WorldWideScience

Sample records for technology demonstrations phase

  1. Structures and Design Phase I Summary for the NASA Composite Cryotank Technology Demonstration Project

    Science.gov (United States)

    Johnson, Ted; Sleight, David W.; Martin, Robert A.

    2013-01-01

    A description of the Phase I structures and design work of the Composite Cryotank Technology Demonstration (CCTD) Project is in this paper. The goal of the CCTD Project in the Game Changing Development (GCD) Program is to design and build a composite liquid-hydrogen cryogenic tank that can save 30% in weight and 25% in cost compared to state-of-the-art aluminum metallic cryogenic tank technology when the wetted composite skin wall is at an allowable strain of 5000 in/in. Three Industry teams developed composite cryogenic tank concepts that are compared for weight to an aluminum-lithium (Al-Li) cryogenic tank designed by NASA in Phase I of the CCTD Project. The requirements used to design all of the cryogenic tanks in Phase I will be discussed and the resulting designs, analyses, and weight of the concepts developed by NASA and Industry will be reviewed and compared.

  2. Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)

    Science.gov (United States)

    Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric; hide

    2018-01-01

    This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real

  3. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    Science.gov (United States)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  4. Advanced hydrogen/methanol utilization technology demonstration. Phase II: Hydrogen cold start of a methanol vehicle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This is the Phase 11 Final Report on NREL Subcontract No. XR-2-11175-1 {open_quotes}Advanced Hydrogen/Methane Utilization Demonstration{close_quotes} between the National Renewable Energy Laboratory (NREL), Alternative Fuels Utilization Program, Golden, Colorado and Hydrogen Consultants, Inc. (HCI), Littleton, Colorado. Mr. Chris Colucci was NREL`s Technical Monitor. Colorado State University`s (CSU) Engines and Energy Conversion Laboratory was HCI`s subcontractor. Some of the vehicle test work was carried out at the National Center for Vehicle Emissions Control and Safety (NCVECS) at CSU. The collaboration of the Colorado School of Mines is also gratefully acknowledged. Hydrogen is unique among alternative fuels in its ability to burn over a wide range of mixtures in air with no carbon-related combustion products. Hydrogen also has the ability to burn on a catalyst, starting from room temperature. Hydrogen can be made from a variety of renewable energy resources and is expected to become a widely used energy carrier in the sustainable energy system of the future. One way to make a start toward widespread use of hydrogen in the energy system is to use it sparingly with other alternative fuels. The Phase I work showed that strong affects could be achieved with dilute concentrations of hydrogen in methane (11). Reductions in emissions greater than the proportion of hydrogen in the fuel provide a form of leverage to stimulate the early introduction of hydrogen. Per energy unit or per dollar of hydrogen, a greater benefit is derived than simply displacing fossil-fueled vehicles with pure hydrogen vehicles.

  5. Innovative technology demonstration

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-04-01

    The Innovative Technology Demonstration (ITD) program at Tinker Air Force Base (TAFB), Oklahoma City, Oklahoma, will demonstrate the overall utility and effectiveness of innovative technologies for site characterization, monitoring, and remediation of selected contaminated test sites. The current demonstration test sites include a CERCLA site on the NPL list, located under a building (Building 3001) that houses a large active industrial complex used for rebuilding military aircraft, and a site beneath and surrounding an abandoned underground tank vault used for storage of jet fuels and solvents. The site under Building 3001 (the NW Test Site) is contaminated with TCE and Cr +6 ; the site with the fuel storage vault (the SW Tanks Site) is contaminated with fuels, BTEX and TCE. These sites and others have been identified for cleanup under the Air Force's Installation Restoration Program (IRP). This document describes the demonstrations that have been conducted or are planned for the TAFB

  6. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  7. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ

  8. Innovative technology demonstrations

    International Nuclear Information System (INIS)

    Anderson, D.B.; Hartley, J.N.; Luttrell, S.P.

    1992-04-01

    Currently, several innovative technologies are being demonstrated at Tinker Air Force Base (TAFB) to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells have been successfully installed at the US Department of Energy's (DOE) Savannah River Site to test new methods of in situ remediation of soils and ground water. This emerging technology was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. A demonstration of two in situ sensor systems capable of providing real-time data on contamination levels will be conducted and evaluated concurrently with the SGE demonstration activities. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ

  9. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  10. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  11. Summary Report on Phase I and Phase II Results From the 3D Printing in Zero-G Technology Demonstration Mission. Volume II

    Science.gov (United States)

    Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III

    2018-01-01

    In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.

  12. Arsenic Treatment Technology Demonstrations

    Science.gov (United States)

    EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.

  13. Information Integration Technology Demonstration (IITD)

    National Research Council Canada - National Science Library

    Loe, Richard

    2001-01-01

    The objectives of the Information Integration Technology Demonstration (IITD) were to investigate, design a software architecture and demonstrate a capability to display intelligence data from multiple disciplines...

  14. SAMSON Technology Demonstrator

    Science.gov (United States)

    2014-06-01

    escrow service in the operational environment. For the SAMSON TD, two key escrow systems were demonstrated: StrongAuth SKLES; a 3rd party key... escrow appliance; and A custom database-based key escrow system created for the SAMSON TD. The external label that is placed on file objects that...the key that was used to protect the file. When a SAMSON component presents a token to the KMS, the associated key is retrieved from the escrow and

  15. Offsite demonstrations for MWLID technologies

    International Nuclear Information System (INIS)

    Williams, C.; Gruebel, R.

    1995-01-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner trademark/PLUME, Hybrid Directional Drilling, Seamist trademark/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals

  16. Spyder: Critical Technology Demonstration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Two technology demonstrations:Task 1 – Sub-orbital hot fire staging with guidance and control utilizing NASA-Ames AVA. Task 2 – Spyder stage 1 static test, nose...

  17. Aerospace Communications Security Technologies Demonstrated

    Science.gov (United States)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  18. Buried Waste Integrated Demonstration lessons learned: 1993 technology demonstrations

    International Nuclear Information System (INIS)

    Kostelnik, K.M.; Owens, K.J.

    1994-01-01

    An integrated technology demonstration was conducted by the Buried Waste Integrated Demonstration (BWID) at the Idaho National Engineering Laboratory Cold Test Pit in the summer of 1993. This program and demonstration was sponsored by the US Department of Energy Office of Technology Development. The demonstration included six technologies representing a synergistic system for the characterization and retrieval of a buried hazardous waste site. The integrated technology demonstration proved very successful and a summary of the technical accomplishments is presented. Upon completion of the integrated technology demonstration, cognizant program personnel participated in a lessons learned exercise. This exercise was conducted at the Simplot Decision Support Center at Idaho State University and lessons learned activity captured additional information relative to the integration of technologies for demonstration purposes. This information will be used by BWID to enhance program planning and strengthen future technology demonstrations

  19. Combining expedited cleanup with innovative technology demonstrations

    International Nuclear Information System (INIS)

    Hagood, M.C.; Rohay, V.J.; Valcich, P.J.; Brouns, T.M.; Cameron, R.J.

    1993-04-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at the Hanford Site, Washington, for the removal of carbon tetrachloride from contaminated soils to mitigate further contamination of the groundwater. Soil vapor extraction with aboveground collection and treatment was chosen as the preferred remedial technology for the first phase of the ERA. At the same time, innovative technology demonstrations are being conducted in coordination with the ERA to determine the viability of emerging technologies that can be used to characterize, remediate, and monitor carbon tetrachloride and cocontaminants. The overall goal is to improve the performance and decrease the costs of carbon tetrachloride remediation while maintaining a safe working environment

  20. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace

  1. SunJammer Technology Demonstration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sunjammer Project is a NASA funded contract to L?Garde Inc. to fly a solar sail demonstration for a period of approximately one year. L?Garde is also partnered...

  2. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  3. Tandem mirror technology demonstration facility

    International Nuclear Information System (INIS)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M 2 ) on an 8-m 2 test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m 2 and give the necessary experience for successful operation of an ETR

  4. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  5. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  6. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    Energy Technology Data Exchange (ETDEWEB)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  7. Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)

    Science.gov (United States)

    Ging, Andrew; Engelland, Shawn; Capps, Al; Eshow, Michelle; Jung, Yoon; Sharma, Shivanjli; Talebi, Ehsan; Downs, Michael; Freedman, Cynthia; Ngo, Tyler; hide

    2018-01-01

    This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface

  8. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  9. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  10. Training Effectiveness Evaluation of the VESUB Technology Demonstration System

    National Research Council Canada - National Science Library

    Hays, Robert

    1998-01-01

    ...) technology demonstration system. A two-phase TEE was conducted at the Submarine Training Facility, Norfolk, VA and the Naval Submarine School, Groton, CT using Navy trainees ranging in experience from Junior Officers to qualified...

  11. SmartPark Technology Demonstration Project

    Science.gov (United States)

    2013-11-01

    The purpose of FMCSAs SmartPark initiative is to determine the feasibility of a technology for providing truck parking space availability in real time to truckers on the road. SmartPark consists of two phases. Phase I was a field operational test ...

  12. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  13. Decision support software technology demonstration plan

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  14. Wireless Sensor Portal Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum Corporation has demonstrated the feasibility in the Phase I of " A Wireless Sensor Portal Technology" and proposes a Phase II effort to develop a wireless...

  15. Newberry Volcano EGS Demonstration - Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, William L. [AltaRock Energy, Inc., Seattle, WA (United States); Petty, Susan [AltaRock Energy, Inc., Seattle, WA (United States); Cladouhos, Trenton T. [AltaRock Energy, Inc., Seattle, WA (United States); Iovenitti, Joe [AltaRock Energy, Inc., Seattle, WA (United States); Nofziger, Laura [AltaRock Energy, Inc., Seattle, WA (United States); Callahan, Owen [AltaRock Energy, Inc., Seattle, WA (United States); Perry, Douglas S. [Davenport Newberry Holdings LLC, Stamford, CT (United States); Stern, Paul L. [PLS Environmental, LLC, Boulder, CO (United States)

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role

  16. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  17. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  18. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  19. Technologies of democracy: experiments and demonstrations.

    Science.gov (United States)

    Laurent, Brice

    2011-12-01

    Technologies of democracy are instruments based on material apparatus, social practices and expert knowledge that organize the participation of various publics in the definition and treatment of public problems. Using three examples related to the engagement of publics in nanotechnology in France (a citizen conference, a series of public meetings, and an industrial design process), the paper argues that Science and Technology Studies provide useful tools and methods for the analysis of technologies of democracy. Operations of experiments and public demonstrations can be described, as well as controversies about technologies of democracy giving rise to counter-experiments and counter-demonstrations. The political value of the analysis of public engagement lies in the description of processes of stabilization of democratic orders and in the display of potential alternative political arrangements.

  20. Phase 1: ISOCELL demonstration test performance review

    International Nuclear Information System (INIS)

    Chatwin, T.D.

    1991-04-01

    This document consolidates and organizes information available concerning cryogenic retrieval of hazardous, radioactive, and mixed wastes and is mainly derived from a report on the ISOCELL Demonstration Project prepared by Concept RKK, Ltd. ISOCELL cryogenic technology is designed to immobilize hazardous, radioactive, and mixed waste by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust. A test of the ISOCELL process was conducted in Carnation, Washington by Concept RKK, Ltd. Test conditions were compared to possible testing conditions at Idaho National Engineering Laboratory. Results indicate ISOCELL technology successfully froze wet soil into a soil block capable of being lifted. 5 refs., 6 figs., 1 tab

  1. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  2. Off site demonstrations for MWLID technologies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech Reps, Inc., Albuquerque, NM (United States)

    1995-04-01

    Open demonstrations of technologies developed by the Office of Technology Development`s (QTD`s) Mixed Waste Landfill Integrated Demonstration (MWLID) should facilitate regulatory acceptance and speed the transfer and commercialization of these technologies. The purpose of the present project is to identify the environmental restoration needs of hazardous waste and/or mixed waste landfill owners within a 25-mile radius of Sandia National Laboratories (SNL). Most municipal landfills that operated prior to the mid-1980s accepted household/commercial hazardous waste and medical waste that included low-level radioactive waste. The locations of hazardous and/or mixed waste landfills within the State of New Mexico were. identified using federal, state, municipal and Native American tribal environmental records. The records reviewed included the US Environmental Protection Agency (EPA) Superfund Program CERCLIS Event/Site listing (which includes tribal records), the New Mexico Environment Department (NMED), Solid Waste Bureau mixed waste landfill database, and the City of Albuquerque Environmental Health Department landfill database. Tribal envirorunental records are controlled by each tribal government, so each tribal environmental officer and governor was contacted to obtain release of specific site data beyond what is available in the CERCLIS listings.

  3. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record #833

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  4. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin [Atk Launch Systems Inc., Brigham City, UT (United States)

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  5. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass ∼ 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project

  6. Aeroflex Technology as Class-Y Demonstrator

    Science.gov (United States)

    Suh, Jong-ook; Agarwal, Shri; Popelar, Scott

    2014-01-01

    costly functional parts. Among space parts manufacturers who were interested in producing class-Y products, Aeroflex Microelectronic Solutions-HiRel had been developing assembly processes using their internal R&D classy type samples. In early 2012, JPL and Aeroflex initiated a collaboration to study reliability of the Aeroflex technology as a class-Y demonstrator.

  7. Composite Cryotank Technologies and Demonstration (CCTD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Advance the technologies for composite cryogenic propellant tanks at diameters suitable for future heavy lift vehicles and other in-space applications with a goal of...

  8. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    International Nuclear Information System (INIS)

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization

  9. DEMONSTRATION BULLETIN: MICROFILTRATION TECHNOLOGY EPOC WATER, INC.

    Science.gov (United States)

    The EPOC mbrofiltratbn technology is designed to remove suspended solids that are 0.1 microns in diameter or larger from liquid wastes. Wastewaters containing dissolved metals are treated by chemical precipitation, so that the metal contamination present is greater than or equal...

  10. Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit

    Science.gov (United States)

    Marmie, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.

  11. Technology Tips: Building Interactive Demonstrations with Sage

    Science.gov (United States)

    Murray, Maura

    2013-01-01

    Sage is an open-source software package that can be used in many different areas of mathematics, ranging from algebra to calculus and beyond. One of the most exciting pedagogical features of Sage (http://www.sagemath.org) is its ability to create interacts--interactive examples that can be used in a classroom demonstration or by students in a…

  12. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  13. Demonstration plant Neunburg vorm Wald for testing solar hydrogen technologies

    International Nuclear Information System (INIS)

    Szyszka, A.

    1992-01-01

    Demonstration plant Neunburg vorm Wald for testing solar hydrogen technologies. The Solar-Wasserstoff-Bayern GmbH (SWB), an associated company of the associate Bayernwerk AG (share of 60%), BMW INTEC Beteiligungs GmbH, Linde AG, MBB GmbH and Siemens AG (10% of each share) founded at the end of 1986, realizes, operates and supplements a demonstration plant in Neunburg vorm Wald, for which in a commercially feasible dimension important system steps are tested oriented to the practice in their combination with regard to energy management based on hydrogen as energy source. The project is planned for a long term separated into single project phases. The investment volume of about 64 millions estimated in October 1987 is kept well from the present view for phase 1, reaching to the end of 1991. The Federal Ministry for Research and Technology (BMFT) and the Bavarian State Ministry for Economy and Traffic (B ST MWV) support the part width to be subsidized of 35% and 15% respectively. (orig.) [de

  14. Deuterium fluoride laser technology and demonstrators

    Science.gov (United States)

    Wilson, Gerald; Graves, Bruce R.; Patterson, Stanley P.; Wank, Robert H.

    2004-09-01

    Deuterium fluoride (DF) lasers have been under development since about 1970. Their intrinsic ability to store high levels of energy internally plus their ability to quickly dispose of waste heat by the convective flow of exhaust gases make this type of laser attractive to the Army for producing high power levels for an air and missile defense weapon system. This paper reviews the basic principles of a DF laser, the chemistry and spectroscopy associated with producing an excited DF lasing molecule, and the generation of a high power laser beam. This paper also reviews the development history of DF lasers and early lethality demonstrations. This includes a detailed discussion of the Army"s recent Tactical High Energy Laser (THEL) Demonstrator, its architecture and successes during engagements of in-flight rockets and artillery projectiles. The Army is moving forward in developing a new generation, high power DF laser weapon system, the Mobile Tactical High Energy Laser (MTHEL). This system will provide our soldiers protection in the future against a variety of airborne threats.

  15. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  16. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  17. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements

    International Nuclear Information System (INIS)

    Higgins, B L; Wiseman, H M; Pryde, G J; Berry, D W; Bartlett, S D; Mitchell, M W

    2009-01-01

    We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique (Higgins et al 2007 Nature 450 393), our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.

  18. How X-37 Technology Demonstration Supports Reusable Launch Vehicles

    Science.gov (United States)

    Manley, David J.; Cervisi, Richard T.; Staszak, Paul R.

    2000-01-01

    This presentation discusses, in viewgraph form, how X-37 Technology Demonstration Supports Reusable Launch Vehicles. The topics include: 1) X-37 Program Objectives; 2) X-37 Description; 3) X-37 Vehicle Characteristics; 4) X-37 Expands the Testbed Envelope to Orbital Capability; 5) Overview of X-37 Flight Test Program; 6) Thirty-Nine Technologies and Experiments are Being Demonstrated on the X-37; 7) X-37 Airframe/Structures Technologies; 8) X-37 Mechanical, Propulsion, and Thermal System Technologies and Experiments; 9) X-37 GN&C Technologies; 10) X-37 Avionics, Power, and Software Technologies and Experiments; and 11) X-37 Technologies and Experiments Support Reusable Launch Vehicle Needs.

  19. Sustainability/Logistics-Basing Science and Technology Objective - Demonstration; Demonstration #2 - 300-Person Camp Demonstration

    Science.gov (United States)

    2017-09-04

    The NPC (Figure 16) for Soldier Power and Energy technology project will provide more power and energy than traditional PV and thermoelectrics (TE... project will develop the capability to reduce fuel required for heating and pumping water by concentrating solar energy to heat water and generate...AWH-400 prematurely. In an operational setting of demand for hot water, such as multiple showers, the SPSWH cannot draw thermal energy from its

  20. Nuclear Systems (NS): Technology Demonstration Unit (TDU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA’s Space Technology Mission Directorate. To this end,...

  1. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  2. Sustainability Logistics Basing - Science and Technology Objective - Demonstration; Industry Assessment and Demonstration Final Report

    Science.gov (United States)

    2017-08-14

    BASING ARMY PERSONNEL WATER BASE CAMPS DEMONSTRATIONS FORWARD OPERATING BASES ENERGY WASTE WATER WASTE ...concomitant backhaul. Examples of Waste Reduction technologies are:  Waste to Energy – Technologies that convert collected waste products into...useful energy ; e.g., gasification for electrical power generation.  Waste Reduction and Stabilization – Technologies that reduce and/or stabilize

  3. MPED: An ISRU Bucket Ladder Excavator Demonstrator System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: The Multi-Purpose Excavation Demonstrator (MPED) is a commercial effort and a third generation of technology, following Bucket Wheel Excavator and Bucket...

  4. Integrated Monitoring and Surveillance System demonstration project. Phase 2 accomplishments

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Walters, B.G.; Singleterry, R.C.

    1997-01-01

    The paper presents the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase 2 efforts. the rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include further development of the data acquisition system and procurement of necessary hardware/software, options and associated costs for plutonium canning systems and gloveboxes, initiation of facility modifications, determination of possibly affected facility documentation, results from sensor system trade study, and preliminary storage configuration designs. Resources invested during Phase 1 and Phase 2 are summarized and budgetary requirements for completion of Phase 3 presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase 2 deliverables

  5. Clean Coal Technology Demonstration Program: Program Update 1998

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. Demonstration projects for diffusion of clean technological innovation: a review

    NARCIS (Netherlands)

    Bossink, B.A.G.

    2014-01-01

    The demonstration project can be an effective organizational form to transform a clean technology prototype - for example, in the field of photovoltaics, carbon capture and storage, or wind power - into a marketable product. A question with regard to the clean technology demonstration project is how

  7. Clean Coal Technology Demonstration Program: Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  8. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1996-01-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D ampersand D) one of its facilities using a combination of innovative and commercial D ampersand D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer trademark. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA

  9. Exploration Drilling and Technology Demonstration At Fort Bliss

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ben; Moore, Joe [EGI; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  10. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  11. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    Science.gov (United States)

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  12. Demonstration of Resolving Urban Problems by Applying Smart Technology.

    Science.gov (United States)

    Kim, Y.

    2016-12-01

    Recently, movements to seek various alternatives are becoming more active around the world to resolve urban problems related to energy, water, a greenhouse gas, and disaster by utilizing smart technology system. The purpose of this study is to evaluate service verification aimed at demonstration region applied with actual smart technology in order to raise the efficiency of the service and explore solutions for urban problems. This process must be required for resolving urban problems in the future and establishing `integration platform' for sustainable development. The demonstration region selected in this study to evaluate service verification is `Busan' in Korea. Busan adopted 16 services in 4 sections last year and begun demonstration to improve quality of life and resolve urban environment problems. In addition, Busan participated officially in `Global City Teams Challenge (GCTC)' held by National Institute of Standards and Technology (NIST) in USA last year and can be regarded as representative demonstration region in Korea. The result of survey showed that there were practical difficulties as explained below in the demonstration for resolving urban problems by applying smart technology. First, the participation for demonstration was low because citizens were either not aware or did not realize the demonstration. Second, after demonstrating various services at low cost, it resulted in less effect of service demonstration. Third, as functions get fused, it was found that management department, application criteria of technology and its process were ambiguous. In order to increase the efficiency of the demonstration for the rest of period through the result of this study, it is required to draw demand that citizens requires in order to raise public participation. In addition, it needs to focus more on services which are wanted to demonstrate rather than various service demonstrations. Lastly, it is necessary to build integration platform through cooperation

  13. Demonstration of artificial intelligence technology for transit railcar diagnostics

    Science.gov (United States)

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  14. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  15. Getting executive buy-in: the value of technology demonstrators

    CSIR Research Space (South Africa)

    Van Deventer, Martha J

    2008-06-04

    Full Text Available battle with executives to find appropriate funding for projects based on new Web 2.0 technologies. In this paper the intention is to show how the authors made use of the technology demonstrator strategy to build an integrated, light weight, virtual...

  16. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  17. Double phase-conjugate mirror: analysis, demonstration, and applications.

    Science.gov (United States)

    Weiss, S; Sternklar, S; Fischer, B

    1987-02-01

    We report on the operation of the double phase-conjugate mirror (DPCM). Two inputs to opposite sides of a photorefractive barium titanate crystal, which may carry different spatial images, are shown to pump the same four-wave mixing process mutually and are self-refracted without any external or internal crystal surface. This results in the phase-conjugate reproduction of the two images simultaneously. This device is analyzed theoretically, and applications in image processing, interferometry, and rotation sensing are discussed. We also demonstrate the operation of a ring laser, using the DPCM, as well as a photorefractive resonator with two facing DPCM's that can support spatial information in its oscillations.

  18. A Case Study of Three Satellite Technology Demonstration School Sites.

    Science.gov (United States)

    Law, Gordon

    The Satellite Technology Demonstration (STD) represented a cooperative and complex effort involving federal, regional, state and local interests and demonstrated the feasibility of media distribution by communication satellite of social services for rural audiences. As part of a comprehensive evaluation plan, the summative data base was augmented…

  19. Advance & attack: technology demonstrator to the rescue.....and beyond

    CSIR Research Space (South Africa)

    Van Deventer, Martha J

    2008-10-01

    Full Text Available search on Google or the Wikipedia very soon points out that technology demonstrators are generally associated with warfare, very expensive equipment and risk of loss of life. The authors believe however, that demonstrators are also very powerful when...

  20. Large-scale demonstration of D ampersand D technologies

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Black, D.B.; Rose, R.W.

    1997-01-01

    It is becoming increasingly evident that new technologies will need to be utilized for decontamination and decommissioning (D ampersand D) activities in order to assure safe and cost effective operations. The magnitude of the international D ampersand D problem is sufficiently large in anticipated cost (100's of billions of dollars) and in elapsed time (decades), that the utilization of new technologies should lead to substantial improvements in cost and safety performance. Adoption of new technologies in the generally highly contaminated D ampersand D environments requires assurances that the technology will perform as advertised. Such assurances can be obtained from demonstrations of the technology in environments that are similar to the actual environments without being quite as contaminated and hazardous. The Large Scale Demonstration Project (LSDP) concept was designed to provide such a function. The first LSDP funded by the U.S. Department Of Energy's Environmental Management Office (EM) was on the Chicago Pile 5 (CP-5) Reactor at Argonne National Laboratory. The project, conducted by a Strategic Alliance for Environmental Restoration, has completed demonstrations of 10 D ampersand D technologies and is in the process of comparing the performance to baseline technologies. At the conclusion of the project, a catalog of performance comparisons of these technologies will be developed that will be suitable for use by future D ampersand D planners

  1. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  2. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-01-01

    The Department of Energy's Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ''Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.'' New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure

  3. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  4. Polyethylene encapsulation full-scale technology demonstration. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental ampersand Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control

  5. Sustainability Logistics Basing - Science and Technology Objective - Demonstration; Demonstration #1 - 50 Person Camp Demo

    Science.gov (United States)

    2017-08-17

    DEMONSTRATIONS WASTE BASE CAMPS SUSTAINABILITY RENEWABLE ENERGY WASTE REDUCTION WATER...REDUCTION WASTE DISPOSAL ENERGY CONSUMPTION DATA COLLECTION ENERGY INSULATION EXPEDIENT...technologies and associated non- materiel solutions can reduce the need for fuel resupply by 25%, for water resupply by 75%, and for waste removal by 50

  6. Evaluation of demonstration technologies: Quail creek water supply system

    International Nuclear Information System (INIS)

    1993-02-01

    The U.S. EPA is currently demonstrating central and household treatment units at several sites in the U.S. The Quail Creek System near Spicewood, Texas is one of these sites where the technology demonstration program is scheduled to be completed soon as part of the EPA's Office of Ground Water and Drinking Water demonstration initiative. The report provides a summary of the small system demonstration project and presents an evaluation of the information collected during the operation, and by the EPA in September 1992

  7. Demonstrating and implementing innovative technologies: Case studies from the USDOE Office of Technology Development

    International Nuclear Information System (INIS)

    Brouns, T.M.; Koegler, K.J.; Mamiya, L.S.

    1995-02-01

    This paper describes elements of success for demonstration, evaluation, and transfer for deployment of innovative technologies for environmental restoration. They have been compiled from lessons learned through the US Department of Energy (DOE) Office of Technology Development's Volatile Organic Compounds in Arid Soil Integrated Demonstration (VOC-Arid ID). The success of the VOC-Arid ID program was determined by the rapid development demonstration, and transfer for deployment of technologies to operational sites that improve on safety, cost, and/or schedule of performance over baseline technologies. The VOC-Arid ID successfully fielded more than 25 innovative technology field demonstrations; several of the technologies demonstrated have been successfully transferred for deployment Field demonstration is a critical element in the successful transfer of innovative technologies into environmental restoration operations. The measures of success for technology demonstrations include conducting the demonstration in a safe and controlled environment and generating the appropriate information by which to evaluate the technology. However, field demonstrations alone do not guarantee successful transfer for deployment There are many key elements throughout the development and demonstration process that have a significant impact on the success of a technology. This paper presents key elements for a successful technology demonstration and transfer for deployment identified through the experiences of the VOC-Arid ID. Also, several case studies are provided as examples

  8. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  9. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF 6 , which is generated from the reaction of ClF 3 with the uranium deposits, by use of NaF traps

  10. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  11. Illustration of the X-37 Advanced Technology Demonstrator during flight

    Science.gov (United States)

    1999-01-01

    An artist's conception of the X-37 Advanced Technology Demonstrator as it glides to a landing on earth. Its design features a rounded fuselage topped by an experiment bay; short, double delta wings (like those of the Shuttle orbiter); and two stabilizers (that form a V-shape) at the rear of the vehicle.

  12. The role of a technology demonstration program for future reactors

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    A comprehensive technology demonstration program is seen as an important component of the overall safety case, especially for a novel technology. The objective of such a program is defined as providing objective and auditable evidence that the technology will meet or exceed the relevant requirements. Various aspects of such a program are identified and then discussed in some details in this presentation. We will show how the need for such a program is anchored in fundamental safety principles. Attributes of the program, means of achieving its objective, roles of participants, as well as key steps are all elaborated. It will be argued that to prove a novel technology, the designer will have to combine several activities such as the use of operational experience, prototyping of the technology elements, conduct of experiments and tests under representative conditions, as well as modeling and analysis. Importance of availability of experimental facilities and qualified scientific and technical staff is emphasized. A solid technology demonstration program will facilitate and speed up regulatory evaluations of licensing applications. (author)

  13. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  14. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only

  15. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  16. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  17. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  18. Graphite electrode arc melter demonstration Phase 2 test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O'Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau's Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of open-quotes as-receivedclose quotes heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process

  19. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  20. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria

  1. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  2. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  3. Progress Toward Demonstrating a High Performance Optical Tape Recording Technology

    Science.gov (United States)

    Oakley, W. S.

    1996-01-01

    This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.

  4. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    Energy Technology Data Exchange (ETDEWEB)

    Beiswanger, Robert C. [Daemen College, Amherst, NY (United States)

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  5. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  6. Standardized UXO Technology Demonstration Site Scoring Record No. 946

    Science.gov (United States)

    2017-07-01

    electromagnetic induction (EMI) instrument, which has been updated for this demonstration with the intended purpose of improving the detection and...elements and access to electrical power for battery charging is required. This and workspace for the data quality control analyst located in the...background alarm rate EMI = electromagnetic induction EQT = Environmental Quality Technology ERDC = U.S. Army Corps of Engineers Engineering Research

  7. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  8. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    Science.gov (United States)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  9. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  10. New energy technologies. Research, development and demonstration; Denmark; Nye energiteknologier. Forskning, udvikling og demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, B.; Muenster, M.

    2010-12-15

    This report was commissioned by the Danish Climate Commission in 2009 to analyse how research, development and demonstration (RD and D) on sustainable energy technologies can contribute to make Denmark independent on fossil energy by 2050. It focuses on the RD and D investments needed as well as adequate framework conditions for Danish knowledge production and diffusion within this field. First part focuses on the general aspects related to knowledge production and the challenges related to research. Energy technologies are categorized and recent attempt to optimize Danish efforts are addressed, including RD and D prioritisation, public-private partnerships and international RD and D cooperation. Part two describes the development and organisation of the Danish public RD and D activities, including benchmark with other countries. The national energy RD and D programmes and their contribution to the knowledge value chain are described as well as the coordination and alignment efforts. Part Three illustrates three national innovation systems for highly different technologies - wind, fuel cells and intelligent energy systems. Finally, six recommendations are put forward: to make a national strategic energy technology plan; to enforce the coordination and synergy between national RD and D programmes; to strengthen social science research related to the transition to a sustainable energy system; to increase public RD and D expenditure to at least 0.1% of GDP per year; to strengthen international RD and D cooperation; and to make a comprehensive analysis of the capacity and competence needs for the energy sector. (Author)

  11. Demonstration of a reversible phase-insensitive optical amplifier

    Science.gov (United States)

    Yoshikawa, Jun-Ichi; Miwa, Yoshichika; Filip, Radim; Furusawa, Akira

    2011-05-01

    We experimentally demonstrate phase-insensitive linear amplification of a continuous variable system in the optical regime, preserving the ancilla system at the output. Since our amplification operation is unitary up to small excess noise, it is reversible beyond the classical limit. Here, entanglement between the amplified output system and the ancilla system is the resource for the reversibility, and the amplification gain is G=2.0. In addition, combining this amplifier with a beamsplitter, we also demonstrate approximate cloning of coherent states where an anticlone is present. We investigate the reversibility by reconstructing the initial state from the output correlations, and the results are slightly beyond the cloning limit. Furthermore, full characterization of the amplifier and cloner is given by using coherent states with several different mean values as inputs. Our amplifier is based on linear optics, offline-prepared additional ancillas in nonclassical states, and homodyne measurements followed by feedforward. Squeezed states are used as the additional ancillas, and nonlinear optical effects are exploited only for their generation. They introduce nonclassicality into the amplifying operation, making entanglement at the output.

  12. Newberry EGS Demonstration: Phase 2.2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Cladouhos, Trenton T. [AltaRock Energy, Seattle, WA (United States); Petty, Susan [AltaRock Energy, Seattle, WA (United States); Swyer, Mike W. [AltaRock Energy, Seattle, WA (United States); Nordin, Yini [AltaRock Energy, Seattle, WA (United States); Garrison, Geoff [AltaRock Energy, Seattle, WA (United States); Uddenberg, Matt [AltaRock Energy, Seattle, WA (United States); Grasso, Kyla [AltaRock Energy, Seattle, WA (United States); Stern, Paul [PLS Environmental, Boulder, CO (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foulger, Gillian [Foulger Consulting, Palo Alto, CA (United States); Julian, Bruce [Foulger Consulting, Palo Alto, CA (United States)

    2015-07-03

    The Newberry Volcano EGS Demonstration is a five year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 ºC), dry well (NWG 55-29) drilled in 2008. In the fall of 2014, 9,500m3 (2.5 million gallons) of groundwater were injected at a maximum wellhead pressure of 195 bar (2850 psi) over 4 weeks of hydraulic stimulation. Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced. The fifteen-station microseismic array (MSA) located 398 seismic events, ranging in magnitude from M 0 to M 2.26. The next step is to drill a production well into the EGS reservoir. Advanced analysis of the microseismic data including hand picking of first arrivals, moment tensors, relative relocations, and velocity model improvements have resulted new higher-quality microseismic catalogs. These catalogs have been combined by relative weighting and gridding of seismic densities, resulting in probability-based maps and cross-sections, which have been used to plan a production well trajectory. The microseismic locations and times were also used to develop a reservoir diffusivity model, which can be used to evaluate stimulation plans such as dual-well stimulation.

  13. Airspace Technology Demonstration 2 (ATD-2): ATD-2 CLT Pilot Community Engagement

    Science.gov (United States)

    Capps, Al; Hooey, Becky

    2017-01-01

    The Airspace Technology Demonstration 2 (ATD-2) project conducted a pilot community workshop at Charlotte Douglas International Airport (CLT) in Charlotte, North Carolina. The goal was to familiarize pilots with the ATD-2 project, with an emphasis on procedures that may affect pilots during the Phase 1 Field Demonstration (beginning September 30, 2017). At this workshop, the high-level goals and objectives of ATD-2, expected benefits for pilots, changes to procedures, training requirements, and data sharing elements were presented.

  14. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1998-01-01

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford's single shell tanks (SSTs). One of HTI's retrieval goals is to ''Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.'' Specifically, HTI is to address ''Alternative technologies to past practice sluicing'' ... that can ... ''successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST'' (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  15. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  16. The hydrogen technology assessment, phase 1

    Science.gov (United States)

    Bain, Addison

    1991-01-01

    The purpose of this phase 1 report is to begin to form the information base of the economics and energy uses of hydrogen-related technologies on which the members of the National Hydrogen Association (NHA) can build a hydrogen vision of the future. The secondary goal of this report is the development of NHA positions on national research, development, and demonstration opportunities. The third goal, with the aid of the established hydrogen vision and NHA positions, is to evaluate ongoing federal research goals and activities. The evaluations will be performed in a manner that compares the costs associated with using systems that achieve those goals against the cost of performing those tasks today with fossil fuels. From this ongoing activity should emerge an NHA information base, one or more hydrogen visions of the future, and cost and performance targets for hydrogen applications to complete in the market place.

  17. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15

  18. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  19. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kreyling, Sean J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  20. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  1. Maintenance and disassembly considerations for the Technology Demonstration Facility

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1983-01-01

    The Technology Demonstration Facility (TDF) is a tandem mirror design concept carried out under the direction of Lawrence Livermore National Laboratory. It was conceived as a near-term device with a mission of developing engineering technology in a D-T fusion environment. Overall maintenance and component disassembly were among the responsibilities of the Fusion Engineering Design Center (FEDC). A configuration evolved that was based on the operational requirements of the components, as well as the requirements for their replacements. Component lifetime estimates were used to estimate the frequency and the number of replacements. In addition, it was determined that the need for remote handling equipment followed within 1.5 years after initial start-up, emphasizing the direct relationship between developing maintenance scenarios/equipment and the device configuration. Many of the scheduled maintenance operations were investigated to first order, and preliminary handling equipment concepts were developed

  2. Application of multimedia image technology in engineering report demonstration system

    Science.gov (United States)

    Lili, Jiang

    2018-03-01

    With the rapid development of global economic integration, people’s strong desire for a wide range of global exchanges and interactions has been promoted, and there are more unprecedented convenient means for people to know the world and even to transform the world. At this stage, we realize that the traditional mode of work has become difficult to adapt to the changing trends of the world and informatization, multimedia, science and technology have become the mainstream of the times. Therefore, this paper will mainly analyze the present situation of the project report demonstration system and the key points of the work and put forward with pertinence specific application strategy of the integration with multimedia image technology.

  3. Maintenance and disassembly considerations for the Technology Demonstration Facility

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1983-01-01

    The Technology Demonstration Facility (TDF) is a tandem-mirror design concept carried out under the direction of Lawrence Livermore National Laboratory. It was conceived as a near-term device with a mission of developing engineering technology in a D-T fusion environment. Overall maintenance and component disassembly were among the responsibilities of the Fusion Engineering Design Center (FEDC). A configuration evolved that was based on the operational requirements of the components, as well as the requirements for their replacements. Component lifetime estimates were used to estimate the frequency and the number of replacements. In addition, it was determined that the need for remote handling equipment followed within 1.5 years after initial start-up, emphasizing the direct relationship between developing maintenance scenarios/equipment and the device configuration. Many of the scheduled maintenance operations were investigated to first order, and preliminary handling equipment concepts were developed

  4. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  5. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E [ORNL; Bhandari, Mahabir S [ORNL

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  6. Real Time Technology Application Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, John [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Hampson, Steve [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Johnson, Robert L [Argonne National Lab, Environmental Science Div.

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  7. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  8. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  9. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean

  10. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  11. Six phase soil heating. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminates from the subsurface during soil vapor extraction. The innovation combines an emerging technology, six-phase electric heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation systems for difficult soil and/or contaminate applications. This document describes the technology and reports on field demonstrations conducted at Savannah River and the Hanford Reservation

  12. Pathfinder Technology Demonstrator: GlobalStar Testing and Results

    Science.gov (United States)

    Kuroda, Vanessa; Limes, Gregory L.; Han, Shi Lei; Hanson, John Eric; Christa, Scott E.

    2016-01-01

    The communications subsystem of a spacecraft is typically a SWaP (size, weight, and power) intensive subsystem in a SWaP constrained environment such as a CubeSat. Use of a satellite-based communication system, such as GlobalStars duplex GSP-1720 radio is a low SWaP potentially game-changing low-cost communication subsystem solution that was evaluated for feasibility for the NASA Pathfinder Technology Demonstrator (PTD) project. The PTD project is a series of 6U CubeSat missions to flight demonstrate and characterize novel small satellite payloads in low Earth orbit. GlobalStar is a low Earth orbit satellite constellation for satellite phone and low-speed data communications, and the GSP-1720 is their single board duplex radio most commonly used in satellite phones and shipment tracking devices. The PTD project tested the GSP-1720 to characterize its viability for flight using NASA GEVS (General Environmental Verification Standard) vibration and thermal vacuum levels, as well as testing the uplink-downlink connectivity, data throughput, and file transfer capabilities. This presentation will present the results of the environmental and capability testing of the GSP-1720 performed at NASA Ames Research Center, as well as the viability for CubeSat use in LEO.

  13. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record Number 842

    National Research Council Canada - National Science Library

    Karwatka, Michael; Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  14. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 690

    National Research Council Canada - National Science Library

    Overbay, Larry

    2005-01-01

    ...) utilizing the YPC Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Scoring Committee...

  15. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 268

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  16. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 397

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  17. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 898

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  18. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 831

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  19. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 312

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Scoring Committee...

  20. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 257

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  1. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 896

    National Research Council Canada - National Science Library

    Burch, William; Fling, Rick; McClung, Christina

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid Field. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 252

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  3. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 834

    National Research Council Canada - National Science Library

    Teefy, Dennis; Fling, Rick; McClung, Christina

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  4. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 237

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Robitaille, George; Boutin, Matthew; Fling, Rick; McClung, Christina

    2005-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  5. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 805

    National Research Council Canada - National Science Library

    Karwatka, Michael; Fling, Rick; McClung, Christina

    2007-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  6. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 792

    National Research Council Canada - National Science Library

    Karwatka, Mike; Packer, Bonnie

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Mike Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  7. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 396

    National Research Council Canada - National Science Library

    Overbay, Larry, Jr; Boutin, Matthew; Fling, Rick; McClung, Christina; Robitaille, George

    2005-01-01

    ...) utilizing the APG Standardized UXO technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  8. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764

    National Research Council Canada - National Science Library

    Overbay, Larry; Watts, Kimberly

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  9. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 906 (Sky Research, Inc.)

    National Research Council Canada - National Science Library

    McClung, J. S; Burch, William; Fling, Rick; McClung, Christina; Lombardo, Leonardo; McDonnell, Patrick

    2008-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by William Burch and the Standardized UXO Technology Demonstration Site Scoring Committee...

  10. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record Number 431

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Scoring Committee...

  11. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record Number 691

    National Research Council Canada - National Science Library

    Overbay, Jr., Larry; Watts, Kimberly; Fling, Rick; McClung, Christina; Banta, Matthew

    2006-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site blind grid. Scoring Records have been coordinated by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  12. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 830

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  13. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 769

    National Research Council Canada - National Science Library

    Archiable, Robert; Fling, Rick; McClung, Christina; Teefy, Dennis; Burch, William; Packer, Bonnie; Banta, Matthew

    2006-01-01

    ...) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. Scoring Records have been coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  14. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 832

    National Research Council Canada - National Science Library

    Teefy, Dennis

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Dennis Teefy and the Standardized UXO Technology Demonstration Site Scoring Committee...

  15. Learning to make technology work - a study of learning in technology demonstration projects

    DEFF Research Database (Denmark)

    Sutherland Olsen, Dorothy; Andersen, Per Dannemand

    2014-01-01

    participants, including users. The aim of the project is usually to test the technology and promote changes in users habits, while learning is frequently cited as the main outcome. In this paper we review existing studies of demonstration projects and try to gain an overview of the main aims and effects......Building working demonstrations of new technologies within sustainable energy and transport has become an important activity in the move towards a more energy efficient society. The work involved in building these demonstrations is usually organised in a project with a variety of different...

  16. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  17. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  18. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Impllitti, Joseph [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Pascal, Amar [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States)

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  19. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen; Rovang, D.C. [and others

    1997-04-01

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.

  20. MPED: An ISRU Bucket Ladder Excavator Demonstrator System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a planetary surface tool called the Multi Purpose Excavation Demonstrator (MPED), which is intended to both extract Lunar Soil to feed an...

  1. Plastic Melt Waste Compactor Flight Demonstrator Payload (PFDP), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The PMWC Flight Demonstrator Payload is a trash dewatering and volume reduction system that uses heat melt compaction to remove nearly 100% of water from trash while...

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-31

    The Liquid Phase Methanol (LPMEOEP") Demonstration Project at K.ingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L, P. (the Partnership). The LPMEOHY Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. On 4 October 1994, Air Products and Chemicals, Inc. (Air Products) and signed the agreements that would form the Partnership, secure the demonstration site, and provide the financial commitment and overall project management for the project. These partnership agreements became effective on 15 March 1995, when DOE authorized the commencement of Budget Period No. 2 (Mod. AO08 to the Cooperative Agreement). The Partnership has subcontracted with Air Products to provide the overall management of the project, and to act as the primary interface with DOE. As subcontractor to the Partnership, Air Products will also provide the engineering design, procurement, construction, and commissioning of the LPMEOHTM Process Demonstration Unit, and will provide the technical and engineering supervision needed to conduct the operational testing program required as part of the project. As subcontractor to Air Products, Eastman will be responsible for operation of the LPMEOHTM Process Demonstration Unit, and for the interconnection and supply of synthesis gas, utilities, product storage, and other needed sewices. The project involves the construction of an 80,000 gallons per day (260 tons-per-day (TPD)) methanol unit utilizing coal-derived synthesis gas fi-om Eastman's integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program

  3. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  4. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  5. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  6. Guidance and Control Concepts for the X-33 Technology Demonstrator

    Science.gov (United States)

    Dukeman, Gregory A.; Gallaher, Michael W.

    1998-01-01

    The X-33 technology demonstrator is a suborbital precursor to the Reusable Launch Vehicle (RLV) with first flight planned for summer of 1999. The flight test program will include about 15 flights originating from Edwards Air Force Base, California, each with widely varying flight profiles in order to test new thermal protection system (TPS) materials, structures, and linear aerospike engines. The first flights will be relatively short range flights with about a 300 nmi range, maximum Mach number of 7, maximum altitude of 190,000 feet, whereas the latter flights will cover about 800 nmi range, with max altitude of about 260,000 feet and max Mach of about 15. The guidance algorithms must be flexible enough to accommodate these various profiles and to adapt to severe off-nominal dispersions, such as early engine failure (partial or total) where possibly more than half the thrust is lost. An onboard real-time performance monitor will be used to assess the viability of the nominal landing site as well as alternate landing sites that would potentially be used in extreme off-nominal conditions. During ascent, a single entry guidance-related parameter, which is easy to calculate, is used to assess the viability of the nominal landing site as well as alternate landing sites. Real-time adjustment of the stored ascent attitude profile will be performed, as required, to maximize the probability of making it to the nominal landing site. Numerical results are given for various engine-out cases to illustrate the adaptability of the performance monitor.

  7. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  8. Demonstration of Submillimeter Astrophysics Technology at Caltech Submillimeter Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — Detector technology developments will determine the science product of future astrophysics missions and projects, and this is especially true at submillimeter...

  9. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.; Gombert, D.; Priebe, S.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each

  10. Demonstration and evaluation of dual-fuel technology; Demonstration och utvaerdering av dual-fuel-tekniken

    Energy Technology Data Exchange (ETDEWEB)

    Staalhammar, Per; Erlandsson, Lennart; Willner, Kristina (AVL MTC Motortestcenter AB (Sweden)); Johannesson, Staffan (Ecoplan AB (Sweden))

    2011-06-15

    There is an increased interest for Dual Fuel (methane-Diesel) applications in Sweden since this technology is seen as one of the more interesting options for a fast and cost effective introduction of biomethane as fuel for HD engines. The Dual Fuel technology has been used for many years, mainly for stationary purpose (generators, pumps and ships) while the Spark Ignited (SI) 'Otto' technology has been used for trucks and busses. One obstacle for introducing Dual Fuel technology for busses and trucks is the EU legislation that don't allow for HD on road certification of Dual Fuel applications. Challenges with the Dual Fuel technology is to develop cost effective applications that is capable of reaching low emissions (especially CH{sub 4} and NO{sub x}) in combination with high Diesel replacement in the test cycles used for on road applications. AVL MTC Motortestcenter AB (hereinafter called AVL) has on commission by SGC (Swedish Gas technical Centre) carried out this project with the objectives to analyze the Dual Fuel (Diesel-methane) technology with focus on emissions, fuel consumption and technical challenges. One important part of this project was to carry out emission tests on selected Dual Fuel applications in Sweden and to compile experiences from existing Dual Fuel technology. This report also summarizes other commonly used technologies for methane engines and compares the Dual Fuel with conventional Diesel and Otto technologies. The major challenges with Dual Fuel applications for on road vehicles will be to develop robust and cost effective solutions that meet the emission legislations (with aged catalysts) and to increase the Diesel replacement to achieve reasonable reduction of green house gases (GHG). This is especially important when biomethane is available as fuel but not Bio-Diesel. It will probably be possible to reach EURO V emission limits with advanced Dual Fuel systems but none of the tested systems reached EURO V emission levels

  11. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    Science.gov (United States)

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  12. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sumit [GE Global Research Center, Niskayuna, NY (United States); Krok, Michael [GE Global Research Center, Niskayuna, NY (United States)

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  13. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  14. Picosats for Autonomous Rendezvous and Docking Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the next decade, a host of new technologies and capabilities will be needed by NASA to support Project Constellation. For risk reduction considerations, it is...

  15. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  16. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE III. DEMONSTRATION TESTS - PHASE IV. GUIDELINES AND RECOMMENDATIONS- VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...

  17. Demonstration of ROV-based Underwater Electromagnetic Array Technology

    Science.gov (United States)

    2017-05-25

    Interface, Global Positioning System, Inertial Measurement Unit, Inertial Navigation System, Instrument Verification Strip, Industry Standard Objects...9  4.1  SITE LOCATION AND HISTORY ...Marine National Sanctuary GUI Graphical User Interface GPS Global Positioning System HAUV Hybrid AUV I In-phase IMU Inertial Measurement

  18. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  19. Creating Micro-Videos to Demonstrate Technology Learning

    Science.gov (United States)

    Frydenberg, Mark; Andone, Diana

    2016-01-01

    Short videos, also known as micro-videos, have emerged as a platform for sharing ideas, experiences, and life events on online social networks. This paper shares preliminary results of a study involving students from two universities who created six-second videos using the Vine mobile app to explain or illustrate technology concepts. An analysis…

  20. Standardized UXO Technology Demonstration Site Scoring Record No. 922

    Science.gov (United States)

    2009-04-01

    Technology Division (NAVEODTECHDIV) (Indian Head) by Blackhawk GeoServices (now Zapata Blackhawk) with Geometrics and G&G Sciences, Inc. acting as...81505 Defense Technical Information Center PDF 8725 John J. Kingman Road, Suite 0944 Fort Belvoir, VA 22060-6218

  1. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    Science.gov (United States)

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  2. Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine

    Science.gov (United States)

    2014-01-01

    Technology DC2500 (Gerber) (Tolland, CT) cutting table. AutoCAD * drawings were provided by Dr. John J. Tierney, scientist at UD-CCM. These... AutoCad is a registered trademark of Autodesk, Inc., San Rafael, CA. † Duratec is a registered

  3. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    OpenAIRE

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  4. PILOT-SCALE DEMONSTRATION OF A SLURRY-PHASE BIOLOGICAL REACTOR FOR CREOSOTE-CONTAMINATED SOIL - APPLICATION ANALYSIS REPORT

    Science.gov (United States)

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, a pilot-scale demonstration of a slurry-phase bioremediation process was performed May 1991 at the EPA’s Test & Evaluation Facility in Cincinnati, OH. In this...

  5. Task summary: Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.

    1995-11-01

    Radionuclides represent only a small fraction of the components in millions of gallons of storage tank supernatant at various sites, including Oak Ridge, Hanford, Savannah River, and Idaho. Most of the radioactivity is contributed by cesium, strontium, and technetium along with high concentrations of sodium and potassium salts. The purpose of this task is to test and select sorbents and commercial removal technologies supplied by ESP for removing and concentrating the radionuclides, thereby reducing the volume of waste to be stored or disposed

  6. Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant

  7. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 213

    National Research Council Canada - National Science Library

    Overbay, Larry; Archiable, Robert; McClung, Christina; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the YPG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Demonstration Site Site Scoring Committee...

  8. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  9. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers.......A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  10. Demonstration and practical exercises on radiation curing technology

    International Nuclear Information System (INIS)

    Nik Ghazali Nik Salleh

    1993-01-01

    The contents are Part I : Demonstration - substrate, coating materials, experimental procedures; Part II: Practical exercises - coating and characterization, the report, testing; procedure to use i. automatic reverse roller coater, ii. flow/curtain coater; description and technical data of IST-UV irradiator (including safety precautions); low energy electron beam accelerator (Cureton) model EBC-200-20-15

  11. Technology development and demonstration for TRIGA research reactor decontamination, decommissioning and site restoration

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Ki Jung; Lee, Byung Jik

    1997-01-01

    This paper describes the introduction to research reactor decommissioning plan at KAERI, the background of technology development and demonstration, and the current status of the system decontamination technology for TRIGA reactors, concrete decontamination and dust treatment technologies, wall ranging robot and graphic simulation of dismantling processes, soil decontamination and restoration technology, recycling or reuse technologies for radioactive metallic wastes, and incineration technology demonstration for combustible wastes. 9 figs

  12. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  13. ASTRID: Advanced Sodium Technological Reactor for Industrial Demonstration

    International Nuclear Information System (INIS)

    Vasile, A.

    2012-01-01

    Conclusions: • R&D results [CEA-AREVA-EDF] obtained from 2007 to 2009 have contributed to ASTRID mid 2010 choice of options; • ASTRID has the objective to demonstrate at the industrial scale progress in the identified domains of SFR weakness (safety, operability, economy). and to perform transmutation demonstrations; • A lot of improvements are related to safety; • The first very important milestone is 2012 (June 2006 French Act on wastes management): – ASTRID pre-conceptual design studies: 2010-2012; – First investment cost evaluation; – First safety Authorities advice on the orientations for ASTRID safety; • With the ASTRID program funded by the French government, France has the opportunity to develop a GEN IV Sodium Fast Reactor

  14. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    Science.gov (United States)

    2016-08-01

    22 Fig. 20 MREA coupled to DC motor for pure rotation testing ........................23 Fig...stress of the MR fluid is dependent of a magnetic field, the output torque of the rotary-vane MREA can be controlled by energizing coils in the bobbin. To...scale loads to demonstrate system performance. Evaluation was conducted in 2 ways: 1) in pure rotation coupled to a high-power DC motor (Fig. 20) and

  16. Auditory Demonstrations for Science, Technology, Engineering, and Mathematics (STEM) Outreach

    Science.gov (United States)

    2015-01-01

    affect the resonant frequency is a vibrating wine glass; when the volume of air changes, so does the resonant frequency. This can be easily...demonstrated by running your finger along the top of a wine glass to provide the vibration source. The frequency at which the glass resonates is related to the... disorders . Comparing a patient’s hearing performance via air conduction versus bone conduction can help pinpoint which area of the auditory pathway

  17. Demonstration of ROV Based Underwater Electromagnetic Array Technology

    Science.gov (United States)

    2016-03-01

    dive - thus reducing the estimated daily cost (assuming ~10 dives/day) from $25,000 to $7,000 (~70% reduction ). Page Intentionally...Positioning System SNR: Signal to Noise Ratio STMR: Single Transmit Multiple Receive SWAP: Size, Weight , and Power TACTS: Tactical Aircrew Combat...tether, and carrying a large payload were demonstrated. The EMI array is mounted directly to the non-metallic ROV structural frame chassis . It is

  18. Standardized UXO Technology Demonstration Site Scoring Record No. 945

    Science.gov (United States)

    2017-07-01

    electromagnetic induction (EMI) instrument, which has been updated for this demonstration with the intended purpose of improving the detection and...the elements and access to electrical power for battery charging is required. This and workspace for the data quality control analyst located in...Test Support Services BAR = background alarm rate EMI = electromagnetic induction ERDC = U.S. Army Corps of Engineers Engineering Research and

  19. Oil-free centrifugal hydrogen compression technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heshmat, Hooshang [Mohawk Innovative Technology Inc., Albany, NY (United States)

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  20. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  1. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  2. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Doebber, I. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dominick, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holland, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  3. Subsurface Planar Vitrification Treatment of Problematic TRU Wastes: Status of a Technology Demonstration Program

    International Nuclear Information System (INIS)

    Morse, M.K.; Nowack, B.R.; Thompson, L.E.

    2006-01-01

    This paper provides a status of the In Situ Transuranic Waste Delineation and Removal Project in which the GeoMelt R Subsurface Planar Vitrification TM (SPV TM ) process is being evaluated for the in situ treatment of burial sites containing remote handled mixed transuranic (TRU) waste. The GeoMelt R SPV TM process was invented and patented by Geosafe Corporation. AMEC holds the exclusive worldwide license to use this technology. The current project is part of a three-phase demonstration program to evaluate the effectiveness of the GeoMelt R SPV TM process to treat waste contained in vertical pipe units (VPUs) and caissons that were used for the disposal of remote handled transuranic wastes located at Hanford's 618-10 and 618-11 burial grounds. This project is being performed for the US Department of Energy (DOE) for use at the Hanford site and other DOE installations. The Phase I evaluation determined that removal and treatment of the 618-10/11 VPUs are beyond what can be safely accomplished using conventional excavation methods. Accordingly, a careful stepwise non-intrusive delineation approach and treatment using the GeoMelt R SPV TM technology, followed by removal, characterization, and disposal of the resulting inert vitrified mass was identified as the preferred alternative. Phase II of the project, which started in July 2004, included a full-scale non-radioactive demonstration of AMEC's GeoMelt R SPV TM process on a mock VPU configured to match the actual VPUs. The non-radioactive demonstration (completed in May 2005) was performed to confirm the approach and design before proceeding to a radioactive ('hot') demonstration on an actual VPU. This demonstration took approximately 130 hours, processed the entire mock VPU, and resulted in a vitrified monolith weighing an estimated 90 tonnes. [1] Plans for a radioactive demonstration on an actual VPU are being developed for CY 2006. In addition to demonstrating GeoMelt R SPV TM , delineation techniques are being

  4. Northwest Open Automated Demand Response Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also

  5. Quantified safety objectives in high technology: Meaning and demonstration

    International Nuclear Information System (INIS)

    Vinck, W.F.; Gilby, E.; Chicken, J.

    1986-01-01

    An overview and trends-analysis is given of the types of quantified criteria and objectives which are presently applied or envisaged and discussed in Europe in the nuclear application, more specifically Nuclear Power Plants (NPPs), and in non-nuclear applications, more specifically in the chemical and petrochemical process industry. Some comparative deductions are made. Attention is paid to the similarities or discrepancies between such criteria and objectives and to problems associated with the demonstration that they are implemented. The role of cost-effectiveness of Risk deduction is briefly discussed and mention made of a search made into combining the technical, economic and socio-political factors playing a role in Risk acceptance

  6. Village demonstration of biogas technology: an Egyptian case study

    Energy Technology Data Exchange (ETDEWEB)

    El Halwagi, M.M.; Abdel Dayem, A.M.; Hamad, M.A.

    1982-10-01

    Biomass is among the principal renewable energy resources available to Egyptian villages; in addition to converting wastes into useful energy (biogas), the anaerobic digestion of biomass wastes produces a slurry that can be used as a fertilizer, improves sanitation, and can be easily adapted using locally available materials and labor. After a preliminary sociological survey, the NRC selected Al Manawat, a traditional Egyptian village, for the first demonstration site. Concomitant with the family energy requirements, availability of digester feed materials, and site characteristics, a modified Indian-type family size unit was designed and erected. The digester, with an effective volume of 320 ft/sub 3/, is connected to both a latrine and an animal shed. A preliminary technoeconomic appraisal and an assessment of the social impact indicate that under village conditions and particularly with the heavily subsidized fuel prices, the digester's main benefit to the farmer is the considerable saving in manure transport.

  7. Technology verification phase. Dynamic isotope power system. Final report

    International Nuclear Information System (INIS)

    Halsey, D.G.

    1982-01-01

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance

  8. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  9. The phase array technology: concepts, sensors and applications; La technology Phase array: concepts, capteurs et applications

    Energy Technology Data Exchange (ETDEWEB)

    Poguet, J.; Marguet, J.; Pichonnat, F.; Chupin, L. [Imasonic SA, 25 - Besancon (France)

    2001-07-01

    The piezo-composite materials allowed, since many years, the development of a new technology for the ultrasonic sensors adapted to the nondestructive testing: the phase array sensors. These sensors are designed with a great number of elementary sensors. The different concepts with their associated advantages and performance are presented in this paper. Many applications using this technology are also proposed and discussed in the domains of the nuclear industry, the aeronautic industry and the on-line control. (A.L.B.)

  10. Requirements and feasibility study of flight demonstration of Active Controls Technology (ACT) on the NASA 515 airplane

    Science.gov (United States)

    Gordon, C. K.

    1975-01-01

    A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.

  11. Cover technology demonstration for low-level radioactive sites

    International Nuclear Information System (INIS)

    Barnes, F.J.; Warren, J.L.

    1988-01-01

    The performance of a shallow land burial site in isolating low-level radioactive and mixed waste is strongly influenced by the behavior of the precipitation falling on the site. Predicting the long-term integrity of a cover design requires a knowledge of the water balance dynamics, and the use of predictive models. The multiplicity of factors operating on a site in the years post-closure (precipitation intensity and duration, soil conditions, vegetation seasonality and variability) have made it extremely difficult to predict the effects of natural precipitation with accuracy. Preliminary results are presented on a three-year field demonstration at Los Alamos National Laboratory to evaluate the influence of different waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on an inactive waste site. Total runoff and soil loss from each plot are measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Soil moisture reduction during the growing season was more pronounced on the shrub plots. This indicates that a more complex vegetative cover provides greater soil moisture storage capacity for winter precipitation than the usual grass cover

  12. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  13. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    Science.gov (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  14. Standardized UXO Technology Demonstration Site, Blind Grid Scoring Record No. 671

    National Research Council Canada - National Science Library

    Overbay, Larry; Robitaille, George

    2005-01-01

    ... (UXO) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. The scoring record was coordinated by Larry Overbay and by the Standardized UXO Technology Deomostration Site Scoring Committee...

  15. Analysis of Contracting Methods Employed in the Advanced Concept Technology Demonstration Program

    National Research Council Canada - National Science Library

    Grimes, Jeffrey

    1998-01-01

    The Advanced Concept Technology Demonstration (ACTD) Program, initiated by DoD as a joint acquisition and warfighting community effort, is intended to exploit mature and maturing technologies to assist in solving identified military needs...

  16. Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide

    DEFF Research Database (Denmark)

    Kang, Ning; Fadil, Ahmed; Pu, Minhao

    2013-01-01

    We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption.......We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption....

  17. Industrial fuel gas demonstration plant program. Current working estimate. Phase III and III

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The United States Department of Energy (DOE) executed a contract with Memphis Light, Gas and Water Division (MLGW) which requires MLGW to perform process analysis, design, procurement, construction, testing, operation, and evaluation of a plant which will demonstrate the feasibility of converting high sulfur bituminous coal to industrial fuel gas with a heating value of 300 +- 30 Btu per standard cubic foot (SCF). The demonstration plant is based on the U-Gas process, and its product gas is to be used in commercial applications in Memphis, Tenn. The contract specifies that the work is to be conducted in three phases. The Phases are: Phase I - Program Development and Conceptual Design; Phase II - Demonstration Plant Final Design, Procurement and Construction; and Phase III - Demonstration Plant Operation. Under Task III of Phase I, a Cost Estimate for the Demonstration Plant was completed as well as estimates for other Phase II and III work. The output of this Estimate is presented in this volume. This Current Working Estimate for Phases II and III is based on the Process and Mechanical Designs presented in the Task II report (second issue) and the 12 volumes of the Task III report. In addition, the capital cost estimate summarized in the appendix has been used in the Economic Analysis (Task III) Report.

  18. Technology Demonstration of Wet Abrasive Blasting for Removal of Lead- and Asbestos-Containing Paint

    National Research Council Canada - National Science Library

    Race, Timothy

    2003-01-01

    ...). This technology demonstration showed that wet blasting using an engineered abrasive can safely and effectively remove lead- and asbestos-containing paint from exterior concrete masonry unit walls...

  19. RAVAN CubeSat Results: Technologies and Science Demonstrated On Orbit

    Science.gov (United States)

    Swartz, W. H.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Yu, Y.; Briscoe, J. S.; Reilly, N.; Reilly, S.; Reynolds, E.; Carvo, J.; Wu, D.

    2017-12-01

    Elucidating Earth's energy budget is vital to understanding and predicting climate, particularly the small imbalance between the incident solar irradiance and Earth-leaving fluxes of total and solar-reflected energy. Accurately quantifying the spatial and temporal variation of Earth's outgoing energy from space is a challenge—one potentially rendered more tractable with the advent of multipoint measurements from small satellite or hosted payload constellations. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat, launched November 11, 2016, is a pathfinder for a constellation to measure the Earth's energy imbalance. The objective of RAVAN is to establish that compact, broadband radiometers absolutely calibrated to high accuracy can be built and operated in space for low cost. RAVAN demonstrates two key technologies: (1) vertically aligned carbon nanotubes as spectrally flat radiometer absorbers and (2) gallium phase-change cells for on-board calibration and degradation monitoring of RAVAN's radiometer sensors. We show on-orbit results, including calibrated irradiance measurements at both shortwave, solar-reflected wavelengths and in the thermal infrared. These results are compared with both modeled upwelling fluxes and those measured by independent Earth energy instruments in low-Earth orbit. Further, we show the performance of two gallium phase-change cells that are used to monitor the degradation of RAVAN's radiometer sensors. In addition to Earth energy budget technology and science, RAVAN also demonstrates partnering with a commercial vendor for the CubeSat bus, payload integration and test, and mission operations. We conclude with a discussion of how a RAVAN-type constellation could enable a breakthrough in the measurement of Earth's energy budget and lead to superior predictions of future climate.

  20. 78 FR 64204 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Amendment... ONR Personnel Management Demonstration Project (75 FR 77380-77447, December 10, 2010). SUMMARY: On...

  1. KickSat: A Crowd-Funded Technology Demonstration Mission for the Sprite ChipSat

    Data.gov (United States)

    National Aeronautics and Space Administration — KickSat is a cubesat technology demonstration mission designed to demonstrate the deployment and operation of prototype sprite "ChipSats" (femtosatellites) developed...

  2. Demonstration of "Optical Mining" For Excavation of Asteroids and Production of Mission Consumables, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of an innovative breakthrough in ISRU methods that we call "Optical Mining". Optical mining is an approach...

  3. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin

    2011-01-01

    -cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase elements of the module are chosen according to the results of our previously conducted analysis......We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low...... and numerical demonstrations [Opt. Express 15, 11971 (2007)]. Beams with a variety of cross-sections such as circular, rectangular and square, with near flat-top intensity distributions are demonstrated. GPC-based beam shaping is inherently speckle-free and the shaped beams maintain a flat output phase. The non...

  4. Integrated corridor management initiative : demonstration phase evaluation - final national evaluation framework.

    Science.gov (United States)

    2012-05-01

    This report provides an analytical framework for evaluating the two field deployments under the United States : Department of Transportation (U.S. DOT) Integrated Corridor Management (ICM) Initiative Demonstration : Phase. The San Diego Interstate 15...

  5. Experimental demonstration of continuous variable cloning with phase-conjugate inputs

    DEFF Research Database (Denmark)

    Sabuncu, Metin; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We report the first experimental demonstration of continuous variable cloning of phase-conjugate coherent states as proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)]. In contrast to this proposal, the cloning transformation is accomplished using only linear optical components......, homodyne detection, and feedforward. As a result of combining phase conjugation with a joint measurement strategy, superior cloning is demonstrated with cloning fidelities reaching 89%....

  6. Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....

  7. Advanced Situation Awareness Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. This powerful technology will also find...

  8. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  9. Project A+ Elementary Technology Demonstration Schools 1990-91. The First Year.

    Science.gov (United States)

    Marable, Paula; Frazer, Linda

    Project A+ Elementary Technology Demonstration Schools is a program made possible through grants from IBM (International Business Machines Corporation) and Apple, Inc. The primary purpose of the program is to demonstrate the educational effectiveness of technology in accelerating the learning of low achieving at-risk students and enhancing the…

  10. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  11. Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies

    International Nuclear Information System (INIS)

    Bates, S.O.

    1993-06-01

    The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management's technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies' effectiveness over the complete range of expected wastestream compositions

  12. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    Science.gov (United States)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  13. Portable Computer Technology (PCT) Research and Development Program Phase 2

    Science.gov (United States)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  14. Demonstrating Starshade Performance as Part of NASA's Technology Development for Exoplanet Missions

    Science.gov (United States)

    Kasdin, N. Jeremy; Spergel, D. N.; Vanderbei, R. J.; Lisman, D.; Shaklan, S.; Thomson, M. W.; Walkemeyer, P. E.; Bach, V. M.; Oakes, E.; Cady, E. J.; Martin, S. R.; Marchen, L. F.; Macintosh, B.; Rudd, R.; Mikula, J. A.; Lynch, D. H.

    2012-01-01

    In this poster we describe the results of our project to design, manufacture, and measure a prototype starshade petal as part of the Technology Development for Exoplanet Missions program. An external occult is a satellite employing a large screen, or starshade,that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light for the observatory, greatly relaxing the requirements on the telescope and instrument. In this first two-year phase we focused on the key requirement of manufacturing a precision petal with the precise tolerances needed to meet the overall error budget. These tolerances are established by modeling the effect that various mechanical and thermal errors have on scatter in the telescope image plane and by suballocating the allowable contrast degradation between these error sources. We show the results of this analysis and a representative error budget. We also present the final manufactured occulter petal and the metrology on its shape that demonstrates it meets requirements. We show that a space occulter built of petals with the same measured shape would achieve better than 1e-9 contrast. We also show our progress in building and testing sample edges with the sharp radius of curvature needed for limiting solar glint. Finally, we describe our plans for the second TDEM phase.

  15. Emerging Communication Technologies (ECT) Phase 4 Report

    Science.gov (United States)

    Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.

    2005-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.

  16. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  17. Functional Super Read Out Driver Demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Ferrer, A; Fiorini, L; González, V; Hernández, Y; Higón, E; Moreno, P; Sanchis, E; Solans, C; Valero, A; Valls, J

    2011-01-01

    This work presents the implementation of a functional super Read Out Driver (sROD) demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter (TileCal) in the LHC experiment. The proposed front-end for the Phase II Upgrade communicates with back-end electronics using a multifiber optical connector with a data rate of 57.6 Gbps using the GBT protocol. This functional sROD demonstrator aims to help in the understanding of the problems that could arise in the upgrade of back-end electronics. The demonstrator is composed of three different boards that have been developed in the framework of ATLAS activities: the Optical Multiplexer Board (OMB), the Read-Out Driver (ROD) and the Optical Link Card (OLC). This functional sROD demonstrator will be used to develop a prototype, in ATCA format, of the new ROD for the Phase II.

  18. Lightweight Towed Howitzer Demonstrator. Phase 1 and Partial Phase 2. Volume A. Overview.

    Science.gov (United States)

    1987-04-01

    disabled by removing the BearLoc fittings and installing the grease zerks mounted next to them, and pressurizing vith a grease gun. I I U Ali Ni -I Load...11 FILE: PHASE2 -- Start --- - End -------- ork Effort MHrs) States CP Planeed key/set Planned Rey/act Nba Actual 10) Fcst (a) Latest (vs) Ori 9 Ws...n a tn 2> a l- * an I I a ccU, II I I 0 -1 Cc ( U. j: nI ax w~~I1 ~ _ - - -i _- C) a in a Ca u 03t IL -aa a -r I. 0 0 fit a ai I d Q a) aa4 m .1 T

  19. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 810 (FEREX Fluxgate Gradient Magnetometer/Sling)

    National Research Council Canada - National Science Library

    Fling, Rick; McClung, Christina; Banta, Matthew; Burch, William; Karwatka, Michael; McDonnell, Patrick

    2007-01-01

    ...) utilizing the APG Standardized UXO Technology Demonstration Site Blind Grid. This Scoring Record was coordinated by Michael Karwatka and the Standardized UXO Technology Demonstration Site Scoring Committee...

  20. Draft plan for the Waste Isolation Pilot Plant test phase: Performance assessment and operations demonstration

    International Nuclear Information System (INIS)

    1989-04-01

    The mission of the Waste Isolation Pilot Plant (WIPP) Project is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes resulting from United States defense programs. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next phase in its development, the Test Phase. The purpose of the Test Phase is to collect the necessary scientific and operational data to support a determination whether to proceed to the Disposal Phase and thereby designate WIPP a demonstration facility for the disposal of TRU wastes. This decision to proceed to the Disposal Phase is scheduled for consideration by September 1994. Development of the WIPP facility is the responsibility of the United States Department of Energy (DOE), whose Albuquerque Operations Office has designated the WIPP Project Office as Project Manager. This document describes the two major programs to be conducted during the Test Phase of WIPP: (1) Performance Assessment for determination of compliance with the Environmental Protection Agency Standard and (2) Operations Demonstration for evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP facility. 42 refs., 38 figs., 14 tabs

  1. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  2. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    Energy Technology Data Exchange (ETDEWEB)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L. [and others

    1997-03-05

    The Department of Energy`s (DOE) Office of Science and Technology Decontamination and Decommissioning (D&D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D&D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D&D Focus Area`s approach to verifying the benefits of the improved D&D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD`s awarded by the D&D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP`s selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP`s Plant 1 D&D Project which was an ongoing D&D Project for which a firm fixed price contract had been issued to the D&D Contractor. Thus, interferences with the baseline D&D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D&D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of {open_quotes}winners.{close_quotes} All demonstrated, technologies will be evaluated for incorporation into the FEMP`s baseline D&D strategy.

  3. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering.

    Science.gov (United States)

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain

    2012-12-17

    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  4. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  5. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    Energy Technology Data Exchange (ETDEWEB)

    William M. Davis

    1999-11-03

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface.

  6. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  7. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  8. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  9. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  10. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  11. Improved hyperspectral imaging technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Improved hyperspectral imaging technologies could enable lower-cost analysis for planetary science including atmospheric studies, mineralogical investigations, and...

  12. Advanced Situation Awareness Technologies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Situation Awareness Technologies (ASAT) will facilitate exploration of the moon surface, and other planetary bodies. ASAT will create an Advanced Situation...

  13. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... Berry, U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), 6501 East 11...

  14. Experimental Investigation and Demonstration of Rotary-Wing Technologies for Flight in the Atmosphere of Mars

    National Research Council Canada - National Science Library

    Young, L. A; Aiken, E. W; Derby, M. R; Demblewski, R; Navarrete, J

    2002-01-01

    This paper details ongoing work at NASA Ames Research Center as to experimental investigations and demonstrations related to rotary-wing technologies that might be applied to flight in the atmosphere of Mars...

  15. Technology Demonstration of the Zero Emissions Chromium Electroplating System; Appendix I: CHPPM Report on Air Sampling

    National Research Council Canada - National Science Library

    Hay, K. J; Maloney, Stephen W; Cannon, John J; Phelps, Max R; Modrell, Jason

    2008-01-01

    This volume is an Appendix to the main report, Volume 1, which documents the demonstration of a technology developed by PRD, Inc, for control of chromium emissions during hard chromium electroplating...

  16. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  17. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  18. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Metzger, I. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holland, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanada, A. [Naval Facilities Engineering Command, Washington, DC (United States)

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  19. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    Science.gov (United States)

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  20. InterTechnology Corporation technology summary, solar heating and cooling. National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    A summary of systems technology for solar-thermal heating and cooling of buildings is given. Solar collectors, control systems for solar heating and cooling, selective surfaces, thermal energy storage, solar-assisted heat pumps, and solar-powered cooling systems are discussed in detail. Also, an ITC specification for a solar control system is included. (WHK)

  1. Phase Occulted Nulling Coronagraph: Instrument Technology Advancement

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase Occulted Nulling Coronagraph (PONC), invented by R. Lyon, is a viable and game-changing approach for future arbitrary shaped aperture exoplanet science...

  2. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  3. Advanced Display Interface Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CMC proposes, along with our collaborator, Dr. Mica Endlsey of SA Technologies, to produce a framework from which an Adaptive User Interface (AUI) can be modeled and...

  4. Extreme Environment Hybrid Gearbox Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Nearly all mechanism applications require some form of gearbox. Wet lubricated gearbox technologies are limited to the relatively narrow temperature ranges of their...

  5. Project inspection using mobile technology - phase II : assessing the impacts of mobile technology on project inspection.

    Science.gov (United States)

    2015-01-01

    As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...

  6. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  7. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    Science.gov (United States)

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  8. 78 FR 34655 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-06-10

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Proposed..., 2010 (75 FR 77380-77447), DoD published a notice of approval of a personnel management demonstration...

  9. Comparative Demonstration and Evaluation of Classification Technologies: Closed Castner Range, Fort Bliss, Texas

    Science.gov (United States)

    2017-01-23

    DEMONSTRATION REPORT Comparative Demonstration and Evaluation of Classification Technologies: Closed Castner Range Fort Bliss , Texas ESTCP...54  Appendix A: Points of Contact...Detection System 2x2 (TEMTADS) data that was collected by URS Group, Inc. (URS) at the Castner Range (CR) at Fort Bliss , Texas. 1.1 BACKGROUND ESTCP

  10. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  11. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  12. Development and demonstration of energy saving technologies in agriculture; Udvikling og demonstration af energibesparende teknologi til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Joergen; Trenel, P.; Krogh Hansen, T.; Andersen, Mathias

    2010-07-01

    The energy consumption for agriculture is approx. 10% of the total corporate energy use in Denmark and is therefore a major source of total CO2 emission. This project aims to show that there is great potential for reducing energy use in agriculture. The project focused on saving energy in pig production, as this is the largest branch of production in farming and also the most energy consuming. The energy consumption in selected herds has been monitored with high accuracy making it possible to track down energy consumption, on system level, minute by minute. The energy consumption for light, ventilation and heating systems has been followed in various sections of different farms to compare the level of consumption. In the project 4 technologies were developed and tested. The results are: 1) Two new EC (electronically commuted) fans for livestock facilities makes it possible to reduce power consumption for ventilation with over 50% compared with frequency controlled fans; 2) An intelligent shelter for two climate stables was developed to regulate heat in the piglet pens. The system showed a 43% energy saving for heating compared to identical climate stables with normal floor heating; 3) An hour-based energy management system called Elspot was tested. The Elspot module can automatically activate and deactivate electrically powered equipment according to the energy price. The study found that farms can reduce their spending on electricity by 25% using the Elspot module on a feed mill; 4) A web interface for energy monitoring was designed specifically for farmers. This system makes it possible for farmers to monitor their energy consumption at and benchmark this against normative values or new technologies. The initial goal of the project was to develop and demonstrate solutions that could potentially reduce energy consumption in agriculture by 20%. Since the work was done only with energy saving technologies in livestock production, this corresponds to an energy

  13. Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project

    International Nuclear Information System (INIS)

    McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

    2002-01-01

    This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D and D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D and D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D and D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results

  14. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  15. SUSTAINABILITY LOGISTICS BASING SCIENCE AND TECHNOLOGY OBJECTIVE DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT

    Science.gov (United States)

    2018-03-22

    64  3.4.2 Battalion  Waste ‐to‐ Energy  Converter (WEC...65  Figure 61: Battalion Waste -to- Energy Converter...Technology Corp  NSRDEC  Waste  Reduction  EE‐0940  Battalion  Waste ‐to‐ Energy  Converter  NSRDEC  Waste  Reduction  EE‐0980  Wastewater Treatment

  16. PowerSat: A technology demonstration of a solar power satellite

    Science.gov (United States)

    Sigler, Douglas L. (Editor); Riedman, John; Duracinski, Jon; Edwards, Joe; Brown, Garry; Webb, Ron; Platzke, Mike; Yuan, Xiaolin; Rogers, Pete; Khan, Afsar

    1994-01-01

    PowerSat is a preliminary design strategy for microwave wireless power transfer of solar energy. Solar power satellites convert solar power into microwave energy and use wireless power transmission to transfer the power to the Earth's surface. The PowerSat project will show how new developments in inflatable technology can be used to deploy solar panels and phased array antennas.

  17. Performance of the TilePPr demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter Pre-processor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the off-detector electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the on-detector electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the on-detector electronics.

  18. Pacific Northwest Smart Grid Demonstration Project Technology Performance Report Volume 1: Technology Performance

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Ron [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. The local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.

  19. FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

    International Nuclear Information System (INIS)

    Adamson, M G; Hipple, D L; Hopper, R W; Hsu, P C.

    1998-01-01

    Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils ampersand solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through September 1998, and therefore represents a final report for fiscal year 1998 activities

  20. A Ground-Based Study on Extruder Standoff Distance for the 3D Printing in Zero Gravity Technology Demonstration Mission

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Beshears, R. D.; Rolin, T. D.; Rabenberg, E. M.; Soohoo, H. A.; Ledbetter, F. E., III; Bell, S. C.

    2017-01-01

    Analysis of phase I specimens produced as part of the 3D printing in zero G technology demonstration mission exhibited some differences in structure and performance for specimens printed onboard the International Space Station (ISS) and specimens produced on the ground with the same printer prior to its launch. This study uses the engineering test unit for the printer, identical to the unit on ISS, to conduct a ground-based investigation of the impact of the distance between the extruder tip and the build tray on material outcomes. This standoff distance was not held constant for the phase I flight prints and is hypothesized to be a major source of the material variability observed in the phase I data set.

  1. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  2. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  3. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering.

    Science.gov (United States)

    Hong, Xuezhi; Wang, Dawei; Xu, Lei; He, Sailing

    2010-06-07

    A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

  4. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  5. Clean Coal Technology Demonstration Program: Program update 1991 (as of December 31, 1991)

    International Nuclear Information System (INIS)

    1992-02-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale ''showcase'' facilities built across the country. The program takes the most promising advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The CCT Program has been identified in the National Energy Strategy as major initiative supporting the strategy's overall goals to: increase efficiency of energy use; secure future energy supplies; enhance environmental quality; fortify foundations. The technologies being demonstrated under the CCT Program when commercially available will enable coal to reach its full potential as a source of energy for the nation and the international marketplace. The goal of the program is to furnish the US and international energy marketplaces with a number of advanced, highly efficient, and environmentally acceptable coal-using technologies

  6. A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission

    Science.gov (United States)

    Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam

    2006-10-01

    We present a proposed robotic mission to Mars—Vanguard—for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of “water mining” capabilities for in situ resource utilisation (ISRU) in conjunction with high-value astrobiological investigation within a low-mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of ISRU will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the re-use of the already built Mars Express bus, making it a very low-cost option.

  7. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  8. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  9. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative

  10. Summary of WPT FOA phase II demonstration performed on July 21, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Perry T. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Onar, Omer C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    This summary provides details of the activities, presentations and hardware demonstrations performed at the International Transportation Innovation Center (iTiC) in Greenville, South Carolina as deliverables for the wireless power transfer (WPT) FOA #000667 phase II gateway. This report does not attempt to identify all encompassing efforts from each of the partners leading up to the demonstration, but will attempt to provide a record which briefly describes the project deliverables met and expectations from the Department of Energy (DOE) as action items agreed to during the wrap-up session on July 21, 2015.

  11. Demonstration of an infected popliteal (Baker's) cyst with three-phase skeletal scintigraphy

    International Nuclear Information System (INIS)

    Wallner, R.J.; Dadparvar, S.; Croll, M.N.; Brady, L.W.

    1985-01-01

    A case is reported of an infected popliteal (Baker's) cyst demonstrated with triple phase skeletal scintigraphy. Although double-contrast arthrography and ultrasonography are currently the modalities most frequently employed to diagnose the presence of popliteal cysts, they may also be detected utilizing this radionuclide technique in the course of evaluation for knee joint disease or septic arthritis. Radionuclide studies may be more sensitive for the evaluation of associated inflammatory disease involving the knee joint

  12. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  13. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  14. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    Science.gov (United States)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  16. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  17. JOYO modification program for demonstration tests of FBR innovative technology development

    International Nuclear Information System (INIS)

    Yoshimi, H.; Hachiya, Y.

    1990-01-01

    A plan is under way at PNC to modify the experimental fast reactor JOYO. The project is called MARK-III (MK-III) program. The purpose of MK-III is to expand the function of JOYO, and to make it possible to receive demonstration tests of new or high level technologies for FBR development. The MK-III program consists of two main modifications: conversion to a highly efficient irradiation facility; and a modification for demonstration testing of new technologies and concepts that have a high potential to reduce FBR plant construction cost, to evaluate plant reliability and to improve plant safety. These modifications are scheduled to start in 1991

  18. Cryogenic Propellant Storage and Transfer Technology Demonstration: Prephase A Government Point-of-Departure Concept Study

    Science.gov (United States)

    Mulqueen, J. A.; Addona, B. M.; Gwaltney, D. A.; Holt, K. A.; Hopkins, R. C.; Matis, J. A.; McRight, P. S.; Popp, C. G.; Sutherlin, S. G.; Thomas, H. D.; hide

    2012-01-01

    The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studies

  19. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT – CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger; Freshley, Mark D.; Dixon, Paul; Hubbard, Susan S.; Freedman, Vicky L.; Flach, Gregory P.; Faybishenko, Boris; Gorton, Ian; Finsterle, Stefan A.; Moulton, John D.; Steefel, Carl I.; Marble, Justin

    2013-06-27

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  20. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  1. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  2. Informing Early-Phase Technology Decisions in Paradigmatic Innovation

    DEFF Research Database (Denmark)

    Jensen, Ole Kjeldal; Ahmed-Kristensen, Saeema

    2010-01-01

    The innovation activities of a company facing paradigmatic change with regard to both technology and business model includes taking many decisions, where the information available, as well as the decision makers’ ability to understand this information, is limited. Technology decisions in the very...... the provision of knowledge and information required in the early phases of technology decisions. This article reports on the first part of this project, and provides a descriptive model for understanding the complexity in the early phase intuitive decision-making process, answering the specific research...... question: How are decisions regarding technologies informed in the early phases of innovation, when dealing with paradigmatic “new to the company” knowledge fields? To explore the question, a case study; investigating the decisions made for radical new innovations, and the knowledge needed for supporting...

  3. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  4. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  5. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    Science.gov (United States)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  6. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  7. FIELD DEMONSTRATION OF LEAD-BASED PAINT REMOVAL AND INORGANIC STABILIZATION TECHNOLOGIES

    Science.gov (United States)

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brock substrates and to stabilize the resultant blasting media (coal slag and mineral sand) paint debris to reduce the leachable l...

  8. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    Science.gov (United States)

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  9. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  10. Project A+, Elementary Technology Demonstration Schools, 1991-92: The Second Year.

    Science.gov (United States)

    Nichols, Todd; Frazer, Linda

    The Elementary Technology Demonstration Schools program, where four elementary schools were equipped with computer hardware and software, was made possible by grants from IBM and Apple, Inc. The goals of the program were, in 3 years, to reduce by 50% the number of students not in their age appropriate grade level and those students not achieving…

  11. Elementary Technology Demonstration Schools: The Third Year 1992-93. Publication Number 92.31.

    Science.gov (United States)

    Sabatino, Melissa

    The 1992-93 school year was the third year of the Elementary Technology Demonstration Schools program of the Austin (Texas) schools; the project is funded by International Business Machines Corporation (IBM) and Apple Computer Inc. Grants from these corporations were used to equip three elementary schools with IBM equipment and one with Apple…

  12. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2012-11-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... Assistant for Laboratory Management, AMRDEC, 5400 Fowler Road, Redstone Arsenal, AL 35898-5000; Engineer...

  13. 78 FR 29335 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Science.gov (United States)

    2013-05-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense...: Special Assistant for Laboratory Management, AMRDEC, 5400 Fowler Road, Redstone Arsenal, AL 35898-5000...

  14. United States Postal Service Alaska Hovercraft Demonstration Project Technology and Safety Assessment

    Science.gov (United States)

    2000-02-01

    This report presents the results of the technology and safety assessment of the Bethel/Kuskokwim River hovercraft service,operated by the Alaska Hovercraft Joint Venture (AHJV). The primary purpose of the service was a two-year demonstration of bypas...

  15. Illustration of the X-37 Advanced Technology Demonstrator in STS cargo bay

    Science.gov (United States)

    1999-01-01

    This artist's conception shows the X-37 Advanced Technology Demonstrator in the Shuttle Payload Bay. The X-37 lies on a pallet, with the Earth in the background and the Sun rising on the right. Rounded on the top and flat on the bottom, the X-37 design incorporates double-delta wings and two horizontal stabilizers, forming a V-shape.

  16. 76 FR 67154 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Program

    Science.gov (United States)

    2011-10-31

    ... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act... flexibilities, modifying demo project plans, or executing Federal Register Notices has identified some areas for...

  17. Are Gender Differences in Perceived and Demonstrated Technology Literacy Significant? It Depends on the Model

    Science.gov (United States)

    Hohlfeld, Tina N.; Ritzhaupt, Albert D.; Barron, Ann E.

    2013-01-01

    This paper examines gender differences related to Information and Communication Technology (ICT) literacy using two valid and internally consistent measures with eighth grade students (N = 1,513) from Florida public schools. The results of t test statistical analyses, which examined only gender differences in demonstrated and perceived ICT skills,…

  18. Wave energy technology. Strategy for research, development and demonstration 2012; Boelgekraftteknologi. Strategi for forskning, udvikling og demonstration 2012

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, K.; Krogh, J.; Kofoed, J.P. [Aalborg Univ., Aalborg (Denmark); Jensen, N.E.H. [Energinet.dk, Fredericia (Denmark); Friis-Madsen, E. [Boelgekraftforeningen, Hurup (Denmark); Mikkelsen, B.V. [Hanstholm Havneforum (Denmark); Jensen, A. [DanWEC, Thisted (Denmark)

    2012-06-15

    The vision for Danish development of wave energy technology is that Danish industrial and commercial firms gain skills for marketing of competitive wave energy technologies in both the Danish and the international market. Utilization of wave power is a prerequisite for that there in the future can be built offshore energy parks at greater sea depths. The development of wave energy technology should from 2030 at the latest provide the opportunity for cost-effective, sustainable electricity from offshore energy parks in Denmark. This strategy contains a detailed development plan and overview of the investment required to achieve the expected technological development. The objective to produce 1500 GWh / year at a reduced price of 0.10 DKK / kWh compared to pure offshore wind power will require a public investment of approx. 1.5 billion DKK over the next 20 years. This investment will, at the reduced electricity production cost alone, be paid back in 10 years. (LN)

  19. Proof of concept demonstration of novel technologies for lunar spacesuit dust mitigation

    Science.gov (United States)

    Manyapu, Kavya K.; De Leon, Pablo; Peltz, Leora; Gaier, James R.; Waters, Deborah

    2017-08-01

    A recent report by NASA identified dust/particulate mitigation techniques as a highly relevant study for future long-term planetary exploration missions (NASA, 2015). The deleterious effects of lunar dust on spacesuits discovered during the Apollo missions has compelled NASA to identify dust mitigation as a critical path for potential future lunar, asteroid and Mars missions. The complexity of spacesuit design has however constrained integrating existing dust cleaning technologies, formerly demonstrated on rigid surfaces, into the spacesuit system. Accordingly, this research is investigating novel methods to integrate dust mitigation technologies for use on spacesuits. We examine utilizing a novel combination of active and passive technologies integrated into the spacesuit outerlayer to alleviate dust contamination. Leveraging two specific technologies, the Electrodynamics Dust Shield (EDS) active technology and Work Function Matching Coating (WFM) passive technology, developed by NASA for rigid surfaces, we apply new high performance materials such as the Carbon Nanotube (CNT) flexible fibers to develop a spacesuit-integrated dust cleaning system. Through experiments conducted using JSC-1A lunar dust simulant on coupons made of spacesuit outerlayer material, feasibility of integrating the proposed dust cleaning system and its performance were assessed. Results from these preliminary experiments show that the integrated dust cleaning system is capable of removing 80-95% of dust from the spacesuit material demonstrating proof of concept. This paper describes the techniques and results from the experiments. Future challenges of implementing the proposed approach into fight suits are identified.

  20. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  1. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  2. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    Science.gov (United States)

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  3. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order

  4. Functional Super Read Out Driver Demonstrator for the Phase II Upgrade of the Atlas Tile Calorimeter

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Ferrer, A; González, V; Higón, E; Moreno, P; Sanchis, E; Solans, C; Valero, A; Valls, J

    2011-01-01

    This work presents the implementation of a functional super Read Out Driver (sROD) demonstrator for the Phase II Upgrade of the ATLAS Tile Calorimeter (TileCal) in the LHC experiment. The proposed front-end for the Phase II Upgrade communicates with back-end electronics using a multifiber optical connector with a data rate of 57.6 Gbps using the GBT protocol. This functional sROD demonstrator aims to help in the understanding of the problems that could arise in the upgrade of back-end electronics. The demonstrator is composed of three different boards that have been developed in the framework of ATLAS activities: the Optical Multiplexer Board (OMB), the Read-Out Driver (ROD) and the Optical Link Card (OLC). The first two boards, OMB and ROD, are part of the current back-end system where OMB receives two optical fibers with redundant data from front-end, performs online CRC for data and send to ROD the data from the error-free fiber; and ROD is the main element of the back-end electronics and it is responsible...

  5. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  6. Tung FDG Test Facility. Phase 2, Pilot plant demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Tung FGD Process is a regenerative process which extracts SO{sub 2} from a scrubbing liquor into an organic medium using mixer-settlers followed by steam-stripping the SO{sub 2} off from the organic medium. For the process to operate satisfactorily, (1) the organic must be stable, (2) phase separation must be relatively fast, (3) crud (i.e. solids in-between two phases) must not form and (4) SO{sub 2} must be able to be stripped off from the organic medium readily. The demonstration confirmed that the first three conditions can be met satisfactorily. Much lower stripping efficiency was attained in the pilot plant demonstration than what was previously attained in a bench-scale demonstration. Engineering analysis showed that the pilot plant stripping column was scaled up from the bench-scale column incorrectly. A new scale-up criterion for stripping a relatively viscous liquid medium is proposed based upon pilot plant data.

  7. Environmental conservation by radiation technology: A new Italian multipurpose demonstration centre

    Science.gov (United States)

    Tata, A.; Manni, S.

    1993-10-01

    A new italian R&D/ Demonstration Centre, named CE.S.T.I.A. (CEntro Sperimentazione Tecnologie di Irraggiamento per l'Ambiente, namely Experimental Centre for Environmental Applications of Radiation Technology) will be presented. The Centre, that should represent the largest project in the world for research on environmental applications of radiation technology, will be located in the South of Italy and foresees, over an area of 35, 000 m 2, four independent irradiation plants, each one with a dedicated electron beam machine. The foreseen EB-machines features allow a large operative flexibility; the first research cycle will regard five activity lines: hazardous wastes, waste water, flue gases, hospital wastes, clean technologies. The Centre technical and economic features are described, together with an analysis of realistic spreading perspectives of radiation technology on the Italian industrial wastes management market.

  8. Explosive ordinance disposal technology demonstration using the telerobotic small emplacement excavator

    Energy Technology Data Exchange (ETDEWEB)

    Burks, B.L.; Killough, S.M.; Thompson, D.H.; Dinkins, M.A. [Oak Ridge National Lab., TN (United States). Robotics & Process Systems Div.

    1994-06-01

    The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for explosive ordinance disposal (EOD), combat engineer, and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during the high risk EOD excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. This feasibility study was performed at the request of the Ordinance Missile and Munitions Center and School (OMMCS) at the Redstone Arsenal to help define requirements for further joint service development activities. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory (ORNL) in a project funded jointly by the US Army Project Manager for Ammunition Logistics (PM-AMMOLOG) and the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama, on September 13--17, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote EOD. During the demonstration, approximately 40 EOD specialists were instructed on telerobotic operation of the TSEE and then were asked to complete a series of simulated EOD tasks. Upon completion of the tasks, participants completed an evaluation of the system including human factors performance data.

  9. Power System Options Evaluated for the Radiation and Technology Demonstration Mission

    Science.gov (United States)

    Kerslake, Thomas W.; Benson, Scott W.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission is under joint study by three NASA Centers: the NASA Johnson Space Center, the NASA Goddard Space Flight Center, and the NASA Glenn Research Center at Lewis Field. This Earth-orbiting mission, which may launch on a space shuttle in the first half of the next decade, has the primary objective of demonstrating high-power electric thruster technologies. Secondary objectives include better characterization of Earth's Van Allen trapped-radiation belts, measurement of the effectiveness of the radiation shielding for human protection, measurement of radiation effects on advanced solar cells, and demonstration of radiation-tolerant microelectronics. During the mission, which may continue up to 1 year, the 2000-kg RTD spacecraft will first spiral outward from the shuttle-deployed, medium-inclination, low Earth orbit. By the phased operation of a 10-kW Hall thruster and a 10-kW Variable Specific Impulse Magneto-Plasma Rocket, the RTD spacecraft will reach a low-inclination Earth orbit with a radius greater than five Earth radii. This will be followed by an inward spiraling orbit phase when the spacecraft deploys 8 to 12 microsatellites to map the Van Allen belts. The mission will conclude in low Earth orbit with the possible retrieval of the spacecraft by the space shuttle. A conceptual RTD spacecraft design showing two photovoltaic (PV) array wings, the Hall thruster with propellant tanks, and stowed microsatellites is presented. Early power system studies assessed five different PV array design options coupled with a 120-Vdc power management and distribution system (PMAD) and secondary lithium battery energy storage. Array options include (1) state-of-the-art 10-percent efficient three-junction amorphous SiGe thin-film cells on thin polymer panels deployed with an inflatable (or articulated) truss, (2) SCARLET array panels, (3) commercial state-of-the-art, planar PV array rigid panels with 25-percent efficient, three

  10. Advanced Lost Foam Casting Technology - Phase V

    Energy Technology Data Exchange (ETDEWEB)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  11. Erosion Resistant Compressor Blade Repair Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program will demonstrate the use of wear resistant high strength nanocomposites in the turbine engine repair and refurbishment process. The...

  12. Multi-layer Far-Infrared Component Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will demonstrate the feasibility of a process to create multi-layer thin-film optics for the far-infrared/sub-millimeter wave spectral region. The...

  13. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seasholtz, Jeff [East Penn Mfg. Co., Inc., Lyons, PA (United States)

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the East Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).

  14. Theoretical and Experimental Demonstration on Grating Lobes of Liquid Crystal Optical Phased Array

    Directory of Open Access Journals (Sweden)

    Xiangru Wang

    2016-01-01

    Full Text Available High deflection efficiency is one of the urgent requirements for practical liquid crystal optical phased array (LC-OPA. In this paper, we demonstrate that high order grating lobes induced from fringe effect are the most important issue to reduce occupation of main lobe. A novel theoretical model is developed to analyze the feature of grating lobes when the device of LC-OPA is working on the scheme of variable period grating (VPG or variable blazing grating (VBG. Subsequently, our experiments present the relevant results showing a good agreement with the theoretical analysis.

  15. Full-scale technology demonstration of a polyethylene encapsulation process for radioactive, hazardous, and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Lageraaen, P.R.; Wright, S.

    1996-01-01

    A full-scale technology demonstration of a polyethylene encapsulation process, sponsored by the U.S. Department of Energy (DOE) Office of Technology Development, was held at the Environmental and Waste Technology Center at Brookhaven National Laboratory (BNL) in September 1994. Polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved treatment of low-level radioactive (LLW), hazardous, and mixed wastes. Although originally developed for treatment of DOE-generated wastes through waste management and environmental restoration activities, polyethylene encapsulation has application within the commercial sector. A fully equipped, production-scale system, capable of processing over 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control. Following the demonstration, waste-form testing was conducted to confirm performance of the final waste form. 10 refs., 5 figs., 1 tab

  16. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  17. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  18. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, John R. [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory; Wigmosta, Mark S. [PNNL; Voisin, Nathalie [PNNL; Rakowski, Cynthia [PNNL; Coleman, Andre [PNNL; Lowry, Thomas S. [SNL

    2014-05-19

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  19. LBNO-DEMO (WA105): a large demonstrator of the Liquid Argon double phase TPC

    CERN Document Server

    Trzaska, Wladyslaw Henryk

    2015-01-01

    LBNO-DEMO (WA105) is a large demonstrator of the double phase liquid argon TPC intended to develop and test the main elements of the GLACIER-based design for the purpose of scaling it up to the 10–50 kton size needed for Long Baseline Neutrino Oscillation studies. The crucial components of the design are: ultra-high argon purity in non-evacuable tank, long drifts, very high drift voltages, large area Micro Pattern Gas Detectors, and cold preamplifiers. The active volume of the demonstrator is 666 m3 (approximately 300t). WA105 is under construction at CERN and will be exposed to charged particle beams (0.5-20 GeV/c) in the North Area in 2018. The data will provide the necessary calibration of the detector performance and benchmark reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program, including projects like LBNO and DUNE.

  20. Advanced heat pump for recovery of volatile organic compounds, Phase III - demonstration of BCSRHP mobile regenerator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    Under Phase I of the subject contract, feasibility studies and basic engineering studies were performed for a Brayton Cycle Solvent Recovery Heat Pump (BCSRBP) system to prevent pollution from small source emitters. It was determined that the cost of a complete system, including adsorbers and regeneration process, would be far too much for the small emission source in most cases. This {open_quotes}integrated{close_quotes} approach was therefore not feasible. However, it was concluded that the expensive portion of the Brayton cycle process, the regenerator, could be shared by mounting it on a trailer that could be transported to different sites to regenerate an adsorber. Under Phase II of the project a mobile regenerator (BCSRI-IP) was designed and built to serve a large number of sites. Adsorbers were designed to control emissions for a week or more between regenerations. The purpose of phase III was to demonstrate the cost effectiveness and efficiency of the shared (decoupled) BRAYSORB{reg_sign} solvent recovery system in energy use and emission control compared to other control technologies through a performance testing program at representative industrial and commercial host sites in Southern California. NUCON was the prime contractor for the demonstration portion of this project. Support and funding were received from Southern California Edison Company, South Coast Air Quality Management District, and the U.S. Department of Energy in addition to the contribution by NUCON. Contractual arrangements were completed with each of the host sites and permits for both the stationary and mobile equipment were acquired. The adsorbers were installed at each host site and the appropriate interface connections were made. The mobile regenerator was transported to Southern California for the demonstration.

  1. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  3. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    International Nuclear Information System (INIS)

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-01-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  4. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  5. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    Hightower, M.

    1995-01-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  6. A Demonstration of Big Data Technology for Data Intensive Earth Science (Invited)

    Science.gov (United States)

    Kuo, K.; Clune, T.; Ramachandran, R.; Rushing, J.; Fekete, G.; Lin, A.; Doan, K.; Oloso, A. O.; Duffy, D.

    2013-12-01

    Big Data technologies exhibit great potential to change the way we conduct scientific investigations, especially analysis of voluminous and diverse data sets. Obviously, not all Big Data technologies are applicable to all aspects of scientific data analysis. Our NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) project, Automated Event Service (AES), pioneers the exploration of Big Data technologies for data intensive Earth science. Since Earth science data are largely stored and manipulated in the form of multidimensional arrays, the project first evaluates array performance of several candidate Big Data technologies, including MapReduce (Hadoop), SciDB, and a custom-built Polaris system, which have one important feature in common: shared nothing architecture. The evaluation finds SicDB to be the most promising. In this presentation, we demonstrate SciDB using a couple of use cases, each operating on a distinct data set in the regular latitude-longitude grid. The first use case is the discovery and identification of blizzards using NASA's Modern Era Retrospective-analysis for Research and Application (MERRA) data sets. The other finds diurnal signals in the same 8-year period using SSMI data from three different instruments with different equator crossing times by correlating their retrieved parameters. In addition, the AES project is also developing a collaborative component to enable the sharing of event queries and results. Preliminary capabilities will be presented as well.

  7. Cobalt-60 heat source demonstration program. Phase III. Fabrication. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1973-06-01

    Significant accomplishments completed during Phase III of the /sup 60/Co Heat Source Demonstration program include the following: encapsulation of 2 MCi of /sup 60/Co; fabrication of the heat source, including the ASME coded pressure vessel/core assembly, and biological shielding; endurance testing of a prototype heat pipe for a period of 28 months; fabrication and qualification of the heat pipe emergency cooling subsystem; issue of the safety evaluation report, reference 3, and the operations manual, reference 4; and heat source assembly. The planned demonstration test program was modified to include testing of a total power system. Based on an evaluation of available power conversion systems, which included the closed-cycle Brayton and organic Rankine systems, the closed-cycle Brayton system was selected for use. Selection was based on advantages offered by the direct coupling of this conversion system with the gas-cooled heat source. In implementing the test program, the AiResearch BCD power conversion system was to be coupled to the heat source following initial heat source performance testing and part way through the endurance test. In accordance with the program redirection the following Phase IV checkout operations were completed to evaluate procedural and hardware acceptability: heat source dummy fueling; fueling cask sielding survey; and heat source shielding survey (single pin). Completion of these latter activities verified the acceptability of critical characteristics of the heat source and its supporting equipment.

  8. A design study for a medium-scale field demonstration of the viscous barrier technology

    International Nuclear Information System (INIS)

    Moridis, G.; Yen, P.; Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K.

    1996-09-01

    This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory's new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier

  9. Expedited technology demonstration project. Project baseline revision 2.2 and FY96 plan

    International Nuclear Information System (INIS)

    1996-07-01

    The Expedited Technology Demonstration Project Plan, Mixed Waste Management Facility (MWMF) current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include feed preparation and feed delivery systems, and the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is provided. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in fiscal year 97, followed by the activation of feed preparation and final forms in fiscal year 98

  10. DEMONSTRATION REPORT: Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Former Fort Ord, Monterey County, CA

    Science.gov (United States)

    2017-06-01

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...from the researchers (Geometrics and Black Tusk Geophysics [BTG]) to production companies (CB&I). Another objective was to gain regulator acceptance...facilitating the transfer of technology from the researchers to production companies . 6. Provide data to assist in gaining regulatory acceptance of the

  11. Stress Measurements on Blair High School Gymnasium: A Demonstration of Space Technology Transfer

    Science.gov (United States)

    Kastel, Dean

    1966-01-01

    This Report describes an actual demonstration of transfer to non-space use of technologies developed for space programs applications. Techniques used in assessing static and dynamic characteristics of the Blair High School gymnasium involved data acquisition by continuous scanning of strain gauge data acquired over a time of wide-temperature range, and analysis by a computer routine developed by Jet Propulsion Laboratory five years ago. The advantage of this method over conventional structural testing of uniquely designed structures was proved. More importantly, the process of demonstration was shown to be of great assistance to, and extension of, normal methods of disseminating information of new technologies. It is felt that significant benefit will derive from this improved mode oi concept transfer.

  12. Development and demonstration of treatment technologies for the processing of US Department of Energy Mixed Waste

    International Nuclear Information System (INIS)

    Bloom, G.A.; Berry, J.B.

    1994-01-01

    Mixed waste is defined as ''waste contaminated with chemically hazardous and radioactive species.'' The Mixed Waste Integrated Program (MWIP) was established in response to the need for a unified, DOE complexwide solution to issues of mixed waste treatment that meets regulatory requirements. MWIP is developing treatment technologies that reduce risk, minimize life-cycle cost, and improve process performance as compared to existing technologies. Treatment for waste streams for which no current technology exists, and suitable waste forms for disposal, will be provided to improve operations of the DOE Office of Waste Management. MWIP is composed of six technical areas within a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas are described in this paper

  13. Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics

    International Nuclear Information System (INIS)

    Brown, James; Hendry, Chris

    2009-01-01

    The paper considers the role of government funded demonstration projects and field trials (DTs) in accelerating the commercialisation of new energy technologies that meet a public good but do not have immediate market appeal [Sagar, A.D., van der Zwaan, B., 2006. Technological innovation in the energy sector: R and D, deployment, and learning-by-doing. Energy Policy 34, 2601-2608]. Drawing on an original database of DTs in the EU, Japan and USA from 1973 to 2004, we review the history of DTs in photovoltaic technology for electricity generation, and its subsequent take up as a commercial energy source. We find that DTs that are aimed purely at discovering suitable market opportunities are less successful in achieving diffusion than projects that target a particular application and concentrate resources on it. The former nevertheless have a vital role to play in the learning process, while a targeted focus is often dependent on national industrial and institutional factors.

  14. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    Science.gov (United States)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  15. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  16. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    Science.gov (United States)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.

  17. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  18. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over$5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal-abundant, secure, and economical-can continue in its

  19. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  20. Dynamic Isotope Power System: technology verification phase, program plan, 1 October 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The technology verification phase program plan of the Dynamic Isotope Power System (DIPS) project is presented. DIPS is a project to develop a 0.5 to 2.0 kW power system for spacecraft using an isotope heat source and a closed-cycle Rankine power-system with an organic working fluid. The technology verification phase's purposes are to increase the system efficiency to over 18%, to demonstrate system reliability, and to provide an estimate for flight test scheduling. Progress toward these goals is reported

  1. A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

    CERN Multimedia

    2002-01-01

    % RD-9 A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology \\\\ \\\\Radiation hardened SOI-CMOS (Silicon-On-Insulator, Complementary Metal-Oxide- \\linebreak Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high luminosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 $\\mu$m. We have irradiated several devices up to 25~Mrad and 3.10$^{14}$ neutrons cm$^{-2}$. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01~MHz~-~1~MHz is less than 40\\%. \\\\ \\\\Some specific SOI phenomena have been studied in detail, like the influence on the noise spectrum of series resistence in the thin silicon film that constitutes the body of the transistor...

  2. Good Practice Policy Framework for Energy Technology Research Development and Demonstration (RD and D)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The transition to a low carbon economy clearly requires accelerating energy innovation and technology adoption. Governments have an important role in this context. They can help by establishing the enabling environment in which innovation can thrive, and within which effective and efficient policies can be identified, with the specific goal of advancing research, development, demonstration and, ultimately, deployment (RDD&D) of clean energy technologies. At the front end of the innovation process, significant increases in, and restructuring of, global RD&D efforts will be required, combined with well-targeted government RD&D policies. The development of a clear policy framework for energy technology RD&D, based on good practices, should include six elements: Coherent energy RD&D strategy and priorities; Adequate government RD&D funding and policy support; Co-ordinated energy RD&D governance; Strong collaborative approach, engaging industry through public private partnerships (PPPs); Effective RD&D monitoring and evaluation; and Strategic international collaboration. While countries have been favouring certain technologies over others, based on decisions on which areas are to receive funding, clear priorities are not always determined through structured analysis and documented processes. A review of stated energy RD&D priorities, based on announced technology programmes and strategies, and recent spending trends reveals some important deviations from stated priorities and actual RD&D funding.

  3. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A.; Lombard, K.H.; Enzien, M.V.; Dougherty, J.M.; Wear, J.

    1994-01-01

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ''Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.'' Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well

  4. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons

  5. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  6. Evaluation of waste treatment technologies by LLWDDD [Low-Level Waste Disposal Development and Demonstration] Programs

    International Nuclear Information System (INIS)

    Kennerly, J.M.; Williams, L.C.; Dole, L.R.; Genung, R.K.

    1987-01-01

    Waste treatments are divided into four categories: (1) volume reduction; (2) conditioning to improve waste form performance; (3) segregation to achieve waste reduction; and (4) separation to remove radioactive (or hazardous) constituents. Two waste treatment demonstrations are described. In the first, volume reduction by mechanical means was achieved during the supercompaction of 300 55-gal drums of solid waste at ORNL. In the second demonstration, conditioning of waste through immobilization and packaging to improve the performance of the waste form is being evaluated. The final section of this paper describes potential scenarios for the management of uranium-contaminated wastes at the Y-12 Plant in Oak Ridge and emphasizes where demonstrations of treatment technology will be needed to implement the scenarios. Separation and thermal treatment are identified as the principal means for treating these wastes. 15 figs

  7. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  8. The sROD Module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Carrio, F; Ferrer, A; Fiorini, L; Hernandez, Y; Higon, E; Mellado, B; March, L; Moreno, P; Reed, R; Solans, C; Valero, A; Valls, J A

    2014-01-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will provide digital calibrated information with en- hanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be upgraded with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II The sROD module is des...

  9. Informing Early-Phase Technology Decisions in Paradigmatic Innovation

    DEFF Research Database (Denmark)

    Jensen, Ole Kjeldal; Ahmed-Kristensen, Saeema

    2010-01-01

    The innovation activities of a company facing paradigmatic change with regard to both technology and business model includes taking many decisions, where the information available, as well as the decision makers’ ability to understand this information, is limited. Technology decisions in the very...... question: How are decisions regarding technologies informed in the early phases of innovation, when dealing with paradigmatic “new to the company” knowledge fields? To explore the question, a case study; investigating the decisions made for radical new innovations, and the knowledge needed for supporting...... early phases of innovation have been explored in a Scandinavian energy-utilities company facing exactly these paradigmatic changes. In the company there are 5500 employees, with the major footprint in Denmark. The company has activities in the full energy value-chain including: production & trade of oil...

  10. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOW Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, initial planning and procurement work began on the seven project sites which have been accepted for participation in the off-site, methanol product-use test plan. Two of the projects have begun pre-testing of equipment and three other projects have commenced with equipment procurement, Methanol produced from carbon monoxide (CO)- rich syngas at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX has been shipped to four of the project sites in anticipation of the start of testing during the first quarter of calendar year 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), continued to decline more rapidly than expected. In response to concentrations of arsenic and sulfbr detected on catalyst samples from the LPMEOW Reactor, Eastman replaced both the arsine- and sulfiwremoval material in the Eastman guard bed which treats the primary syngas feed stream (&danced Gas) prior to its introduction into both the Eastman fixed-bed methanol plant and the LPMEOWM Demonstration Unit. After restarting the demonstration unit, the catalyst deactivation rate remained essentially unchanged. Parallel testing in the laboratory using arsine-doped, and subsequently arsine- and SuIfi-doped syngas, ako ftiIed to prove that arsine was responsible for the higher-than-expected rate of

  11. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  12. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  13. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    Plastino, J.C.

    1996-02-01

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90 Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137 Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  14. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  15. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)

    2006-04-15

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

  16. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    International Nuclear Information System (INIS)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-01-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy's Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  17. DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Tom Hrdlicka; William Swanson

    2005-12-01

    The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

  18. Investigation of the feasibility of an international integrated demonstration: Joint demonstration of environmental cleanup technologies in Eastern Europe/former Soviet Union

    International Nuclear Information System (INIS)

    Hagood, M.C.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.

    1993-01-01

    Eastern Europe (EE) and the former Soviet Union (FSU) republics have areas that are contaminated with radioactive and hazardous constituents. The Westinghouse Hanford Company is exploring the feasibility of establishing a collaborative effort with various US agencies to establish an International Integrated Demonstration (IID). Westinghouse manages the waste management and cleanup programs at the US Department of Energy's (DOE) Hanford Site. The purpose of the IID would be to (1) facilitate assistance to EE/FSU cleanup efforts, (2) provide hands-on management and operational assistance to EE/FSU countries, (3) provide a basis for evaluating opportunities for and establishing future collaborations, and (4) evaluate the applicability of US technologies to both US and EE/FSU cleanup efforts. The DOE's Integrated Demonstration Programs are currently providing the conduit for development and demonstration and transfer and deployment of innovative technologies to meet DOE's cleanup need for hazardous and radioactive wastes. The Integrated Demonstrations are focused on all facets of environmental restoration including characterization, remediation, monitoring, site closure, regulatory compliance, and regulatory and public acceptance. Innovative technologies are being tested and demonstrated at host sites across the country to provide the necessary performance data needed to deploy these technologies. The IID concept would be to conduct an Integrated Demonstration at one or more EE/FSU host sites

  19. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    Science.gov (United States)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  20. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %

  1. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  2. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  3. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  4. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States); Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  5. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives

  6. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite

    Science.gov (United States)

    Anflo, K.; Möllerberg, R.

    2009-11-01

    The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000. ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel "high performance green propellant" (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber. The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor. This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a "target" and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability. The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized. The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.

  7. Contractor Final Report: For the Technology Demonstration of the Joint Network Defence and Management System (JNDMS)

    Science.gov (United States)

    2013-10-01

    by the Minister of National Defence, 2009 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale...opérationnel. Importance: Nous avons démontré des fonctions cruciales en utilisant des outils d’entreprise pour comprendre en profondeur un domaine...Demonstration. Résumé …..... Le présent document a été rédigé pour répondre aux exigences DID-PM-007 visant le démonstrateur de technologies du Système

  8. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  9. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  10. Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John [Plug Power Inc., Latham, NY (United States); Fritz Intwala, Katrina [Plug Power Inc., Latham, NY (United States)

    2009-08-01

    Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.

  11. DEMONSTRATION PROJECT AS A PROCEDURE FOR ACCELERATING THE APPLICATION OF NEW TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The Task Force on Demonstration Projects was organized shortly after the establishment of ERDA to assist the new agency in evaluating its planning and management of energy related projects. The basic finding of the Task Force is that ERDA's program planning and procurement policies should be modified so that the standard mode of operation would utilize the expertise and involvement of the private sector to the maximum possible degree. We sincerely believe that this, more than any other course of action, will serve to facilitate the successful development and commercialization of alternative energy technologies.

  12. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    International Nuclear Information System (INIS)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V.

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs

  13. PISCES: An Integral Field Spectrograph Technology Demonstration for the WFIRST Coronagraph

    Science.gov (United States)

    McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; hide

    2016-01-01

    We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field Infra Red Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.

  14. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  15. Conceptual capital-cost estimate and facility design of the Mirror-Fusion Technology Demonstration Facility

    International Nuclear Information System (INIS)

    1982-09-01

    This report contains contributions by Bechtel Group, Inc. to Lawrence Livermore National Laboratory (LLNL) for the final report on the conceptual design of the Mirror Fusion Technology Demonstration Facility (TDF). Included in this report are the following contributions: (1) conceptual capital cost estimate, (2) structural design, and (3) plot plan and plant arrangement drawings. The conceptual capital cost estimate is prepared in a format suitable for inclusion as a section in the TDF final report. The structural design and drawings are prepared as partial inputs to the TDF final report section on facilities design, which is being prepared by the FEDC

  16. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better

  17. Early phase Technology Assessment of nanotechnology in oncology.

    Science.gov (United States)

    Retèl, Valesca P; Hummel, Marjan J M; van Harten, Willem H

    2008-01-01

    To perform early Technology Assessment (TA) of nanotechnology in oncology. The possibilities of nanotechnology for detection (imaging), diagnosis and treatment of cancer are subject of different research programs where major investments are concerned. As a range of bio- nanotechnologies is expected to enter the oncology field it is relevant to consider the various aspects involved in especially early TA. This article provides two cases of early assessment of (predecessors of) nanotechnologies: Microarray Analysis and Photodynamic Therapy implementation, which methodology can be extrapolated to other nanotechnologies in oncology. Constructive Technology Assessment (CTA) is used for the introduction of technologies that are still in a dynamic phase of development or in an early stage of diffusion. The selection of studied aspects in CTA is based on: clinical aspects (safety, efficacy, and effectiveness), economic (cost-effectiveness), patient related (QoL, ethical/juridical and psychosocial), organizational aspects (diffusion and adoption) and scenario drafting. The features of the technology and the phase of implementation are decisive for choices and timing of the specific aspects to be studied. A framework was drafted to decide on the relevant aspects. In the first case, early implementation of Microarray Analysis; clinical effectiveness, logistics, patient centeredness and scenario drafting were given priority. Related to the diffusion-phase of Photodynamic Therapy however other aspects were evaluated, such as early cost-effectiveness analysis for possible reimbursement. Often CTA will result in a mixed method design. Especially scenario drafting is a powerful instrument to predict possible developments that can be anticipated upon in the assessment. CTA is appropriate for the study of early implementation of new technologies in oncology. In early TA small series often necessitate a mix of quantitative and qualitative methods. The features of nanotechnology

  18. An Overview of SBIR Phase 2 Communications Technology and Development

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  19. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical

  20. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  1. An Overview of 2014 SBIR Phase 1 and Phase 2 Communications Technology and Development

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights eight of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Communication Technology and Development. The technologies cover a wide spectrum of applications such as X-ray navigation, microsensor instrument for unmanned aerial vehicle airborne atmospheric measurements, 16-element graphene-based phased array antenna system, interferometric star tracker, ultralow power fast-response sensor, and integrated spacecraft navigation and communication. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  2. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Energy Technology Data Exchange (ETDEWEB)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  3. Right-sided phase abnormalities on gated blood pool ventriculography: Demonstration of six different patterns

    International Nuclear Information System (INIS)

    Bahar, R.H.; Abdel-Dayem, H.M.; Ziada, G.; Al-Suhali, A.; Constantinides, C.; Nair, K.M.

    1986-01-01

    Phase pattern abnormalities on multiple gated blood pool ventriculography are better reported for the left ventricle (LV) than for the right side of the heart. In a study of 92 patients who also underwent contrast ventriculography, the authors identified six different patterns of right-sided phase abnormalities and their causes: right bundle-branch block, causing delayed phase in the entire right ventricle (RV); ischemic right coronary artery disease, causing delayed phase in the inferior RV wall; pericardial effusion, causing an L-shaped area of delayed phase to the right of the septum and below the LV; pulmonary hypertension, causing delayed phase in the pulmonary infundibulum; tricuspid regurgitation, causing a crescentic area of delayed phase around and below the right RV and extending below the LV as well, and atrial septal defect causing an abnormally large auricular phase

  4. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  5. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    Science.gov (United States)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  6. CubeSat infrared atmospheric sounder (CIRAS) NASA InVEST technology demonstration

    Science.gov (United States)

    Pagano, Thomas S.

    2017-02-01

    Infrared sounders measure the upwelling radiation of the Earth in the Midwave Infrared (MWIR) and Longwave Infrared (LWIR) region of the spectrum with global daily coverage from space. The observed radiances are assimilated into weather forecast models and used to retrieve lower tropospheric temperature and water vapor for climate studies. There are several operational sounders today including the Atmospheric Infrared Sounder (AIRS) on Aqua, the Crosstrack Infrared Sounder (CrIS) on Suomi NPP and JPSS, and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp spacecraft. The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA In-flight Validation of Earth Science Technologies (InVEST) program to demonstrate three new instrument technologies in an imaging sounder configuration. The first is a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second technology is a MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS employs an immersion grating or grism, has no moving parts, and is based on heritage spectrometers including the OCO- 2. The third technology is a Black Silicon infrared blackbody calibration target. The Black Silicon offers very low reflectance over a broad spectral range on a flat surface and is more robust than carbon nanotubes. JPL will also develop the mechanical, electronic and thermal subsystems for the CIRAS payload. The spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The low cost of CIRAS enables multiple units to be flown to improve temporal coverage or measure 3D

  7. Role of the CSIR/WRC Sanitation Technology Demonstration Centre in creating awareness, sharing information and in decision-making regarding sanitation technologies

    CSIR Research Space (South Africa)

    Mema, V

    2010-09-01

    Full Text Available The CSIR and the Water Research Commission (WRC) have envisioned a Sanitation Technology Demonstration Centre to provide a cutting-edge environment for bringing to light old and new, as well as promising sanitation technologies. The purpose...

  8. Demonstration of river crossing technology for installation of environmental horizontal wells: AMH-6 and AMH-7 installation report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D. B.

    1993-07-01

    The Department of Energy`s (DOE) Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds (VOCs) in soils and groundwater. This drilling project is part of the directional drilling task for the integrated technology demonstration at the Savannah River Site (SRS). One of the objectives of the drilling task is the demonstration of multiple drilling technologies. The technologies can then be compared and evaluated in terms of technical performance and cost effectiveness. Petroleum horizontal well technology and utility industry horizontal well technology have been previously demonstrated at the SRS. The petroleum industry directional drilling technology was demonstrated by Eastman Christensen Environmental Corporation (ECEC). ECEC directionally drilled and installed four horizontal wells in the M Area. Charles Machine Works, working with Sandia National Laboratory, demonstrated a utility industry directional drilling technology by installing one horizontal well in the M Area. The demonstration that is the subject of this report involved river crossing horizontal well technology for the installation of two M-Area Settling Basin soil gas extraction wells.

  9. The sROD Module for the ATLAS Tile Calorimeter Phase-2 Upgrade Demonstrator

    CERN Document Server

    Carrió, F; The ATLAS collaboration; Castillo, V; Hernández, Y; Higón, E; Fiorini, L; Mellado, B; March, L; Moreno, P; Reed, R; Solans, C; Valero, A; Valls, J

    2013-01-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade phase-2, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting room. Thus, the back-end system will provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project has been envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be upgraded with the new electronics during 2014 to evaluate the proposed architecture in real conditions.The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes...

  10. Component Fragility Research Program: Phase 1, Demonstration tests: Volume 1, Summary report

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.; Shipway, G.D.; Glozman, V.

    1987-08-01

    This report describes tests performed in Phase I of the NRC Component Fragility Research Program. The purpose of these tests was to demonstrate procedures for characterizing the seismic fragility of a selected component, investigating how various parameters affect fragility, and finally using test data to develop practical fragility descriptions suitable for application in probabilistic risk assessments. A three-column motor control center housing motor controllers of various types and sizes as well as relays of different types and manufacturers was subjected to seismic input motions up to 2.5g zero period acceleration. To investigate the effect of base flexibility on the structural behavior of the MCC and on the functional behavior of the electrical devices, multiple tests were performed on each of four mounting configurations: four bolts per column with top bracking, four bolts per column with no top brace, four bolts per column with internal diagonal bracking, and two bolts per column with no top or internal bracking. Device fragility was characterized by contact chatter correlated to local in-cabinet response at the device location. Seismic capacities were developed for each device on the basis of local input motion required to cause chatter; these results were then applied to develop probabilistic fragility curves for each type of device, including estimates of the ''high-confidence low probability of failure'' capacity of each

  11. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  12. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  13. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  14. A demonstrator analog signal processing circuit in a radiation hard SOI-CMOS technology

    CERN Document Server

    Anghinolfi, Francis; Campbell, M; Heijne, Erik H M; Jarron, Pierre; Meddeler, G; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    It is proposed to develop a demonstrator integrated circuit for particle detector analog signal processing using the advanced 1.2 micron HSOI3-HD Silicon-on-Insulator (SOI) CMOS radiation hard technology of Thomson-TMS, which has recently become accessible for selected civilian applications. The characteristics announced for this process promise survivability after a total dose in excess of 10 Mrad (SiO2) and 10**14 to 10**15 n/cm2, which is probably satisfactory for applications in LHC detector systems. The properties of such a SOI process look promising, in particular regarding speed. In view of the special analog requirements in the particle physics environment,one should verify the analog characteristics before and after irradiation by producing a demonstrator signal processing circuit which incorporates the most vital functional blocks. This demonstrator would consist of a low noise front-end amplifier, a comparator and an analog pipeline element with associated logic, following the scheme of the Hierarc...

  15. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  16. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  17. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Ozone Based Laundry Systems

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, South Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

  18. Multi-Lab EV Smart Grid Integration Requirements Study. Providing Guidance on Technology Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Meintz, A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardy, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Bohn, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Smart, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Saxena, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MacDonald, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kahl, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pratt, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-28

    The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.

  19. Dynamic ground-effect measurements on the F-15 STOL and Maneuver Technology Demonstrator (S/MTD) configuration

    Science.gov (United States)

    Kemmerly, Guy T.

    1990-01-01

    A moving-model ground-effect testing method was used to study the influence of rate-of-descent on the aerodynamic characteristics for the F-15 STOL and Maneuver Technology Demonstrator (S/MTD) configuration for both the approach and roll-out phases of landing. The approach phase was modeled for three rates of descent, and the results were compared to the predictions from the F-15 S/MTD simulation data base (prediction based on data obtained in a wind tunnel with zero rate of descent). This comparison showed significant differences due both to the rate of descent in the moving-model test and to the presence of the ground boundary layer in the wind tunnel test. Relative to the simulation data base predictions, the moving-model test showed substantially less lift increase in ground effect, less nose-down pitching moment, and less increase in drag. These differences became more prominent at the larger thrust vector angles. Over the small range of rates of descent tested using the moving-model technique, the effect of rate of descent on longitudinal aerodynamics was relatively constant. The results of this investigation indicate no safety-of-flight problems with the lower jets vectored up to 80 deg on approach. The results also indicate that this configuration could employ a nozzle concept using lower reverser vector angles up to 110 deg on approach if a no-flare approach procedure were adopted and if inlet reingestion does not pose a problem.

  20. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  1. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  2. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  3. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas

    Science.gov (United States)

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  4. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas - slides

    Science.gov (United States)

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  5. Networked sensors for the future force (NSFF) advanced technology demonstration (ATD) communications systems

    Science.gov (United States)

    Nemeroff, Jay; DiPierro, Stefano

    2005-05-01

    The U.S. Army"s Future Combat Systems (FCS) and Future Force Warrior (FFW) will rely on the use of unattended, tactical sensors to detect and identify enemy targets in order to avoid enemy fires and enable precise networked fire to survive on the future battlefield with less armor protection. Successful implementation of these critical sensor fields requires the development of a specialized communications network infrastructure needed to disseminate sensor data to provide relevant, timely and accurate situational awareness information to the tactical common operating picture. The sensor network communications must support both static deployed and mobile ground and air robotic sensor arrays with robust, secure, stealthy, and jam resistant links. It is envisioned that tactical sensor networks can be deployed in a two tiered communications architecture that includes a lower sensor sub-layer consisting of acoustic, magnetic, Chemical/Biological and seismic detectors and an upper sub-layer consisting of infrared or visual imaging cameras. The upper sub-layer can be cued by the lower sub-layer and provides a seamless gateway link to higher echelon backbone tactical networks. The NSFF Advanced Technology Demonstration (ATD) communications effort focuses on providing Future Force systems such as the FCS and the Future Force Warrior with critical situational awareness data needed for survivability. The communications systems supporting this functionality must be designed such that unattended ground sensor data can flow seamlessly from the lowest unattended tactical sensor echelons into the Army"s tactical backbone networks while also allowing the "fusing" of the data with other intelligence information for correlation within a tactical command and control node. NSFF is realizing this capability by using advanced communications technologies developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) project. These technologies

  6. Demonstration on Areca Catechu Tree Reuse with Supporting of Information Technology

    Science.gov (United States)

    Chao, F. L.; Wu, C. K.; Chao, A. K.

    2018-04-01

    Areca catechu can be commonly found in Taiwan and Asia. By the restriction of agriculture policy, often the tree is chopped down and left in the wild and became an extra burden on the local environment. In this study, reuse design cases and opportunities were collected as Blog, so that people can access more easily. To enhance the user’s awareness and information access it included the facets of its biology, culture history and reuse cases. Furthermore, we proposed demonstration supported with information technology. A blog can collect facts and examples with capabilities of multiple tags. This ability makes information search more accessible. The proposed approach combines both physical samples and visual elements in Blog which can be view by mobile phone. From the survey, Blog performs better than a regular internet search. Most people feel interesting, and some people were able to have own idea. Demonstration designs gather both elements will help to form a positive communication to the society with sustainable thinking.

  7. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  8. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    Science.gov (United States)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  9. Microgravity vibration isolation technology: Development to demonstration. Ph.D. Thesis - Case Western Reserve Univ.

    Science.gov (United States)

    Grodsinsky, Carlos M.

    1993-01-01

    The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight

  10. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  11. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    Energy Technology Data Exchange (ETDEWEB)

    D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono

    2017-02-01

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  12. Reverse phase protein microarray technology in traumatic brain injury.

    Science.gov (United States)

    Gyorgy, Andrea B; Walker, John; Wingo, Dan; Eidelman, Ofer; Pollard, Harvey B; Molnar, Andras; Agoston, Denes V

    2010-09-30

    Antibody based, high throughput proteomics technology represents an exciting new approach in understanding the pathobiologies of complex disorders such as cancer, stroke and traumatic brain injury. Reverse phase protein microarray (RPPA) can complement the classical methods based on mass spectrometry as a high throughput validation and quantification method. RPPA technology can address problematic issues, such as sample complexity, sensitivity, quantification, reproducibility and throughput, which are currently associated with mass spectrometry-based approaches. However, there are technical challenges, predominantly associated with the selection and use of antibodies, preparation and representation of samples and with analyzing and quantifying primary RPPA data. Here we present ways to identify and overcome some of the current issues associated with RPPA. We believe that using stringent quality controls, improved bioinformatics analysis and interpretation of primary RPPA data, this method will significantly contribute in generating new level of understanding about complex disorders at the level of systems biology. Published by Elsevier B.V.

  13. The role of technology in reducing health care costs. Phase II and phase III.

    Energy Technology Data Exchange (ETDEWEB)

    Cilke, John F.; Parks, Raymond C.; Funkhouser, Donald Ray; Tebo, Michael A.; Murphy, Martin D.; Hightower, Marion Michael; Gallagher, Linda K.; Craft, Richard Layne, II; Garcia, Rudy John

    2004-04-01

    In Phase I of this project, reported in SAND97-1922, Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. The effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements and an economic analysis model for development of care pathway costs for two conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Phases II and III of this project, which are presented in this report, were directed at detailing the parameters of telemedicine that influence care delivery costs and quality. These results were used to identify and field test the communication, interoperability, and security capabilities needed for cost-effective, secure, and reliable health care via telemedicine.

  14. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  15. Innovative Navigation Systems to Support Digital Geophysical Mapping, ESTCP #200129, Phase II Demonstrations

    National Research Council Canada - National Science Library

    Simms, Janet; Carin, Larry

    2004-01-01

    ... and subsurface seeded geophysical anomalies. The technologies included a commercially available RTK GPS with acoustic navigation, a Robotic Total Station laser-based system, a DGPS integrated with an improved low cost Inertial Navigation System...

  16. Dynamically Scaled Model for NASA's Next Generation Aviation Demonstrator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant advances in several key technologies such as material sciences, manufacturing, miniaturization, and active flow control suggest that the time has come to...

  17. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  18. Ionomer-membrane Water Processor System Design and EDU Demonstration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — a. Paragon Space Development Corporation (Paragon) proposes to continue our investigation into the use of microporous-ionomer membrane technology to improve the...

  19. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  20. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Science.gov (United States)

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; Ballester, Otger; Baltay, Charles; Besuner, Robert; Buckley-Geer, Elizabeth; Butler, Karen; Cardiel, Laia; Dey, Arjun; Duan, Yutong; Elliott, Ann; Emmet, William; Gershkovich, Irena; Honscheid, Klaus; Illa, Jose M.; Jimenez, Jorge; Joyce, Richard; Karcher, Armin; Kent, Stephen; Lambert, Andrew; Lampton, Michael; Levi, Michael; Manser, Christopher; Marshall, Robert; Martini, Paul; Paat, Anthony; Probst, Ronald; Rabinowitz, David; Reil, Kevin; Robertson, Amy; Rockosi, Connie; Schlegel, David; Schubnell, Michael; Serrano, Santiago; Silber, Joseph; Soto, Christian; Sprayberry, David; Summers, David; Tarlé, Greg; Weaver, Benjamin A.

    2018-02-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, R. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  2. Demonstration of an RF front-end based on GaN HEMT technology

    Science.gov (United States)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  3. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  4. Spent fuel storage technology demonstrations at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Schoonen, D.H.; Jensen, M.F.; Fisher, M.W.

    1987-01-01

    Spent nuclear fuel research and development activities are conducted in accordance with Section 218 of the 1982 Nuclear Waste Policy Act (NWPA). Major objectives of Section 218 are to encourage and expedite the efficient use of existing storage facilities and the addition of new at-reactor storage capacity. Activities at the Idaho Engineering Laboratory (INEL) are pertinent to the following objectives: A cooperative demonstration program with the private sector to develop dry storage technologies that the Nuclear Regulatory Commission (NRC) can generically approve; A cost-shared dry storage research and development program at Federal facilities to collect the necessary licensing data. These items are supported by tasks being performed at the INEL. Research and development programs include the testing of metal storage casks containing either consolidated or intact spent fuel in inert gas atmospheres. The casks, weighing nearly 90,718 kg (100 tons), are fabricated using nodular cast iron or forged carbon steel and contain basket assemblies which provide criticality control and spacing of fuel assemblies in individual cells. Small-scale rod consolidation systems are also being developed

  5. Examining the Quality of Technology Implementation in STEM Classrooms: Demonstration of an Evaluative Framework

    Science.gov (United States)

    Parker, Caroline E.; Stylinski, Cathlyn D.; Bonney, Christina R.; Schillaci, Rebecca; McAuliffe, Carla

    2015-01-01

    Technology applications aligned with science, technology, engineering, and math (STEM) workplace practices can engage students in real-world pursuits but also present dramatic challenges for classroom implementation. We examined the impact of teacher professional development focused on incorporating these workplace technologies in the classroom.…

  6. Project inspection using mobile technology - phase I : an investigation into existing business processes and areas for improvement using mobile technology.

    Science.gov (United States)

    2013-08-01

    As mobile technology becomes widely available and affordable, transportation agencies can use this technology to : streamline operations involved within project inspection. This research, conducted in two phases, identified : opportunities for proces...

  7. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  8. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  9. Calibration of phase field parameters demonstrated on kinetics of a shrinking single grain

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 3 (2017), s. 92-100 ISSN 0950-0839 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : thermodynamic quantities * phase field method * thermodynamic extremal principle * grain shrinkage Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.941, year: 2016

  10. Design Technology Aspects of the Millimeter Waveband Phase Shifter Development

    Directory of Open Access Journals (Sweden)

    E. V. Komissarova

    2015-01-01

    Full Text Available The aim of this paper is to develop a technique, which takes into consideration the design technology aspects to create a waveguide ferrite Faradays’ phase shifter (WFFPS of the shortwave part of the millimeter wave range. Only using the calculation and analysis techniques based on the electro-dynamic high-level models for designed devices enables us to solve this task successfully.In assembling the WFFPS, its individual parts are connected by dint of glue (rod, yokes, dielectric transition transformers. Thus the layers of glue, possible air gaps, and misalignment of individual parts, obviously have effect on the WFFPS characteristics and should be taken into account at the stage of device calculation and design. Therefore, the aim is to analyze the impact of these technology features on the characteristics of WFFPS.The calculation algorithm of the waveguide transition, which matches WFFPS with the waveguide transmission line or integrated phased array antenna (PAA element radiator in view of possible air or adhesive gaps apparition is based on the solving problem of diffraction of electromagnetic waves. Eigenvalue problem solution by Galerkin method must be preceded to the electromagnetic waves diffraction on the stepped waveguide transition by method of partial areas (Trefftz method solution. As a result, a system of linear inhomogeneous equations is determined. Its solution is the basis for the algorithm to define the numerical values of complex amplitudes of waves excited in all longitudinally uniform areas with a laterally nonuniform ferritedielectric filling, into which splits the waveguide ferrite phase shifter.To take into account the effect of air or glue gap arising when assembling the phase shifter, a designed calculation model is added by the transition step from a material having the same dielectric constant as that of the material filling the gap. The paper presents numerical investigation findings concerning the influence of

  11. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 3.0

    Science.gov (United States)

    Baxley, Brian T.; Johnson, William C.; Scardina, John; Shay, Richard F.

    2016-01-01

    This document describes the goals, benefits, technologies, and procedures of the Concept of Operations (ConOps) for the Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1), and provides an update to the previous versions of the document [ref 1 and ref 2].

  12. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  13. Integrated corridor management initiative : demonstration phase evaluation, San Diego decision support system analysis test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Decision Support System Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...

  14. Integrated corridor management initiative : demonstration phase evaluation, San Diego air quality test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects being...

  15. Integrated corridor management initiative : demonstration phase evaluation, Dallas air quality test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States : Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor : Management (ICM) Initiative Demonstration. The ICM proje...

  16. Integrated corridor management initiative : demonstration phase evaluation - Dallas technical capability analysis test plan.

    Science.gov (United States)

    This report presents the test plan for conducting the Technical Capability Analysis for the United States : Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor : Management (ICM) Initiative Demonstration. The ...

  17. Integrated corridor management initiative : demonstration phase evaluation, San Diego technical capability analysis test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...

  18. Multi-Element Lean Direct Injection Combustor Single Element Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate the feasibility in a single element of a Multi-Element Lean Direct Injection, ME-LDI, Combustion concept. The concept will have the...

  19. Integrated corridor management initiative : demonstration phase evaluation - San Diego benefit-cost analysis test plan.

    Science.gov (United States)

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States : Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management : (ICM) Initiative Demonstration. The ICM pro...

  20. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  1. DEMONSTRATION OF AQUAFIX AND SAPS PASSIVE MINE WATER TREATMENT TECHNOLOGIES AT SUMMITVILLE MINE SITE, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated two passive water treatment (PWT) technologies for metals removal from acid mine drainage (AMD) at the Summitville Mine Superfund Site in southern Colorado...

  2. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  3. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    International Nuclear Information System (INIS)

    Moline, G.R.

    1999-01-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO 2 through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system

  4. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moline, G.R.

    1999-06-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO{sub 2} through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system.

  5. Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-body Blast Events.

    Science.gov (United States)

    Pietsch, Hollie A; Bosch, Kelly E; Weyland, David R; Spratley, E Meade; Henderson, Kyvory A; Salzar, Robert S; Smith, Terrance A; Sagara, Brandon M; Demetropoulos, Constantine K; Dooley, Christopher J; Merkle, Andrew C

    2016-11-01

    Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1. A weighted average of all responses was calculated to determine body region and whole body biofidelity scores for each test condition. The WIAMan TD received UBB biofidelity scores of 0.62 in Condition A, 0.59 in Condition B, and 0.63 in Condition C, putting it in the fair category (0.44-0.65). Body region responses with scores below a rating of good (0.65-0.84) indicate potential focus areas for the next generation of the WIAMan design.

  6. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  7. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  8. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00306349; The ATLAS collaboration

    2017-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  9. Argonne heavy-ion fusion program: accelerator demonstration facility (phase zero)

    International Nuclear Information System (INIS)

    Watson, J.M.; Arnold, R.C.; Bogaty, J.M.

    1980-01-01

    The feasibility of the RF linac heavy ion driver for inertial confinement fusion is generally now accepted. However, there are many beam manipulations that are specific to the RF linac HIF driver which must be demonstrated. Accelerator projects have begun at Argonne National Laboratory (ANL) to resolve some of the uncertainties. A minimum program has started which involves demonstration of some critical issues for linacs and accumulator rings (injection, accumulation, extraction, emittance growth, beam lifetime, internal compression, etc.). An improved facility is also proposed which would deposit more than 3 kJ on a 0.5 mm radius spot for interesting energy deposition experiments. The experimental program during the past two years has developed a high intensity xenon source, 1.5 MV preaccelerator, and the initial RF linac cavities for the demonstration projects

  10. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

  11. Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

  12. People attending pulmonary rehabilitation demonstrate a substantial engagement with technology and willingness to use telerehabilitation: a survey

    Directory of Open Access Journals (Sweden)

    Zachariah Seidman

    2017-07-01

    Conclusion: People attending metropolitan pulmonary rehabilitation, maintenance exercise classes and support groups had substantial technology engagement, with high device access and use, and good self-rated technology competence. The majority of participants were willing to use telerehabilitation, especially if they were regular users of technology devices. [Seidman Z, McNamara R, Wootton S, Leung R, Spencer L, Dale M, Dennis S, McKeough Z (2017 People attending pulmonary rehabilitation demonstrate a substantial engagement with technology and willingness to use telerehabilitation: a survey. Journal of Physiotherapy 63: 175–181

  13. Reliability program plan for the Isotope Brayton Ground Demonstration System (phase I)

    International Nuclear Information System (INIS)

    1975-01-01

    The reliability and quality assurance organizational relationships, the methods to be used, the tasks to be completed, and the documentation to be published are presented. The total program is intended to provide the necessary reliability and quality assurance associated with the design, fabrication, and testing of the GDS. It is consistent with the general objectives of the ERDA Quality Assurance (QA) program requirements document ''SNS-1'' dated April 1972 and reliability program requirements document ''SNS-2'' dated 17 June 1974 but has been specifically modified for the GDS with the intent of establishing background data for the subsequent Phase II effort

  14. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  15. 75 FR 52139 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-08-24

    ..., finance, accounting, contract specialists, and information technology managers. Employees in this career... date of the action. The information in the notice shall, at a minimum, consist of the manager's..., mechanical, physical science, biology, mathematics, information technology and computer fields, and student...

  16. Airspace Technology Demonstration 3 (ATD-3): Applied Traffic Flow Management Project Overview

    Science.gov (United States)

    Gong, Chester

    2016-01-01

    ATD-3 Project Overview for 3rd Joint Workshop for KAIA-KARI - NASA ATM Research Collaboration. This presentation gives a high level description of the ATD-3 project and related technologies. These technologies include Multi-Flight Common Routes (MFCR), Traffic Aware Strategic Aircrew Requests (TASAR) and Dynamic Routes for Arrivals in Weather (DRAW).

  17. Sustainability Logistics Basing Science and Technology Objective. Demonstration #1 - 1000 Person Camp Demo

    Science.gov (United States)

    2016-09-01

    coordination, logistics, integration with other systems and technologies, stakeholder engagements, data collection and authentication were done collectively...the Contingency Basing Integration and Technology Evaluation Center (CBITEC), Fort Leonard Wood, MO. This report does not include analysis of the...Although not documented in this report , this objective was met during the activities of Stakeholder Day. The MSAT tools, current findings, and approach

  18. Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome

    International Nuclear Information System (INIS)

    Bedick, R. C.

    2002-01-01

    The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities

  19. SITE PROGRAM DEMONSTRATION OF THE SBP TECHNOLOGIES, INC. MEMBRANE FILTRATION SYSTEM ON CREOSOTE-CONTAMINATED WATER

    Science.gov (United States)

    The formed-in-place, membrane filtration system offered by SBP Technologies, Inc. of Stone Mountain, Georgia was evaluated by the U.S. EPA Superfund Inno- vative Technology Evaluation (SITE) Program. The evaluation lasted six days; ap- proximately 1000 gallons per day of water co...

  20. Integrated corridor management initiative : demonstration phase evaluation, Dallas benefit-cost analysis test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States : Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor : Management (ICM) Initiative Demonstration. The IC...

  1. Inspection of austenitic welds with ultrasonic phased array technology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fernandez, F. [Tecnatom (Spain); Dutruc, R.; Ferriere, R. [Metalscan (France)

    2011-07-01

    This series of slides presents the use of ultrasonic phased array technology in the inspection of austenitic welds. The inspection from outside surface (the inspection is performed in contact using wedges to couple the probe to the outer surface of the component) shows that longitudinal wave is the most adequate for perpendicular scans and transversal ultrasonic wave is the most adequate for parallel scans. Detection and length sizing are performed optimally in perpendicular scans. The inspection from inside surface shows: -) Good results in the detection of defects (Sizing has met the requirements imposed by the Authority of the Russian Federation); -) The new design of the mechanical equipment and of the numerous ultrasonic beams refracted by the array probes has increased the volume inspected. The design of the mechanical equipment has also allowed new areas to be inspected (example a piping weld that was not accessible from the outer surface; -) The ultrasonic procedure and Inspection System developed have been validated by the Authority of the Russian Federation. Phase array technique supplies solutions to solve accessibility concerns and improve the ultrasonic inspections of nuclear components

  2. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I Busek matured the design of an existing 15-kW laboratory thruster. Magnetic modeling was performed to generate a circuit incorporating magnetic shielding....

  3. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  4. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    Science.gov (United States)

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  5. Portable TMC-TMS Communications Demonstration : Western States Rural Transportation Technology Implementers Forum

    Science.gov (United States)

    2008-06-01

    In cooperation with the California Department of Transportation, Montana State University's Western Transportation Institute has conducted an evaluation of communication technologies for application to TMC-TMS communications in Caltrans District 1. W...

  6. Aerial sensor for wind turbines Design, implementation and demonstration of the technology

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Moñux, Oscar

    The EUDP‐2012 proposal, “Improved wind turbine efficiency using synchronized sensors” is a project which focuses on improving the efficiency of energy production, primarily for wind turbines, but as a spinoff, also traditional power plants. It builds on the experience and proven technology from...... three previous wind turbine projects: ‐ A wing mounted inflow sensor for wind turbines. This system has gone through multiple stages of development, and will be greatly enhanced by the synchronization technology from this project....

  7. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    Science.gov (United States)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  8. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  9. Data acquisition and processing in the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2016-01-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile Calorimeter (TileCal) will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The photomultiplier signals will be digitized and transferred to the TileCal PreProcessors (TilePPr) located off-detector for every bunch crossing, requiring a data bandwidth of 80 Tbps. The TilePPr will provide preprocessed information to the first level of trigger and in parallel will store the samples in pipeline memories. The data of the events selected by the trigger system will be transferred to the ATLAS global Data AcQuisition (DAQ) system for further processing. A demonstrator drawer has been built to evaluate the new proposed readout architecture and prototypes of all the components. In the demonstrator, the detector data received in the Til...

  10. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.

    1994-08-01

    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  11. The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator

    CERN Document Server

    Murphy, Sebastien

    2016-11-15

    The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides excellent signal-to-noise ratio. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multiplier detectors provides amplification of the charges before its collection onto an anode with strip readout. The charge amplification enables constructing fully homoge- nous giant LAr-TPCs with tuneable gain, excellent charge imaging performance and increased sensitivity to low energy events. Following a staged approach the WA105 collaboration is con- structing a dual phase LAr-TPC with an active volume of 3x1x1m3 that will soon be tested with cosmic rays. Its construction and operation aims to test scalable solutions for the crucial aspects of this technology: ultra high argon purity in non-evacuable tank, la...

  12. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    Science.gov (United States)

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  13. An Error Analysis of the Phased Array Antenna Pointing Algorithm for STARS Flight Demonstration No. 2

    Science.gov (United States)

    Carney, Michael P.; Simpson, James C.

    2005-01-01

    STARS is a multicenter NASA project to determine the feasibility of using space-based assets, such as the Tracking and Data Relay Satellite System (TDRSS) and Global Positioning System (GPS), to increase flexibility (e.g. increase the number of possible launch locations and manage simultaneous operations) and to reduce operational costs by decreasing the need for ground-based range assets and infrastructure. The STARS project includes two major systems: the Range Safety and Range User systems. The latter system uses broadband communications (125 kbps to 500 kbps) for voice, video, and vehicle/payload data. Flight Demonstration #1 revealed the need to increase the data rate of the Range User system. During Flight Demo #2, a Ku-band antenna will generate a higher data rate and will be designed with an embedded pointing algorithm to guarantee that the antenna is pointed directly at TDRS. This algorithm will utilize the onboard position and attitude data to point the antenna to TDRS within a 2-degree full-angle beamwidth. This report investigates how errors in aircraft position and attitude, along with errors in satellite position, propagate into the overall pointing vector.

  14. Electrodril system field test program. Phase II, task B: deep drilling system demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-15

    The effort included the design, fabrication and Systems Verification Testing of the Deep Drilling System. The Systems Verification Test was conducted during October 1978 in a test well located on the premises of Brown Oil Tools Inc., Houston, Texas. In general, the Systems Verification test program was an unqualified success. All of the system elements of the Deep Drilling System were exercised and evaluated and in every instance the system can be declared ready for operational well demonstration. The motor/bit shaft combination operated very well and seal performance exceeds the design goals. The rig floor system performed better than expected. The power cable flexural characteristics are much better than anticipated and longitudinal stability is excellent. The prototype production connectors have functioned without failure. The cable reels and drive skid have also worked very well during the test program. The redesigned and expanded instrumentation subsystem also functioned very well. Some electronic component malfunctions were experienced during the early test stages, but they were isolated quickly and repaired. Subsequent downhole instrumentation deployments were successfully executed and downhole data was displayed both in the Electrodril instrumentation trailer and on the remote control and display unit.

  15. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  16. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    Science.gov (United States)

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  17. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  18. Demonstration and Evaluation of Innovative Rehabilitation Technologies for Water Infrastructure Systems

    Science.gov (United States)

    The needs associated with the deteriorating water infrastructure are immense and have been estimated at more than $1 trillion over the next 20 years for water and wastewater utilities. To meet this growing need, utilities require the use of innovative technologies and procedures ...

  19. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    Science.gov (United States)

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  20. Deep Space CubeSat Gamma-ray Navigation Technology Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed novel program will use measurements of high-energy photon output from celestial gamma-ray sources to design a new, unique navigation system for a deep...