregation phase are discussed together with the approaches, technologies and tools developed to mitigate them. This survey on digital librar...

  17. European Technological Effort in Preparation of ITER Construction

    International Nuclear Information System (INIS)

    Andreani, Roberto

    2005-01-01

    Europe has started since the '80s with the preparatory work done on NET, the Next European Torus, the successor of JET, to prepare for the construction of the next generation experiment on the road to the fusion reactor. In 2000 the European Fusion Development Agreement (EFDA) has been signed by sixteen countries, including Switzerland, not a member of the Union. Now the signatory countries have increased to twenty-five. A vigorous programme of design and R and D in support of ITER construction has been conducted by EFDA through the coordinated effort of the national institutes and laboratories supported financially, in the framework of the VI European Framework Research Programme (2002-2006), by contracts of association with EURATOM. In the last three years, with the expenditure of 160 M[Euro], the accent has been particularly put on the preparation of the industrial manufacturing activities of components and systems for ITER. Prototypes and manufacturing methods have been developed in all the main critical areas of machine construction with the objective of providing sound and effective solutions: vacuum vessel, toroidal field coils, poloidal field coils, remote handling equipment, plasma facing components and divertor components, electrical power supplies, generators and power supplies for the Heating and Current Drive Systems and other minor subsystems.Europe feels to be ready to host the ITER site and to provide adequate support and guidance for the success of construction to our partners in the ITER collaboration, wherever needed

  18. The Determinants of Student Effort at Learning ERP: A Cultural Perspective

    Science.gov (United States)

    Alshare, Khaled A.; El-Masri, Mazen; Lane, Peggy L.

    2015-01-01

    This paper develops a research model based on the Unified Theory of Acceptance and Use of Technology model (UTAUT) and Hofstede's cultural dimensions to explore factors that influence student effort at learning Enterprise Resource Planning (ERP) systems. A Structural Equation Model (SEM) using LISREL was utilized to validate the proposed research…

  19. States and compacts: Issues and events affecting facility development efforts, including the Barnwell opening

    Energy Technology Data Exchange (ETDEWEB)

    Larson, G.S.

    1995-12-31

    Ten years have passed since the first regional low-level radioactive waste compacts received Congressional consent and initiated their efforts to develop new disposal capacity. During these 10 years, both significant achievements and serious setbacks have marked our efforts and affect our current outlook. Recent events in the waste marketplace, particularly in the operating status of the Barnwell disposal facility, have now raised legitimate questions about the continued rationale for the regional framework that grew out of the original legislation enacted by Congress in 1980. At the same time, licensing activities for new regional disposal facilities are under way in three states, and a fourth awaits the final go-ahead to begin construction. Uncertainty over the meaning and reliability of the marketplace events makes it difficult to gauge long-term implications. In addition, differences in the status of individual state and compact facility development efforts lead to varying assessments of the influence these events will, or should, have on such efforts.

  20. States and compacts: Issues and events affecting facility development efforts, including the Barnwell opening

    International Nuclear Information System (INIS)

    Larson, G.S.

    1995-01-01

    Ten years have passed since the first regional low-level radioactive waste compacts received Congressional consent and initiated their efforts to develop new disposal capacity. During these 10 years, both significant achievements and serious setbacks have marked our efforts and affect our current outlook. Recent events in the waste marketplace, particularly in the operating status of the Barnwell disposal facility, have now raised legitimate questions about the continued rationale for the regional framework that grew out of the original legislation enacted by Congress in 1980. At the same time, licensing activities for new regional disposal facilities are under way in three states, and a fourth awaits the final go-ahead to begin construction. Uncertainty over the meaning and reliability of the marketplace events makes it difficult to gauge long-term implications. In addition, differences in the status of individual state and compact facility development efforts lead to varying assessments of the influence these events will, or should, have on such efforts

  1. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  2. Developmental Challenges of SMES Technology for Applications

    Science.gov (United States)

    Rong, Charles C.; Barnes, Paul N.

    2017-12-01

    This paper reviews the current status of high temperature superconductor (HTS) based superconducting magnetic energy storage (SMES) technology as a developmental effort. Discussion centres on the major challenges in magnet optimization, loss reduction, cooling improvement, and new development of quench detection. The cryogenic operation for superconductivity in this technological application requires continued research and development, especially with a greater engineering effort that involves the end user. For the SMES-based technology to more fully mature, some suggestions are given for consideration and discussion.

  3. Survey of the development of industrial technology in Japan; Sangyo gijutsu rekishi keisho chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Conditions for creating Japan`s type technologies have been investigated by extracting technologies and experiences meriting the succession to the next generation among the industrial technologies in Japan after World War II. Technological creativity of Japan began to appear from the 1970`s. Quartz watch of SEIKO, U-Matic VTR of SONY, ladle refinery method of DAIDO Steel, PAN-based carbon fiber of TORAY, continuous annealing of Nippon Steel, calculating machine using liquid crystal of SHARP, ASA-400 high sensitivity film of FUJI FILM, and Japanese word-processor of TOSHIBA are the examples. The basic ability to create those products and technology lays in the diversity of firms in electronic device and fine machinery industries consisting the boundary between general and electrical machinery, the systematizing ability and inter-industrial cooperation which were promoted through quality control, automatization of assembly and production control by computer, and the research and development capability which has been brought up during the high economic growth as a learning process of technology. The society and industries have to make efforts to create the new creative conditions for younger generations. Otherwise, Japan`s technology will not develop. 134 refs., 19 figs., 8 tabs.

  4. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  5. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    Science.gov (United States)

    Stahl, H. Philip

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum

  6. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  7. NASA Goddard Thermal Technology Overview 2017

    Science.gov (United States)

    Butler, Dan; Swanson, Ted

    2017-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 17 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for CubeSat mission development will also be addressed. Many of these technologies also have broad applicability to DOD (Dept. of Defense), DOE (Dept. of the Environment), and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  8. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  9. Technology Applications Team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  10. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    Science.gov (United States)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  11. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  12. Fiscal 1999 achievement report. Development of ultralow-loss power device technology; 1999 nendo choteisonshitsu denryoku soshi gijutsu kaihtsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The aim is to establish basic technologies for upgrading wide-gap semiconductor devices, fabricated mainly of SiC, in terms of their low-loss, high-speed, and high-power features. In the research and development of ultralow-loss power device technology, progress of the effort is reviewed, problems in the process of research and development are extracted, and technological trends are surveyed. In the development of basic technologies, an SiC crystal growing device is experimentally built and the process of crystal growth is assessed and analyzed, and tasks to discharge for higher quality and larger diameter are extracted. Basic technologies are developed relative to the epitaxial growth, interface control, and conductivity control of SiC etc. In the development of technologies for developing SiC into devices, technological development is carried out for the junction-type FET (field effect transistor), which involves termination structure optimization, high-voltage capability enhancement, and gate-off gain improvement. As for MOSFET (metal oxide semiconductor FET), MOS channel formation technology is developed and device-constructing technology is also developed. As for MESFET (metal-semiconductor FET), micro-processing is established for a success in experimentally building a 0.5{mu}m-long gate. (NEDO)

  13. Innovative remote monitoring of plant health for environmental applications: A joint effort between EPCOT{reg_sign} and the DOE

    Energy Technology Data Exchange (ETDEWEB)

    Robitaille, H. [Walt Disney World Resort, Lake Buena Vista, FL (United States); Capelle, G.; Di Benedetto, J. [Special Technologies Lab., Santa Barbara, CA (United States)] [and others

    1996-12-31

    In September of 1994, the US Department of Energy (DOE), Environmental Management, Office of Science and Technology for (OST) and Epcot{reg_sign} in the WALT DISNEY WORLD{reg_sign} Resort (Epcot) signed an agreement to cooperate on the research, development, and public communication and display of environmental technologies. Although Epcot and OST have distinctive missions, certain areas of their respective research and development efforts are common, including the integration of remote sensors with robotics platforms, airborne surveys for environmental characterization and monitoring, and ground based measurements of vegetation stress. The first area of cooperative R&D pursued under the agreement is the evaluation of laser-induced fluorescence imaging (LIFI), a technology developed by OST and proven effective for uranium detection. This paper describes the efforts being conducted under the Epcot-OST agreement and presents initial results. An appendix describing LIFI technology is also included.

  14. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  15. Succinic Acid: Technology Development and Commercialization

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2017-06-01

    Full Text Available Succinic acid is a precursor of many important, large-volume industrial chemicals and consumer products. It was once common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. However, it was not until the discovery of Anaerobiospirillum succiniciproducens at the Michigan Biotechnology Institute (MBI, which was capable of producing succinic acid up to about 50 g/L under optimum conditions, that the commercial feasibility of producing the compound by biological processes was realized. Other microbial strains capable of producing succinic acid to high final concentrations subsequently were isolated and engineered, followed by development of fermentation processes for their uses. Processes for recovery and purification of succinic acid from fermentation broths were simultaneously established along with new applications of succinic acid, e.g., production of biodegradable deicing compounds and solvents. Several technologies for the fermentation-based production of succinic acid and the subsequent conversion to useful products are currently commercialized. This review gives a summary of the development of microbial strains, their fermentation, and the importance of the down-stream recovery and purification efforts to suit various applications in the context of their current commercialization status for biologically derived succinic acid.

  16. Peace and development through the peaceful uses of nuclear science and technology

    International Nuclear Information System (INIS)

    2015-01-01

    Nuclear science and technology can help find solutions to many of the problems people face every day across the globe. When used safely and securely, nuclear science and technology are effective supplements or provide alternatives to conventional approaches, which makes them an important part of the international community’s work for development. In its contribution to global objectives, the IAEA serves the international goals of peace, health and prosperity by assisting countries to adopt nuclear tools for a wide range of peaceful applications. Within the context of global trends and development, IAEA services — some highly visible on the global stage, others delivered more discreetly— underpin collective efforts for the safe, secure and peaceful use of nuclear science and technology. They are supported by the IAEA’s specialized laboratories in Seibersdorf, Austria, and in Monaco, as well as dedicated programmes, networks and collaborations with partners. Through the IAEA’s assistance, nuclear techniques are put to use in various areas, including human health, food and agriculture, the environment, water, energy, nuclear safety and security, and the preservation of artefacts.

  17. Current status and technology development of Reprocessing Plant in Japan Nuclear Fuel Limited

    International Nuclear Information System (INIS)

    Ochi, Eiji

    2013-01-01

    It is a problem that the vitrified waste could not be produced at the down nozzle in glass furnace by accumulation of platinum group metals contented in high-level radioactive waste. This article describes our efforts to solve the problem. The glass furnace, glassification process, development of glassification technology in Japan, structure of glass furnace, improvement of glass furnace now in use, improvement of glassification technology, and development of new glass furnace and new glass materials are explained. Configuration drawing of glass furnace, heating method, glass flow from the down nozzle, existing state of platinum group metals in glass, comparison between the current glass furnace and advance furnace, analysis result of inner part of furnace, and measurement result of density, viscosity and heat capacity of molten glass are illustrated. (S.Y.)

  18. A health and research organization to meet complex needs of developing energy technologies

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    An increasing number of laboratories are conducting studies in a wide variety of energy technologies. Laboratories that once dealt with nuclear energy development are now involved in studies of fossil fuels, geothermal energy sources, and solar energy. Often the primary safety organization is required to expand its expertise into nonnuclear areas. At Lawrence Livermore Laboratory, the Special Projects Division of the Hazards Control Department provides health and safety technology development support to the Laboratory-wide safety program. The division conducts studies in fire science, industrial hygiene, and industrial safety as well as health physics. Availability of experts in fields such as aerosol physics, engineering, industrial hygiene, health physics, and fire science permits the solution of problems in a multidisciplined manner, with a minimum of duplication of resources and effort. (H.K.)

  19. Fiscal 1999 research achievement report on the development of SNPs related technologies; 1999 nendo SNPs kanren gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are made to develop specimen processing technologies for modifying and enabling various kinds of specimens to automatically undergo SNP (single nucleotide polymorphism) analysis for medicine development and clinical diagnostic activities and to develop technologies and apparatuses to enable rapid, inexpensive, and simple search and analysis of SNPs using DNA (deoxyribonucleic acid) chips and mass spectrometry. Activities are conducted in the four fields involving (1) the development of a practical clinical system for rapid detection and analysis of SNPs, (2) research and development of an SNP scoring system using bar-coded oligonucleotides and magnetic beads, (3) research and development of a high-speed SNP analysis system using a mass spectrometer, and (4) the development of a high throughput SNP analysis line. Efforts exerted in field (1) involve a protein fixation method using plasma polymerization and its application to DNA arrays, development of an SNP detection method using human genomes, construction of a rapid DNA detection device using an electric field, development of an SNP analysis system using the solid phase HPA (hybridization protection assay) method, and SNP analysis using solid phase ligation. (NEDO)

  20. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  1. Science and technology in a developing country: The Brazilian case

    International Nuclear Information System (INIS)

    Vargas, Jose Israel

    2001-01-01

    Full text: This paper treats the development of science and technology in Brazil in a historical perspective within the Brazilian socio-economic context. The development of natural and human resources and the buildup of the Brazilian economy that have taken place over the last few decades are best described against the background of the well known economic cycles involving sugar production, gold mining and coffee cultivation, all largely based on slave labor until late in the 19th century. Brazilian industrialization has often been described as resulting from the adoption of an import substitution model. This paper claims that, alternatively, it may be described as a technology importation model. The implementation of this scheme demanded the rapid development of human capital which, in Brazil, has followed an original approach. In fact, traditional university education only started in the 1930s, higher education having taken root only in previously isolated high quality technical schools, such as mining, electrical engineering, agricultural engineering and, of course, the traditional institutions for teaching medicine and law. By the 1950s, largely under the influence of some outstanding scientists - mostly trained in the frontiers of nuclear sciences - the National Council of Research and the National Post-Graduate Training Programme were created. This has led, until now, to reasonable scientific, and to a lesser extent, technological development. The recent globalization process - the new economy - has broken down barriers to international commerce and required in recent years greater efforts to disseminate basic general education and the fostering of advanced science and technology. To this end, science and technology, along with research and development activities, have reached 1.35% and 0.9% of Brazil's GNP, respectively. Innovation as measured by patent applications has been modest. However, the technology balance has grown since the 1990s at a rate greater

  2. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    Energy Technology Data Exchange (ETDEWEB)

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  3. Coherent Architecture Development as a Basis for Technology Development

    DEFF Research Database (Denmark)

    Ravn, Poul Martin

    coherent architectures in a technology context as a basis for identification of critical development areas, this research has been focused around the following three areas: 1. Product architecture instances for prototypes testing novel technology. 2. Product architecture definition for a sub-system based......The subject of this PhD thesis is architecture-centered design. It elaborates especially on two specific areas: the coherence in architectures in a technology development context and the identification of critical development areas via property-based reasoning, based on an understanding of cette...... coherence. Despite the acceptance and results presented in multiple studies from the application of architectures, the research on architecture work in a technology development context is limited. Technologies are often developed and represented in the form of product sub-systems that are made available...

  4. Richland Operations Office technology summary

    International Nuclear Information System (INIS)

    1994-05-01

    This document has been prepared by the Department of Energy's Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts

  5. Richland Operations Office technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  6. National Nuclear Technology Map Development

    International Nuclear Information System (INIS)

    Shin, J. I.; Lee, T. J.; Yoon, S. W.

    2005-03-01

    The objective of NuTRM is to prepare a plan of nuclear R and D and technological innovations which is very likely to make nuclear technology a promising power source for future national developments. The NuTRM finds out systematically the nuclear R and D vision and the high-value-added strategic technologies to be developed by the efficient cooperation of actors including government, industry, academy and research institute by 2020. In other words, NuTRM aims at a long-term strategic planning of nuclear R and D and technological innovation in order to promote the socio-economic contributions of nuclear science and technology for the nation's future competitiveness and sustainable development and to raise the global status of the Korean nuclear R and D and Industry

  7. Technological development in fisheries management

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Marchal, Paul; Gislason, Henrik

    2014-01-01

    Many marine fish stocks are overexploited and considerable overcapacity exists in fishing fleets worldwide. One of the reasons for the imbalance between resource availability and fishing capacity is technological development, which continuously increases the efficiency of the vessels—a mechanism...... referred to as “technological creep.” We review how the introduction of new and more efficient electronic equipment, gear design, engines, deck equipment, and catch-handling procedures influences the capture efficiency (catchability) of commercial fishing vessels. On average, we estimate that catchability...... increases by 3.2% per year due to technological developments, an increase often ignored in fisheries management. The documentation and quantification of technological creep improves the basis for successfully integrating the effects of technological development (and catchability changes) in fisheries...

  8. Pollution Prevention Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT ampersand E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact

  9. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  10. Borated stainless steel joining technology. Final report

    International Nuclear Information System (INIS)

    Smith, R.J.

    1994-12-01

    EPRI had continued investigating the application of borated stainless steel products within the US commercial nuclear power industry through participation in a wide range of activities. This effort provides the documentation of the data obtained in the development of the ASTM-A887 Specification preparation effort conducted by Applied Science and Technology and the most recent efforts for the development of joining technologies conducted under a joint effort by EPRI, Carpenter Technologies and Sandia National Laboratory under a US DOE CRADA program. The data presented in this report provides the basis for the ASTM specification which has been previously unpublished by EPRI and the data generated in support of the Joining Technology research effort conducted at Sandia. The results of the Sandia research, although terminated prior to the completion, confirms earlier data that the degradation of material properties in fusion welded borated stainless steels occurs in the heat affected zone of the weld area and not in the base material. The data obtained also supports the conclusion that the degradation of material properties can be overcome by post weld heat treatment which can result in material properties near the original unwelded metal

  11. Health technology assessment. Evaluation of biomedical innovative technologies.

    Science.gov (United States)

    Turchetti, Giuseppe; Spadoni, Enza; Geisler, Eliezer Elie

    2010-01-01

    This article describes health technology assessment (HTA) as an evaluation tool that applies systematic methods of inquiry to the generation and use of health technologies and new products. The focus of this article is on the contributions of HTA to the management of the new product development effort in the biomedical organization. Critical success factors (CSFs) are listed, and their role in assessing success is defined and explained. One of the conclusions of this article is that HTA is a powerful tool for managers in the biomedical sector, allowing them to better manage their innovation effort in their continuing struggle for competitiveness and survival.

  12. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  13. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  14. Fiscal 2000 achievement report on the important regional technology research and development. Research and development of eco-tailored tribo-material creation process technology (Research and development of nanometer-order controlled material creation process technology); 2000 nendo juyo chiiki gijutsu kenkyu kaihatsu seika hokokusho. Eco tailored tribo material sosei process gijutsu no kenkyu kaihatsu (nanometer order de seigyo sareta material sosei process gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are made to develop tribo-material creation process technologies capable of meeting the needs of environmental protection and energy conservation relative to automobile engine parts such as piston rings, cams, shims, and the like. Activities are conducted in the three fields of (1) the research and development of nanostructure material creation technologies, (2) research and development of tribological evaluation technologies, and (3) the verification of the developed technologies. In field (1), a nanostructure control process is studied, and tribo-composite materials are examined. In field (1), in fiscal 2000, the arc ion plating method is selected as a nanostructure control process, and the closed type nonequilibrium magnetron sputtering method as the base for development into a process. As for tribo-composite materials, Ti-Si-N based and Cr-Si-N based coatings find their feasibility in shims, and Cr-Si-N based and Cr-Si-C-N based coatings in piston rings. Compiled in this report are the summary, and the studies of nanostructure control process technologies, joint studies, composite ceramic coating practicalization technologies, and technologies for putting to practical use coatings which comprise layers of different substances. (NEDO)

  15. New Sunshine Program for fiscal 2000. Development of photovoltaic system commercialization technology - Development of thin-film solar cell manufacturing technology - Development of low-cost/large area module manufacturing technology (Development of novel amorphous solar cell module manufacturing technology); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Shingata amorufasu taiyo denchi mojuru no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development was conducted for the development of amorphous solar cell modules for power generation, high in performance and low in production cost. In the effort to improve cell efficiency, experiments were conducted for enhancing bottom a-SiGe cell efficiency for the embodiment of an enhanced-efficiency multi-junction cell, for improving crystallinity in microcrystalline silicon through the application of VHF (very high frequency) plasma CVD (chemical vapor deposition), for texturizing metal electrodes on a film substrate, and so forth. In the effort to increase the film fabrication rate, a VHF plasma CVD device was used for studying the effect of the discharge frequency on film deposition and quality, Vpp between the electrodes, and so forth. Studies about the high-throughput production technology centered on the film substrate solar cell process technology and the designing of an optimum geometrical pattern for SCAF (series-connection through apertures formed on film) cells. Production cost was estimated for the SCAF structure film substrate solar cell manufacturing process, and a production cost of 147.1 yen/W (in case of 100 MW/year production) was obtained as achievable under the currently available conditions. (NEDO)

  16. The EM technology development strategy

    International Nuclear Information System (INIS)

    Frank, C.W.; Barainca, M.; Kubo, A.S.

    1992-01-01

    The Office of Technology Development (TD) supports research and development of technologies that will lower cost, reduce risk, improve safety, and accelerate cleanup of the Nuclear Weapons Complex and provide solutions to currently untractable environmental problems. The TD strategic plan outlines Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) that will provide needed technology products to be used by Environmental Restoration and Waste Management operations (i.e., our customers). The TD strategic plan is derived from EM Goals, Objectives, and Strategy and is incorporated into DOE'S Five-Year Plan for Environmental Restoration and Waste Management. The TD strategic plan is developed based on integrating customer requirements, and is complemented by a top-down, bottom-up analysis of Site Specific Technology Needs and environmental problems. The execution of TD's strategic plan is implemented largely through Integrated Programs (IP) and Integrated Demonstrations (ID). IDs have proven to be a cost-effective method of managing technology development, testing and evaluation, and implementation of successful technology systems into the DOE Environmental Restoration and Waste Management Programs. The Savannah River ID for Volatile Organic Compounds (VOCs) in Saturated Soils resulted in a 51 percent cost savings over stand-alone demonstrations, saving over $8 million. The IPs and IDs are selected based on customer needs, technical complexity, and complex-wide regulatory and compliance agreements. New technology systems are selected for incorporation into an IP or ID from offerings of the DOE laboratories, industry, and the universities. A major TD initiative was announced in August 1991, with the release of a Program Research and Development Announcement (PRDA) requesting industry and universities to propose innovative new technologies to clean up the Weapons Complex. (author)

  17. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  18. The development and utilization of solar photovoltaic cells: An assessment of the potential for a new energy technology

    Science.gov (United States)

    Cyr, K. J.

    1981-01-01

    The Government set the goal of accelerating the adaptation of photovoltaics by reducing system costs to a competitive level and overcoming the technical, institutional, legal, environmental, and social barriers impeding the diffusion of photovoltaic technology. The technology of silicon solar arrays was examined and the status of development efforts are reviewed. The political, legal, economic, social, and environmental issues are discussed, and several methods for selecting development projects are described. A number of market forecasting techniques, including time trend, judgemental, and econometric methods, were reviewed, and the results of these models are presented.

  19. Development of Technology for Effective Removal of Arsenic and Cyanides from Drinking Water and Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae

    2008-02-09

    The purpose of the project was to perform a joint research and development effort focused upon the development of methods and the prototype facility for effective removal of arsenic and cyanides from drinking water and wastewater, based on the UPEC patented technology. The goals of this project were to validate UPEC technology, to manufacture a prototype facility meeting the market requirements, and to introduce it to both industry and municipalities which deal with the water quality. The project involved design and fabrication of one experimental unit and one prototypical industrial unit, and tests at industrial and mining sites. The project used sodium ferrate (Na2FeO4) as the media to remove arsenic in drinking water and convert arsenic into non-hazardous form. The work consisted of distinct phases ending with specific deliverables in development, design, fabrication and testing of prototype systems and eventually producing validation data to support commercial introduction of technology and its successful implementation.

  20. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  1. Aerocapture Technology Development for Planetary Science - Update

    Science.gov (United States)

    Munk, Michelle M.

    2006-01-01

    Within NASA's Science Mission Directorate is a technological program dedicated to improving the cost, mass, and trip time of future scientific missions throughout the Solar System. The In-Space Propulsion Technology (ISPT) Program, established in 2001, is charged with advancing propulsion systems used in space from Technology Readiness Level (TRL) 3 to TRL6, and with planning activities leading to flight readiness. The program's content has changed considerably since inception, as the program has refocused its priorities. One of the technologies that has remained in the ISPT portfolio through these changes is Aerocapture. Aerocapture is the use of a planetary body's atmosphere to slow a vehicle from hyperbolic velocity to a low-energy orbit suitable for science. Prospective use of this technology has repeatedly shown huge mass savings for missions of interest in planetary exploration, at Titan, Neptune, Venus, and Mars. With launch vehicle costs rising, these savings could be the key to mission viability. This paper provides an update on the current state of the Aerocapture technology development effort, summarizes some recent key findings, and highlights hardware developments that are ready for application to Aerocapture vehicles and entry probes alike. Description of Investments: The Aerocapture technology area within the ISPT program has utilized the expertise around NASA to perform Phase A-level studies of future missions, to identify technology gaps that need to be filled to achieve flight readiness. A 2002 study of the Titan Explorer mission concept showed that the combination of Aerocapture and a Solar Electric Propulsion system could deliver a lander and orbiter to Titan in half the time and on a smaller, less expensive launch vehicle, compared to a mission using chemical propulsion for the interplanetary injection and orbit insertion. The study also identified no component technology breakthroughs necessary to implement Aerocapture on such a mission

  2. Consuming technologies - developing routines

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2008-01-01

    technologies and in this article these processes will be investigated from three different perspectives: an historical perspective of how new technologies have entered homes, a consumer perspective of how both houses and new technologies are purchased and finally, as the primary part of the article, a user...... perspective of how routines develop while these technologies are being used. In the conclusion these insights are discussed in relation to possible ways of influencing routines....

  3. Mapping telemedicine efforts

    DEFF Research Database (Denmark)

    Kierkegaard, Patrick

    2015-01-01

    are being utilized? What medical disciplines are being addressed using telemedicine systems? Methods: All data was surveyed from the "Telemedicinsk Landkort", a newly created database designed to provide a comprehensive and systematic overview of all telemedicine technologies in Denmark. Results......Objectives: The aim of this study is to survey telemedicine services currently in operation across Denmark. The study specifically seeks to answer the following questions: What initiatives are deployed within the different regions? What are the motivations behind the projects? What technologies......: The results of this study suggest that a growing number of telemedicine initiatives are currently in operation across Denmark but that considerable variations existed in terms of regional efforts as the number of operational telemedicine projects varied from region to region. Conclusions: The results...

  4. Research and Technology at the John F. Kennedy Space Center 1993

    Science.gov (United States)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  5. Health technology assessment in Mexico.

    Science.gov (United States)

    Gómez-Dantés, Octavio; Frenk, Julio

    2009-07-01

    The history of health technology assessment (HTA) in Mexico is examined, starting with the efforts to incorporate this topic into the policy agenda and culminating with the recent creation of a specialized public agency. Information was gathered through a bibliographic search and interviews with actors involved in HTA in Mexico. HTA efforts were developed in Mexico since the mid-1980s with the participation both of academics and of policy makers, a relationship that eventually led to the creation of the Center for Technological Excellence within the Ministry of Health. Institutionalization of HTA in resource-constrained settings requires the development of a critical mass of researchers involved in this field, the implementation of information efforts, and the establishment of strong relationships between HTA experts and policy makers.

  6. Materials and Components Technology Division research summary, 1992

    International Nuclear Information System (INIS)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database

  7. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  8. Technology base for microgravity horticulture

    Science.gov (United States)

    Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.

    1987-01-01

    Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.

  9. Technology research and development

    International Nuclear Information System (INIS)

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  10. Aerospace Plane Technology: Research and Development Efforts in Japan and Australia

    Science.gov (United States)

    1991-10-01

    However, only with the develop- Aerospace Planes ment of better test facility instruments and more trained personnel, together with the renovation and...necessary. Such a rocket booster (the H-IID) would be one of the largest launchers in the world after the Soviet Energia booster and U.S. Titan IV launch

  11. Creating Inquiry Between Technology Developers and Civil Society Actors: Learning from Experiences Around Nanotechnology.

    Science.gov (United States)

    Krabbenborg, Lotte

    2016-06-01

    Engaging civil society actors as knowledgeable dialogue partners in the development and governance of emerging technologies is a new challenge. The starting point of this paper is the observation that the design and orchestration of current organized interaction events shows limitations, particularly in the articulation of issues and in learning how to address the indeterminacies that go with emerging technologies. This paper uses Dewey's notion of 'publics' and 'reflective inquiry' to outline ways of doing better and to develop requirements for a more productive involvement of civil society actors. By studying four novel spaces for interaction in the domain of nanotechnology, this paper examines whether and how elements of Dewey's thought are visible and under what conditions. One of the main findings is that, in our society, special efforts are needed in order for technology developers and civil society actors to engage in a joint inquiry on emerging nanotechnology. Third persons, like social scientists and philosophers, play a role in this respect in addition to external input such as empirically informed scenarios and somewhat protected spaces.

  12. New technologies to meet regulations

    International Nuclear Information System (INIS)

    Frank, C.; Harmon, L.

    1991-01-01

    The US Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management has set the ambitious goal of having all of its facilities cleaned up and in compliance with applicable environmental laws and regulations by the year 2019. This goal is ambitious both because of the magnitude of the effort required and because, in many cases, the means for attaining the goal do not now exist. The DOE's strategy for reaching its goal is based on applied research and development, education, and cooperation with regulators. The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management has instituted a program to assess the magnitude of the cleanup effort and to evaluate the potential technologies to be used. The OTD has program responsibility for providing new and more effective technologies for meeting DOE's goal for compliance and cleanup. Included are research and development of new technologies; demonstration, testing, and evaluation of technologies developed elsewhere; transportation; and educational programs to produce the scientists and engineers needed to maintain the momentum of research, development, demonstration, testing, and evaluation (RDDT and E) until the job is complete

  13. Forward-Looking Planning of Technology Development

    Directory of Open Access Journals (Sweden)

    Katarzyna Halicka

    2015-12-01

    Full Text Available The main aim of this article is to adapt the Future-Oriented Technology Analysis (FTA to prospective planning of technology development. Firstly, the article presents the assumptions, methods and idea, as well as the concept of the FTA method. Moreover, selected publications on the use of this method were analysed. Then, an original, base model of forward-looking planning of technology development was constructed and presented. The end result of this process will be the development of the localized in time, presented in graphic form, action plan referred to as the route of technology development. Basing on the literature review and the research projects a preliminary route of development of arbitrarily chosen technology was also built and presented.

  14. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  15. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  16. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  17. Development of National Technology Audit Policy

    Directory of Open Access Journals (Sweden)

    Subiyanto Subiyanto

    2017-07-01

    Full Text Available The Laws have mandated implementation of technology audit, nevertheless such implementation needs an additional policy that is more technical. The concept of national audit technology policy shall make technology audit as a tool to ensure the benefit of technology application for society and technology advance for nation independency. This article discusses on technology audit policy concept especially infrastructure requirement, with emphasis on regulation, implementation tools, and related institution. The development of technology audit policy for national interest requires provision of mandatory audit implementation, accompanied by tools for developing technology auditor’s competence and technology audit institutional’s mechanism. To guide technology auditor’s competence, concept of national audit technology policy shall classify object of technology audit into product technology, production technology, and management of technology, accompanied by related parameters of technology performance evaluation.

  18. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  19. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  20. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  1. SBWR technology and development

    International Nuclear Information System (INIS)

    Rao, A.S.; McCandless, R.J.; Sawyer, C.D.

    1991-01-01

    The simplified boiling water reactor (SBWR) is based on utilizing to the maximum extent possible proven light water reactor (LWR) technology developed through 30 years of operating plant experience plus the advanced boiling water reactor (ABWR) technology development program. For the unique features, developmental programs have been put in place to qualify the design. Thus, the focus of technology development has been on the passive safety features - the gravity-driven ECCS (GDCS) and the containment heat removal (PCCS). General Electric constructed a full-height, scaled, integral facility to demonstrate the GDCS concept and provide data for methods qualification. For the PCCS, a three-pronged program was implemented. Basic heat transfer data were obtained via testing at the Massachusetts Institute of Technology and the University of California at Berkeley. A full-height scaled integral facility to demonstrate the PCCS concept and provide data for methods qualification was constructed in Japan in 1989. Initial testing is now complete. Design of a full-scale heat exchanger unit is underway and testing is planned for completion in early 1993

  2. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black

    2000-01-01

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  3. Development of the advanced CANDU technology -Development of basic technology for HWR design

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Seok, Soo Dong; Lee, Sang Yong

    1996-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR's that are now being operated or constructed in Korea. It is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 71 tabs., 147 figs., 143 refs. (Author)

  4. Development of the advanced CANDU technology -Development of basic technology for HWR design-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Lee, Sang Yong; Suk, Soo Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR`s that are now being operated or constructed in Korea, it is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, by performing in-depth studies especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 90 figs, 50 tabs, 38 refs. (Author).

  5. Development of the advanced CANDU technology -Development of basic technology for HWR design-

    International Nuclear Information System (INIS)

    Suk, Hoh Chun; Lee, Sang Yong; Suk, Soo Dong

    1995-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR's that are now being operated or constructed in Korea, it is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, by performing in-depth studies especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 90 figs, 50 tabs, 38 refs. (Author)

  6. Maximizing DOE R and D efforts in tru waste management learning from international programs

    International Nuclear Information System (INIS)

    Saxman, P.A.; Loughead, J.S.C.

    1990-01-01

    Through the International Technology Exchange Program, Department of Energy (DOE) technical specialists maintain a formal dialogue with research and Development (R and D) specialists from nuclear programs in other countries. The objective of these exchanges is to seek innovative waste management solutions, maximize progress for ongoing R and D activities, and minimize the development time required for implementation of transuranic (TRU) waste processing technologies and waste assay developments. Based on information provided by PNC during the exchange, DOE specialists evaluated PNC's efforts to implement technologies and techniques from their R and D program activities. This paper presents several projects with particular potential for DOE operations, and suggests several ways that these concepts could be used to advantage by DOE or commercial programs

  7. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    Science.gov (United States)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  8. The role of the University of Calgary in the development of a centre of excellence in petroleum technology

    International Nuclear Information System (INIS)

    Moore, G.; Chakma, A.

    1996-01-01

    The role of the University of Calgary's Department of Chemical and Petroleum Engineering in developing a world centre of excellence in petroleum engineering in Calgary, was discussed. Reasons for the failure of previous efforts to establish a Department of Petroleum Engineering at the University were explained. High participation levels in the existing Department of Chemical and Petroleum Reservoir Engineering's water-flooding, and reservoir engineering programs were noted. Support for the development of a centre of excellence in petroleum engineering from government and industry, with specific reference to the the recently instituted, government sponsored, ACCESS program, was described. Problems in maintaining a University Faculty with a wide range of petroleum expertise were noted. Current plans for the development of a Conjoint Centre of Applied Petroleum Technology in conjunction with the Southern Alberta Institute of Technology were described. The joint effort between the two institutions appeared to be the most promising avenue to date to realize the dream of Calgary as a world center of excellence in petroleum engineering, preparing future workers in the petroleum industry at all levels, from technologists to post-doctoral fellows

  9. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.

  10. EnviroTRADE: A technical perspective on the development of an information system providing data on environmental technologies and needs worldwide

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1992-01-01

    In support of the US Department of Energy's commitment to the remediation of waste sites throughout its complex, the DOE has recognized that it can accelerate its technology development efforts and leverage the expenditure of available funds through an international cooperation among government entities, private industry, and educational institutions. To support the technology transfer of environmental information, the DOE has sponsored the development of EnviroTRADE - an international information system that will facilitate the exchange of environmental restoration and waste management technologies worldwide. The system will contain profiles on both environmental restoration / waste management needs and foreign / domestic technologies. Users will be able to identify matches between worldwide needs and available or emerging technologies. Where matches between needs and existing technologies are not found, the system will identify the potential for development of new and innovative technologies to address environmental problems. EnviroTRADE will also provide general information on international environmental restoration and waste management organizations, sites, activities, and contacts

  11. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  12. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  13. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  14. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    Science.gov (United States)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  15. Science and technology perspective

    International Nuclear Information System (INIS)

    Knotek, M.L.

    1993-01-01

    This paper looks at the waste processing program for Hanford from the perspective of science and technology. The Hanford waste processing problem is but one phase of the total defense waste problem in the country, and a small part of the total waste disposal problem of the industrial base of the country. Basic research effort on this problem will address the specific problems encountered in the forms of this waste, but will also develop technology of use to the entire industrial base of the country, while at the same time trying to benefit from technology being developed in this industrial base. The Hanford waste represents a huge financial cost in terms of its present volume, if handled by the proposed methods of grouting and vitrification. To decrease this costs technology will have to come forward with new processes which result in the overall decrease in waste volume, if not the chemical tailoring of this volume to be more amenable to these disposal methods. There must be a tradeoff in overall costs, technology development costs, treatment and disposal costs. But in general, if separations can be carried to a more developed level, the volume reductions will give cost gains which will support the effort. As technology is developed, the flow charts set up for dealing with the different waste streams will be narrowed by decisions made at different points. Adequate scientific support for these decisions will result in the minimum costs in developing eventual waste processing streams

  16. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  17. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    Science.gov (United States)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  18. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    Science.gov (United States)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the

  19. Recent developments in the effort to cure HIV infection: going beyond N = 1

    Science.gov (United States)

    Siliciano, Janet D.; Siliciano, Robert F.

    2016-01-01

    Combination antiretroviral therapy (ART) can suppress plasma HIV to undetectable levels, allowing HIV-infected individuals who are treated early a nearly normal life span. Despite the clear ability of ART to prevent morbidity and mortality, it is not curative. Even in individuals who have full suppression of viral replication on ART, there are resting memory CD4+ T cells that harbor stably integrated HIV genomes, which are capable of producing infectious virus upon T cell activation. This latent viral reservoir is considered the primary obstacle to the development of an HIV cure, and recent efforts in multiple areas of HIV research have been brought to bear on the development of strategies to eradicate or develop a functional cure for HIV. Reviews in this series detail progress in our understanding of the molecular and cellular mechanisms of viral latency, efforts to accurately assess the size and composition of the latent reservoir, the characterization and development of HIV-targeted broadly neutralizing antibodies and cytolytic T lymphocytes, and animal models for the study HIV latency and therapeutic strategies. PMID:26829622

  20. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  1. FY-2001 Accomplishments in Off-gas Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Douglas William

    2001-09-01

    This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

  2. Research and Technology 1997

    Science.gov (United States)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  3. Tailings technology. Decommissioning and rehabilitation remedial action technology development

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.

    1982-01-01

    This paper is to provide an overview of technology requirements for long-term uranium mill tailings disposal and remedial actions for existing tailings to ensure their adequate disposal. The paper examines the scientific disciplines that are the basis for the technology of uranium mill tailings stabilization and the design of barriers to control radiological exposure or environmental degradation at the location of tailings disposal. The discussion is presented as a hypothetical course of instruction at a fictitious university. Features of six mechanisms of dispersal or intrusion are examined with brief discussion of the applicable technology development for each. The paper serves as an introduction to subsequent specific technology development papers in the session. (author)

  4. How does technological regime affect performance of technology development projects?

    NARCIS (Netherlands)

    Song, Michael; Hooshangi, Soheil; Zhao, Y. Lisa; Halman, Johannes I.M.

    2014-01-01

    In this study, we examine how technological regime affects the performance of technology development projects (i.e., project quality, sales, and profit). Technological regime is defined as the set of attributes of a technological environment where the innovative activities of firms take place.

  5. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  6. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  7. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  8. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  9. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  10. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  11. Development and applications of groundwater remediation technologies in the USA

    Science.gov (United States)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  12. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  13. Fiscal 2000 survey report on the survey of trends of quantum beam process technologies for development of high-speed large-capacity digital electronic information devices; 2000 nendo kosoku daiyoryo digital denshi joho device kaihatsu no tame no ryoshi beam process technology no doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort clarifies the tasks and problems of the next-generation WDM (wavelength division multiplexing) device, the tasks and problems of domestic information digital devices, and the characteristics, and matters wanting further development, of quantum beam technologies that are to contribute to the development of the said devices. In concrete terms, quantum process technologies involving the ultralow energy ion beam, gas cluster ion beam, electron beam, laser beam, radiation, and the like, are to be studied and developed as device processes, and the product of the effort will be utilized for accelerating the currently difficult development of the semiconductor laser diode, high-speed photoelectric conversion diode, optical circuit device, and the next-generation plastic liquid crystal display device. That is to say, process technologies for a high-speed undamaged compound semiconductor device, high-precision optical circuit device, and a totally plastic liquid crystal display device will be established, and verified as valid. Furthermore, novel digital devices will be developed. In this research and development work, manufacturing process technologies will also be established, which as practical technologies will clear the rigorous goals that the industry demand for process stability, process yield, process amount, and the like. (NEDO)

  14. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  15. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  16. ECH Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  17. Technology Foresight in Emerging Maritime & Marine Economies

    DEFF Research Database (Denmark)

    Spaniol, Matthew Jon; Rohrbeck, René

    . The technologies are organized to support innovation and the development of new business areas, and sustains discussion via an online portal. The upshot for technology developers is the organization of the technological landscape. The upshot for academics is the expanded horizon of emerging technologies...... for anticipatory projects, development efforts, and policy considerations. An early iteration of the Radar covers: • Renewable ocean energy • Seabed mining & offshore technology • Marine biotechnology & aquaculture • Specialized vessels & infrastructure • Servicing emerging maritime & offshore activities...

  18. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  19. How the Office of Safeguards and Security Technology development program facilitates safeguarding and securing the DOE complex

    International Nuclear Information System (INIS)

    Smoot, W.

    1995-01-01

    The technology development program's (TDP's) mission is to provide technologies or methodologies that address safeguards and security requirements throughout the U.S. DOE complex as well as to meet headquarters' policy needs. This includes developing state-of-the-art technologies or modifying existing technologies in physical security, material control and accountability, information security, and integrated safeguards systems. The TDP has an annual process during which it solicits user requirements from the field. These requirements are analyzed by DOE headquarters and laboratory personnel for technical merit. The requirements are then prioritized at headquarters, and the highest priorities are incorporated into our budget. Although this user-needs process occurs formally once a year, user requirements are accepted at any time. The status of funded technologies is communicated through briefings, programs reviews, and various documents that are available to all interested parties. Participants in several interagency groups allows our program to benefit from what others are doing and to prevent duplications of efforts throughout the federal community. Many technologies are transferred to private industry

  20. Measuring listening effort: driving simulator versus simple dual-task paradigm.

    Science.gov (United States)

    Wu, Yu-Hsiang; Aksan, Nazan; Rizzo, Matthew; Stangl, Elizabeth; Zhang, Xuyang; Bentler, Ruth

    2014-01-01

    The dual-task paradigm has been widely used to measure listening effort. The primary objectives of the study were to (1) investigate the effect of hearing aid amplification and a hearing aid directional technology on listening effort measured by a complicated, more real world dual-task paradigm and (2) compare the results obtained with this paradigm to a simpler laboratory-style dual-task paradigm. The listening effort of adults with hearing impairment was measured using two dual-task paradigms, wherein participants performed a speech recognition task simultaneously with either a driving task in a simulator or a visual reaction-time task in a sound-treated booth. The speech materials and road noises for the speech recognition task were recorded in a van traveling on the highway in three hearing aid conditions: unaided, aided with omnidirectional processing (OMNI), and aided with directional processing (DIR). The change in the driving task or the visual reaction-time task performance across the conditions quantified the change in listening effort. Compared to the driving-only condition, driving performance declined significantly with the addition of the speech recognition task. Although the speech recognition score was higher in the OMNI and DIR conditions than in the unaided condition, driving performance was similar across these three conditions, suggesting that listening effort was not affected by amplification and directional processing. Results from the simple dual-task paradigm showed a similar trend: hearing aid technologies improved speech recognition performance, but did not affect performance in the visual reaction-time task (i.e., reduce listening effort). The correlation between listening effort measured using the driving paradigm and the visual reaction-time task paradigm was significant. The finding showing that our older (56 to 85 years old) participants' better speech recognition performance did not result in reduced listening effort was not

  1. Relational Database Technology: An Overview.

    Science.gov (United States)

    Melander, Nicole

    1987-01-01

    Describes the development of relational database technology as it applies to educational settings. Discusses some of the new tools and models being implemented in an effort to provide educators with technologically advanced ways of answering questions about education programs and data. (TW)

  2. Technology Development: From Idea to Implementation - 12131

    Energy Technology Data Exchange (ETDEWEB)

    Spires, Renee H. [Savannah River Remediation (United States)

    2012-07-01

    There are good ideas and new technologies proposed every day to solve problems within the DOE complex. A process to transition a new technology from inception to the decision to launch a project with baselines is described. Examples from active technology development projects within Savannah River Remediation (SRR) will be used to illustrate the points. The process includes decision points at key junctures leading to preliminary design. At that point, normal project management tools can be employed. The technology development steps include proof-of-principle testing, scaled testing and analysis, and conceptual design. Tools are used that define the scope necessary for each step of technology development. The tools include use of the DOE technology readiness guide, Consolidated Hazards Analysis (CHA) and internal checklists developed by Savannah River Remediation. Integration with operating or planned facilities is also included. The result is a roadmap and spreadsheet that identifies each open question and how it may be answered. Performance criteria are developed that enable simple decisions to be made after the completion of each step. Conceptual design tasks should begin as the technology development continues. The most important conceptual design tasks at this point in the process include process flow diagrams (PFDs), high level Process and Instrumentation Drawings (P and IDs), and general layout drawings. These should influence the design of the scaled simulant testing. Mechanical and electrical drawings that support cost and schedule development should also be developed. An early safety control strategy developed from the CHA will also influence the cost. The combination of test results, calculations and early design output with rough order of magnitude cost and schedule information provide input into the decisions to proceed with a project and data to establish the baseline. This process can be used to mature any new technology, especially those that must be

  3. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E; Palazzi, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  4. Cleaner Technology in Denmark - support measures and regulatory efforts

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2005-01-01

    Danish cleaner technology support policies have been successful in fostering innovations that reduce the invironmental impact of products and production. But the lack of enforcement support for cleaner technology in environmental permits has limited the overall impact....

  5. Development of clean environment conservation technology by radiation

    International Nuclear Information System (INIS)

    Lee, Myunjoo; Kim, Tak Hyun; Jung, In Ha

    2012-04-01

    This report is aim to develop the technology for environmental conservation by radiation. It is consisted of two research parts. One is development of wastewater disinfection technology by radiation and the other is development of livestock waste treatment technology by radiation. For the development of wastewater disinfection technology disinfect ion process, technology for treatment of toxic organic chemicals and assessment of ecological toxicity, technology for treatment of endocrine disrupting chemicals and assessment of genetic safety were developed. For the development of livestock waste treatment technology, process for simultaneous removal of nutrients, technology for disinfection and quality enhancement of livestock waste compost, technology for reduction of composting periods, monitoring of toxic organic compounds, pretreatment technology for organic toxic chemicals and enhancement of biological treatment efficiencies were developed. Based on basic research, advanced livestock wastewater treatment process using radiation was established

  6. Science and Technology and Economic Development

    OpenAIRE

    Lamberte, Mario B.

    1988-01-01

    Dealing with science and technology and economic development, this paper describes the relationship between technological capability and the degree of economic development. It analyzes the structure of the Philippine economy and the structural changes that have taken place since the 1970. It also investigates the impact of economic developments and technological advances in other countries on the Philippine economy. A discussion on possible research collaboration among PIDS, DOST and regional...

  7. Reexamining the Ethics of Nuclear Technology.

    Science.gov (United States)

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  8. Status of irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Centre was organised to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remoulded from the old RI development building, and was started to use from the end of September, 2008. Advanced in-situ instrumentation technology(high temperature multi-paired thermocouple, ceramic sensor,application of optical measurement), 99 Mo production technology by new Mo solution irradiation method,recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian countries. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  9. Status of Irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re operation. The new irradiation engineering building was remodeled from the old RI development building, and was started to use from the end of September, 2008. Advanced in situ instrumentation technology (high temperature multi paired thermocouple, ceramic sensor, application of optical measurement), 99M o production technology by new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian counties. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  10. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology.

    Science.gov (United States)

    Fan, Kai; Zhang, Min

    2018-02-16

    Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.

  11. Technology Assessment for Future MILSATCOM Systems; An Update of the EHF Bands

    Science.gov (United States)

    1980-10-01

    converging these efforts, the MSO has prepared a "Technology Development Program Plan" ( TDPP ). The TOPP defines a coordinated approach to the R&D...required to insure the availability of the technology necessary to support future systems. Some of the objectives of the TDPP are: to minimize...and TDPP have illuminated the need for technology development efforts directed toward minimizing the cost- risk and schedule-risk, and insuring the

  12. Aum Shinrikyo’s Nuclear and Chemical Weapons Development Efforts

    Directory of Open Access Journals (Sweden)

    Andrea A. Nehorayoff

    2016-03-01

    Full Text Available This article details the terrorist activities of the Japanese cult, Aum Shinrikyo, from the perspective of its complex engineering efforts aimed at producing nuclear and chemical weapons. The experience of this millenarian organization illustrates that even violent non-state actors with considerable wealth and resources at their disposal face numerous obstacles to realizing their destructive aspirations. Specifically, Aum’s attempts at complex engineering were stymied by a combination of unchecked fantastical thinking, self-imposed ideological constraints, and a capricious leadership. The chapter highlights each of these mechanisms, as well as the specific ways in which they constrained the decision-making process and the implementation of the complex engineering tasks associated with their unconventional weapons development.

  13. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    Science.gov (United States)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  14. Development of new processing technology for ruminant feed

    International Nuclear Information System (INIS)

    Mat Rasol Awang; Hassan Hamdani Mutaat; Zainun Said; Alias Saidali; Erwan Md Ariff

    2002-01-01

    The technology for production ruminant feed from agriculture by-product remains scare despite plentiful availability of feeding materials worldwide. Factors that prohibit the process technology development suggested that their peculiar physical make up, high cost of production and inferior product quality compared to established raw material, had consequently impeding the effort. In Malaysia, only two pilot plants exist; they demonstrate utilization of Oil Palm Frond (OPF) into feed. In the case of OPF in situ utilization as feed, farmers use chipper machine or shredder to process it. Other by-products have not been successfully exploited, except for Palm Kernel Cake (PKC) and Palm Oil Mill Effluent (POME) that already in commercial operation. In view of the by-product availability as feeding material in ruminant feeding system and availability of new chipper and shredder machines, the prospect of processing agriculture by-products into feed is expected to be a promising business venture. This paper describes the technology for production of new feed from oil palm Empty Fruit Bunch (EFB). It elaborates on Sterifeed Plant Operation based on plant capacity of 0.5 ton/day production. The operation aspects discuss raw materials handling and processing as well as transforming the products into marketable forms. In this process EFB is initially predigested by fungi in solid state fermentation process into feed materials; the product is ready to be fed in fresh form to animal. The operation exercise has established actual process flow, identified problems and process drawbacks. Based on this experience, availability of localized raw materials EFB at the palm oil mill and rapid development of processing machinery, it is very likely that a commercially viable feed processing plant can be established in the near future. In addition, establishing more data on product quality by further test and characterization of the new feed may contribute to success of the project. (Author)

  15. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  16. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  17. Military efforts in nanosensors, 3D printing, and imaging detection

    Science.gov (United States)

    Edwards, Eugene; Booth, Janice C.; Roberts, J. Keith; Brantley, Christina L.; Crutcher, Sihon H.; Whitley, Michael; Kranz, Michael; Seif, Mohamed; Ruffin, Paul

    2017-04-01

    A team of researchers and support organizations, affiliated with the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), has initiated multidiscipline efforts to develop nano-based structures and components for advanced weaponry, aviation, and autonomous air/ground systems applications. The main objective of this research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weaponry. The key technology areas that the authors are exploring include nano-based sensors, analysis of 3D printing constituents, and nano-based components for imaging detection. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) weaponry systems by significantly reducing the size, weight, and cost. The major research thrust areas include the development of carbon nanotube sensors to detect rocket motor off-gassing; the application of current methodologies to assess materials used for 3D printing; and the assessment of components to improve imaging seekers. The status of current activities, associated with these key areas and their implementation into AMRDEC's research, is outlined in this paper. Section #2 outlines output data, graphs, and overall evaluations of carbon nanotube sensors placed on a 16 element chip and exposed to various environmental conditions. Section #3 summarizes the experimental results of testing various materials and resulting components that are supplementary to additive manufacturing/fused deposition modeling (FDM). Section #4 recapitulates a preliminary assessment of the optical and electromechanical components of seekers in an effort to propose components and materials that can work more effectively.

  18. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  19. The development of nuclear power and the research effort in the Community

    International Nuclear Information System (INIS)

    Davies, D.H.

    1986-01-01

    The development of nuclear power in the European Community up to the present time is reviewed in the light of the 1973 oil crisis. The European Community nuclear energy policy and strategy are described, as well as the future objectives for the development of nuclear power in Europe. The research effort in the Community, concerning energy resources, and including nuclear fission energy, is outlined. Research and development (R and D) work in the field of radioactive waste management is reviewed. Also some achievements of the twelve year Plan of Action, and of the multiannual R and D programmes are presented. (U.K.)

  20. First COSTECH scientific and technological conference: Science and technology for growth and poverty reduction in Tanzania

    International Nuclear Information System (INIS)

    2006-01-01

    It is well recognised worldwide that science and technology is central to creating wealth and improving the quality of life. Indeed, the main difference between the developed countries and developing countries is the level of science, technology and innovative developments and applications. It is therefore necessary to undertake deliberate efforts to ensure that science science and technology is adequately and effectively applied if sustainable national economic development is to be achieved. Recognizing the role of Science and Technology in social economic development of the nation, the government of the URT has provided an enabling environment for the application of Science and Technology in its endeavour to bring about the desired national advancements. (author)

  1. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  2. Technology innovation efforts in the mining oligopoly; Efforts d'innovations technologiques dans l'oligopole minier

    Energy Technology Data Exchange (ETDEWEB)

    Poudou, J.Ch.

    2002-06-01

    In non-renewable resources economy, the analysis of innovation focusses mainly on the tactical and strategical relevance of the use of a substitution technology (backstop). However, in the world petroleum industry the technological evolution of the production system explains the evolution of the offer forces: some technologies allow to reduce the extraction costs, while some others allow to valorize the hardly accessible resources (accessibility technologies). This paper makes a micro-economical analysis of the R and D characteristics in the oligopolistic framework of the non-renewable resources market. In the first part, an analysis of the mining oligopoly with perfectly defined property rights is made. In the second part a useful version of the results of the cost reducing R and D analysis is given and crossed with the first analysis by analysing the continuous cost reducing R and D inside a range of mining oligopolies. In the last section, the same analysis is reproduced but for a continuous R and D of accessibility technologies. (J.S.)

  3. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  4. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  5. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  6. Fiscal 1999 achievement report. Research and technology of important regional technologies (Development of combustion control system technology for rationalizing energy use); 1999 nendo energy shiyo gorika nensho nado seigyo system gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For upgrading and optimizing combustion control systems, research and development is conducted for materializing SiC devices capable of high-temperature operation. In the development of basic technologies common to various types of SiC semiconductor devices, XeCl excimer laser annealing is applied to SiC implanted with Al ions, and low-damage ion implantation is studied. In the development of techniques for forming SiC single crystals into substrates, warpage of 20{mu} or less, surface coarseness of 5{mu}m or less, etc., are achieved in 1-inch and 2-inch wafers. In the development of SiC sensor technology, techniques of heteroepitaxial growth of 3C-SiC on Si substrates and of 6H-SiC on 6H-SiC wafers are established and an optical sensor is built experimentally. A high-temperature UV sensor, switching device for control, rectification device for control, etc., are built of nitrogen ion implanted 6H-SiC. In the effort to develop combustion control system technology, the principle of system operation of the combustion control method proposed under this project is verified. (NEDO)

  7. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  8. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  9. ICT use in science and mathematics teacher education in Tanzan: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, A.; Fisser, P.; Pieters, J.; Voogt, J.

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  10. ICT Use in Science and Mathematics Teacher Education in Tanzania: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, Ayoub; Fisser, Petra; Pieters, Julius Marie; Voogt, Joke

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  11. Development of fabrication technology for ceramic nuclear fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Sohn, D. S.; Na, S. H.

    2003-05-01

    The purpose of the study is to develop the fabrication technology of MOX fuel. The researches carried out during the last stage(1997. 4.∼2003. 3.) mainly consisted of ; study of MOX pellet fabrication technology for application and development of characterization technology for the aim of confirming the development of powder treatment technology and sintering technology and of the optimization of the above technologies and fabrication of Pu-MOX pellet specimens through an international joint collaboration between KAERI and PSI based on the fundamental technologies developed in KAERI. Based on the studies carried out and the results obtained during the last stage, more extensive studies for the process technologies of the unit processes were performed, in this year, for the purpose of development of indigenous overall MOX pellet fabrication process technology, relating process parameters among the unit processes and integrating these unit process technologies. Furthermore, for the preparation of transfer of relevant technologies to the industries, a feasibility study was performed on the commercialization of the technology developed in KAERI with the relevant industry in close collaboration

  12. Technology transfer and commercialization of in situ vitrification technology

    International Nuclear Information System (INIS)

    Williams, L.D.; Hansen, J.E.

    1992-01-01

    In situ vitrification (ISV) technology was conceived and an initial proof-of-principle test was conducted in 1980 by Battelle Memorial Institute for the U.S. Department of Energy (DOE) at Pacific Northwest Laboratory (PNL). The technology was rapidly developed through bench, engineering pilot, and large scales in the following years. In 1986, DOE granted rights to the basic ISV patent to Battelle in exchange for a commitment to commercialize the technology. Geosafe Corporation was established as the operating entity to accomplish the commercialization objective. This paper describes and provides status information on the technology transfer and commercialization effort

  13. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  14. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  15. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  16. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  17. Development of preventive maintenance technology and advanced service equipment for operating nuclear power plants

    International Nuclear Information System (INIS)

    Abe, Kazuhiro; Sumikawa, Masaharu; Hirakawa, Hiromasa; Arakawa, Tadao; Hasegawa, Kunio; Kato, Kanji.

    1990-01-01

    Hitachi Ltd. as a manufacturer of nuclear power plants has carried out the consistent general preventive maintenance activities from the planning of the plants and the design of maintainability in the construction phase to the planning and working of preventive maintenance in the operation and maintenance phase, and exerted efforts to heighten the capacity ratio and reliability of the plants. For the purpose, the steady activities of reliability improvement have been carried out throughout the whole company, and the rationalization of the planning and management of the preventive maintenance with a computer and the development of the robots to which Al is applied have been promoted. As the technology of upgrading the facilities, boron racks, the control rods having long life and so on were developed, and their practical use is advanced. Moreover for the future, the development of the diagnostic technology on material deterioration using superconductive quantum interference devices (SQUID) is in progress. The preventive maintenance activities in Hitachi Ltd., the technical development for the purpose and the upgrading of the plant facilities are reported. (K.I.)

  18. Mixed Waste Integrated Program emerging technology development

    International Nuclear Information System (INIS)

    Berry, J.B.; Hart, P.W.

    1994-01-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m 3 of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development's Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW

  19. Software Configuration Management For Multiple Releases: Influence On Development Effort

    Directory of Open Access Journals (Sweden)

    Sławomir P. Maludziński

    2007-01-01

    Full Text Available Software Configuration Management (SCM evolves together with the discipline of softwareengineering. Teams working on software products become larger and are geographically distributedat multiple sites. Collaboration between such groups requires well evaluated SCMplans and strategies to easy cooperation and decrease software development cost by reducingtime spent on SCM activities – branching and merging, that is effort utilized on creation ofrevisions (’serial’ versions and variants (’parallel’ versions. This paper suggests that SCMpractices should be combined with modular design and code refactoring to reduce cost relatedto maintenance of the same code line. Teams which produce several variants of thesame code line at the same time should use approaches like components, modularization, orplug-ins over code alternations maintained on version branches. Findings described in thispaper were taken by teams in charge of development of radio communication systems inMotorola GEMS divisions. Each team collaborating on similar projects used different SCMstrategies to develop parts of this system.

  20. Development of ultrasensitive spectroscopic analysis technology

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, K. S.; Kim, D. H.; Yang, K. H.; Jung, E. C.; Jeong, D. Y.; Yi, Y. J.; Lee, S. M.; Hong, K. H.; Han, J. M.; Yoo, B. D.; Rho, S. P.; Yi, J. H.; Park, H. M.; Cha, B. H.; Nam, S. M.; Lee, J. M.

    1997-09-01

    For the development of the laser initiated high resolution, ultra sensitive analysis technology following field of researches have been performed. 1) Laser resonance ionization technology, 2) Laser-induced rare isotope detection technology, 3) Laser-induced plasma analysis technology, 4) Microparticle analysis technology by using ion trap, 5) Laser induced remote sensing technique. As a result a monitoring system for photoionized product is developed and the test of system is performed with Sm sample. The rare isotope detection system is designed and a few key elements of the system are developed. In addition a laser-induced plasma analysis system is developed and samples such as Zircaloy, Zinc-base alloy, rock samples are reasonably analyzed. The detection sensitivity is identified as good as a few ppm order. An ion trap is developed and microparticles such as SiC are trapped inside the trap by ac and dc fields. The fluorescence signals from the organic dyes as well as rare earth element which are absorbed on the microparticles are detected. Several calibration curves are also obtained. In the field of laser remote sensing a mobile Lidar system is designed and several key elements are developed. In addition the developed system is used for the detection of Ozone, NO 2 , SO 2 , etc. (author). 57 refs., 42 figs

  1. Vacuum technologies developed for at-400A Type B transportation and storage package

    International Nuclear Information System (INIS)

    Franklin, K.W.; Cockrell, G.D.

    1995-01-01

    The AT-400A TYPE B transportation and storage container will be used at Pantex Plant for the transportation and interim storage of plutonium pits. The AT-400A was designed by a joint effort between Sandia National Labs, Los Alamos National Labs, Lawrence Livermore National Laboratory, and Mason and Hanger-Silas Mason Co., Inc. In order to meet the requirements for transportation and storage, five different vacuum technologies had to be developed. The goals of the various vacuum technologies were to verify the plutonium pit was sealed, perform the assembly verification leak check in accordance with ANSI N-14.5 and to provide a final inert gas backfill in the containment vessel. This paper will discuss the following five vacuum technologies: (1) Pit Leak Testing, (2) Containment Vessel Purge and Backfill with tracer gas, (3) Containment Vessel Leak Testing, (4) Containment Vessel Purge and Final Backfill, and (5) Leak Testing of the Containment Vessel Gas Transfer tube

  2. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  3. "Analysis of Leadership Styles Developed by Teachers and Administrators in Technical-Technological Programs: The Case of The Cooperative University of Colombia"

    Science.gov (United States)

    Cuadros, María del Pilar Jaime; Cáceres Reche, María Pilar; Lucena, Francisco Javier Hinojo

    2018-01-01

    This work is part of a wider research effort in the field of leadership and organizational development, coordinated by the University of Granada and the A.R.E.A Research Group (Analysis of Educational Reality in Andaluz), HUM/672. It was developed in the Cooperative University of Colombia, a country where technical and technological programmes…

  4. Designing and Developing Supplemental Technology of PACI Model Materials through Blended Learning Methods

    Directory of Open Access Journals (Sweden)

    Effendi Limbong

    2017-06-01

    Full Text Available The 21st century English teachers and lecturers are required to have competencies in translating Content Knowledge (CK, integrating various Pedagogical Knolwedge (PK and implementing Technological Knowledge (TK in order to produce effective and efficient teaching. This research reveals and describes researchers efforts and pre-service EFL teachers (PSEFLTs roles in designing and developing the supplemental teaching and learning materials with PowerPoint, Audacity, Camtasia and Internet. To transform researcher roles and model to introduce and implement Technological, Pedagogical, and Content Knowledge (TPACK framework, this research implemented blended learning: traditional face to face (F2F and Facebook closed-group discussion (FBcgD based on Project-Based Learning (PBL. This research employed the qualitative autobiography narrative of self-study from the researchers experiences to implement blended learning. Semi-structure interviews were conducted with four PSEFLTs of group A and five PSEFLTs of group B to seek the PSEFLTs experiences in designing and developing PACI model. The results suggested that blended learning is can effectively and efficiently integrate and implement the design and development of a PACI model. Most importantly both of researcher and two groups realized that in integration of TPACK during a Computer Literacy course, the subject matter may be shaped by the application of technology; teaching as well as learning might be changed by the use of technology and the way to represent and communicate specific lessons to students.

  5. Pyroprocessing technology development at KAERI

    International Nuclear Information System (INIS)

    Lee, Han Soo; Park, Geun Il; Kang, Kweon Ho; Hur, Jin Mok; Kim, Jeong Guk; Ahn, Do Hee; Cho, Yung Zun; Kim, Eung Ho

    2011-01-01

    Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development

  6. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    Science.gov (United States)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  7. Mixed Waste Integrated Program emerging technology development

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B. [Oak Ridge National Lab., TN (United States); Hart, P.W. [USDOE, Washington, DC (United States)

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. Over the next 5 years, DOE will manage over 1.2 m{sup 3} of MLLW and mixed transuranic (MTRU) wastes. In order to successfully manage and treat these mixed wastes, DOE must adapt and develop characterization, treatment, and disposal technologies which will meet performance criteria, regulatory approvals, and public acceptance. Although technology to treat MLLW is not currently available without modification, DOE is committed to developing such treatment technologies and demonstrating them at the field scale by FY 1997. The Office of Research and Development`s Mixed Waste Integrated Program (MWIP) within the DOE Office of Environmental Management (EM), OfFice of Technology Development, is responsible for the development and demonstration of such technologies for MLLW and MTRU wastes. MWIP advocates and sponsors expedited technology development and demonstrations for the treatment of MLLW.

  8. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  9. Do Technological Developments and Financial Development Promote Economic Growth: Fresh Evidence from Romania

    OpenAIRE

    Ur Rehman, Ijaz; Shahbaz, Muhammad; Kyophilavong, Phouphet

    2013-01-01

    We study the relationship between financial development, technological development and economic growth in Romania. We construct aggregate indices of financial development and technological development using principal component analysis. The ARDL bounds testing approach shows the presence of cointegration between financial development, technological development and economic growth. Financial development and technological development contribute to economic growth. Moreover, financial developmen...

  10. Achievement goal profiles and developments in effort and achievement in upper elementary school.

    Science.gov (United States)

    Hornstra, Lisette; Majoor, Marieke; Peetsma, Thea

    2017-12-01

    The multiple goal perspective posits that certain combinations of achievement goals are more favourable than others in terms of educational outcomes. This study aimed to examine longitudinally whether students' achievement goal profiles and transitions between profiles are associated with developments in self-reported and teacher-rated effort and academic achievement in upper elementary school. Participants were 722 fifth-grade students and their teachers in fifth and sixth grade (N = 68). Students reported on their achievement goals and effort in language and mathematics three times in grade 5 to grade 6. Teachers rated students' general school effort. Achievement scores were obtained from school records. Goal profiles were derived with latent profile and transition analyses. Longitudinal multilevel analyses were conducted. Theoretically favourable goal profiles (high mastery and performance-approach goals, low on performance-avoidance goals), as well as transitions from less to more theoretically favourable goal profiles, were associated with higher levels and more growth in effort for language and mathematics and with stronger language achievement gains. Overall, these results provide support for the multiple goal perspective and show the sustained benefits of favourable goal profiles beyond effects of cognitive ability and background characteristics. © 2017 The Authors. British Journal of Education Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  11. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  12. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  13. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  14. Five Years After; the Impact of a Participatory Technology Development Programme as Perceived by Smallholder Farmers in Benin and Ghana

    NARCIS (Netherlands)

    Sterk, B.; Kobina, A.C.; Gogan, A.C.; Sakyi-Dawson, O.; Kossou, D.

    2013-01-01

    Purpose: The article reports effects on livelihoods of a participatory technology development effort in Benin and Ghana (2001–2006), five years after it ended. Design: The study uses data from all smallholders who participated in seven experimental groups, each facilitated by a PhD researcher.

  15. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  16. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  17. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  18. Using Authentic Science in the Classroom: NASA's Coordinated Efforts to Enhance STEM Education

    Science.gov (United States)

    Lawton, B.; Schwerin, T.; Low, R.

    2015-11-01

    A key NASA education goal is to attract and retain students in science, technology engineering, and mathematics (STEM) disciplines. When teachers engage students in the examination of authentic data derived from NASA satellite missions, they simultaneously build 21st century technology skills as well as core content knowledge about the Earth and space. In this session, we highlight coordinated efforts by NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) programs to enhance educator accessibility to data resources, distribute state-of -the-art data tools and expand pathways for educators to find and use data resources. The group discussion explores how NASA SMD EPO efforts can further improve teacher access to authentic NASA data, identifies the types of tools and lessons most requested by the community, and explores how communication and collaboration between product developers and classroom educators using data tools and products can be enhanced.

  19. Nuclear fuels technologies fiscal year 1998 research and development test plan

    International Nuclear Information System (INIS)

    Alberstein, D.; Blair, H.T.; Buksa, J.J.

    1998-06-01

    A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO 2 and UO 2 feed materials. Fuel fabrication development efforts include studies with a new UO 2 feed material, alternate sources of PuO 2 , and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities

  20. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  1. Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, Jr, J G

    1977-09-01

    The need for increased research and development programs to provide technological advances to meet future energy demands, particularly electric power demands, is discussed. It is concluded that the future energy needs of the world can only be supplied through technological improvements. The cost of these technological improvements can be minimized by cooperative, unified research and development programs. The financial support of the energy industry, the equipment manufacturing industry and the consumer will be required to finance these vital developments. The energy problems of the world can be solved by an adequately financed unified R and D effort. The U.S. must assume a major role of leadership in this world-wide effort. (LCL)

  2. Web Development Technology-PHP. How It Is Related To Web Development Technology ASP.NET

    Directory of Open Access Journals (Sweden)

    Manya Sharma

    2015-01-01

    Full Text Available ABSTRACT This paper tells about the technologies used in PHP and how they are related to ASP.NET. The paper begin with the introduction of PHP defining what and how technologies has been used in development of User Complaint Web Application. How thistechnology is related to ASP.NET in features such as implementation functionality validation and proactive behavior involved in validating user input from the browser providing users feedback overall time consumed in development and maintenance.

  3. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  4. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  5. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  6. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  7. Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, K S; Kim, D H; Yang, K H; Jung, E C; Jeong, D Y; Yi, Y J; Lee, S M; Hong, K H; Han, J M; Yoo, B D; Rho, S P; Yi, J H; Park, H M; Cha, B H; Nam, S M; Lee, J M

    1997-09-01

    For the development of the laser initiated high resolution, ultra sensitive analysis technology following field of researches have been performed. (1) Laser resonance ionization technology, (2) Laser-induced rare isotope detection technology, (3) Laser-induced plasma analysis technology, (4) Microparticle analysis technology by using ion trap, (5) Laser induced remote sensing technique. As a result a monitoring system for photoionized product is developed and the test of system is performed with Sm sample. The rare isotope detection system is designed and a few key elements of the system are developed. In addition a laser-induced plasma analysis system is developed and samples such as Zircaloy, Zinc-base alloy, rock samples are reasonably analyzed. The detection sensitivity is identified as good as a few ppm order. An ion trap is developed and microparticles such as SiC are trapped inside the trap by ac and dc fields. The fluorescence signals from the organic dyes as well as rare earth element which are absorbed on the microparticles are detected. Several calibration curves are also obtained. In the field of laser remote sensing a mobile Lidar system is designed and several key elements are developed. In addition the developed system is used for the detection of Ozone, NO{sub 2}, SO{sub 2}, etc. (author). 57 refs., 42 figs.

  8. X-43 Hypersonic Vehicle Technology Development

    Science.gov (United States)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  9. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho

    2010-04-01

    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  10. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun

    2012-04-01

    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  11. ARMS CONTROL: U.S. Efforts to Control the Transfer of Nuclear-Capable Missile Technology

    National Research Council Canada - National Science Library

    Plunkett, R

    1990-01-01

    ...). Through the MTCR, the United States and seven of its allies are attempting to limit the availability of certain systems, equipment, and technologies necessary for developing nuclear-capable missiles...

  12. EPA/DOE joint efforts on mixed waste treatment

    International Nuclear Information System (INIS)

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-01-01

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final open-quotes Hazardous Waste Combustion Strategyclose quotes in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit open-quotes Roadmapclose quotes Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit

  13. Nigerian Journal of Technological Development

    African Journals Online (AJOL)

    The Nigerian Journal of Technological Development is now a quarterly publication of the Faculty of Engineering & Technology, University of Ilorin, Ilorin, Nigeria. ... to the subject matter as a Research Paper, Review Paper or a Technical Note.

  14. Technology development multidimensional review for engineering and technology managers

    CERN Document Server

    Neshati, Ramin; Watt, Russell; Eastham, James

    2014-01-01

    Developing new products, services, systems, and processes has become an imperative for any firm expecting to thrive in today’s fast-paced and hyper-competitive environment.  This volume integrates academic and practical insights to present fresh perspectives on new product development and innovation, showcasing lessons learned on the technological frontier.  The first part emphasizes decision making.  The second part focuses on technology evaluation, including cost-benefit analysis, material selection, and scenarios. The third part features in-depth case studies to present innovation management tools, such as customer needs identification, technology standardization, and risk management. The fourth part highlights important international trends, such as globalization and outsourcing. Finally the fifth part explores social and political aspects.

  15. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  16. Investigating the Nature of Relationship between Software Size and Development Effort

    OpenAIRE

    Bajwa, Sohaib-Shahid

    2008-01-01

    Software effort estimation still remains a challenging and debatable research area. Most of the software effort estimation models take software size as the base input. Among the others, Constructive Cost Model (COCOMO II) is a widely known effort estimation model. It uses Source Lines of Code (SLOC) as the software size to estimate effort. However, many problems arise while using SLOC as a size measure due to its late availability in the software life cycle. Therefore, a lot of research has b...

  17. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  18. Support for Development of Electronics and Materials Technologies by the Governments of the United States, Japan, West Germany, France, and the United Kingdom.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    The governments of the United States, Japan, West Germany, France, and the United Kingdom each have large research and development efforts involving government agencies, universities and industry. This document provides a comparative overview of policies and programs which contribute to the development of technologies in the general area of…

  19. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  20. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  1. Social and Technological Development in Context

    DEFF Research Database (Denmark)

    Koch, Christian

    1997-01-01

    This papers studies the processes developing technology and its social "sorroundings", the social networks. Positions in the debate on technological change is discussed. A central topic is the enterprise external development and decision processes and their interplay with the enterprise internal...

  2. Proposal of Instruction Process for Improvement of Language Activities in Technology Education Course

    OpenAIRE

    山本, 智広; 山本, 利一

    2012-01-01

    This study is a proposal of instruction process for improvement of language activities in the technology education course in the junior high school in Japan. In this study, two efforts were carried out for the technology concerning material and processing. The first effort was the extraction of the learning situations that develop abilities of thinking, judgment and expression through language activities peculiar to the technology education course. The second effort was the verification o...

  3. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  4. White paper on science and technology, 1999. New development in science and technology policy: responding to national and societal needs

    International Nuclear Information System (INIS)

    1999-01-01

    This white paper presents various considerations on present important issues on Japanese science and technology by focusing on what is demanded of Japan's science and technology policy in responding to these national and social needs. This papers concern policy measures intended to promote science and technology, and has been submitted to the hundred forty-second session of the Diet, pursuant to Article 8 of the Science and Technology Basic Law (Law No. 130), enacted in 1995. Part 1 and Part 2 of this report discuss the trends in a wide range of scientific and technical activities to help understanding the policy measures implemented to promote science and technology, which are then discussed in Part 3. The title of Part 1 is new development in science and technology policy: responding to national and societal needs. In this part, what sort of efforts is needed in the world of today, where science and technology are engines for social and economic revolution was examined in order for science and technology to better meet national and societal needs. In Part 2, current status of science and technology in Japan and other nations in the areas pertaining to science and technology were examined using various data as to the scientific and technical activities in Japan. This information will then be used for a more in-depth analysis of the trends in Japan's research activities. Part 3 provides a summary of the Science and Technology Basic Plan that was determined in July 1996 based on the Science and Technology Basic Law. It continues with a discussion of the policies that were implemented in FY1998 for the promotion of science and technology, in line with this basic plan. (M.N.)

  5. Development of Risk Management Technology/Development of Risk-Informed Application Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon Eon; Kim, K. Y.; Ahn, K. I.; Lee, Y. H.; Lim, H. G.; Jung, W. S.; Choi, S. Y.; Han, S. J.; Ha, J. J.; Hwang, M. J.; Park, S. Y.; Yoon, C

    2007-06-15

    This project aims at developing risk-informed application technologies to enhance the safety and economy of nuclear power plant altogether. For this, the Integrated Level 1 and 2 PSA model is developed. In addition, the fire and internal flooding PSA models are improved according to the PSA standard of U.S.A. To solve the issues of domestic PSA model, the best-estimate thermal hydraulic analyses are preformed for the ATWS and LSSB. In order to reduce the uncertainty of PSA, several new PSA technologies are developed: (1) more exact quantification of large fault tree, (2) importance measure including the effects of external PSA. As feasibility studies of Option 2 and 3, the class of 6 systems' SSC are re-classified based on the risk information and the sensitivity analyses is performed for the EDG starting time, respectively. It is also improved that the methodology to identify the vital area of NPP. The research results of this project can be used in the regulatory body and the industry projects for risk-informed applications.

  6. Development of Risk Management Technology/Development of Risk-Informed Application Technology

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Kim, K. Y.; Ahn, K. I.; Lee, Y. H.; Lim, H. G.; Jung, W. S.; Choi, S. Y.; Han, S. J.; Ha, J. J.; Hwang, M. J.; Park, S. Y.; Yoon, C.

    2007-06-01

    This project aims at developing risk-informed application technologies to enhance the safety and economy of nuclear power plant altogether. For this, the Integrated Level 1 and 2 PSA model is developed. In addition, the fire and internal flooding PSA models are improved according to the PSA standard of U.S.A. To solve the issues of domestic PSA model, the best-estimate thermal hydraulic analyses are preformed for the ATWS and LSSB. In order to reduce the uncertainty of PSA, several new PSA technologies are developed: (1) more exact quantification of large fault tree, (2) importance measure including the effects of external PSA. As feasibility studies of Option 2 and 3, the class of 6 systems' SSC are re-classified based on the risk information and the sensitivity analyses is performed for the EDG starting time, respectively. It is also improved that the methodology to identify the vital area of NPP. The research results of this project can be used in the regulatory body and the industry projects for risk-informed applications

  7. Recent advances in Ni-H2 technology at NASA Lewis Research Center

    Science.gov (United States)

    Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.

    1986-01-01

    The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.

  8. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  9. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  10. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  11. Integrating Product and Technology Development

    DEFF Research Database (Denmark)

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    .g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models......Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  12. Developments and needs in nuclear analysis of fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Pampin, R., E-mail: raul.pampin@f4e.europa.eu [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Davis, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Izquierdo, J. [F4E Fusion For Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona 08019 (Spain); Leichtle, D. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, D-76344 Karlsruhe (Germany); Loughlin, M.J. [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Sanz, J. [UNED, Departamento de Ingenieria Energetica, Juan del Rosal 12, 28040 Madrid (Spain); Turner, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Wilson, P.P.H. [University of Wisconsin, Nuclear Engineering Department, Madison, WI (United States)

    2013-10-15

    Highlights: • Complex fusion nuclear analyses require detailed models, sophisticated acceleration and coupling of cumbersome tools. • Progress on development of tools and methods to meet specific needs of fusion nuclear analysis reported. • Advances in production of reference models and in preparation and QA of acceleration and coupling algorithms shown. • Evaluation and adaptation studies of alternative transport codes presented. • Discussion made of the importance of efforts in these and other areas, considering some of the more pressing needs. -- Abstract: Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case of fusion technology in current experiments, ITER, next-step devices and power plant studies. Calculations are intricate and computer-intensive, typically requiring detailed geometry models, sophisticated acceleration algorithms, high-performance parallel computations, and coupling of large and complex transport and activation codes and databases. This paper reports progress on some key areas in the development of tools and methods to meet the specific needs of fusion nuclear analyses. In particular, advances in the production and modernisation of reference models, in the preparation and quality assurance of acceleration algorithms and coupling schemes, and in the evaluation and adaptation of alternative transport codes are presented. Emphasis is given to ITER-relevant activities, which are the main driver of advances in the field. Discussion is made of the importance of efforts in these and other areas, considering some of the more pressing needs and requirements. In some cases, they call for a more efficient and coordinated use of the scarce resources available.

  13. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  14. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  15. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    Science.gov (United States)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  16. Technology catalogue. Second edition

    International Nuclear Information System (INIS)

    1995-04-01

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE's clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community

  17. Technology catalogue. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  18. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  19. Development of IT-based data communication network technology

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Jeong, K. I.; Yoo, Y. R.

    2010-10-01

    - Developing broadband high-reliability real-time communications technology for NPP - Developing reliability and performance validation technology for communications network - Developing security technology for NPP communications network - Developing field communications network for harsh environment of NPP - International standard registration(Oct. 28, 2009, IEC 61500

  20. The contribution of the UNDP/RCA/IAEA programmes to the development of nuclear technology in the Asia Pacific Region

    International Nuclear Information System (INIS)

    Easey, J.F.

    1994-01-01

    The UNDP/RCA/IAEA Programmes are involving Member States in the Asia Pacific Region in projects to develop and increase the use of nuclear technologies. These efforts have already increased the level of awareness amongst the Region's scientists, engineers, technologists, and decision makers and has provided significant training to the scientists and engineers to enable them to play a role in technical back stopping at a national level. A new project has been started in 1993 and this will seek to expand the contribution of the nuclear technologies into further industrial and environmental fields. Much of the success of the programmes is credited to the high level of Regional Co-operative Agreement (RCA) for research, development and training related to nuclear science and technology in Asia and the Pacific

  1. Analysis of the international environment for the national nuclear technology development in the post-coldwar era

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Kim, Hwa Sup; Kim, Ji Whan; Lee, Dong Jin; Kim, Jong Sook; Kim, Hyun Joon; Yoon, Young Woo; Ham, Chul Hoon; Cho, Suck Hong

    1992-12-01

    The main objective of this study is to suggest future policy directions of national nuclear technology development and to define the role of nuclear power in the post-coldwar era. This study first reviews how the collapse of USSR have exerted subsequent effects on the international nuclear industry and analyses the efforts of the multinational nuclear enterprises to obtain technological, competitiveness and to expand the share in the international nuclear market in order to compete the economical and technological superiority. Finally, this study analyses scenarios for the global environmental regulations which may be imposed over internationally in the near future. This study suggests; firstly, increasing investment on science and technology, secondly, diversifying international cooperation, thirdly, rearranging and strengthening a national system for information collecting and analysis, fourthly, making up infrastructure to expand the role of nuclear power, fifthly, expanding the applications of nuclear energy including district heating, etc. (Author)

  2. Impact of product development efforts on product introduction and product customization abilities

    DEFF Research Database (Denmark)

    Chaudhuri, Atanu; Dawar, Saloni

    2014-01-01

    This paper investigates the impact of efforts in new product development-manufacturing integration (NPDMI) on new product introduction (NPI) and product customization (PC) abilities and the moderating effects of product design complexity and importance of new product development order winners...... (NPIOW) on the above relationships. The results from the data on 136 Indian manufacturing plants show that NPDMI, product design complexity and NPIOW all have significant positive impact on NPI and PC abilities. Importance of NPIOW has a positive moderating effect on the relationship between NPDMI and PC...... ability change but product design complexity demonstrate no such effect on the above relationships....

  3. Key technological challenges for JSFR development

    International Nuclear Information System (INIS)

    Morishita, Masaki; Nakai, Ryodai; Aoto, Kazumi

    2008-01-01

    JSFR is a sodium cooled loop type fast reactor on which a conceptual design study is now underway in the framework of 'Fast Reactor Cycle Technology Development Project (FaCT project)' of Japan. Achieving economic competitiveness with future light water reactors, along with assuring high level of safety and reliability, is among the most crucial development targets. A number of innovative technologies are pursued for these purposes. A two loop primary heat transfer system (PHTS) design, integration of a main circulation pump and an intermediate heat exchanger (IHX) into one single component, and adoption of high chrome ferritic steel as a structural material are typical technologies mainly for economic purposes. A passive shutdown system, decay heat removal by natural convection, and re-criticality free core configuration are those for mainly safety enhancement purposes. Technically challenging issues inevitably accompany these innovative technologies, and a systematic research and development program is undertaken for resolving these issues and realization of the plant design. An overall picture will be given in this paper on the design concept of JSFR that will be followed by descriptions on the major innovative technologies and their relevant research and development activities. (author)

  4. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  5. Fiscal 2000 report on the development of high-efficiency refuse-fueled power generation technology; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 2000 nendo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to develop a refuse gasification/fusion power generation technology to contribute to the effective utilization of unexploited energy and to reduction in greenhouse gas emissions. Developed in the technology of elevating steam temperature were the evaluation of high-temperature corrosion of SH materials and a high temperature dust removing system, dechlorination technology for the thermolysis process, and a ceramic-made high-temperature air heater. For the avoidance of exhaust gas reheating, development was carried out for a low-temperature denitration unit, stable refuse feeding system for reduction in the self-heat melting critical calorific value, waste plastic injection technology for reduction in the amount of external fuel injection, and so forth. The effect of the developed element technologies were evaluated and a detailed feasibility study was conducted for a refuse gas conversion power generation system using gas engine power generation for minor-scale general waste treatment facilities. In the survey of the trend of refuse-fueled power generation technologies, trend in Japan and advanced refuse-fueled power generation systems and their introduction in Europe and America were investigated. (NEDO)

  6. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    Science.gov (United States)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Outpost. To minimize cost and ensure that ISRU technologies, systems, and functions are integrated properly into the Outpost, technology development efforts are being coordinated with other development areas such as Surface Mobility, Surface Power, Life Support, EVA, and Propulsion. Lastly, laboratory and field system-level tests and demonstrations will be performed as often as possible to demonstrate improvements in: Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness). This presentation will provide the status of work performed to date within the NASA ISRU project with respect to technology and system development and field demonstration activities, as well as the current strategy to implement ISRU in future robotic and human lunar exploration missions.

  7. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  8. Potential commercial applications of centrifuge technology

    International Nuclear Information System (INIS)

    1985-08-01

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  9. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  10. Strategy development for anticipating and handling a disruptive technology.

    Science.gov (United States)

    Chan, Stephen

    2006-10-01

    The profession of radiology has greatly benefited from the introduction of new imaging technologies throughout its history. Therefore, it would seem reasonable for radiologists to believe that the emergence of a new imaging technology can generally be foreseen with sufficient advance notice to allow the appropriate levels of time, effort, and money to be devoted toward incorporating it into radiology practice. However, in his seminal work, Christiansen characterized a new form of technologic innovation, known as "disruptive technology," whose emergence often heralds the replacement of market leaders in an industry by competitors who are quicker in adopting and deploying the new technology. This article briefly describes the phenomenon of disruptive technology and addresses the challenges that organizations face in dealing with disruptive technology. The article raises 4 questions about the future of radiology: (1) Are health care and radiology vulnerable to disruptive technology? (2) What kinds of change may be in store for the radiology profession? (3) Can the radiology profession prepare itself to recognize and respond to a disruptive innovation among a group of new imaging technologies? and (4) How should a radiology organization decide whether to invest significant resources in a potentially disruptive technology? This article addresses these questions by reviewing key insights from leading "gurus" in the fields of competitive strategy and technology management and applying them to radiology. This illustrates how and why (despite past successes) the radiology profession may still have a blind spot in recognizing and handling disruptive technologies.

  11. Strategies of implementation and effects of national technological development big programmes: experiences of Brazilian Navy nuclear programme

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos

    2005-01-01

    The science and technology development, for which creativity and innovation must be always present, are supported by three fundamental principles: the first is related to existence of human brains and good conditions for its realizations; the second could be located in people and institution mobilization for accomplishment of objectives and goals which generate strategic or social benefits; the third are relates to a national effort, making sufficient resources reach the scientific and technological areas. Brazilian Navy, trough its Technological Center in Sao Paulo, developed a particular approach to follow these principles in order to get a technological 'jump' which will give Brazilian Naval Power, through submarine nuclear propulsion, the capabilities required by the nation's importance in the international scene. This Program, started in the early 80's, has presented very impressive results, not only in the vertical sense pointing to its goal, but also in the horizontal sense of diversification, referring to a deliberate change of activities away from purely nuclear, and spin-offs, referring to application of results of nuclear R and D outside nuclear sector. (author)

  12. Technology '90

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  13. Mobile Networking Technology Within INSC

    National Research Council Canada - National Science Library

    Macker, Joseph P

    2003-01-01

    We provide an overview of the INSC Mobility Task area efforts including: a brief overview of technology areas investigated, a discussion of research developments, and example results from experimentation and demonstration...

  14. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  15. Transfer of radiation technology to developing countries

    Science.gov (United States)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  16. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  17. Civilian applications for superconducting magnet technology developed for defense

    International Nuclear Information System (INIS)

    Johnson, R.A.; Klein, S.W.; Gurol, H.

    1986-01-01

    Seventy years after its discovery, superconducting technology is beginning to play an important role in the civilian sector. Strategic defense initiative (SDI)-related research in space- and ground-based strategic defense weapons, particularly research efforts utilizing superconducting magnet energy storage, magnetohydrodynamics (MHD), and superconducting pulsed-power devices, have direct applications in the civilian sector as well and are discussed in the paper. Other applications of superconducting magnets, which will be indirectly enhanced by the overall advancement in superconducting technology, include high-energy physics accelerators, magnetic resonance imaging, materials purifying, water purifying, superconducting generators, electric power transmission, magnetically levitated trains, magnetic-fusion power plants, and superconducting computers

  18. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  19. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  20. How Effective Have Thirty Years of Internationally Driven Conservation and Development Efforts Been in Madagascar?

    Science.gov (United States)

    Waeber, Patrick O; Wilmé, Lucienne; Mercier, Jean-Roger; Camara, Christian; Lowry, Porter P

    2016-01-01

    Conservation and development are intricately linked. The international donor community has long provided aid to tropical countries in an effort to alleviate poverty and conserve biodiversity. While hundreds of millions of $ have been invested in over 500 environmental-based projects in Madagascar during the period covered by a series of National Environmental Action Plans (1993-2008) and the protected areas network has expanded threefold, deforestation remains unchecked and none of the eight Millennium Development Goals (MDGs) established for 2000-2015 were likely be met. Efforts to achieve sustainable development had failed to reduce poverty or deliver progress toward any of the MDGs. Cross-sectorial policy adjustments are needed that (i) enable and catalyze Madagascar's capacities rather than deepening dependency on external actors such as the World Bank, the International Monetary Fund and donor countries, and that (ii) deliver improvements to the livelihoods and wellbeing of the country's rural poor.

  1. EMI Architecture and Technology Development Plan

    CERN Document Server

    Balazs, K.

    2013-01-01

    This document provides a brief overview of the EMI architecture and the technology development directions presented by the four EMI technology areas and by EMI partners. The report represents the final revision of EMI technology planning covering a time period beyond the project end.

  2. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  3. Artificial intelligence tool development and applications to nuclear power

    International Nuclear Information System (INIS)

    Naser, J.A.

    1987-01-01

    Two parallel efforts are being performed at the Electric Power Research Institute (EPRI) to help the electric utility industry take advantage of the expert system technology. The first effort is the development of expert system building tools, which are tailored to electric utility industry applications. The second effort is the development of expert system applications. These two efforts complement each other. The application development tests the tools and identifies additional tool capabilities that are required. The tool development helps define the applications that can be successfully developed. Artificial intelligence, as demonstrated by the developments described is being established as a credible technological tool for the electric utility industry. The challenge to transferring artificial intelligence technology and an understanding of its potential to the electric utility industry is to gain an understanding of the problems that reduce power plant performance and identify which can be successfully addressed using artificial intelligence

  4. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  5. RCRA permitting strategies for the development of innovative technologies: Lessons from Hanford

    International Nuclear Information System (INIS)

    Gajewski, S.W.; Donaghue, J.F.

    1994-01-01

    The Hanford Site restoration is the largest waste cleanup operation in history. The Hanford plutonium production mission generated two-thirds of all the nuclear waste, by volume, in the Department of Energy (DOE) Complex. Cleanup challenges include not only large stored volumes of radioactive, hazardous, and mixed waste, but contaminated soil and groundwater and scores of major structures slated for decontamination, decommissioning, and demolition. DOE and its contractors will need to invent the technology required to do the job on a timetable driven by negotiated milestones, public concerns, and budgetary constraints. This paper will discuss the effort at Hanford to develop an integrated, streamlined strategy for compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) in the conduct of research, development, and demonstration (RD ampersand D) of innovative cleanup technologies. The aspects that will be discussed include the following: the genesis of the RD ampersand D permitting challenge at Hanford; permitting options in the existing regulatory framework; regulatory options that offered the best fit for Hanford RD ampersand D activities, and the problems associated with them; and conclusions and recommendations made to regulatory bodies

  6. NATIONAL TECHNOLOGICAL INITIATIVE AS THE STRATEGIC DIRECTION OF THE TECHNOLOGICAL DEVELOPMENT OF RUSSIA

    Directory of Open Access Journals (Sweden)

    E. V. Sibirskaya

    2018-01-01

    Full Text Available Russia, having lost a significant part of a high-tech industrial complex during the reforms (1993–2000, sharply reducing the state support of scientific research and development, has turned into a power dependent on the conjuncture in the hydrocarbon energy market and from foreign sup-plies of technologies, consumption goods, including those necessary for life support, thus being on the "technological needle". The main factor of development was the resource-producing complex. This situation had a negative impact on the pace of the country's development, on its defense capability and created real prerequisites for the loss of technological, economic, and, in the long run, political sovereignty and disintegration of the state. Nevertheless, the availability of natural resources along with human capi-tal and geographic location is a global competitive advantage of theRussian Federation, and the task is to use this advantage maximally as one of the first echelon countries in the emerging world order. One of the most important tasks was the search for such a direction of technological devel-opment that allows, on the one hand, to preserve Russia's position in the world market of traditional products; on the other – to strengthen positions in the markets of products with a higher degree of processing of Russian raw materials (oil and gas complex and agro-industrial complex; and finally – to master new "growth points" (services, new markets, talents, technologies in the world market of high-tech products and services. The set tasks assume several solutions. First, scientific and technological development should be based on the strategy of scientific and technological development of theRussian Federationand the national technological initiative, as it sets both resource constraints and priorities in the needs of the economy in new products and new technological solutions. Secondly,Russiashould take into account existing and emerging trends in the

  7. A Lunar Surface System Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  8. Use of Patent Applications as a Tool for Technology Development Prospection on the Ethanol Production Chain from Lignocellulosic Biomasses in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz André Felizardo Silva Schlittler

    2012-09-01

    Full Text Available The growing concerns regarding the future of global energy supplies have encouraged R&D in alternative sources to complement the global energy matrix. Brazil has earned notoriety as one of the largest producers of ethanol and biomass. This has aroused other countries’ interest in Brazil’s capabilities. However, the technologies for converting biomass into ethanol are not sufficiently mature, and have been developed in a decentralized manner. The lignocellulosic ethanol technologies can be divided into the following three groups: pretreatment, enzymes and ethanol production. One of the most efficient methods for mapping such technologies is through patent applications because the applications provide important information on trends in long-term technological development. Among all the patent applications deposited in the Brazilian database, pretreatment technologies were the most exploited followed by enzymes and ethanol production. The large number of documents from USA and European countries efforts the importance of Brazil in this technological scenario.

  9. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  10. Mixed Waste Integrated Program -- Problem-oriented technology development

    International Nuclear Information System (INIS)

    Hart, P.W.; Wolf, S.W.; Berry, J.B.

    1994-01-01

    The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed

  11. Textile technology development

    Science.gov (United States)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  12. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  13. Information Communication Technology Planning in Developing Countries

    Science.gov (United States)

    Malapile, Sandy; Keengwe, Jared

    2014-01-01

    This article explores major issues related to Information Communication Technology (ICT) in education and technology planning. Using the diffusion of innovation theory, the authors examine technology planning opportunities and challenges in Developing countries (DCs), technology planning trends in schools, and existing technology planning models…

  14. Fiscal 1989 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments; 1989 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    This project was initiated to study basic technologies involving advanced materials, usable under high temperature environments and expected to be incorporated into aerospace and energy equipment. Fiscal 1989 was the first year of the eight-year program. Activities were conducted in the three fields of the development of high specific strength intermetallic compounds and high melting point intermetallic compounds, the development of C/C (carbon/carbon) composites reinforced by carbon fibers derived from coal pitch or PAN (polyacrylonitrile) and intermetallic composite materials reinforced by silicon carbide fibers, and the implementation of a comprehensive research. In the effort to develop intermetallic compounds, basic problems in the manufacturing process were studied and preliminary studies were conducted for the preparation of phase diagrams. In the effort to develop composite materials, heat resistant reinforcing fibers were developed, and studies were conducted of the basics of C/C composite compounding and molding technologies. In the comprehensive survey, trends of associated technologies were surveyed, and basic technical tasks were studied involving the development of materials for use under high temperature environments. (NEDO)

  15. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B S; Lee, J S; Sim, C M [and others

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  16. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  17. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  18. Advances in Robotic Servicing Technology Development

    Science.gov (United States)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  19. Developing an Environmental Performance Index (EPI: a focus on impacts of information and communication technology use

    Directory of Open Access Journals (Sweden)

    C Mbohwa

    2011-07-01

    Full Text Available There is a growing need for environmental performance measures that can be used by all stakeholders like surrounding communities, customers, suppliers and shareholders to gauge the environmental performance of organizations. The environmental performance measures that are used worldwide are normally not suitable for benchmarking organizations. This paper develops an environmental performance index using indicator and weight matrices of the full life cycle phases of an organization’s energy use for environmental management system activities. This work is transdisciplinary in nature and applies mathematical matrices and environmental productivity approaches, and borrows from the development of quality indices to consider a variety of impacts that cut across various phases of a product life cycle and different functions within an organization. The focus is on information and communication technology use in these systems. The model is applied to the Japanese automotive industry and the findings show that it is feasible and effective for comparing the environmental performance of companies in the same sector using the same weight matrices and indicators agreed to. The work informs decision making on the development of environmental performance measures that have worldwide applications, across many disciplines, in situations where suitable data are recorded. It also contributes to efforts on economic and social sustainability. Research efforts in similar areas in Southern Africa can benefit from the development and improvement of the proposed methodology. Keywords: Environmental performance index, indicator and weight matrices, benchmarking Disciplines: Information and Communications Technology Studies (ICT, Environmental Studies, Economics, Sustainability Studies

  20. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country