WorldWideScience

Sample records for technology commercial space

  1. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  2. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  3. Commercial space opportunities - Advanced concepts and technology overview

    Science.gov (United States)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  4. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  5. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  6. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  7. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  8. Commercial microwave space power

    International Nuclear Information System (INIS)

    Siambis, J.; Gregorwich, W.; Walmsley, S.; Shockey, K.; Chang, K.

    1991-01-01

    This paper reports on central commercial space power, generating power via large scale solar arrays, and distributing power to satellites via docking, tethering or beamed power such as microwave or laser beams, that is being investigated as a potentially advantageous alternative to present day technology where each satellite carries its own power generating capability. The cost, size and weight for electrical power service, together with overall mission requirements and flexibility are the principal selection criteria, with the case of standard solar array panels based on the satellite, as the reference point. This paper presents and investigates a current technology design point for beamed microwave commercial space power. The design point requires that 25 kW be delivered to the user load with 30% overall system efficiency. The key elements of the design point are: An efficient rectenna at the user end; a high gain, low beam width, efficient antenna at the central space power station end, a reliable and efficient cw microwave tube. Design trades to optimize the proposed near term design point and to explore characteristics of future systems were performed. Future development for making the beamed microwave space power approach more competitive against docking and tethering are discussed

  9. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  10. Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

    1995-12-01

    In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

  11. Technology Commercialization Program 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  12. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    Science.gov (United States)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  13. Commercial use of space - The space business era

    Science.gov (United States)

    Griffin, G. D.

    1985-01-01

    Progress and avenues being explored by NASA to hasten the commercialization of space are described. A task force has recommended that the effort begin at once, that bureaucratic barriers to commercial space activities be removed, and that a partnership between government and industry be seriously explored. The government role is to establish links with private industry, invest in high-leverage technologies and space facilities which will be attractive to commercial ventures, and contribute to commercial enterprises where risks are high and significant economic benefits can be foreseen. The government/industry relationship can be legally evinced by MOUs, joint endeavor agreements, technical exchange agreements and industrial guest investigator arrangements. The Space Station is the first step in that it allows Americans to live and work in space. It is expected that international participation in Space Station development and utilization will accelerate the space business era.

  14. NASA's approach to space commercialization

    Science.gov (United States)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  15. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    Science.gov (United States)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-10-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  16. Commercial Parts Technology Qualification Processes

    Science.gov (United States)

    Cooper, Mark S.

    2013-01-01

    Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described

  17. Hardness variability in commercial technologies

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-01-01

    The radiation hardness of commercial Floating Gate 256K E 2 PROMs from a single diffusion lot was observed to vary between 5 to 25 krad(Si) when irradiated at a low dose rate of 64 mrad(Si)/s. Additional variations in E 2 PROM hardness were found to depend on bias condition and failure mode (i.e., inability to read or write the memory), as well as the foundry at which the part was manufactured. This variability is related to system requirements, and it is shown that hardness level and variability affect the allowable mode of operation for E 2 PROMs in space applications. The radiation hardness of commercial 1-Mbit CMOS SRAMs from Micron, Hitachi, and Sony irradiated at 147 rad(Si)/s was approximately 12, 13, and 19 krad(Si), respectively. These failure levels appear to be related to increases in leakage current during irradiation. Hardness of SRAMs from each manufacturer varied by less than 20%, but differences between manufacturers are significant. The Qualified Manufacturer's List approach to radiation hardness assurance is suggested as a way to reduce variability and to improve the hardness level of commercial technologies

  18. Economic consequences of commercial space operations

    Science.gov (United States)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  19. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  20. Commercial technologies from the SP-100 program

    International Nuclear Information System (INIS)

    Truscello, V.C.; Fujita, T.; Mondt, J.F.

    1995-01-01

    For more than a decade, Jet Propulsion Labortory and Los Alamos have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples: a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication (self-lubricating ball bearing). Shortly after the NASA Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received, which indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements. copyright 1995 American Institute of Physics

  1. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  2. NASA's Commercial Communication Technology Program

    Science.gov (United States)

    Bagwell, James W.

    1998-01-01

    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  3. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  4. Commercialization of technology in MINT

    International Nuclear Information System (INIS)

    Daud Mohamad; Razali Hamzah

    2005-01-01

    Full text:The Malaysian Institute for Nuclear Technology Research (MINT), was officially established in 1972 (PUSPATI as it was known then) and has progressed leaps and bounds to become one of the country's leading research organization particularly in the field of nuclear science and technology. Primarily set up as a full fledge research and development entity with one of the initial aims was looking into the possibility of embarking in the generation of power via the use of nuclear technology as an alternative source of energy for the nation. MINTs role has somewhat changed in tandem with her stage of development and national priorities. In line with the Government's policy on sustainability and self-reliance and a drive to commercialize R and D findings, the R and D institutions are expected to be self sufficiency at 30% of institutional operating budget. MINT has embarked on the commercialization program since in 1987 even before the the policy was instituted. Unlike other corporate R and D institutions and universities which do have some liberty and flexibility in the management of the organizations, MINT as a full fledge government R and D institute faces a number of challenges in the commercialization exercise. The paper describes the technologies developed at MINT, our product and services, and challenges and limitations in commercializing our R and D endeavors. (Author)

  5. Hardness variability in commercial and hardened technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaneyfelt, M.R.; Winokur, P.S.; Meisenheimer, T.L.; Sexton, F.W.; Roeske, S.B.; Knoll, M.G.

    1994-03-01

    Over the past 10 years, there have been a number of advances in methods to assess and assure the radiation hardness of microelectronics in military and space applications. At the forefront of these is the Qualified Manufacturers List (QML) methodology, in which the hardness of product is ``built-in`` through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to varying radiation scenarios. At the same time, there has been renewed interest in the use of commercial technology -- with its enhanced performance, reduced cost, and higher reliability -- in military and space systems. In this paper, we initially demonstrate the application of QML techniques to assure and control the radiation response of hardened technologies. Through several examples, we demonstrate intra-die, wafer-to-wafer, and lot-to-lot variations in a hardened technology. We observe 10 to 30% variations in key technology parameters that result from variability in geometry, process, and design layout. Radiation-induced degradation is seen to mirror preirradiation characteristics. We then evaluate commercial technologies and report considerably higher variability in radiation hardness, i.e., variations by a factor of two to five. This variability is shown to arise from a lack of control of technology parameters relevant to the radiation response, which a commercial manufacturer has no interest in controlling in a normal process flow.

  6. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  7. CASH 2021: Commercial access and space habitation

    Science.gov (United States)

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Ferretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frédéric; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J. Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-07-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.

  8. A gap analysis of meteorological requirements for commercial space operators

    Science.gov (United States)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  9. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2017-01-01

    We are at a turning point in the history of space exploration and development, where new industries are being born to use space in non-traditional ways. Established state-run industrial space sector is no longer the only game in town; commercial space is becoming competitive. Many new entrepreneurial companies, such as SpaceX, Deep Space Industries, etc. are developing new markets, such as Orbital, Suborbital, and Deep Space. Together, government and private industry can facilitate the birth of this new industry. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. NASA can do this by purchasing and using commercial space capabilities and services; exploring the use of nontraditional arrangements for acquiring space capabilities and services; refraining from activities that preclude, discourage, or compete with commercial space activities; and pursuing opportunities to transfer some functions to the commercial space sector, where beneficial. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc.

  10. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    Science.gov (United States)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  11. DSM Pocket Guidebook: Commercial technologies

    International Nuclear Information System (INIS)

    1992-08-01

    It has been estimated that if electricity were used more efficiently with commercially available end-use technologies, 24%endash 44% of the nation's current demand for electricity could be eliminated. Almost all major electric utilities in the west are investigating such demand-side management (9DSM) opportunities. In some service territories, for example, improved efficiency could soon produce as much power as that from new coal-fired plants and produce it at a lower cost. Even utilities that currently have excess capacity are finding that DSM offers an opportunity to build efficient end-use stock to help them meet their future load shape objectives. Utility DSM programs typically consist of several measures designed to modify the utility's load shape (for example, innovative rate structures, direct utility control of loads, promotion of energy-efficient technologies, and customer education). The coordinated implementation of such measures requires planning, analysis of options, engineering, marketing, monitoring, and other coordination activities (Figure P1). This guidebook addresses one facet of an overall DSM program: selectrion of end-use technologies within the electrical utilities

  12. Commercial space transportation regulation and its effects on space safety

    Science.gov (United States)

    Bowles, Norman C.; Lang, Derek E.

    1993-09-01

    Safety in space will become an increasingly important issue as the number of foreign space programs grow, and as the U.S. private sector increases its space activities. The U.S. Department of Transportation (DOT) is the federal agency responsible, under the Commercial Space launch Act of 1984, with regulation of the U.S. commercial space transportation industry in order to protect public health and safety, and safety of property. This paper discusses how the regulatory and licensing responsibilities of the Office of Commercial Space Transportation influence the safety of private sector launch operations in space. Of particular interest are impacts and benefits for commercial space services providers resulting from the government's safety research and technical safety evaluations.

  13. 75 FR 23841 - Commercial Space Transportation Grant Program

    Science.gov (United States)

    2010-05-04

    ..., improvement, and design and engineering of space transportation infrastructure, including facilities and... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Grant... for the Commercial Space Transportation Grant Program. SUMMARY: The FAA's Office of Commercial Space...

  14. Use of advanced commercial ICs (COTS) for space application

    International Nuclear Information System (INIS)

    Strobel, D.J.; Czajkowski, D.R.; Layton, P.; Shanken, S.

    1999-01-01

    A product line of space-qualified radiation-tolerant ICs based on a high-volume commercial-off-the-shelf (COTS) silicon has been developed. The basic results from over 300 lots of COTS silicon, assembled and screened to Class B and Class S requirements will be presented. Intelligent use of commercial ICs engineered to improve radiation performance, is effective in introducing advanced technology to new satellite systems. Space Electronics has introduced over 125 space-qualified microelectronics standard products, that are used on over 90 space projects. (authors)

  15. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  16. Space Biotechnology and Commercial Applications University of Florida

    Science.gov (United States)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  17. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  18. Space commerce in a global economy - Comparison of international approaches to commercial space

    Science.gov (United States)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  19. Exploiting The New Commercial Space Race

    Science.gov (United States)

    2016-02-10

    deliver some payloads to space and the cost savings associated with commercial competition have not materialized. However, the landscape of the... save the military $4 billion over what it had expected to spend buying rocket launches one at a time.38 SpaceX believed its Falcon 9 rocket could...companies has emerged in the United States. While some of the business plans of these companies, such as space tourism and asteroid mining, may never

  20. 77 FR 52108 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2012-08-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  1. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  2. 78 FR 18416 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  3. Technology Enhanced Learning Spaces

    NARCIS (Netherlands)

    Specht, Marcus

    2016-01-01

    Today’s tools and learning environments are often not designed for supporting situated, social, and mobile learning experiences and linking them to real world experiences. The talk will discuss some of the approaches for linking information space and real world space with new technology. By linking

  4. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  5. Space Station Workshop: Commercial Missions and User Requirements

    Science.gov (United States)

    1988-01-01

    The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.

  6. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  7. Advanced space transportation technologies

    Science.gov (United States)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  8. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  9. Enterprise: an International Commercial Space Station Option

    Science.gov (United States)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  10. Commercial Space Travel, Ethics and Society

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  11. International cooperation in the commercial era of space

    Science.gov (United States)

    Allnutt, R. F.

    1984-01-01

    NASA plans permitting international participation in space activities are reviewed, with an emphasis on the increasing commercialization of these endeavors. The potential indicated by the recent success of the STS, long-term and large-scale Soviet missions, and the Ariane launcher is discussed; the development of the Space Station concept is traced; the increasing use of remote-sensing and telecommunications satellites is documented; currently planned space science missions are listed; and the NASA policy on international cooperation (full payment by the second nation, clean payload-spacecraft interfaces to prevent technology transfer, and open availability of scientific results) is outlined. It is argued that space activity, having passed through first and second phases dominated by exploration and military goals, respectively, will now soon enter a primarily commercial phase, with competition in telecommunications and remote-sensing services and private investment in space processing, manufacturing, and even launchers.

  12. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  13. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  14. The first decade of commercial space tourism

    Science.gov (United States)

    Chang, Yi-Wei

    2015-03-01

    In order to provide a basis for assessing the future prospects and challenges of space tourism, this paper begins with a brief overview of the history of space tourism. This is followed by a discussion on market demand and current developments in the academic community, as well as the status of traffic tools, regulations and legalization. In market demand, although studies conducted in 1990s assumed the possibility of 500,000 per year in space tourists and several billion USD of annual revenue, in 2008 a relatively modest 13,000 per year was predicted. At this time traffic transport tools including the Soyuz system, CST-100, DragonRider and International Space Station (ISS) can only provide a few tens in spare seats for space tourists per year compared to the projected 20,000 plus seat capacity of the Lynx, Dream Chaser and SpaceShipTwo (SS2) fleets, which have the potential to conduct their first full suborbital test flight and first commercial flight within the coming decade. Added to this, the US government has only a regulatory regime that supports privately owned suborbital space tourism (SST) and no government funded orbital space tourism (OST). These evidences reveal a very high and advantageous potential for SST to form a space tourism industry in the coming decade, whereas the possibility of OST is relatively low. However, even though the prosperity of SST in the coming years is expectable, its maturity, reliability and safety still need to win the confidence of the general public. For examples, the announcement of changes to fuel used in the SS2 rocket engine in May 2014 and the crash of one SS2 while performing test flight on 31 October 2014 indicated the need for much careful preparation, as any accident in commercial operation could seriously damage or even kill its future prospects.

  15. 76 FR 15039 - Commercial Space Transportation Grants Program

    Science.gov (United States)

    2011-03-18

    .... Construction, improvement, design, and engineering of space transportation infrastructure (including facilities... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... proposals for the Commercial Space Transportation Grant Program. SUMMARY: This notice solicits Fiscal Year...

  16. Technology Transition a Model for Infusion and Commercialization

    Science.gov (United States)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  17. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  18. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  19. The twenty-first century commercial space imperative

    CERN Document Server

    Young, Anthony

    2015-01-01

    Young addresses the impressive expansion across existing and developing commercial space business markets, with multiple private companies competing in the payload launch services sector. The author pinpoints the new markets, technologies, and players in the industry, as well as highlighting the overall reasons why it is important for us to develop space. NASA now relies on commercial partners to supply cargo and crew spacecraft and services to and from the International Space Station. The sizes of satellites are diminishing and their capabilities expanding, while costs to orbit are decreasing. Suborbital space tourism holds the potential of new industries and jobs. Commercial space exploration of the Moon and the planets also holds promise. All this activity is a catalyst for anyone interested in joining the developing space industry, from students and researchers to engineers and entrepreneurs. As more and more satellites and rockets are launched and the business of space is expanding at a signifi...

  20. Business in orbit - The commercial use of space

    Science.gov (United States)

    Gillam, I. T., IV

    1985-01-01

    Current and proposed business opportunities in space are discussed. The advantages offered by the zero gravity environment of space are examined. The roles of the Space Shuttle and the Space Station in space commercialization are described. International development and use of the Space Station is proposed. It is observed that the communications satellite industry is a successful space venture, and opportunities for materials processing and pharmaceuticals production in space are considered. The relationship between NASA's Office of Commercial Programs, which assists businesses in space commercialization, and industry is studied. The impact of space commercialization on the national economy and international trade is analyzed.

  1. Commercial Application of In-Space Assembly

    Science.gov (United States)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; hide

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  2. A New Approach to Commercialization of NASA's Human Research Program Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research...

  3. Evaluation of Space Food for Commercial Astronauts

    Science.gov (United States)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  4. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  5. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  6. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-03-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  8. 76 FR 78329 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  9. Government and Industry Issues for Expanding Commercial Markets into Space

    Science.gov (United States)

    Smitherman, David V., Jr.

    2003-01-01

    In 2002, the Foresight and Governance Project at the Woodrow Wilson Center in Washington, D.C, organized a "Global Foresight Workshop" in partnership with NASA and in cooperation with other Federal Agencies to provide integrated consideration of broad challenges for the 2lst century. Many long-range goals for the nation were discussed and selected, among them were space related goals of interest to NASA. During much of the Agency's history, NASA advanced studies have focused consistently on the challenges of science-driven space exploration and operations. However, workshop findings indicate little interest in these goals unless they can also solve national and global issues. Many technologies and space development studies indicate great potential to enable new, important commercial markets in space that could address the many global challenges facing America in this century. But communication of these ideas are lacking. In conclusion, it appears that the commercial development of space could have broad implications on many impending problems, including energy resources, environmental impact, and climate changes. The challenge will be to develop a consistent coordinated effort among the many industries and Agencies that should be involved in opening this new frontier for these new commercial markets.

  10. Commercial Space Port Planning in Texas

    Science.gov (United States)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones

  11. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  12. Commercial application of thermal protection system technology

    Science.gov (United States)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  13. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  14. Sources of capabilities, integration and technology commercialization

    DEFF Research Database (Denmark)

    Zahra, Shaker A.; Nielsen, Anders

    2002-01-01

    of internal and external sources on multiple dimensions of successful technology commercialization (TC). The study also explores the moderating role of formal vs. informal integration mechanisms on these relationships. Applying a longitudinal design and data from 119 companies, the results show that internal...... human and technology-based manufacturing sources are positively associated with successful TC. Formal and informal integration mechanisms also significantly moderate the relationships observed between capability sources and TC. Copyright (C) 2002 John Wiley Sons, Ltd.......In recent years, companies have increased their use of internal and external sources in pursuit of a competitive advantage through the effective and timely commercialization of new technology. Grounded in the resource-based view of the firm, this study examines the effect of a company's use...

  15. Foundational Forces & Hidden Variables in Technology Commercialization

    Science.gov (United States)

    Barnett, Brandon

    2011-03-01

    The science of physics seems vastly different from the process of technology commercialization. Physics strives to understand our world through the experimental deduction of immutable laws and dependent variables and the resulting macro-scale phenomenon. In comparison, the~goal of business is to make a profit by addressing the needs, preferences, and whims of individuals in a market. It may seem that this environment is too dynamic to identify all the hidden variables and deduct the foundational forces that impact a business's ability to commercialize innovative technologies. One example of a business ``force'' is found in the semiconductor industry. In 1965, Intel co-founder Gordon Moore predicted that the number of transistors incorporated in a chip will approximately double every 24 months. Known as Moore's Law, this prediction has become the guiding principle for the semiconductor industry for the last 40 years. Of course, Moore's Law is not really a law of nature; rather it is the result of efforts by Intel and the entire semiconductor industry. A closer examination suggests that there are foundational principles of business that underlie the macro-scale phenomenon of Moore's Law. Principles of profitability, incentive, and strategic alignment have resulted in a coordinated influx of resources that has driven technologies to market, increasing the profitability of the semiconductor industry and optimizing the fitness of its participants. New innovations in technology are subject to these same principles. So, in addition to traditional market forces, these often unrecognized forces and variables create challenges for new technology commercialization. In this talk, I will draw from ethnographic research, complex adaptive theory, and industry data to suggest a framework with which to think about new technology commercialization. Intel's bio-silicon initiative provides a case study.

  16. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  17. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  18. 78 FR 21003 - Office of Commercial Space Transportation; Notice of Availability of the Finding of No...

    Science.gov (United States)

    2013-04-08

    ... Licenses to Space Exploration Technologies Corp. (SpaceX) for Falcon 9 and Falcon Heavy Commercial Launch... Final Environmental Assessment for Falcon 9 and Falcon 9 Heavy Launch Vehicle Programs from Space Launch... of operating the Falcon 9 and Falcon Heavy launch vehicle programs from Space Launch Complex-4 East...

  19. Governance and commercialization of technological innovation

    International Nuclear Information System (INIS)

    Fidanza, Andrea

    2015-01-01

    Technological innovation is not only a direct result of the economic resources allocated to research and development activities. It is also the result of the creation and organization of a complex innovation system that aims to involve different actors and stake holders along a process based on different stages ranging from scientific discovery to technological maturity. Risk and funds sharing between public and private sectors is a key element for the transition of a technology towards its commercialization, without which the innovation process is likely to remain trapped in the so-called “Valley of death” of a technology. Overcoming this barrier request a process based on three pillars: research, demonstration and production of a specific technology [it

  20. Technological Spaces: An Initial Appraisal

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, Jean; Aksit, Mehmet

    2002-01-01

    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with

  1. Commercial applications of perfluorocarbon tracer (PFT) technology

    International Nuclear Information System (INIS)

    Dietz, R.N.

    1991-06-01

    Tracer technology can be successfully applied to many leak-checking and monitoring evaluations of operating systems (e.g., building HVACs), manufacturing processes and products (e.g., air conditioners), and subsurface components and systems (e.g., underground storage tanks). Perfluorocarbon tracer (PFT) technology is the most sensitive of all tracer technologies because the ambient background levels of the five (5) routinely-used PFTs are in the range of parts per 10 15 parts of air (i.e., parts per quadrillion-ppq) and this technology's instrumentation can measure down to those levels. The effectiveness of this technology is achieved both in terms of cost (very little PFT need to be used) and detectability; for example, very small leaks can be rapidly detected. The PFT compounds, which are environmentally and biologically safe to use, are commercially available as are the sampling and analysis instrumentation. This presentation concerns (1) the steps being taken to commercialize this technology, (2) new applications of processes currently under study, and (3) applications in areas of use that will be particularly beneficial to the environment. 21 refs., 2 figs., 2 tabs

  2. A Study on the Revitalizing of technology commercialization in KAERI

    International Nuclear Information System (INIS)

    Choi, J. I.; Jang, S. K.; Hong, G. P.; Lee, E. S.

    2009-02-01

    The TEC training program should be implemented for researches who want to commercialize their own technologies. To build creative organization culture is essential for technology commercialization. Collaboration strategy is related to analyze how KAERI is catching up their technological capabilities in nuclear technology, and what the success factors of KAERI in technology commercialization are.

  3. Center for commercial applications of combustion in space (CCACS); A partnership for space commercialization at the Colorado School of Mines

    Science.gov (United States)

    Schowengerdt, F. D.; Kee, Bob; Linne, Mark; McKinnon, Tom; Moore, John; Parker, Terry; Readey, Dennis; Tilton, John E.; Helble, Joe

    1997-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is a NASA/Industry/University consortium at the Colorado School of Mines (CSM). The mission of the Center is to assist industry in developing commercial products by conducting combustion research which takes advantage of the unique properties of space. By conducting experiments in near-zero gravity, convection and buoyancy effects can be minimized and new fundamental design-related knowledge can be gained which can be used to improve combustion-related products and processes on earth. Companies, government laboratories and universities most actively involved in CCACS at present include ABB Combustion, ADA Technologies, Advanced Refractory Technologies, Golden Technologies, Lockheed-Martin, Southwest Sciences, Space Systems/Lora, NASA-Lewis, JPL, the Baylor Dental School and the University of Connecticut. Products and processes of interest to the Center participants include industrial process combustors; catalytic combustion; Halon replacements; ceramic powders, whiskers and fibers; metal-matrix composites; NiTi for bone replacement; diamond coatings for oil-well drill bits; zeolites; imaging sensor arrays and other instrumentation for flame and particulate diagnostics. The center also assists member companies in marketing the resulting products and processes.

  4. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  5. Progress in space power technology

    Science.gov (United States)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  6. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  7. Potential commercial applications of centrifuge technology

    International Nuclear Information System (INIS)

    1985-08-01

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  8. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  9. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  10. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  11. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  12. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  13. Johnson Space Center Research and Technology Report

    Science.gov (United States)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  14. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  15. Advances in commercial ICF technology since 1986

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1989-01-01

    Progress in the march toward commercial ICF fusion reactors has been uneven in the past few years. Considerable advances have been made in the area of light ion beam fusion through the development of rep ratable drivers (i.e., HERMES-III technology) and diodes (i.e., applied B configuration with renewable Li surfaces). Significant progress in the development of lasers to compress targets has also been made through the KrF Aurura program. The possibility of lowering the cost of glass in the advanced solid state lasers has been given serious consideration. The development of the Induced Spatial Incoherence (ISI) technique to improve the uniformity of the laser beam has allowed physicists and engineers to once again contemplate the use of symmetric illumination. This would reduce the driver energy required to achieve high gains but it also introduces difficulty in the reactor design. Relatively little progress in commercial heavy ion beam drivers has been made over the past few years aside from an indepth study (HIFSA) of the desirable operating regimes to be pursued. Other areas where little progress has been made are conceptual reactor studies, target declassification and specific experimental programs to address commercial ICF reactor technology needs

  16. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  17. Space technology developments in Malaysia:

    Science.gov (United States)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  18. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    Science.gov (United States)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  19. Succinic Acid: Technology Development and Commercialization

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2017-06-01

    Full Text Available Succinic acid is a precursor of many important, large-volume industrial chemicals and consumer products. It was once common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. However, it was not until the discovery of Anaerobiospirillum succiniciproducens at the Michigan Biotechnology Institute (MBI, which was capable of producing succinic acid up to about 50 g/L under optimum conditions, that the commercial feasibility of producing the compound by biological processes was realized. Other microbial strains capable of producing succinic acid to high final concentrations subsequently were isolated and engineered, followed by development of fermentation processes for their uses. Processes for recovery and purification of succinic acid from fermentation broths were simultaneously established along with new applications of succinic acid, e.g., production of biodegradable deicing compounds and solvents. Several technologies for the fermentation-based production of succinic acid and the subsequent conversion to useful products are currently commercialized. This review gives a summary of the development of microbial strains, their fermentation, and the importance of the down-stream recovery and purification efforts to suit various applications in the context of their current commercialization status for biologically derived succinic acid.

  20. The commercialization of genome-editing technologies.

    Science.gov (United States)

    Brinegar, Katelyn; K Yetisen, Ali; Choi, Sun; Vallillo, Emily; Ruiz-Esparza, Guillermo U; Prabhakar, Anand M; Khademhosseini, Ali; Yun, Seok-Hyun

    2017-11-01

    The emergence of new gene-editing technologies is profoundly transforming human therapeutics, agriculture, and industrial biotechnology. Advances in clustered regularly interspaced short palindromic repeats (CRISPR) have created a fertile environment for mass-scale manufacturing of cost-effective products ranging from basic research to translational medicine. In our analyses, we evaluated the patent landscape of gene-editing technologies and found that in comparison to earlier gene-editing techniques, CRISPR has gained significant traction and this has established dominance. Although most of the gene-editing technologies originated from the industry, CRISPR has been pioneered by academic research institutions. The spinout of CRISPR biotechnology companies from academic institutions demonstrates a shift in entrepreneurship strategies that were previously led by the industry. These academic institutions, and their subsequent companies, are competing to generate comprehensive intellectual property portfolios to rapidly commercialize CRISPR products. Our analysis shows that the emergence of CRISPR has resulted in a fivefold increase in genome-editing bioenterprise investment over the last year. This entrepreneurial movement has spurred a global biotechnology revolution in the realization of novel gene-editing technologies. This global shift in bioenterprise will continue to grow as the demand for personalized medicine, genetically modified crops and environmentally sustainable biofuels increases. However, the monopolization of intellectual property, negative public perception of genetic engineering and ambiguous regulatory policies may limit the growth of these market segments.

  1. Space construction technology needs

    Science.gov (United States)

    Jenkins, L. M.

    1981-01-01

    Space construction systems made feasible by an operational Space Shuttle are discussed with a view toward assembly, installation and construction support equipment. The level of construction capability will be reflected in the number of launches to accomplish a certain mission, either in terms of the mission time line or on the density of packaging in the Orbiter payload bay. It is noted that the development of construction support equipment in zero-gravity simulations should be the most productive initial activity. Crew EVAs, as well as the beam builder, cherrypicker and power distribution buses are covered in detail.

  2. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  3. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  4. A New Approach to Commercialization of NASA's Human Research Program Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research program that...

  5. Laser Coating Technology; A Commercial Reality

    Science.gov (United States)

    Blake, Andrew G.; Mangaly, A. A.; Everett, M. A.; Hammeke, A. H.

    1988-10-01

    Commercial acceptance of laser coating technology suffered for many years due to questions about its economic viability. During this period, however, many companies, universities, and government research groups were busy developing the technology to overcome these questions. Today, laser coating technology is having a major impact as a high quality, economical method of hardfacing for wear and corrosion resistance in several key industries. This has occurred because of advances in five key areas: 1. High power laser design 2. Method of alloy deposition, and associated hardware 3. In-process feed back control system hardware/software development 4. Alloy systems 5. Marketing/sales sophistication High power lasers have improved in mode stability, power conversion efficiency, and optical flexibility (reflective vs. transmissive materials). This has enabled the process engineer to increase deposition efficiency, and maintain flexibility on the use of optics specifically designed for a user application. Improvements in the method of alloy deposition have led to developments such as the DPF system with specialized nozzles developed for specific user applications. Another effective technique includes the use of pre-fabricated cast alloy chips that are welded to the component surface on the specific area requiring protection. The development of feedback control systems that integrate process control software with hard tooling, the laser, and the alloy delivery system are greatly improving process reliability and product quality. Because of this, "in-process" quality control is becoming a viable alternative to traditional methods of quality control. Metallurgical evaluations of some of the most widely used hardfacing alloys and base materials have been investigated by numerous researchers. Analysis has confirmed that laser applied coatings are of high metallurgical quality, extremely low in dilution, and distort less due to low heat input. The technology can also be used to

  6. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  7. Space commercialization trends and consequences for the workforce

    Science.gov (United States)

    Peeters, W.

    2003-08-01

    Space Commercialization has considerably changed the space era over the last few years. Besides a number of facilitators, such as improved regulatory frameworks, it can clearly be demonstrated that reduced public funding has been the prime catalyst for this commercialization process. Space industry has proactively reacted to this new situation by forming strategic alliances, in the first place to be able to reach the global space market. This effect, in turn, induces a number of new skills which are needed for the future space work force. Transnational activities require a more international approach and better understanding of cultural differences, far beyond linguistic ones. Transfer of workforce from other sectors remains difficult, mainly due to the uniqueness of the space sector. Tailored space education curricula will therefore be needed to prepare the new space workforce for timely take over from the present — rapidly aging — space professionals without the risk of losing know-how.

  8. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  9. From suborbital space tourism to commercial personal spaceflight

    Science.gov (United States)

    Peeters, Walter

    2010-06-01

    Excellent essays have been recently published on the profitability and the future of space tourism. This paper is intended to supplement the considerations in this field and emphasizes the further potential evolution of commercial personal spaceflights. Indeed, based upon work done at the International Space University (ISU) the oligopolistic character of suborbital space tourism has been linked to marketing and product life cycle (PLC) considerations and has led to the thesis that space tourism as a profitable sector will require a follow-on strategy. Orbital space tourism, on one hand, could become an extension of the PLC but, on the other hand, it is assumed that point-to-point (P2P) commercial space transport will become the long term sustainable market. Without ignoring technical challenges, this paper will mainly concentrate on marketing and commercial aspects of personal spaceflight.

  10. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  11. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  12. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  13. Commercial potential of European and Japanese space programs, task 5

    Science.gov (United States)

    1987-01-01

    The current and expected future competitive status in the commercialization of space of the two principal programs competitive with NASA: the European Space Agency (ESA) and the program sponsored by the Ministry of International Trade and Industry (MITI) of Japan are evaluated, quantitatively assessed, and presented in usable format.

  14. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  15. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  16. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    Science.gov (United States)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  17. Economic Metrics for Commercial Reusable Space Transportation Systems

    Science.gov (United States)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.

  18. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  19. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a... Commercial Space Transportation Advisory Committee (COMSTAC). The special closed session will be an...

  20. Study on commercial FBR concepts by combining innovative technologies

    International Nuclear Information System (INIS)

    Miura, M.; Inagaki, T.; Kuroha, M.; Hida, T.

    1992-01-01

    A study was conducted on future prospects of FBR commercialization. Targets of further improving safety and economy were set to make commercial power plants that would be superior to future LWRs. Promising innovative technologies studied domestically and overseas were extracted by evaluating prospects for commercialization, effect, and plant applicability. Several commercial plants were conceptualized by introducing such technology to large-scale and oxide-fuel reactors. Estimates of construction cost, etc., proved that the targets could be achieved. A concept of long-term technological development was synthesized. (author)

  1. Research and Technology 1996: Innovation in Time and Space

    Science.gov (United States)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  2. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    Science.gov (United States)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  3. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  4. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  5. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  6. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  7. Technology commercialization: From generating ideas to creating economic value

    Directory of Open Access Journals (Sweden)

    Tayeb Dehghani

    2015-06-01

    Full Text Available Frequent changes in competitors' status, technology, and customer interests make it unwise and impossible for companies to rely on their products. Customers always seek to find new products. Consequently, companies should continuously produce and offer superior products to meet customer needs, tastes, and expectations. In fact, every company needs a development plan for its new products. Research has demonstrated that one of the major reasons for rapid development of technology in industrial countries is commercialization of research results. The basis of such commercialization is research-industry collaboration in converting research output into innovation. Today, technology commercialization and its outcomes can provide financial resources required for organizational longevity. The main objective of this article is to propose a model for commercializing research findings from idea generation to initial market entry. We believe that this article can, hopefully, contribute to commercialization literature by acting as a guide to local authorities involved in commercialization cycle.

  8. The venture space alliance commercial application of microgravity research

    Science.gov (United States)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  9. Advanced LWR technology for commercial application

    International Nuclear Information System (INIS)

    Redding, J.R.

    1993-01-01

    Advanced Light Water Reactors (ALWRs) are now being deployed and commercialized around the world. In Japan, the Tokyo Electric Power Company (TEPCO) is building the world's first ALWRs, two 1300 MWe Advanced BWRs (ABWRs). In the United States, the Department of Energy, utilities and suppliers are undertaking a cooperative program called First of a Kind Engineering (FOAKE). The purpose of FOAKE is to perform the detailed engineering of ALWRs to that they will be commercially available to U.S. utilities in the mid-1990s. The U.S. industry is in the second year of its strategic plan to have an ALWR in commercial operation by the year 2000. Elsewhere, the Taiwan Power Company has issued a Request for Proposal for two ALWRs so be built at its Lungmen site, with commercial operation of the first unit to be in the year 2000. Korea is formulating plans for an ALWR and other countries, such as Indonesia and Mexico, are looking into the feasibility of building ALWRs

  10. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  11. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  12. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  13. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2011-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-027)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: April 27, 2011, 2-3:30 p.m., Local Time. ADDRESSES: NASA... Administration, Washington, DC 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  14. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  15. Financial issues for commercial space ventures: Paying for the dreams

    Science.gov (United States)

    Egan, J. J.

    1984-01-01

    Various financial issues involved in commercial space enterprise are discussed. Particular emphasis is placed on the materials processing area: the current state of business plan and financial developments, what is needed for enhanced probability of success of future materials development efforts in attracting financial backing, and finally, the risks involved in this entire business area.

  16. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  17. Commercial combustion research aboard the International Space Station

    Science.gov (United States)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  18. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  19. Fissures in the commercial cinematic space: Screening Taiwanese documentary blockbusters

    Directory of Open Access Journals (Sweden)

    Hong-Chi Shiau

    2016-12-01

    Full Text Available This study explores the trajectory of how a new wave of documentary making has incorporated or resisted dominant social forces to create fissures in the commercial cinematic spaces. Two documentary blockbusters The Long Goodbye (2010 and Beyond Taiwan (2013 are examined to explicate how the restructuring of cinematic spaces in Taiwan has facilitated changes in documentary screening culture and spectatorships, leading to the recent documentary renaissance. This result suggests that independent filmmakers intervene and create the spaces for their documentaries, financially dependent on advance ticket sales and private sponsorship. However, relational distributive venues of documentary film within a larger public sphere are increasingly privatized and commercialized in the age of global neoliberalism. The various and creative methods applied in the exhibition of documentary blockbusters have illuminated the intersection of documentary and mainstream commercial cinema sites and practices, and have spawned associated, commercially oriented articulations. The reception study reveals that the past decade has witnessed Taiwanese audiences anxiously situate their precarious local identity against a myriad of socio-political crises: an aging and shrinking population, environmental pollution, and stagnant economy.

  20. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Conceptual processes and facilities for treating gaseous and various transuranium (TRU) wastes produced during the past fission portion of the light water reactor fuel cycle are described in volume 2. The goal of the treatment process for TRU wastes and for long-lived radionuclides removed from the gaseous waste streams is to convert these wastes to stable products suitable for placement in geologic isolation repositories. The treatment concepts are based on available technology. They do not necessarily represent an optimum design but are representative of what could be achieved with current technology. In actual applications it is reasonable to expect that there could be some improvement over these concepts that might be reflected in either lower costs or lower environmental impacts or both. These conceptual descriptions do provide a reasonable basis for cost analysis and for development of estimates of environmental impacts. The waste treatment technologies considered here include: high-level waste solidification, packaging of fuel residue, failed equipment and noncombustible waste treatment, general trash and combustible waste treatment, degraded solvent treatment, dilute aqueous waste pretreatment, immobilization of wet and solid wastes, off-gas particle removal systems, fuel reprocessing plant dissolver off-gas treatment, process off-gas treatment, and fuel reprocessing plant atmospheric protection system

  1. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  2. 76 FR 42160 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Space Transportation Operations Working Group of the Commercial Space Transportation Advisory...

  3. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    A general analysis of transportation requirements for postfission radioactive wastes that are produced from the commercial light water reactor (LWR) fuel cycle and that are assumed to require Federal custody for storage or disposal is given. Possible radioactive wastes for which transportation requirements are described include: spent fuel, solidified high-level waste, fuel residues (cladding wastes), plutonium, and non-high-level transuranic (TRU) wastes. Transportation is described for wastes generated in three fuel cycle options: once-through fuel cycle, uranium recycle only, and recycle of uranium and plutonium. The geologic considerations essential for repository selection, the nature of geologic formations that are potential repository media, the thermal criteria for waste placement in geologic repositories, and conceptual repositories in four different geologic media are described. The media are salt deposits, granite, shale, and basalt. Possible alternatives for managing retired facilities and procedures for decommissioning are reviewed. A qualitative comparison is made of wastes generated by the uranium fuel cycle and the thorium fuel cycle. This study presents data characterizing wastes from prebreeder light water breeder reactors using thorium and slightly enriched uranium-235. The prebreeder LWBRs are essentially LWRs using thorium. The operation of HTGR and LWBR cycles are conceptually designed, and wastes produced in these cycles are compared for potential differences

  4. Enhancing data from commercial space flights (Conference Presentation)

    Science.gov (United States)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  5. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    Science.gov (United States)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  6. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  7. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Conceptual facilities for interim storage of various treated transuranic (TRU) and gaseous wastes produced during fuel reprocessing and mixed oxide fuel fabrication are described in volume 3. Alternatives for interim storage of spent fuel prior to reprocessing or geologic isolation are also described. The storage concepts are based on available technology. They do not necessarily represent optimum designs, but are representative of what could be achieved with current capabilities. In actual applications it is reasonable to expect that there could be some improvements over these concepts, reflected in lower costs, lower environmental impacts, or both. These conceptual descriptions provide a reasonable basis for cost analysis and for development of estimates of environmental impacts. Sections are devoted to: storage of high-level liquid waste in large stainless steel tanks; two interim storage concepts for fuel residue waste (fuel hulls and hardware) waste storage; storage concepts for other nonhigh-level TRU waste; two alternatives for storage of solidified high-level waste; conceptual storage for large quantities of plutonium oxide; a concept for storing krypton gas cylinders; and alternatives for both short-term and extended storage of spent fuel

  8. Three near term commercial markets in space and their potential role in space exploration

    Science.gov (United States)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  9. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    Science.gov (United States)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  10. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    Science.gov (United States)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  11. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  12. Department of Defense Space Technology Guide

    Science.gov (United States)

    2001-01-01

    image processing • Exploitation technologies for bistatic phenom- enology of targets and clutter characteristics – Bistatic space-time adaptive...optical sensors, processors, links, and host spacecraft integration technolo- gies • Exploitation technologies for bistatic phenom- enology of

  13. Potential hurdles or gateways in the commercial space transportation market

    Science.gov (United States)

    Stallmer, Eric William

    2001-02-01

    After several difficult and trying years, the commercial space launch industry is now making strong strides forward. Launch orders are on the rise and new and improved vehicles are hitting the market at a record level. Competition is more ferocious now than ever. Customers are benefiting, but is this trend could hurt the launch industry in the long run. The question will be, `How will the industry adjust to these changes and what is the role of the Federal government in supporting this burgeoning industry?' .

  14. Applying commercial robotic technology to radioactive material processing

    International Nuclear Information System (INIS)

    Grasz, E.L.; Sievers, R.H. Jr.

    1990-11-01

    The development of robotic systems for glove box process automation is motivated by the need to reduce operator radiation dosage, minimize the generation of process waste, and to improve the security of nuclear materials. Commercial robotic systems are available with the required capabilities but are not compatible with a glove box environment. Alpha radiation, concentrated dust, a dry atmosphere and restricted work space result in the need for unique adaptations to commercial robotics. Implementation of these adaptations to commercial robotics require performance trade-offs. A design and development effort has been initiated to evaluate the feasibility of using a commercial overhead gantry robot for glove box processing. This paper will present the initial results and observations for this development effort. 1 ref

  15. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  17. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  18. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  19. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  20. Potential commercial use of the International Space Station by the biotechnology/pharmaceutical/biomedical sector

    Science.gov (United States)

    Morgenthaler, George W.; Stodieck, Louis

    1999-01-01

    The International Space Station (ISS) is the linch-pin of NASA's future space plans. It emphasizes scientific research by providing a world-class scientific laboratory in which to perform long-term basic science experiments in the space environment of microgravity, radiation, vacuum, vantage-point, etc. It will serve as a test-bed for determining human system response to long-term space flight and for developing the life support equipment necessary for NASA's Human Exploration and Development of Space (HEDS) enterprise. The ISS will also provide facilities (up to 30% of the U.S. module) for testing material, agricultural, cellular, human, aquatic, and plant/animal systems to reveal phenomena heretofore shrouded by the veil of 1-g. These insights will improve life on Earth and will provide a commercial basis for new products and services. In fact, some products, e.g., rare metal-alloys, semiconductor chips, or protein crystals that cannot now be produced on Earth may be found to be sufficiently valuable to be manufactured on-orbit. Biotechnology, pharmaceutical and biomedical experiments have been regularly flown on 10-16 day Space Shuttle flights and on three-month Mir flights for basic science knowledge and for life support system and commercial product development. Since 1985, NASA has created several Commercial Space Centers (CSCs) for the express purpose of bringing university, government and industrial researchers together to utilize space flight and space technology to develop new industrial products and processes. BioServe Space Technologies at the University of Colorado at Boulder and Kansas State University, Manhattan, Kansas, is such a NASA sponsored CSC that has worked with over 65 companies and institutions in the Biotech Sector in the past 11 years and has successfully discovered and transferred new product and process information to its industry partners. While tests in the space environment have been limited to about two weeks on Shuttle or a few

  1. 78 FR 1917 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2013-01-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to the...

  2. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-10-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  3. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  4. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  5. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee-Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section 10...

  6. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. 76 FR 41323 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  8. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  9. 76 FR 4988 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  10. 76 FR 621 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  11. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference (COMSTAC). SUMMARY: Pursuant...

  12. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-11-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  13. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  14. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-08-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  15. Early commercial demonstration of space solar power using ultra-lightweight arrays

    Science.gov (United States)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  16. Commercial Supersonics Technology Project - Status of Airport Noise

    Science.gov (United States)

    Bridges, James

    2016-01-01

    The Commercial Supersonic Technology Project has been developing databases, computational tools, and system models to prepare for a level 1 milestone, the Low Noise Propulsion Tech Challenge, to be delivered Sept 2016. Steps taken to prepare for the final validation test are given, including system analysis, code validation, and risk reduction testing.

  17. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  18. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  19. Canadian Activities in Space Debris Mitigation Technologies

    Science.gov (United States)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  20. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  1. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  2. Submicron CMOS technologies for high energy physics and space applications

    CERN Document Server

    Anelli, G; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    2001-01-01

    The radiation environment present in some of today's High-Energy Physics (HEP) experiments and in space has a detrimental influence on the integrated circuits working in these environments. Special technologies, called radiation hardened, have been used in the past to prevent the radiation-induced degradation. In the last decades, the market of these special technologies has undergone a considerable shrinkage, rendering them less reliably available and far more expensive than today's mainstream technologies. An alternative approach is to use a deep submicron CMOS technology. The most sensitive part to radiation effects in a MOS transistor is the gate oxide. One way to reduce the effects of ionizing radiation in the gate oxide is to reduce its thickness, which is a natural trend in modern technologies. Submicron CMOS technologies seem therefore a good candidate for implementing radiation-hardened integrated circuits using a commercial, inexpensive technology. Nevertheless, a certain number of radiation-induced...

  3. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  4. Legal Challenges Relating to the Commercial use of Outer Space, with Specific Reference to Space Tourism

    Directory of Open Access Journals (Sweden)

    Anél Ferreira-Snyman

    2014-04-01

    Full Text Available Since the launch of the first artificial satellite, Sputnik 1 in 1957, the outer space arena has evolved to include non-state entities, which are becoming serious participants in outer space activities themselves, including venturing into the space tourism market. Although space tourism is still in its infancy, it is estimated that the number of space tourists will substantially increase within the next few years. As space tourist activities increase, accidents will inevitably occur, which will give rise to legal questions relating to the duty of states to rescue space tourists in distress, and the liability for damages. This contribution points out that the current outer space treaty regime, which focuses on the use of outer space by states, is to a large extent outdated and that it cannot adequately deal with the unique legal challenges presented by the rapidly developing space tourism industry. This situation is exacerbated by the fact that the outer space legal framework is very fragmented – consisting of treaties, UN principles and guidelines, regional regulations and intergovernmental agreements, as well as national guidelines and legislation. In order to ensure that space tourism is indeed to the benefit of all mankind, it is imperative that clear international legal rules relating to space tourism be formulated, where standards are set for the authorisation and supervision of commercial space activities and the interests of states, passengers and private actors are balanced as far as possible. In view of the urgent need to address these legal questions and the consequent lack of time to negotiate a binding legal instrument, it is submitted that, as an interim measure, soft law guidelines should be developed in relation to space tourism in order to provide a framework for the eventual creation of a consolidated and binding legal instrument on all aspects relating to the use and exploration of outer space.

  5. Task summary: Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.

    1995-11-01

    Radionuclides represent only a small fraction of the components in millions of gallons of storage tank supernatant at various sites, including Oak Ridge, Hanford, Savannah River, and Idaho. Most of the radioactivity is contributed by cesium, strontium, and technetium along with high concentrations of sodium and potassium salts. The purpose of this task is to test and select sorbents and commercial removal technologies supplied by ESP for removing and concentrating the radionuclides, thereby reducing the volume of waste to be stored or disposed

  6. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  7. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  8. Success tree analysis on the technologies development for FBR commercialization

    International Nuclear Information System (INIS)

    An, Shigehiro; Taniyama, Hiroshi; Nagai, Hiroshi.

    1991-01-01

    In order to obtain a secure energy supply in future, it is important to establish a system for plutonium utilization via the FBR which is superior to the uranium utilization system with respect to both safety and good economics. In spite of this obvious need, the commercialization of the FBR is facing delays. Although several factors, for example, improvement of LWR technologies, stable supply of low cost uranium, opposition to nuclear power, etc. are contributors, the primary reason for the delay is the unfavorable economics of the FBR itself. In this paper the key technologies leading to reduced FBR costs are identified and their development strategies are discussed. (author)

  9. Commercial sector gas cooling technology frontier and market share analysis

    International Nuclear Information System (INIS)

    Pine, G.D.; Mac Donald, J.M.; McLain, H.A.

    1990-01-01

    This paper describes a method, developed for the Gas Research Institute of the United States, that can assist planning for commercial sector natural gas cooling systems R and D. These systems are higher in first cost than conventional electric chillers. Yet, engine-driven chiller designs exist which are currently competitive in U.S. markets typified by high electricity or demand charges. Section II describes a scenario analysis approach used to develop and test the method. Section III defines the technology frontier, a conceptual tool for identifying new designs with sales potential. Section IV describes a discrete choice method for predicting market shares of technologies with sales potential. Section V shows how the method predicts operating parameter, cost, and/or performance goals for technologies without current sales potential (or for enhancing a frontier technology's sales potential). Section VI concludes with an illustrative example for the Chicago office building retrofit market

  10. NASA(Field Center Based) Technology Commercialization Centers

    Science.gov (United States)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  11. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  12. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  13. Advancing Radar Technologies for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote sensing technologies remain the primary means by which scientific knowledge about the surrounding universe is gathered in lieu of human exploration. Radar...

  14. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  15. Office of Space Science: Integrated technology strategy

    Science.gov (United States)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  16. Nuclear Technologies for Space Exploration Conference

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.; Alger, D.

    1992-08-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC

  17. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    Science.gov (United States)

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  18. Space Tourism - The Moon and the Popular and Commercial Exploitation of Space

    Science.gov (United States)

    Taylor, R. L. S.

    Increasing numbers of people, within the space community, argue that the development of space tourism - initially to low-Earth-obit (LEO) and with `stop-over' orbiting hotel facilities - would provide an important and significant economic and financial driver for the further expansion and utilization of space resources. In this paper the case for space-tourism is reviewed and it is concluded that the long-term economic expansion of the use and exploitation of space to meet and fulfill human needs cannot be based on operating from the surface of the Earth. A stable and viable Earth-space economy has to be centred upon the Moon. The technological, engineering and scientific requirements and a possible development scenario are discussed briefly and some of the wider implications are noted.

  19. Connecting Learning Spaces Using Mobile Technology

    Science.gov (United States)

    Chen, Wenli; Seow, Peter; So, Hyo-Jeong; Toh, Yancy; Looi, Chee-Kit

    2010-01-01

    The use of mobile technology can help extend children's learning spaces and enrich the learning experiences in their everyday lives where they move from one context to another, switching locations, social groups, technologies, and topics. When students have ubiquitous access to mobile devices with full connectivity, the in-situ use of the mobile…

  20. Case Study of Using High Performance Commercial Processors in Space

    Science.gov (United States)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  1. Moving Technologies from the Test Tube to Commercial Products

    Science.gov (United States)

    Bryant, Robert G.

    2013-01-01

    Successful technologies include objects, processes, and procedures that share a common theme; they are being used to generate new products that create economic growth. The foundation is the invention, but the invention is a small part of the overall effort. The pathway to success is understanding the competition, proper planning, record keeping, integrating a supply chain, understanding actual costs, intellectual property (IP), benchmarking, and timing. Additionally, there are obstacles that include financing, what to make, buy, and sell, and the division of labor i.e. recognizing who is best at what task. Over the past two decades, NASA Langley Research Center (LaRC) has developed several commercially available technologies. The approach to commercialization of three of these inventions; Langley Research Center-Soluble Imide (LaRC-SI, Imitec Inc.), the Thin Layer Unimorph Driver (THUNDER, FACE International), and the Macrofiber Composite (MFC, Smart Material Corp.) will be described, as well as some of the lessons learned from the process. What makes these three inventions interesting is that one was created in the laboratory; another was built using the previous invention as part of its process, and the last one was created by packaging commercial-off-the-shelf (COTS) materials thereby creating a new component.

  2. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Market and technical information on gas fired equipment used in the commercial food service sector in Canada and in each province or territory was presented. Results of a market study and technology review were integrated to establish energy consumption and energy saving potential in this sector. Eight categories of commercial cooking appliances were studied. They were: fryers, griddles, broilers, ranges, ovens, tilting skillets, steam kettles and steamers. Focus was on gas fired appliances, although electric appliances were also included. The total energy consumption of the appliances was estimated at 76,140.37 GBtu in 1994. Gas appliances accounted for 63 per cent of the total inventory and consumed 83 per cent of the total energy used. Cooking energy efficiencies for the gas fired commercial cooking equipment ranged from 10 per cent to 60 per cent. The electric appliances had cooking energy efficiencies ranging from 35 per cent to 95 per cent. A list of recommendations were made for the many opportunities to introduce higher efficiency commercial cooking appliances, essential to slow down or to stabilize the energy consumption of cooking appliances over the next decade. 66 refs., 14 tabs., 18 figs.

  3. In-Space Propulsion (ISP) Aerocapture Technology

    Science.gov (United States)

    Munk, Michelle M.; James, Bonnie F.; Moon, Steve

    2005-01-01

    A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.

  4. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  5. Identifying, Licensing, and Commercializing Technology: An Entrepreneur's View

    Science.gov (United States)

    Appel, Kris

    2013-03-01

    A linguist by trade, Kris Appel left government service to pursue entrepreneurship. She knew she wanted to start a company, but she did not have a business idea. After researching various technologies available for commercialization, she began to focus on a prototype medical device at the University of Maryland Medical School, which had been developed to help stroke survivors recover their arm movement. The device was based upon emerging science into brain re-training, and was backed by very convincing clinical trials. Working closely with University researchers, she licensed the rights to the device, developed a commercial version, and launched it in 2009. Today the device is used around the globe, and has helped thousands of stroke and brain injury survivors improve their arm function and way of life. Kris will tell the story of the device, and how it got from idea to prototype to successful rehabilitation product.

  6. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  7. Commercialization of LARC(TradeMark)-SI Polyimide Technology

    Science.gov (United States)

    Bryant, Robert G.

    2008-01-01

    LARC(TradeMark)-SI, Langley Research Center-Soluble Imide, was developed in 1992. This new polyimide won a 1995 Research and Development 100 Award, with the first patent issuing in 1997 and subsequent issued patents in 1998 and 2000. Currently, this polymer has been successfully licensed by NASA, and has generated revenues in excess of 1.4 million dollars. This might seem insignificant in comparison to industrially developed technology, where the customer is understood, technologies that use a novel assembly of commercial off the shelf (COTS) components, or software patents and "method based" innovations that do not require any material beyond labor, as examples. However, consider that LARC(TradeMark)-SI competes in areas currently dominated by traditional materials at a cost disadvantage ($350/lb) and that the physical-mechanical properties of LARC(TradeMark)-SI are similar to other high performance polymers. Indeed the success of this particular polymer was due to many factors and many lessons learned to the point that the invention was the most important, but least significant part in the commercialization of this material. This brief paper outlines the significant factors that occurred to make this technology available for the public access and application development that led to the licensing success of this material.

  8. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    Science.gov (United States)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  9. Space power technology 21: Photovoltaics

    Science.gov (United States)

    Wise, Joseph

    1989-01-01

    The Space Power needs for the 21st Century and the program in photovoltaics needed to achieve it are discussed. Workshops were conducted in eight different power disciplines involving industry and other government agencies. The Photovoltaics Workshop was conducted at Aerospace Corporation in June 1987. The major findings and recommended program from this workshop are discussed. The major finding is that a survivable solar power capability is needed in photovoltaics for critical Department of Defense missions including Air Force and Strategic Defense Initiative. The tasks needed to realize this capability are described in technical, not financial, terms. The second finding is the need for lightweight, moderately survivable planar solar arrays. High efficiency thin III-V solar cells can meet some of these requirements. Higher efficiency, longer life solar cells are needed for application to both future planar and concentrator arrays with usable life up to 10 years. Increasing threats are also anticipated and means for avoiding prolonged exposure, retraction, maneuvering and autonomous operation are discussed.

  10. ESA Technologies for Space Debris Remediation

    Science.gov (United States)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  11. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  12. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    Science.gov (United States)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed

  13. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  14. The United Nations Human Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed

  15. Profile of Clean Technology Commercialization in the U.S.

    Science.gov (United States)

    Mehta, Manish

    2010-04-01

    In 2009, the National Center for Manufacturing Sciences (NCMS) performed it third successive study of the growth and transition of nanotechnology into commercial products, under award from the National Science Foundation (NSF). Nanotechnology is a recently recognized cross-disciplinary field of a variety of potentially disruptive technologies that involves the creation and operation of objects at the nanoscale, up to 100 nanometers in size. Nanomanufacturing is the large-scale manipulation of matter at the nanoscale, to produce value-added components. Because of the economically significant new markets and breadth of applications that can benefit from the exploitation of these size-driven aspects, much international research and commercial effort is being expended to create revolutionary value-added products using the many capabilities and tools enabled by nanotechnology. In the context of Michigan and many other US states, startup and commercialization activity is especially important in market diversification and job growth initiatives. This trend has accelerated new applications of nanotechnology in industrial and consumer markets related to energy efficiency and environmentally conscious manufacturing, known as ``cleantech." Dr. Mehta’s presentation will illustrate the industry’s major trends, concerns and barriers across key strategic indicators, as well as highlight the characteristics of startup businesses and established players in this important field.

  16. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  17. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  18. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  19. Technology requirements for commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Frank, T.G.; Rossi, C.E.

    1981-01-01

    Current inertial confinement fusion (ICF) research is directed primarily at physics experiments intended to provide confidence in the scientific feasibility of the basic concept. In conjunction with these experiments, a variety of laser and particle beam drivers having potential for eventual use in fusion power plants is being developed. Expectations are that the scientific feasibility of ICF will be demonstrated in the latter part of the 1980s. At that time, the emphasis of the program will shift to engineering, economic, environmental, and licensing issues with the necessary technology development effort continuing into the early part of the next century. This paper discusses the technology requirements for the successive phases of engineering development leading to commercial application of ICF. The engineering areas requiring significant effort for ICF application include high average power driver development; pulsed high-energy power supply development; reactor cavity and heat transport system design; tritium extraction and control; commercial pellet development; pellet injection, tracking, and targeting systems design; materials radiation, fatigue, and corrosion behavior; and reactor plant systems integration and demonstration

  20. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  1. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  2. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    Science.gov (United States)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  3. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  4. Magnetic giant magnetoresistance commercial off the shelf for space applications

    DEFF Research Database (Denmark)

    Michelena, M.D.; Oelschlägel, Wulf; Arruego, I.

    2008-01-01

    The increase of complexity and miniaturizing level of Aerospace platforms make use of commercial off the shelf (COTS) components constitute a plausible alternative to the use of military or rad-tolerant components. In this work, giant magnetoresistance commercial sensors are studied to be used...

  5. In-Space Inspection Technologies Vision

    Science.gov (United States)

    Studor, George

    2012-01-01

    Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors

  6. Nonproliferation Challenges in Space Defense Technology - PANEL

    Science.gov (United States)

    Houts, Michael G.

    2016-01-01

    The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?

  7. The Deployment of a Commercial RGA to the International Space Station

    Science.gov (United States)

    Kowitt, Matt; Hawk, Doug; Rossetti, Dino; Woronowicz, Michael

    2015-01-01

    The International Space Station (ISS) uses ammonia as a medium for heat transport in its Active Thermal Control System. Over time, there have been intermittent component failures and leaks in the ammonia cooling loop. One specific challenge in dealing with an ammonia leak on the exterior of the ISS is determining the exact location from which ammonia is escaping before addressing the problem. Together, researchers and engineers from Stanford Research Systems (SRS) and NASA's Johnson Space Center and Goddard Space Flight Center have adapted a commercial off-the-shelf (COTS) residual gas analyzer (RGA) for repackaging and operation outside the ISS as a core component in the ISS Robotic External Leak Locator, a technology demonstration payload currently scheduled for launch during 2015. The packaging and adaptation of the COTS RGA to the Leak Locator will be discussed. The collaborative process of adapting a commercial instrument for spaceflight will also be reviewed, including the build-­-up of the flight units. Measurements from a full-­-scale thermal vacuum test will also be presented demonstrating the absolute and directional sensitivity of the RGA.

  8. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  9. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  10. Transformational System Concepts and Technologies for Our Future in Space

    Science.gov (United States)

    Howell, Joe T.; Mankins, John C.

    2004-01-01

    Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process

  11. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  12. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  13. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    Science.gov (United States)

    2010-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title III...

  14. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  15. The role of market research in the commercialization of technology

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, D.L.; Smith, S.A.

    1988-03-01

    The objectiv eof this report is to provide information on available empirical work that describes criteria used by the residential consumer market in selectign energy and energy-related products. This market is important to the US Department of Energy's (DOE) Office of Building and Community Services (OBCS), which sponsors the developement of many energy-conserving technologies ultimately used by the residential consumer. In this report, the consumer decision-making process is described, and case studies are presented to illustrate the importance of conducting systematic market research in the early stages of the technology-development process. Consumer decision making is examined through a discussion of the steps of the decision-making process: problem recognition, information search, evaluation of alternatives, and purchase decision. Post-purchase behavior and its implications to the OBCS and to commercial marketing research are also discussed. The four case studies that are presented in this report illustrate the importance of market research in building energy loss, lighting, water heating, and refrigeration: (1) low-emissivity (low-E) windows; (2) long life light bulbs; (3) heat pump water heaters; and (4) energy efficient refrigerator-freezer.

  16. A model for technology assessment and commercialization for innovative disruptive technologies

    Energy Technology Data Exchange (ETDEWEB)

    KASSICIEH, SULEIMAN K.; WALSH, STEVE; MCWHORTER,PAUL J.; CUMMINGS JR.,JOHN C.; WILLIAMS,W. DAVID; ROMIG JR.,ALTON D.

    2000-05-17

    Disruptive technologies are scientific discoveries that break through the usual product technology capabilities and provide a basis for a new competitive paradigm as described by Anderson and Tushman [1990], Tushman and Rosenkopf [1992], and Bower and Christensen [1995]. Discontinuous innovations are products/processes/services that provide exponential improvements in the value received by the customer much in the same vein as Walsh [1996], Lynn, Morone and Paulson [1996], and Veryzer [1998]. For more on definitions of disruptive technologies and discontinuous innovations, see Walsh and Linton [1999] who provide a number of definitions for disruptive technologies and discontinuous innovations. Disruptive technologies and discontinuous innovations present a unique challenge and opportunity for R and D organizations seeking to build their commercialization efforts and to reinvent the corporation. These technologies do not have a proven path from scientific discovery to mass production and therefore require novel approaches. These critically important technologies are the wellspring of wealth creation and new competency generation but are not readily accepted by the corporate community. They are alternatively embraced and eschewed by the commercial community. They are finally accepted when the technology has already affected the industry or when the technological horse has already flown out of the hanger. Many firms, especially larger firms, seem reluctant to familiarize themselves with these technologies quickly. The trend seems to be that these firms prefer to react to a proven disruptive technology that has changed the product market paradigm. If true, then there is cause for concern. This paper will review the literature on disruptive technologies presenting a model of the progression from scientific idea to mass production for disruptive technologies contrasted to the more copious incremental technologies. The paper will then describe Sandia National Laboratories

  17. The Space Technology 5 Avionics System

    Science.gov (United States)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  18. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  19. Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

    1994-05-01

    End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

  20. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  1. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  2. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  3. U.S. Space Programs: Civilian, Military, and Commercial

    National Research Council Canada - National Science Library

    Figliola, Patricia M; Behrens, Carl E; Morgan, Daniel

    2006-01-01

    .... The space shuttle returned to flight in July 2005 after a 2 1/2-year hiatus following the 2003 Columbia tragedy, but the next launch has been indefinitely postponed because of a foam-shedding event...

  4. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-29

    ... Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Committee (COMSTAC) Risk Management Working Group. The teleconference will take place on Tuesday, January 24... providers for missions transporting NASA astronauts to and from the International Space Station. NASA's...

  5. Scientific, commercial, and space construction uses of Shuttle External Fuel Tanks

    Science.gov (United States)

    Morgenthaler, George W.; Ware, Randolph H.

    Recent progress in planning the scientific and commercial use of Shuttle External Tanks (ETs) is reviewed. Emphasis is placed on the development of unique payload modules and thrusters which can be attached to ETs and which will efficiently adapt ETs for low-cost use in space. It is concluded that the ET, a currently underutilized national space asset, has many potential scientific, commercial, and programmatic applications. It is feasible to use the ETs for suborbital and orbital purposes. ET attachment modules are currently being developed, and commercial bases through which companies, universities, and foreign governments may obtain an access to ETs in space are being prepared.

  6. Innovative technologies in urban mapping built space and mental space

    CERN Document Server

    Paolini, Paolo; Salerno, Rossella

    2014-01-01

    The book presents a comprehensive vision of the impact of ICT on the contemporary city, heritage, public spaces and meta-cities on both urban and metropolitan scales, not only in producing innovative perspectives but also related to newly discovered scientific methods, which can be used to stimulate the emerging reciprocal relations between cities and information technologies. Using the principles established by multi-disciplinary interventions as examples and then expanding on them, this book demonstrates how by using ICT and new devices, metropolises can be organized for a future that preserves the historic nucleus of the city and the environment while preparing the necessary expansion of transportation, housing and industrial facilities.

  7. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    Energy Technology Data Exchange (ETDEWEB)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  8. 75 FR 60266 - Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology...

    Science.gov (United States)

    2010-09-29

    ...). Section 615 authorizes exemption from the Buy American Act for acquisition of information technology that... acquisition of information technology that is a commercial item. This same exemption has appeared every year... applies. ``Information technology'' and ``Commercial item'' are already defined in FAR part 2. This is a...

  9. Report of the committee on a commercially developed space facility

    Science.gov (United States)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  10. Automated Rendezvous and Docking Infrastructure to Support Commercial Space Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's safety mandate for crewed and high value spacecraft currently necessitates design requirements that create a cost barrier for commercial companies trying to...

  11. Automated Rendezvous and Docking Infrastructure to Support Commercial Space Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's safety mandate for crewed and high value spacecraft currently necessitates design requirements that create a cost barrier for commercial companies trying to...

  12. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  13. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    Science.gov (United States)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  14. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  15. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    Science.gov (United States)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  16. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  17. Current and Projected Government and Commercial Space Activities

    Science.gov (United States)

    1975-04-01

    telecomunications and other fields are deeply involved in a wide array of space-related activities. On the international scene, many nations are represented in...1,2,3) CENTRAL AND SOUTH AMERICA; Argentina (1,2,3) Bolivia (1,2,3) Brazil (1,2,3) Chile (1,2) Colombia (1) Ecuador (1) Guatemala (1...Such stations are already operating in Canada and Brazil , and an Italian counterpart will be functioning by mid- 1975. (The region covered by the

  18. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  19. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  20. The impact of innovative commercial technologies on students’ behaviour of an economic university

    Directory of Open Access Journals (Sweden)

    Laurentiu-Dan Anghel

    2015-05-01

    Full Text Available In a dynamic business environment, implementing innovative commercial technologies facilitates the winning of new competitive advantages in the retail industry, given the manifested influence on consumer buying behaviour towards commercial units, as well as the significant contribution to the development of modern shops image. This paper presents the attitude of students from the Bucharest University of Economic Studies towards the adoption of innovative retail technologies within hypermarkets in Romania, based on a selective marketing research, conducted on a sample of 359 students from undergraduate and master cycles. The main objectives focused on identifying: the image of certain instruments belonging to the innovative commercial technologies in terms of usefulness in the process of buying; the intention to use innovative commercial technologies; the perception of the main advantages and disadvantages of using innovative commercial technologies in the buying process; the importance of commercial technologies in relation to other attributes underlying the development of a hypermarket image. Research results show a relatively low level of awareness among buyers, due to a reduced exposure to innovative commercial technologies, but a relatively high availability of acceptance in the purchasing process. Thus, there is a favourable assessment of the utility of commercial instruments in the buying process and a relatively high intention of use. The paper also highlights the influence of innovative commercial technologies on store image and loyalty of buyers.

  1. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  2. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-11

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  3. Space technology and robotics in school projects

    Science.gov (United States)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  4. US Interpretation of International Space Policies Regarding Commercial Resource Acquisitions

    Science.gov (United States)

    2015-06-12

    Russia, India, China, and the U.S. to gain access to the moon’s Helium 3 (He3), an extremely rare commodity believed to be ideal for fusion reactors .53...international treaties that conceptualize ‘The Common Heritage of all Mankind,’ specifically the UN 3 Convention on the Law of the Sea (UNCLOS) and the...between current and proposed Space Laws with other international treaties that conceptualize ‘The Common Heritage of all Mankind,’ specifically

  5. Sustainable In-Space Manufacturing through Rapid Prototyping Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — In space manufacturing is crucial to humanity’s continued exploration and habitation of space. While new spacecraft and propulsion technologies promise higher...

  6. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  7. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  8. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  9. Cognition and learning in space technology

    Directory of Open Access Journals (Sweden)

    Kelber Ruhena Abrão

    2016-12-01

    Full Text Available This work analyzes the impact of new technologies in everyday teaching situations. This is a qualitative research, one study of descriptive case, based on observations of the spaces of the classrooms, the same group of children between June 2013 and April 2015, the 1st, 2nd and 3rd years of Primary Education a Catholic private school, as well as interviews with the regents’ teachers of these classes. We seek to establish links between the acquisition of written language in conventional texts and those in hypertext, as well as understand how to structure the scientific and digital literacy in these areas. In that sense, it was found that these experiences are possible to happen in designed spaces antagonistically to traditional spaces as often, it is less rigid, more flexible, a fact that makes the pleasant atmosphere and at the same time, more accessible, providing an environment sometimes hybrid, in which the dimensions of notebook and tablet coexist and fusion of these opposed pairs of written language acquisition occurs.

  10. Commercial suborbital space tourism-proposal on passenger's medical selection

    Science.gov (United States)

    Kluge, Götz; Stern, Claudia; Trammer, Martin; Chaudhuri, Indra; Tuschy, Peter; Gerzer, Rupert

    2013-12-01

    Commercial human spaceflight has excellent economic and technical perspectives in the next decades. Passengers will be persons from a general population differing from culture, age, gender and health status. They all will have to withstand physical loads of spaceflight such as acceleration and deceleration forces, microgravity, vibration, noise and radiation. There is a necessity to mitigate all negative impacts on the passengers' health. Besides precautionary measures in construction and equipment, a diligent medical selection and pre-flight training is recommended. To ensure an easy and at the same time qualified selection procedure, it is necessary to define medical selection criteria and training methods. As experiences with suborbital spaceflight of private passengers are still few we recommend to implement in the beginning of this new era maximum safety standards. Having performed a satisfactory number of successful flights, some of the selection criteria and training sessions might be loosened or modified. This judicious approach is in the interest of the spaceflight participants as well as of the providing companies. As a guideline we propose a four step approach that allows a quick decision concerning the fitness of participants to fly as well as an intensive preparation of the passengers. For the first two steps positive experiences from medical screening and examination of professional pilots can be utilised. According to JAR-FCL 3 (Joint Aviation Requirements-Flight Crew Licensing, Chapter 3) a questionnaire with medical interview targeting the medical background of the respective person and including no-go criteria provides a first estimation for applicants and medical examiners whether there will be a chance to be accepted as a passenger. The second step of selection comprises the physical examination of the applicant adjusted to the professional pilot's examination procedure. As the physical challenges of the suborbital flight will exceed the impact

  11. 76 FR 31415 - Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology...

    Science.gov (United States)

    2011-05-31

    ... 9000-AL62 Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology... from the Buy American Act for acquisition of information technology that is a commercial item. DATES: Effective Date: May 31, 2011. FOR FURTHER INFORMATION CONTACT: Ms. Cecelia L. Davis, Procurement Analyst, at...

  12. Space commercialization: Analysis of R and D investments with long time horizons

    Science.gov (United States)

    Sheahen, T. P.

    1984-01-01

    By following a single hypothetical example through a series of variations, the way different potential investors might look at the opportunity to participate in space commercialization is described. The example itself is fairly typical of commercial opportunities in space. The chief characteristics are a steadily increasing requirement for capital infusion over an 8 year period, followed by a very generous stream of profits running another decade or more beyond. There is a decision point at 3 years, at the conclusion of laboratory R&D; and another at 6 years, following 2 initial space flights.

  13. Commercial Space Transportation and Approaches to landing sites over Maritime Areas

    OpenAIRE

    Hesselink, Henk; Stevens, Jos; Nieuwenhuisen, Dennis; Schmitt, Dirk-Roger

    2015-01-01

    Commercial Space Transportation becomes an international business and requires landing opportunities all over the world. Hence the integration of space vehicles in other airspace than the US NAS is an important topic to be considered. The Single European Sky ATM Research Programme (SESAR) is preparing the implementation of a new ATM system in Europe. The requirements are defined by the concept of the shared Business Trajectory and System Wide Information Management (SWIM). Space vehicle op...

  14. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  15. Safety And Promotion in the Federal Aviation Administration- Enabling Safe and Successful Commercial Space Transportation

    Science.gov (United States)

    Repcheck, Randall J.

    2010-09-01

    The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.

  16. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  17. Technology review of commercial food service equipment - final report

    Energy Technology Data Exchange (ETDEWEB)

    Rahbar, S.; Krsikapa, S. [Canadian Gas Research Inst., Don Mills, ON (Canada); Fisher, D.; Nickel, J.; Ardley, S.; Zabrowski, D. [Fisher Consultants (Canada); Barker, R.F. [ed.

    1996-05-15

    Technical information on commercial gas cooking appliances was presented. This second volume provided an appliance-by-appliance comprehensive assessment of the energy performance of commercial food service equipment. Energy assessments were made for the following categories of cooking equipment: fryers, griddles, broilers, ranges, Chinese ranges, ovens, steamers, steam kettles, and braising pans. Recommendations were made for improving the energy efficiency and overall performance of gas appliances to support of the Canadian gas utilities marketing and energy conservation initiatives. 71 refs., 37 tabs., 58 figs.

  18. Researches and commercialization of food irradiation technology in China

    International Nuclear Information System (INIS)

    Gao Meixu; Ha Yiming; Chen Hao; Liu Chunquan; Chen Xiulan

    2007-01-01

    The status of food irradiation on research, standard and commercialization is described in the paper. The main research fields now include degradation of chloramphenicol residue by irradiation, promoting safety of meat products, frozen seafood and ready-to-eat products by irradiation, lower activity of allergic protein by irradiation, identification of irradiated food and irradiation as a phytosanitary treatment. The existed standards need to be revised, and new standard need to be established. The commercialization stages of food irradiation and quality assurance system of irradiation company are also analyzed. (authors)

  19. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    International Nuclear Information System (INIS)

    Harvey, T.N.

    1995-01-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE's clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies

  20. Next-generation batteries and fuel cells for commercial, military, and space applications

    CERN Document Server

    Jha, A R

    2012-01-01

    Distilling complex theoretical physical concepts into an understandable technical framework, Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications describes primary and secondary (rechargeable) batteries for various commercial, military, spacecraft, and satellite applications for covert communications, surveillance, and reconnaissance missions. It emphasizes the cost, reliability, longevity, and safety of the next generation of high-capacity batteries for applications where high energy density, minimum weight and size, and reliability in harsh conditions are

  1. Benefits Awareness: Educating Industry, Finance, and the Public About Space Commercialization

    Science.gov (United States)

    Powers, Blake; Nall, Mark; Casas, Joseph C.; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    For space to be truly commercialized, businesses of all sizes and types must be involved, from foundries to agricultural research initiatives. Achieving this goal, however, requires three separate but integrated educational efforts to support it. The first is to educate industry leaders about the possibilities available through such research, while dispelling some of the myths and misinformation educate the financial community about the economic benefits that result both from the research and the leveraging of private research dollars through the use of space and microgravity research. The third is to educate the public about the tangible benefits that come directly to them from such efforts, the economic benefits to national economies from same, and the other less tangible benefits that will cascade from commercial operations. Together, these steps will educate and provide the framework necessary to help advance space commercialization.

  2. The Application of Intelligent Building Technologies to Space Hotels

    Science.gov (United States)

    Fawkes, S.

    This paper reports that over the last few years Intelligent Building technologies have matured and standardised. It compares the functions of command and control systems in future large space facilities such as space hotels to those commonly found in Intelligent Buildings and looks at how Intelligent Building technologies may be applied to space hotels. Many of the functions required in space hotels are the same as those needed in terrestrial buildings. The adaptation of standardised, low cost, Intelligent Building technologies would reduce capital costs and ease development of future space hotels. Other aspects of Intelligent Buildings may also provide useful models for the development and operation of space hotels.

  3. Management challenges from technological development in commercial fisheries

    NARCIS (Netherlands)

    Eigaard, O.R.

    2010-01-01

    The major objective of this synthesis has been to throw light on how technological development in fisheries can complicate efforts to balance harvesting capacity and fish resources. The basis of achieving this objective has been the compilation of technological data from a selection of European

  4. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    Science.gov (United States)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  5. Space Photovoltaic Research and Technology, 1988. High Efficiency, Space Environment, and Array Technology

    Science.gov (United States)

    1989-01-01

    The 9th Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from April 19 to 21, 1988. The papers and workshop summaries report remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications. Among the former is the recently developed high efficiency GaAs/Ge cell, which formed the focus of a workshop discussion on heteroepitaxial cells. Still aimed at the long term, but with a significant payoff in a new mission capability, are InP cells, with their potentially dramatic improvement in radiation resistance. Approaches to near term, array specific powers exceeding 130 W/kg are also reported, and advanced concentrator panel technology with the potential to achieve over 250 W/sq m is beginning to take shape.

  6. Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M A

    1992-01-01

    This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

  7. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  8. Space Missions and Information Technology: Some Thoughts and Highlights

    Science.gov (United States)

    Doyle, Richard J.

    2006-01-01

    A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

  9. Lidar In-Space Technology Experiment (LITE) L1

    Data.gov (United States)

    National Aeronautics and Space Administration — LITE_L1 data are LIDAR Vertical profile data along the orbital flight path of STS-64.Lidar In-Space Technology Experiment (LITE) used a three-wavelength (355 nm, 532...

  10. "Trust Me--I'll Deliver": Acquisition Approaches to Guarantee Commercial Companies Deliver Critical Space Products in Time of Crisis

    National Research Council Canada - National Science Library

    Denker, Stephen

    1998-01-01

    .... However, over the last ten years, the US military has begun to rely on commercially available products to meet many of its requirements in a variety of sectors including the commercial space sector...

  11. R&D to Market Success: BTO-Supported Technologies Commercialized from 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-04-01

    Technology commercialization plays an essential role in almost every facet of the U.S. economy. It spurs private sector funding that supports innovative breakthroughs, drives growth through increased productivity and product development, increases American competitiveness, and creates domestic jobs. The BTO Technology Commercialization report is an annual publication offering the latest information on successfully commercialized technologies resulting in part from BTO’s research partnerships. This report defines a “commercialized technology” as a process, technique, design, machine, tool, material, or software that was developed with funds provided at least in part by BTO, and that has resulted in domestic sales or is in use in the U.S. This definition also applies to open-source software products developed with support from BTO, all of which are currently distributed freely but are actively used for commercial purposes.

  12. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    Science.gov (United States)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  13. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably

  14. Proceedings of the Twelfth International Symposium on Space Terahertz Technology

    Science.gov (United States)

    Mehdi, Imran (Editor)

    2001-01-01

    The Twelfth International Symposium on Space Terahertz Technology was held February 14-16, 2001 in San Diego, California, USA. This symposium was jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory, California Institute of Technology. The symposium featured sixty nine presentations covering a wide variety of technical topics relevant to Terahertz Technology. The presentations can be divided into five broad technology areas: Hot Electron Bolometers, superconductor insulator superconductor (SIS) technology, local oscillator (LO) technology, Antennas and Measurements, and Direct Detectors. The symposium provides scientists, engineers, and researchers working in the terahertz technology and science fields to engineers their work and exchange ideas with colleagues.

  15. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  16. The Innovative Technology Deployment (ITD)/ Commercial Vehicle Information Systems and Networks (CVISN) Program, 2016 annual report.

    Science.gov (United States)

    2017-06-01

    On December 4, 2015, the Fixing Americas Surface Transportation Act, 2015 (FAST Act) (Pub. L. 114-94) established the Innovative Technology Deployment (ITD) Grant Program, replacing the long-standing Commercial Vehicle Information Systems and Netw...

  17. Hand-Held and Portable Devices for Oil Assessment: Commercial Technologies for Maintenance Activities

    National Research Council Canada - National Science Library

    Urbansky, Edward T

    2006-01-01

    In an effort to reduce costs and bring about real-time oil assessment in the field while reducing maintenance costs, the Department of Defense seeks to further develop existing commercial technologies...

  18. ENVIRONMENTAL TECHNOLOGY PROTOCOL VERIFICATION REPORT, EMISSIONS OF VOCS AND ALDEHYDES FROM COMMERCIAL FURNITURE (WITH APPENDICES)

    Science.gov (United States)

    As part of a U.S. Environmental Protection Agency Environmental Technology Verification program, the Research Triangle Institute (RTI) developed a test protocol for measuring volatile organic compounds and aldehydes in a large chamber. RTI convened stakeholders for the commercial...

  19. Analysis of For-Profit Commercial Firm Participation in Technology Investment Agreements

    National Research Council Canada - National Science Library

    Tucker, Barbara

    2002-01-01

    .... These changes impacted the military's ability to maintain technological superiority over its adversaries, which was the foundation of a successful U,S, national defense, Commercial research and development (R&D...

  20. Enabling the Commercial Space Transportation Industry at the Mid-Atlantic Regional Spaceport

    Science.gov (United States)

    2011-09-01

    DoD Department of Defense EELV Evolved Expandable Launch Vehicle FAA Federal Aviation Administration FAR Federal Acquisition Regulation FBO Fixed...The commercial expansion into space has prompted the Federal Aviation Administration (FAA) to begin regulating these activities while NASA continues

  1. 75 FR 30690 - Civil Penalty Inflation Adjustment for Commercial Space Adjudications

    Science.gov (United States)

    2010-06-02

    ... maximum civil penalty amounts for inflation to preserve their deterrent impact. Under these laws, each...-1240; Amendment No. 406-6] RIN 2120-AJ63 Civil Penalty Inflation Adjustment for Commercial Space... Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement...

  2. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-11-19

    ... Commercial Space Team, a briefing on activities of the Education and Public Outreach Committee, and an.... citizens must fax a copy of their passport, and print or type their name, current address, citizenship... December 7, 2010. To expedite admittance, attendees with U.S. citizenship can provide identifying...

  3. 76 FR 51461 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2011-08-18

    ... Launch Vehicles (1 p.m.-3 p.m.) --Risk Management (3 p.m.-5 p.m.) The proposed agenda for October 14... contact Susan Lender, DFO, (the Contact Person listed below) in writing (mail or e-mail) by October 5... the meeting. FOR FURTHER INFORMATION CONTACT: Susan Lender (AST-5), Office of Commercial Space...

  4. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  5. Hypersonic Reusable Technologies for Access to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The central objective of the proposal is to implement a robust multi-physics optimization on a hypersonic space-plane concept. Optimization evaluates changes to the...

  6. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  7. The use of mobile technologies amongst South African commercial ...

    African Journals Online (AJOL)

    Organisations offering extension services provide services to farmers which include the provision of relevant and current information pertaining to agriculture. The increased use of mobile technologies is changing the way farmers access information, specifically by using the Internet. This paper focuses on South African (SA) ...

  8. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    Science.gov (United States)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  9. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    Science.gov (United States)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  10. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 15: commercialization and technology transfer

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 9 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of commercialization and technology transfer. (Topic 15). One item was in INIS s ubject scope and a separate abstract was prepared for it

  11. Technology and commercial supply of components for the LHC project

    CERN Document Server

    Faugeras, Paul E

    1998-01-01

    After a brief reminder of the motives and the outline of the Large Hadron Collider (LHC) project, one will review the technology and the hardware to be built up. The LHC calls for High Tech innovation s in superconductivity, cryogenics with superfluid helium, ultra high vacuum, surface treatments, etc. which have to be transferred to Industry and produced on a large scale. It will also make extensi ve use of more conventional technology, but because of the intrinsic complexity of the machine and of the international nature of its funding and procurement sources, it will require sophisticated man agement and logistics tools to minimize costs and installation time. The planning for the whole project will be given with an indication of the nature and time schedule of the major contracts.

  12. White Paper on Dish Stirling Technology: Path Toward Commercial Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Stechel, Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Becker, Peter [Stirling Energy Systems, Scottsdale, AZ (United States); Messick, Brian [Stirling Energy Systems, Scottsdale, AZ (United States)

    2016-07-01

    Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.

  13. Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.

    1996-01-01

    This task covers the development and operation of an experimental test unit located in a Building 4501 hot cell within Building 4501 at Oak Ridge National Laboratory (ORNL). This equipment is designed to test radionuclides removal technologies under continuous operatoin on actual ORNL Melton Valley Storage Tank (MVST) supernatant, Savannah River high-level waste supernatant, and Hanford supernatant. The latter two may be simulated by adding the appropriate chemicals and/or nuclides to the MVST supernatant

  14. Developing linear-alpha-Olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, Andreas; Woehl, Anina; Mueller, Wolfgang; Boelt, Heinz V. [Linde AG, Pullach (Germany). Engineering Div.; Mosa, Fuad M.; Al-Hazmi, Mohammed H. [Saudi Basic Industries Corporation, Riyadh (Saudi Arabia)

    2012-06-15

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN {sup registered} technology for a full range LAO plant as well as a 1-Hexene selective On Purpose technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN {sup registered} as well as the LAO OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN {sup registered} technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed LAO OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  15. Dynamic partnership: A new approach to EM technology commercialization and deployment

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1996-01-01

    The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the open-quotes valley of death,close quotes the general term for barriers to demonstration, commercialization, and deployment. The Energy ampersand Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD ampersand C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed open-quotes Dynamic Partnership,close quotes and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs

  16. Developing linear-alpha-olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Woehl, A.; Mueller, W.; Boelt, H. [Linde AG, Pullach (Germany)

    2011-07-01

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN technology for a full range LAO plant as well as a 1-Hexene selective ''On Purpose'' technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN as well as the OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  17. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  18. SpaceCube Technology Brief Hybrid Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2016-01-01

    The intent of this presentation is to give status to multiple audience types on the SpaceCube data processing technology at GSFC. SpaceCube has grown to support multiple missions inside and outside of NASA, and we are being requested to give technology overviews in various forums.

  19. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    Science.gov (United States)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  20. Media Spaces, Places and Palpable Technologies

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten

    2006-01-01

    of these prototypes form what can be termed as media spaces - but rise questions to the traditional understanding of the media space concept - since the emergency response media spaces are not ‘set up' in predefined physical settings, do allow use of a range of (not necessarily predefined) media, and the people...... in the media space cannot be defined as a limited group of users. We also rise questions to the formality of communication, where we see the communication going on in emergency response, as a mix of formal and informal communication....

  1. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    Science.gov (United States)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  2. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost

  3. Transfer of space technology to industry

    Science.gov (United States)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  4. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    Science.gov (United States)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  5. Dynamic partnership: A new approach to EM technology commercialization and deployment

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1996-01-01

    The cleanup of nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental sector. Effective and efficient cleanup of EM sites requires the timely development or modification of cleanup technologies. Facilitating the development of technologies to meet DOE goals for site cleanup is the responsibility of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the open-quotes valley of death,close quotes the general term for barriers to demonstration, commercialization, and deployment. The Energy ampersand Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD ampersand C) of energy and environmental technologies, is in the second year of a Cooperative Agreement with DOE's Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed open-quotes Dynamic Partnership,close quotes and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies

  6. A study on the effects of the pollutant in the underground commercial space on the body

    International Nuclear Information System (INIS)

    Yeo, R.G.; Kim, T.W.; Hong, W.H.

    2008-01-01

    On average, people spend 80 to 90 per cent of their time indoors. In an effort to address concerns regarding indoor air pollution, this study measured air quality in an underground commercial space to examine the degree of indoor air pollution. Indoor workers were asked to respond to a survey questionnaire to determine the effects of pollutants on the human body. Air quality measurements showed that the concentrations of total volatile organic compounds (TVOCs) and formaldehyde (HCHO) exceeded the maintenance and recommendation standards of the Korean Ministry of Environment. The respondents stated that they had psychological, nasal, and skin symptoms associated with poor ventilation and dust problems. To that end, computer simulation will be used to study the air flow in underground commercial space as well as movement of pollutants. This reports showed that indoor pollutants are the major causes of disease. As such, it is essential to maintain good indoor air quality. 6 refs., 21 tabs., 5 figs

  7. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  8. Space Technology Mission Directorate: Game Changing Development

    Science.gov (United States)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  9. Not-In-Kind Technologies for Residential and Commercial Unitary Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K.

    2001-01-11

    This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and

  10. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  11. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  12. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  13. Learning effects and the commercialization of new energy technologies: the case of nuclear power

    International Nuclear Information System (INIS)

    Zimmerman, M.B.

    1982-01-01

    Recently, attention has been focused on government policy toward commercialization of new energy technologies. Arguments are offered that, in the early days of commercialization, significant learning externalities that justify subsidy are present. Using nuclear power as a case study, this article estimates the learning effects actually present. The effect of experience on construction cost and on the accuracy of cost estimation is examined. External learning is separated from internalized learning about both construction cost and cost estimation. Finally, an estimate of the value of both kinds of learning externality is provided. The results suggest learning externalities were present, but had little effect on the rate of commercialization. 19 references, 5 tables

  14. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-04-01

    Full Text Available Summary: Technology transfer (TT encompasses a variety of activities that move academic discoveries into the public sector. Part 1 of this 2-part series explored steps in acquisition of intellectual property (IP rights (e.g., patents and copyrights. Part 2 focuses on processes of commercialization, including the technology transfer office, project development toward commercialization, and licensing either through the establishment of startup companies (venture capital–backed or otherwise or directly to industry. In private industry, TT often occurs through the sale of IP, products, or services, but in universities, the majority of TT occurs through the licensing of IP. Key Words: commercialization, licensing, technology transfer, venture capital

  15. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  16. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  17. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  18. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  19. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  20. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  1. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  2. BiocapsuleTechnology for Delivery of Protein Therapeutics in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — This project concerns NASA Biocapsule technology, which involves the develoment of buckypaper containers for living cells, to be used for delivery of medical...

  3. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  4. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  5. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  6. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  7. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber.......Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  8. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  9. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  10. Conditions of the potential for commercialization of the patent: the implementation of a technology public offering system technology at CNEN

    International Nuclear Information System (INIS)

    Archila, Daniela Lima Cerqueira

    2015-01-01

    This dissertation identifies the main factors which represent the conditions for the potential commercialization of patents aiming at the implementation of a system for technology public offering at CNEN as a strategy for creating licensing opportunities to the industrial sector. The method applied refers to an exploratory case study of a patented technology selected from a sample of CNEN's patent portfolio in the biopharmaceutical sector. The case study comprehends a field research of interviews conducted with two specialists in technology and innovation management, one researcher from CNEN and a biopharmaceutical company. The results show that among the nineteen main factors - related to technology, market, business and Science and Technology Organization (STO) - the market dynamics, the potential applications of the technology and an abstract of its main benefits compared to existing technologies are the major relevant information for each technology to be included in the public offering system. Other results indicate that the evaluation of such factors may be conducted by competent professionals to bring less uncertainty and risk to the early-stage of the innovation process, as well as enhance the potential interest of a company in the technology. On the other hand, the latter requires innovation capabilities to move the technology forward – additional R&D, scale-up, manufacturing and marketing - whilst the STO needs a entrepreneurial culture that mitigates its obstacles, creates more positive solutions for its routines and processes and gives sustainability to its Technology Transfer Office (TTO) through valuing its personnel in the long term. Finally, emphasis on technological partnerships with companies can be a motivating feature for directing the STO's patent strategy to the creation of proprietary technological platforms that reflect problems experienced by the commercial environment, as well as the development of this strategic patent

  11. PREPARING THE PUBLIC FOR COMMERCIALIZATION AND GUIDANCE OF STRUCTURAL MEDIA SPACE TOWARDS ITS FUSION WITH ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Marina Đukić

    2015-07-01

    Full Text Available Through genre structure analysis of the Television´s Zagreb First Channel schedule from the beginning of 1970´s till the end of the 1980´s accompanied by analysis of advertising in same period, the paper will examine the ways and intensity of commercialization entrance in Croatian media space dominated then by state media. Television schedule genre change and the broadcast of economic propaganda program will point out the different character of the television. It can be said that it will serve for preparing the public for commercialization entrance and guidance of structural media space towards its fusion with advertising one. The assumption is that in spite of the TV schedule change, which was in economic sense accompanied by economy reforms in order to establish market economy, the public wasn´t yet delivered to advertisers. One of the clarification lies in the role of the media, which then had revolutionary function with main purpose of not the voters’ generation but only to create patriots. The paper will reproduce a kind of public transformation genesis from latent status in state guided media system to same status of latent consumers in dual media model.

  12. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    Science.gov (United States)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  13. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    Science.gov (United States)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  14. Space power technology into the 21st century

    International Nuclear Information System (INIS)

    Faymon, K.A.; Fordyce, J.S.

    1984-01-01

    This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel-hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions. 18 references

  15. Workshop on the Federal Role in the Commercialization of Large Scale Windmill Technology (summary and papers)

    Science.gov (United States)

    Lerner, J. I.; Miller, G.

    Large-scale wind system and windmill technology and prospects for commercial applications are discussed. Barriers that may affect the commerical viability of large-scale windmill systems are identified, including the relatively poor financial condition of much of the utility industry which effectively prevents many utilities from investing substantially in any new projects. The potential market addressed by the Federal program in large-scale windmill systems is examined. Some of the factors that may limit the degree of market penetration for wind energy systems are: costs of competing fossil and nuclear fuels and technologies; rate of acceptance of new technologies; and competition from other solar technologies, including biomass, solar thermal, and photovoltaic systems. Workshop participants agreed that existing Federal legislation provides significant incentives for the commercialization of large-scale wind machines.

  16. Building Fluid Spaces: The Impact of the Technology in the Contemporary Space Conception

    Directory of Open Access Journals (Sweden)

    Priscila Arantes

    2008-08-01

    Full Text Available In this article, we are going to debate the new space-time configurations from the technological- informacional impact, taking the contemporary art as study object. Taking as object of study the contemporaty artistic practices, we will analyse the displacement of a vision of fixed space, homogeneous, given, at first, to a vision of mobile space, which occurs from the flow of constant communication and connection; a space built from a liquid cartography, produced in phenomenological and relational way.

  17. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  18. RDF technology development: from R and D to commercial scale - lessons learned

    International Nuclear Information System (INIS)

    Muhd Noor Muhd Yunus

    2006-01-01

    Malaysia is still negotiating for the best strategies to manage her 17,000 ton/day MSW in the best manner - politically, economically and environmentally. A National Solid Waste Strategic Plan has been established since 2003, advocating and adopting the Integrated Solid Waste Management System (IWMS). Recently, MINT launched the Waste to Wealth (W2W) blue print to spearhead the idea at National level, of treating waste as resource, thus could be translated to a profitable venture. In this respect, MINT role is very much focused to technology development. However, choosing the right mix of the waste management hierarchy, and thus technology, is not simple. We believed that, a technology that embraced all aspect of waste hierarchy and meet the Best Available Technology Not Entailing Excessive Cost (BATNEEC) or Best Available Technology Suiting Socio Economic Standing (BATSSES) concept will give good promise, thus certainly answers the above cry. In the above pursuit, we developed a commercial and R and D strategies concurrently to arrive at the best compromise. The technology selected, based on RDF, was not a rocket science but innovatively developed to match the waste characteristics, local cultures and social habit, national industrial strength and business opportunities, commercial packaging and institutional support at all levels - politically, socially, commercially, technically and even among government officials. The success of the project lies also in the trusts developed between the government organization conducting R and D and the private sector as the main technology developer, which transcends beyond the normal project contract agreement-manifesting the success of smart partnership model. This paper will share some success, challenges and experience, and lessons learned, in developing the RDF technology from the R and D stage to a full 700 t/day commercial plant in Semenyih, Malaysia. Also highlighted is the impact of this project on the current thinking

  19. Space systems computer-aided design technology

    Science.gov (United States)

    Garrett, L. B.

    1984-01-01

    The interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system is described, together with planned capability increases in the IDEAS system. The system's disciplines consist of interactive graphics and interactive computing. A single user at an interactive terminal can create, design, analyze, and conduct parametric studies of earth-orbiting satellites, which represents a timely and cost-effective method during the conceptual design phase where various missions and spacecraft options require evaluation. Spacecraft concepts evaluated include microwave radiometer satellites, communication satellite systems, solar-powered lasers, power platforms, and orbiting space stations.

  20. Ethics and the Potential Conflicts between Astrobiology, Planetary Protection, and Commercial Use of Space

    Directory of Open Access Journals (Sweden)

    Erik Persson

    2017-05-01

    Full Text Available A high standard of planetary protection is important for astrobiology, though the risk for contamination can never be zero. It is therefore important to find a balance. If extraterrestrial life has a moral standing in its own right, it will also affect what we have to do to protect it. The questions of how far we need to go to protect extraterrestrial life will be even more acute and complicated when the time comes to use habitable worlds for commercial purposes. There will also be conflicts between those who want to set a world aside for more research and those who want to give the green light for development. I believe it is important to be proactive in relation to these issues. The aim of my project is therefore to identify, elucidate, and if possible, suggest solutions to potential conflicts between astrobiology, planetary protection, and commercial use of space.

  1. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  2. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  3. NASA commercial programs

    Science.gov (United States)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  4. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  5. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Summary: Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players. Key Words: copyright, intellectual property, patent, technology transfer

  6. Technology Commercialization Effects on the Conduct of Research in Higher Education

    Science.gov (United States)

    Powers, Joshua B.; Campbell, Eric G.

    2011-01-01

    The objective of this study was to investigate the effects of technology commercialization on researcher practice and productivity at U.S. universities. Using data drawn from licensing contract documents and databases of university-industry linkages and faculty research output, the study findings suggest that the common practice of licensing…

  7. Commercialization of biopulping: an energy-saving and environmentally-friendly technology for the paper industry

    Science.gov (United States)

    Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; Carl Houtman; John Klungness

    2003-01-01

    The biopulping process for treating wood chips prior to mechanical pulping has been scaled up through an extensive development program and has been demonstrated at 50 ton semicommercial scale. Detailed engineering analyses and design studies have been performed for full production-scale mill implementation, and the technology is ready for commercial use. This paper...

  8. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    Science.gov (United States)

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  9. Technology Development Risk Assessment for Space Transportation Systems

    Science.gov (United States)

    Mathias, Donovan L.; Godsell, Aga M.; Go, Susie

    2006-01-01

    A new approach for assessing development risk associated with technology development projects is presented. The method represents technology evolution in terms of sector-specific discrete development stages. A Monte Carlo simulation is used to generate development probability distributions based on statistical models of the discrete transitions. Development risk is derived from the resulting probability distributions and specific program requirements. Two sample cases are discussed to illustrate the approach, a single rocket engine development and a three-technology space transportation portfolio.

  10. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  11. Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components

    Science.gov (United States)

    Vogel, T.; Gronowski, M.

    2009-05-01

    Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based

  12. Johnson Space Center Research and Technology Annual Report 1998-1999

    Science.gov (United States)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  13. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  14. Laser space communication experiment: Modulator technology

    Science.gov (United States)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  15. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  16. FAA's Implementation of the Commercial Space Launch Amendments Act of 2004- The Experimental Permit

    Science.gov (United States)

    Repcheck, J. Randall

    2005-12-01

    A number of entrepreneurs are committed to the goal of developing and operating reusable launch vehicles for private human space travel. In order to promote this emerging industry, and to create a clear legal, regulatory, and safety regime, the United States (U.S.) Congress passed the Commercial Space Launch Amendments Act of 2004 (CSLAA). Signed on December 23, 2004 by U.S. President George W. Bush, the CSLAA makes the Federal Aviation Administration (FAA) responsible for regulating human spaceflight. The CSLAA, among other things, establishes an experimental permit regime for developmental reusable suborbital rockets. This paper describes the FAA's approach in developing guidelines for obtaining and maintaining an experimental permit, and describes the core safety elements of those guidelines.

  17. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  18. Universities innovation and technology commercialization challenges and solutions from the perspectives of Malaysian research universities

    Science.gov (United States)

    Rasli, Amran; Kowang, Tan Owee

    2017-11-01

    The roles of universities in the context of a nation's shift towards sustainable competitive advantage have changed drastically recently. Universities are now expected to contribute to the creation of new knowledge-based industries, i.e. to support knowledge-based economic growth through the creation of industrially-relevant knowledge/innovation and their commercialization, and to attract global MNCs in new emerging industries; and foster entrepreneurial mindset to support the future knowledge economy where stable job opportunities are no longer guaranteed. As such, there is a need to inculcate the spirit of enterprise as compared to the past where high economic growth has provided graduates with good career prospects as salaried employees, particularly in MNC subsidiaries and the government. The shift requires a bigger role in supporting innovation and commercialization, i.e. to venture beyond its traditional function of teaching, research and publication by incorporating a technology commercialization role which will inevitably help the institution to improve its global ranking. However, there are many national and operational obstacles that impede the progression of research and development to commercialization and entrepreneurship. The main challenges include: (I) lack of connectivity between the industry and academia; (2) myopic perception of the market; (3) inability to evaluate viability from ideas to innovations and beyond; (4) lack of support for investment in new technologies, and (5) lack of positive culture among academic researchers. To overcome the aforementioned obstacles, priority in developing a complete commercialization ecosystem has become a national agenda for most emerging economies.

  19. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  20. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  1. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  2. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  3. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Climate Change Science and Technology Integration (CCCSTI)

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program

  4. Sustainability Through Technology Licensing and Commercialization: Lessons Learned from the TRIAD Project.

    Science.gov (United States)

    Payne, Philip R O

    2014-01-01

    Ongoing transformation relative to the funding climate for healthcare research programs housed in academic and non-profit research organizations has led to a new (or renewed) emphasis on the pursuit of non-traditional sustainability models. This need is often particularly acute in the context of data management and sharing infrastructure that is developed under the auspices of such research initiatives. One option for achieving sustainability of such data management and sharing infrastructure is the pursuit of technology licensing and commercialization, in an effort to establish public-private or equivalent partnerships that sustain and even expand upon the development and dissemination of research-oriented data management and sharing technologies. However, the critical success factors for technology licensing and commercialization efforts are often unknown to individuals outside of the private sector, thus making this type of endeavor challenging to investigators in academic and non-profit settings. In response to such a gap in knowledge, this article will review a number of generalizable lessons learned from an effort undertaken at The Ohio State University to commercialize a prototypical research-oriented data management and sharing infrastructure, known as the Translational Research Informatics and Data Management (TRIAD) Grid. It is important to note that the specific emphasis of these lessons learned is on the early stages of moving a technology from the research setting into a private-sector entity and as such are particularly relevant to academic investigators interested in pursuing such activities.

  5. The R and D and commercial experience on KHNP's vitrification technology

    International Nuclear Information System (INIS)

    Jo, Hyun-Jun; Kim, Cheon-Woo

    2015-01-01

    The Korea Hydro and Nuclear Power Co., Ltd., (KHNP) has investigated and evaluated various efficient thermal treatment technologies for the LILW. In 1994 and 1995, the feasibility of several melter technologies was assessed from technical and economic perspectives. Finally, the R and D project to develop the vitrification technology using CCIM (Cold Crucible Induction Melter) and PTM (Plasma Torch Melter) was launched in 1997. This R and D project had been completed from 1997 to 2002. KHNP started the project to construct the commercial facility using the results of the R and D project in 2002. The HanUl Vitrification Facility (UVF), to be used for the vitirification of low-and intermediate-level radioactive waste (LILW) generated by nuclear power plants (NPPs), is the world's first commercial facility using CCIM technology. The design of UVF had been conducted from 2002 to 2005. The construction was begun in 2005 and was completed in 2007. From 2007 to 2009, all key performance tests, such as the system functional test, the cold test, the hot test, and the real waste test, were successfully carried out. The UVF commenced the commercial operation in October 2009. Based on the successful construction and operation of UVF, the advanced R and D project has been started to develop the large-scale vitrification facility. (author)

  6. Implementing Space Technology into Sustainable Development and Resilience Theory

    Directory of Open Access Journals (Sweden)

    Ciro Arévalo Yepes

    2013-11-01

    Full Text Available The paper explores potential and actual applications of space technology, particularly satellites in the context of sustainable development. The introduction explores the concept of sustainable development from a multilateral perspective and the framework of Rio+20 and the post-2015 development agenda. The paper then introduces space technology and its uses in economic growth, energy, food security, environmental surveillance, including coastal regions, with special emphasis on environmental disasters and the concept of resilience, and the social and welfare uses of humanitarian tele-medicine and tele-education and ways to overcome the digital divide. The conclusion gives recommendations to improve satellite capacity and an analysis of the systemic synergies between space technologies and “green industries” that may lead to tandem growth.

  7. At the threshold: emerging opportunities for expanding commercial and governmental space operations in the new century. The 1997 KRAFT EHRICKE Lecture for the 27th Symposium on Economics in Space Operations of the IAA

    Science.gov (United States)

    Mankins, John C.

    2003-01-01

    We stand at the threshold of a new era in space operations in which a host of potentially profound changes will occur in space systems concepts and technologies. Many of the space systems in use today were originally created in the mid- to late-1960s, based on technologies either already existing or then under development. These concepts—including satellites, launchers and piloted systems—have served well for government and commercial missions during the decades since that era. They will continue to serve—and serve well—as we enter the first decade of the next century. However, in this era of restraint in government spending on civilian space and dramatic growth in investments in existing space commercial ventures, new, breakthrough systems concepts that drive down costs are critically needed. Fortunately these new concepts appear to be at hand. Building on the research foundation of the past 20 years, an array of new technologies are emerging which may make possible highly innovative advanced systems concepts. These technologies include long-lived high-efficiency chemical propulsion, affordable megawatt-class space power systems, advanced electromagnetic systems, breakthrough materials, "brilliant" space machines, robust artificial intelligences onboard and on the ground, low-cost utilization of local resources, and others. Moreover, many of these technologies appear common to both new space industries and very affordable future government missions. Forerunners of this new era can be seen today in the systems of large telecommunications satellite constellations such as the Iridium venture and in the technologies of the reusable launch vehicle program. Driving down the cost of space access will be the linchpin for this prospective future. In addition, during the coming decade, a wide range of civilian government space investments will likely be focused on vitally-needed research and development. Our choices now are exceptionally important and must be made

  8. Space Communication and Navigation Testbed Communications Technology for Exploration

    Science.gov (United States)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  9. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  10. Large space systems technology electronics: Data and power distribution

    Science.gov (United States)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  11. Transformational Technologies to Expedite Space Access and Development

    International Nuclear Information System (INIS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  12. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    Science.gov (United States)

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their

  13. The Social Shaping of Technology: A New Space for Politics?

    DEFF Research Database (Denmark)

    Yoshinaka, Yutaka; Clausen, Christian; Hansen, Anne Grethe

    2003-01-01

    effects, which are non-neutral and distributed, as the processes of shaping themselves have been. The chapter develops the notion of SST through socio-technical spaces. Here a heterogeneous set of elements, comprising of techniques, social actors, attribution of meanings, and problem definitions, etc...... on the socio-technical processes entailed in technology development and change. Our perspective is based on the understanding that technological development unfolds through processes with political implications, involving actors, their occasions and strategies that help bring about transitions in technological...... change. We identify a new perspective on political processes, with a broader focus on the political dimensions of technological decision-making, and a broader treatment of socio-technical space, maintaining a focus on inclusion and exclusion of actors, salient issues and how they are dealt...

  14. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  15. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  16. Addressing the emerging technology of video image compression over commercially available terrestrial and satellite transmission circuits

    Science.gov (United States)

    Kozlowski, Jerry; Ragsdale, Baxter

    The authors address the use of video communications with commercial telephone and satellite services as a cost-effective means of long-distance problem solving and teletraining for US Government applications. A primary objective of this feasibility study and pilot demonstration is to evaluate various video-compression Codecs, interactive computer technology, and high-resolution graphics transmission equipment working with government encryption devices over multiple 56-kb telephone lines, or ISDN-compatible 64-kb satellite circuits. It is concluded that the use of compressed video imagery, toll quality audio, and high-resolution graphics over multiple 64-kb or 128-kb/s satellite circuits is a proven technology with significant cost advantages over T-1 or 1.5 Mb video circuits as provided on the Defense Commercial Telecommunications Network.

  17. Technology issues associated with using densified hydrogen for space vehicles

    Science.gov (United States)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized.

  18. Progress in composite structure and space construction systems technology

    Science.gov (United States)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  19. Commercial non-aerospace technology transfer program for the 2000s: Strategic analysis and implementation

    Science.gov (United States)

    Horsham, Gary A. P.

    1992-01-01

    This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.

  20. The Analysis of the Experience in Commercialization of Indirect Coal Liquefaction Technologies in the World

    Directory of Open Access Journals (Sweden)

    Rudyka Viktor I.

    2017-09-01

    Full Text Available It is substantiated that, taking into account the world trends in the development of fuel and energy complexes, in the near future the most preferable direction in using solid fossil fuels will become not just their burning but advanced thermochemical processing, which will result in obtaining such end products as substitutes for natural gas, electricity, and synthetic analogues of hydrocarbons. There analyzed foreign experience on commercialization of indirect coal gasification technologies, among which the technologies of traditional and plasma gasification are singled out. The advantages and disadvantages of these technologies are systematized, and the hypothesis about better prospects for using the technology of plasma gasification of coal in comparison with the traditional analogues that are based on the Fischer-Tropsch process is put forward.

  1. A market-driven commercialization strategy for gasification-based technologies

    International Nuclear Information System (INIS)

    Klara, J.M.; Tomer, B.J.; Stiegel, G.J.

    1998-01-01

    In the wake of deregulation of power generation in the US, market-based competition is driving electricity generators to low-cost risk system. In such an environment, gasification-based technologies will not be competitive with low capital cost, efficient, and reliable natural gas-fired facilities for baseload power generation in the foreseeable future. The lack of a near-term market application poses a serious threat to the progress of gasification technology. With a reduction in direct federal funding of large-scale demonstration plants as the trend to reduce the size of government continues, an alternate approach to commercialize gasification-based technologies has been developed at DOE/FETC. This new strategy employs gasification in near-term markets where, due to its ability to coproduce a wide variety of commodity and premium products to meet market requirements, it is an attractive alternative. By obtaining operating experience in near-term coproduction applications, gasification system modules can be refined and improved leading to commercial guarantees and acceptance of gasification technology as a cost-effective technology for baseload power generation when this market begins to open domestically, sometime after 2005

  2. Shredder and incinerator technology for volume reduction of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.

    1986-06-01

    Pacific Northwest Laboratory (PNL) is evaluating alternatives and developing technology for treatment of radioactive wastes generated during commercial nuclear activities. Transuranic wastes that require volume reduction include spent HEPA filters, sample and analytical cell waste, and general process trash. A review of current technologies for volume reduction of these wastes led to the selection and testing of several low-speed shredder systems and three candidate incineration processes. The incinerators tested were the electrically heated control-led-air, gas-heated controlled-air, and rotary kiln. Equipment tests were conducted using simulated commercial transuranic wastes to provide a data base for the comparison of the various technologies. The electrically driven, low-speed shredder process was selected as the preferred method for size reduction of the wastes prior to incineration. All three incinerators effectively reduced the waste volume. Based on a technical and economic evaluation on the incineration processes, the recommended system for the commercial waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment

  3. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  4. Space-reactor electric systems: subsystem technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  5. Overview of NASA's Space Environments and Effects (SEE) Program Technology Development Activities

    Science.gov (United States)

    Kauffman, Billy; Hardage, Donna; Minor, Jody

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how spacecraft and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding utilizing new materials. The potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion introduces new requirements to develop new engineering tools. In order to drive down these uncertainties, NASA s SEE Program provides resources for technology development to accommodate or mitigate these harmful environments on spacecraft. This paper will describe the current SEE Program's, currently funded activities and possible future developments.

  6. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  7. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  8. Space Station Freedom technology payload user operations facility concept

    Science.gov (United States)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  9. Plant cell technologies in space: Background, strategies and prospects

    Science.gov (United States)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  10. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  11. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  12. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  13. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  14. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  15. Technical and economic assessments commercial success for IGCC technology in China

    International Nuclear Information System (INIS)

    Xiong, T.

    1998-01-01

    The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, and other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China

  16. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform detailed tasks of reading and assembling mechanical parts for an extended period of two uninterrupted hours. However, human subjects

  17. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  18. Commercial and industrial applications of color ink jet: a technological perspective

    Science.gov (United States)

    Dunand, Alain

    1996-03-01

    In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.

  19. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  20. Ethernet access network based on free-space optic deployment technology

    Science.gov (United States)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  1. Effects of puff number and puff spacing on carbon monoxide exposure from commercial brand cigarettes.

    Science.gov (United States)

    Weinhold, L L; Stitzer, M L

    1989-08-01

    Six chronic smokers of mid- to high-carbon monoxide (CO) yield cigarettes smoked ultralow- (1.6 mg CO), low- (5.9 mg CO) and high- (14.3 mg CO) yield commercial cigarettes under controlled smoking conditions in which either puff number or puff spacing was manipulated. CO exposure (pre- to postsmoking increments) was directly related to the number of puffs taken for all cigarette yields. CO exposure from the high- and low-yield cigarettes was equivalent when the number of puffs taken from the low-yield cigarettes was increased by 50% (from 8 to 12 puffs). In contrast, CO exposure from ultralow-yield cigarettes was still marginally lower than exposure from high-yield cigarettes after a 4-fold increase in puff number (8 to 32 puffs). Puff spacing did not affect biological exposure to CO. The study showed that the number of puffs taken during smoking can clearly affect biological exposure to CO, but that compensation for lowered yield using increased puffs is much more difficult when ultralow- as compared with low or "light"- yield cigarettes are smoked.

  2. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    Science.gov (United States)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  3. Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

    OpenAIRE

    Le, Guan; Moore, Thomas; Slavin, James

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned...

  4. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  5. Applications of Space-Age Technology in Anthropology

    Science.gov (United States)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  6. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  7. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  8. A business strategy formulation for commercializing university-created technology: A university spin-offs

    Science.gov (United States)

    Saputra, Iqbal Wahyu; Sutopo, Wahyudi; Zakaria, Roni

    2018-02-01

    There are some mechanism to commercialize the innovations that have been developed by academic scientists in universities, i.e. patenting, licensing, start-up creation, and university-industry partnerships. The start-up creations or university spin-offs (USOs) company is a very special start-up company that is founded by an academic inventor and the university with the aim to commercialize the technological innovation that created by the university. However, it is not always as smooth as expected. The market competitiveness of the USOs obviously has many challenges to be able to compete with the existing companies, analysis need to be done to get the right business step so the business strategy will be efficient. In this article, we discuss a real case study of a university spin-off that owned by Sebelas Maret University for Commercializing Battery Lithium. The aim of our research is twofold: first, to identify the gap in the literature of business strategy formulation between a conventional and USOs. Second, to propose a business strategy formulation for commercializing university-created technology, i.e. battery lithium as core business of a university spin-off as a case study. We conduct surveys, observation and FGD in order to collect the data and information to build the company objective and goals. The analytical tools to generate the solution of business strategy are SWOT analysis, IFE-EFE matrix, and QSPM model so the result will be the most attractive and suitable for the company. The result shows that the case study of USO company is classified on conservative continuous improvement phase so the suitable strategy for this company are product development and business strategy integration.

  9. Prototype Space Technology Hall of Fame exhibit at Technology 2003: Analysis of data from computer-based questionaire

    Science.gov (United States)

    Ewell, Robert N.

    1994-01-01

    The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.

  10. Wicked problems in space technology development at NASA

    Science.gov (United States)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  11. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  12. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  13. Space Life Support Technology Applications to Terrestrial Environmental Problems

    Science.gov (United States)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  14. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  15. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  16. Progress on thin-film sensors for space propulsion technology

    Science.gov (United States)

    Kim, Walter S.

    1987-01-01

    The objective is to develop thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades to 1800 F. The technology established for aircraft gas turbine engines will be adapted to the materials and environment encountered in the SSME. Specific goals are to expand the existing in-house thin-film sensor technology and to test the survivability and durability of thin-film sensors in the SSME environment.

  17. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  18. Hydrogen-oxygen Space Shuttle ACPS thruster technology review.

    Science.gov (United States)

    Gregory, J. W.; Herr, P. N.

    1972-01-01

    A comprehensive program has provided the technology groundwork for the use of hydrogen-oxygen propellants in the Space Shuttle Attitude Control Propulsion System (ACPS) thrustors. This work has concentrated on generation of technology for injectors, cooled thrust chambers, valves, and ignition systems. The thrustors are designed to meet a unique and stringent set of requirements, including: long life for 100 mission reuses, high performance, light weight, ability to provide long duration firings as well as small impulse bits, ability to operate over wide ranges of propellant inlet conditions and to withstand reentry heating. The program has included evaluation of thrustors designed for ambient temperature and cold gaseous propellants at the vehicle interface.

  19. Novel Design Aspects of the Space Technology 5 Mechanical Subsystem

    Science.gov (United States)

    Rossoni, Peter; McGill, William

    2003-01-01

    This paper describes several novel design elements of the Space Technology 5 (ST5) spacecraft mechanical subsystem. The spacecraft structure itself takes a significant step in integrating electronics into the primary structure. The deployment system restrains the spacecraft during launch and imparts a predetermined spin rate upon release from its secondary payload accommodations. The deployable instrument boom incorporates some traditional as well as new techniques for lightweight and stiffness. Analysis and test techniques used to validate these technologies are described. Numerous design choices were necessitated due to the compact spacecraft size and strict mechanical subsystem requirements.

  20. Bauman Moscow State Technical University Youth Space Centre: Student's Way in Space Technologies

    Science.gov (United States)

    Mayorova, Victoria; Zelentsov, Victor

    2002-01-01

    The Youth Space Center (YSC) was established in Bauman Moscow State Technical University (BMSTU) in 1989 to provide primary aerospace education for young people, stimulate youth creative research thinking, promote space science and technology achievements and develop cooperation with other youth organizations in the international aerospace community. The center is staffed by the Dr. Victoria Mayorova, BMSTU Associate Professor, the YSC director, Dr. Boris Kovalev, BMSTU Associate Professor, the YSC scientific director, 5 student consultants and many volunteers. Informally YSC is a community of space enthusiasts, an open club for BMSTU students interested in space science and technology and faculty teaching in this field. YSC educational activities are based on the concept of uninterrupted aerospace education, developed and implemented by the center. The concept includes working with young space interested people both in school and university and then assisting them in getting interesting job in Russian Space Industry. The school level educational activities of the center has got different forms, such as lecturing, summer scientific camps and even Classes from Space given by Mir space station flight crew in Mission Control Center - Moscow and done in cooperation with All- Russian Aerospace Society Soyuz (VAKO Soyuz). This helps to stimulate the young people interest to the fundamental sciences ( physics, mathematics, computer science, etc.) exploiting and developing their interest to space and thus increase the overall educational level in the country. YSC hosts annual Cosmonautics conference for high school students that provides the University with capability to select well-prepared and motivated students for its' rocket and space related departments. For the conference participants it's a good opportunity to be enrolled to the University without entrance examinations. BMSTU students can participate in such YSC activities as annual international workshop for space

  1. Case Study of Using High Performance Commercial Processors in a Space Environment

    Science.gov (United States)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  2. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  3. Summary tables of six commercially available entry control and contraband detection technologies

    International Nuclear Information System (INIS)

    Hunter, John Anthony

    2005-01-01

    Existing contraband detection and entry control devices such as metal detectors, X-ray machines, and radiation monitors were investigated for their capability to operate in an automated environment. In addition, a limited number of new devices for detection of explosives, chemicals, and biological agents were investigated for their feasibility for inclusion in future physical security systems. The tables in this document resulted from this investigation, which was part of a conceptual design upgrade for the United States Mints. This summary of commercially available technologies was written to provide a reference for physical security upgrades at other sites

  4. Multicriterial comparative analysis of rocket and space technology

    Science.gov (United States)

    Gusynin, V. P.; Goldshtein, Yu. M.; Doroshkevich, V. K.; Kuznetsov, V. I.; Kuchugurny, Yu. P.

    The problem of a comparative analysis of objects of rocket and space technology is formulated in terms of one of fundamental problems of the system analysis, namely, comparisons of objects on set of diverse criteria. A procedure for a comparative estimation based on the method of the analytic hierarchy process is offered as an algorithm. We give an example, namely, a comparison of launcher-carriers, derived with the use of our software.

  5. Advanced Mirror Technology Development for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  6. Technology assessment for Spaceship Two, space tourism, and private spaceflight

    Science.gov (United States)

    Hancock, Randy

    A seven-step technology assessment was conducted to address questions regarding the significance and likely consequences associated with the introduction of Spaceship Two, space tourism, and private spaceflight. Impacts were assessed across four categories: the Role and Functions of Government, Private Industry Factors, Cultural and Societal Impacts, and the Time Frame in which these impacts were anticipated to occur. The technology assessment findings were compared to the results of expert interviews that addressed the sane four categories. The researcher noted that, while there was overwhelming agreement between the technology assessment's primary impacts and the expert interview responses, there were several differences. The technology assessment and interviewees agreed that the federal government would likely be both a regulator and user of private spaceflight. Both agreed that business partnerships would be key in pursuing private spaceflight. There was also consensus that, as market forces come to bear, ticket prices would drop and a larger market and broader passenger demographic would emerge. The technology assessment and experts agreed that an accident, especially one early in the industry's evolution, could be disastrous. Both agreed that private spaceflight can serve as a inspiration to students and be a positive influence in society, and both agreed that the start of passenger flights should take place in the 2010 - 2012 timeframe. Due to the potentially disastrous consequences of an accident, there was agreement between the technology assessment and experts on the value of flight and ground crew training, driven by insurance carriers and federal mandate. Most differences between the technology assessment's findings and the expert interview responses were due to omission, rather than direct disagreement. However, this was not the case in every instance. The most significant difference between the technology assessment and the experts involved the

  7. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    Science.gov (United States)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  8. Overcoming Learning Time And Space Constraints Through Technological Tool

    Directory of Open Access Journals (Sweden)

    Nafiseh Zarei

    2015-08-01

    Full Text Available Today the use of technological tools has become an evolution in language learning and language acquisition. Many instructors and lecturers believe that integrating Web-based learning tools into language courses allows pupils to become active learners during learning process. This study investigate how the Learning Management Blog (LMB overcomes the learning time and space constraints that contribute to students’ language learning and language acquisition processes. The participants were 30 ESL students at National University of Malaysia. A qualitative approach comprising an open-ended questionnaire and a semi-structured interview was used to collect data. The results of the study revealed that the students’ language learning and acquisition processes were enhanced. The students did not face any learning time and space limitations while being engaged in the learning process via the LMB. They learned and acquired knowledge using the language learning materials and forum at anytime and anywhere. Keywords: learning time, learning space, learning management blog

  9. Guidelines for compliance with the National Environmental Policy Act and related environmental review statutes for the development of commercial space launch sites

    Science.gov (United States)

    1995-05-01

    The Department of Transportation (DOT) is authorized to regulate and license : U.S. commercial launch activities. Within DOT, the Secretary's authority has : been delegated to the Office of Commercial Space Transportation (OCST). OCST : is responsibl...

  10. Research and test facilities for development of technologies and experiments with commercial applications

    Science.gov (United States)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  11. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  12. Health assessment and risk mitigation of railroad networks exposed to natural hazards using commercial remote sensing and spatial information technologies.

    Science.gov (United States)

    2017-05-31

    The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...

  13. Space experiments on basic technologies for a space elevator using microsatellites

    Science.gov (United States)

    Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito

    2017-09-01

    We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.

  14. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  15. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure.

    Science.gov (United States)

    Gajda, Steven; Chen, Jie

    2012-03-01

    To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.

  16. Spinning-out university technologies: a role for students in the commercialization process

    DEFF Research Database (Denmark)

    Murdock, Karen; Johnsen, Lasse Emil; Ølund, Michael

    2015-01-01

    in developing knoweldege about markets to supplement the knowledge–gap among academics, which as far as we know have not been widely explored. The analysis is based in the context of a technical university which provides a unique opportunity to explore how students working to fulfil academic requirements can...... a singular formula to increase university spin-outs. A common theme in much of the empirical evidence is that academics/university researchers lack knowledge related to market development which must be supplemented for successful commercialization. This study analyses the role of non-research students...... create momentum around a technology to increase its spinout potential. The results show that students working with potential spin-out technologies as class projects are seen as nonthreatening which allow them to gather useful market information. This early information can stimulate interest leading...

  17. From invention to innovation: Commercialization of new technology by independent and small business inventors

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-05-15

    This handbook emerged from the commitment of Energy-Related Inventions Program personnel to supporting the commercialization efforts of independent and small business inventors with new technologies. As you read this document, you will face questions that may seem far removed from technological concerns--questions about the market, your competition, your business structure, and about legal and regulatory requirements. These may seem peripheral to your present and future work. But, make no mistake, you must carefully and honestly consider and answer these if you expect to penetrate the market in sustained way and profit from your work. Over four hundred of your peers--some by success, others by failure--have shown us the lessons incorporated in this volume. By using it, and by commenting on it, you benefit from their collective experience, and make invaluable additions to it. 4 figs., 3 tabs.

  18. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  19. Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Stephen W.

    2002-04-23

    This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

  20. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.

    Science.gov (United States)

    Dursun, Derya; Ozkul, Selin; Yuksel, Recep; Unalan, Husnu Emrah

    2017-02-01

    In recent years, capacitive deionization (CDI) has been reported as one of the emerging technologies developed with the purpose of water desalination. This work is aimed at the integration of supercapacitor electrodes for efficient removal of ions from water, and thus to achieve an energy efficient, and cost-effective water treatment process. Our objective is to transfer the vast knowledge of supercapacitors and advanced materials in area of water treatment to enhance the knowledge of the CDI process. Towards the main purpose, graphene-based supercapacitor electrodes were developed from commercially available, cost-effective graphene and the use of these new materials for deionization was explored in detail. The porosity, morphology and electrochemical characteristics of the active materials were confirmed by Brunauer-Emmett-Teller method, scanning electron microscopy, Raman spectroscopy and chronoamperometry. Furthermore, the deionization performances of the graphene electrodes were evaluated by a laboratory scale CDI unit. The ion sorption behavior of the electrode was analyzed at different electrical potentials and flow rates. Impact of operating parameters on the sorption capacity was determined. At 20 mL/min flow rate and 2.0 V potential, the electrosorptive capacity of commercially available graphene electrodes could reach 12.5 μmol/g. Our results indicated the ability to use commercially available graphene for deionization purpose.

  1. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  2. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  3. AIR Technology: A Step Towards ARINC 653 in Space

    Science.gov (United States)

    Rufino, J.; Craveiro, J.; Schoofs, T.; Tatibana, C.; Windsor, J.

    2009-05-01

    The Integrated Modular Avionics and the ARINC 653 specifications are assuming a key role in the provision of a standard operating system interface for safety-critical applications in both the aeronautic and space markets. The AIR Technology, designed within the scope of an ESA initiative to develop a proof of concept, implements the notion of robust temporal and spatial partitioning. A different operating system kernel may be used per partition, furnishing the bare services to build the ARINC 653 application programming interface. This paper describes the advances done during AIR-II, an initiative to evolve the AIR Technology proof of concept towards an industrial product. Current prototype activities are based on RTEMS and on the SPARC V8 LEON3 processor and work is being done on the integration of Linux in the AIR Technology.

  4. The NASA program in Space Energy Conversion Research and Technology

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  5. Biogas upgrading - Review of commercial technologies; Biogasuppgradering - Granskning av kommersiella tekniker

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fredric; Hulteberg, Christian; Persson, Tobias; Tamm, Daniel

    2013-04-01

    Biogas production is growing and there is an increasing demand for upgraded biogas, to be used as vehicle fuel or injected to the natural gas grid. To enable the efficient use of biogas in these applications the gas must be upgraded, i.e. the carbon dioxide, which constitutes a large part of the raw biogas from the digester, must be separated from the methane. This report aims to evaluate the biogas upgrading technologies that are commercially available and in operation today: amine scrubbers, water scrubbers, PSA units, organic scrubbers and membrane units. The technologies are described in detail by presenting the theory behind the separation mechanism, the upgrading process as a complete system, operational issues and how these are solved, and finally the most important financial data. Furthermore, the best developed cryogenic technologies, which today are being used to purify landfill gas and biogas from some specific components and to liquefy biogas, are presented. Cryogenic upgrading is an interesting possibility, but as this report shows, the technology still has some important operational issues to resolve. Technologies which are especially focused on small-scale applications are finally presented, however not in as much detail as the other, more common technologies. The report shows that for mid-scale applications, the most common options are all viable. The scrubbing technologies all perform well and have similar costs of investment and operation. The simplicity and reliability of the water scrubber has made this the preferred choice in many applications, but the high purity and very low methane slip from amine scrubbers are important characteristics. Regarding PSA and membrane units, the investment cost for these are about the same as for scrubbers. Furthermore, recent developments of the membrane units have also made it possible to reach low methane slips with this technology. Biogas production is increasing, in Sweden and globally, and the interest for

  6. Technology Development Activities for the Space Environment and its Effects on Spacecraft

    Science.gov (United States)

    Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.

  7. Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

  8. A plug-and-play brain-computer interface to operate commercial assistive technology.

    Science.gov (United States)

    Thompson, David E; Gruis, Kirsten L; Huggins, Jane E

    2014-03-01

    To determine if a brain-computer interface (BCI) could be used as a plug-and-play input device to operate commercial assistive technology (AT), and to quantify the performance impact of such operation. Using a hardware device designed in our lab, participants (11 with amyotrophic lateral sclerosis, 22 controls) were asked to operate two devices using a BCI. Results were compared to traditional BCI operation by the same users. Performance was assessed using both accuracy and BCI utility, a throughput metric. 95% confidence bounds on performance differences were developed using a linear mixed model. The observed differences in accuracy and throughput were small and not statistically significant. The confidence bounds indicate that if there is a performance impact of using a BCI to control an AT device, the impact could easily be overcome by the benefits of the AT device itself. BCI control of AT devices is possible, and the performance difference appears to be very small. BCI designers are encouraged to incorporate standard outputs into their design to enable future users to interface with familiar AT devices. Brain-computer interface (BCI) control of assistive technology (AT) devices is possible. The performance impact of such control is low when BCIs are commercially available, AT providers can use a BCI as an input device to existing AT devices already in use by their clients.

  9. Public acceptance, market development and commercialization of food irradiation technology in Bangladesh

    International Nuclear Information System (INIS)

    Karim, A.

    2001-01-01

    Current status of food irradiation technology in Bangladesh with respect to public acceptance, commercial application, trade development and present research and development activities are summarized in the paper. Irradiated food products are generally accepted by people. To further boost public opinion on the usefulness of the technology, two national seminars were successfully organized in 1995 and 1996 respectively with wide participation and media coverage. A number of non-traditional items such as beef casing, flour, turtle meat, macaroni, peat soil, etc. were irradiated and successfully marketed during the last 5 years. Bangladesh adopted a ''Specification for Authorisation of Irradiation by Groups/Classes of Foods'' in 1995 in line with the ICGFI Guidelines. The Bangladesh Standard is essentially similar to the Harmonised Regulations adopted for the RCA countries in April 1998. About 1300 metric tons of different food items were irradiated for commercial purposes at the Gammatech Irradiation Facility in Chittagong during the past 5 years. Present research activities in Bangladesh include irradiation disinfestations of nematodes in ginger and turmeric, and mites and thrips from cut flowers. Work on identification of fruit flies, mites and thrips by using sensitive protein markers is in progress. (author)

  10. Training to use a commercial brain-computer interface as access technology: a case study.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  11. 76 FR 8629 - Clarification of Reciprocal Waivers of Claims for Multiple-Customer Commercial Space Launch and...

    Science.gov (United States)

    2011-02-15

    ..., Appendix B and Appendix C of part 440 define, ``Customer'' as the above-named Customer on behalf of the... Claims for Multiple- Customer Commercial Space Launch and Reentry AGENCY: Federal Aviation Administration... requirement for an FAA authorized launch or reentry in which a licensee or permittee has multiple customers...

  12. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  13. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    Science.gov (United States)

    Kauffman, B.; Hardage, D.; Minor, J.

    2004-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  14. Assessment of commercial optical amplifiers for potential use in space applications

    Science.gov (United States)

    Barbero, Juan; Sotom, Michel; Benazet, Benoit; Esquivias, Ignacio; López Hernández, Francisco José

    2017-11-01

    This paper describes the activities and results of an ESA-funded project concerned with the assessment of optical amplifier technologies and products for applications in fiber optic subsystems of future satellite payloads. On-board applications are briefly introduced, together with associated system-level requirements. Optical amplifier technologies, research achievements and products are reviewed. They are compared in terms of current performance, perspectives and suitability for the target space applications. Optical fibre amplifiers, not limited to Erbium-doped amplifiers, Erbium-doped waveguide amplifiers and Semiconductor Optical Amplifiers are covered. The review includes analysis and trade-off of all performance parameters including saturation output power, noise figure, polarisation maintaining capability, wall-plug efficiency, and mass and size. A selection of optical amplifier products for further evaluation and testing is presented. Results of extensive testing covering both functional performance and environmental behaviour (mechanical, thermal vacuum, radiations) aspects are reported. Most of the work has been completed, but an extension has been proposed for checking and comparing the behaviour of doped fibers under gamma radiation.

  15. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  16. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  17. Transfer of biofuel technologies in private and commercial sectors in western India

    International Nuclear Information System (INIS)

    Saxena, S.C.; Vasudevan, P.

    1991-01-01

    The energy crisis all over the world has stimulated a lot of interest in renewable energies and indigenously produced fuels. Biofuels falls potentially into both these categories, hence biofuel technologies have attracted both scientists and practicing engineers in R ampersand D and transfer. Most of the biofuel technologies in India do not form part of the market economy, owing to unfavorable economic returns, but need large scale transfer due to their importance in the overall scenario of meeting growing energy requirements, calling for innovative approaches. In this paper an attempt has been made to analyze the gaps in transfer of biofuel technologies and describe an alternate model evolved by the authors. The experiences in the form of case studies are given, with a view to throw light on the A-B-C model's efficacy in terms of linkages and employment generation potential. Select reference to attempts made by other institutions in technology transfer to commercial sectors has also been made to focus attention on some key issues having policy implications

  18. The development and commercialization of solar PV technology in the oil industry

    International Nuclear Information System (INIS)

    Pinkse, Jonatan; Buuse, Daniel van den

    2012-01-01

    In diversifying energy supply, the transformation of the energy industry has been identified as a key challenge for a sustainable energy future. This suggests that incumbent firms in this industry have a vital role in the development and commercialization process of renewable energy technologies. This paper provides a comparative analysis of oil and gas firms’ strategies regarding solar PV technology investments, a renewable energy technology that has seen explosive growth of late. The main aim is to examine the strategic approach of incumbent firms in the oil and gas industry towards the development and commercialization of solar PV technology. To investigate this, a multiple case study has been conducted within the European oil industry, focusing on the three largest oil and gas firms: BP, Royal Dutch/Shell, and Total. Findings show that oil and gas firms have difficulties with integrating solar PV technology in their supply chain. The analysis suggests that it is uncertain whether all oil and gas firms will abandon solar completely, as this depends to what extent they are able to generate profits. Nevertheless, there is currently a trend in the oil industry of leaving solar and positioning towards a ‘recarbonization’ of business activities. - Research Highlights: ► Oil and gas incumbents have experienced difficulties in integrating solar technology in their supply chain and therefore established fairly independent business units, serving niche markets outside mainstream markets for oil and gas. ► It is uncertain whether all oil and gas firms will abandon solar completely, as it depends to what extent they are able to generate profits with these activities. ► The competitive strain and increased turbulence in the oil industry have led to erratic investment behavior of oil firms and, as a consequence, renewable energy projects in which incumbents are engaged are often cancelled for reasons which have nothing to do with the market viability of renewable

  19. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    Science.gov (United States)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  20. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  1. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  2. Extreme Environment Technologies for Space and Terrestrial Applications

    Science.gov (United States)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-01-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.

  3. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  4. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  5. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  6. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  7. Space power distribution system technology. Volume 1: Reference EPS design

    Science.gov (United States)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Massner, A.; Ritterman, P. F.

    1983-01-01

    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable.

  8. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  9. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  10. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    Science.gov (United States)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  11. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  12. Astronomy and Space Technologies, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physics and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JE...

  13. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  14. Research on key technology of space laser communication network

    Science.gov (United States)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  15. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  16. Government-industry relationships in technology commercialization The case of photovoltaics

    Science.gov (United States)

    Roessner, J. D.

    1982-01-01

    Interfaces between the U.S. government and the emerging photovoltaics industry are examined in terms of basic research programs, market studies, and strategies to accelerate the development of the industry. The process of the development of a model industry is outlined from innovation to large-scale, specific use production, and DOE programs are noted to shift from R and D, testing, and evaluation programs to market tests, demonstrations, and workshops when a product becomes commercially ready. The growth of funding for research, technology development, and purchases to gain operational experience with solar cell arrays is traced, and it is noted that firms specializing in photovoltaics production have managed to continue with irregular government funding and normal, private financing arrangements. Government procurement is suggested to have the greatest impact on a new industry, especially when coupled with performance and reliability requirements.

  17. Developing Entrepreneurial and Technology Commercialization Policies to Promote Cooperative Ventures Between NIH and Industry

    Science.gov (United States)

    Rossomando, Edward F.

    2001-03-01

    The NIH has had a great influence in guiding the biological research agenda for the last half of the 20th century. This may change if the increases in research funding from the private sector that occurred in the last ten years continue into the 21st century. Ten years ago, industry supplied 55% of the US R&D funds. In 2000, industry support of R&D had increased to 76%, with industry carrying out 70% of the nations applied and 91% of its development research. Given this shift, one of the biggest challenges that NIH may face in coming years is sharing control of America's research agenda with industry. For this to occur policies that encourage cooperative ventures with industry are needed. In a unique experiment, I was invited to the National Institute of Dental and Craniofacial Research (NIDCR), one of the 25 NIH Institutes and Centers, to develop programs and policies that would promote interactions with industry. This talk will introduce the strategy and programs developed to commercialize products and technologies from basic science discoveries and introducing an entrepreneurial atmosphere within the Institute. The results of this experiment will be discussed by comparing differences between discovery-driven and customer-driven innovation. One outcome of this experience is a greater appreciation of the obstacles to introducing disruptive technologies into the market place and of the paradigms that serve as barriers to commercialization. One recommendation is that the NIDCR consider a policy that allows for some participation by industry in setting the research and training agenda of the Institute, and that a mechanism for industry input be introduced into its administrative organization.

  18. Strategies on Technology Transfer and Patents Commercialization for Nanotechnology at the Spanish National Research Council.

    Science.gov (United States)

    Maira, Javier; Etxabe, Javier; Serena, Pedro A

    2018-02-14

    Nanoscience and nanotechnology made their appearance in the scientific scene at a time when both the economy of Spain and the Spanish Research and Innovation System were experiencing strong growth. This circumstance resulted in a remarkable development of nanoscience and nanotechnology especially in universities and public research institutions such as the Spanish National Research Council (Consejo Superior de Investigaciones Científicas-CSIC). However, this development in academia has not been reflected in a similar increment in the transfer of knowledge to the productive sector despite several efforts and initiatives were launched. The CSIC, the main generator of scientific knowledge in Spain, has designed and implemented a series of actions in order to take advantage of the knowledge generated in nanotechnology by its research groups by mean of an appropriate transfer to both the Spanish and the international industry. Internal methodologies used in CSIC in order to protect and commercialize nanotechnology based intellectual property as well as their effects are reviewed. The evolution of CSIC nanotechnology patents portfolio is also analyzed. There has been a clear increase in the patent license agreements of CSIC in the period 2002- 2015 in the field of nanotechnology. This increase is correlated to these facts: (i) Highly qualified team managing Intellectual Property issues, (ii) The presence of CSIC in international fairs, and (iii) Proactive search of companies and investors. Successful results can be achieved in technology transfer when the appropriate resources are available and properly organized with an adequate combination of efforts in knowledge protection, promotion and commercialization of technologies and support to the scientific entrepreneurs of the institution. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Manufacturing technology of AS-SOFC prepared with different commercially available precursors

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2016-01-01

    Full Text Available Fuel cells are devices converting the chemical energy into the electrical energy and heat as result of the electrochemical reaction between gaseous fuel and a gas oxidant in flameless combustion process. Because of omission of thermo-mechanical steps that are present in any traditional energy conversion technology (e.g. gas turbine fuel cells show increased efficiency in comparison. Compact sizes and modular scalability predestines this technology for distributed energy generation including but not limited to renewable energy sources (e.g. wind, solar. Fuel cells technology also addresses other very important part of distributed renewable energy generation. Because of the unreliable energy production rates and the usual for renewable energy sources mismatch between energy supply and demand, some sort of energy storage is needed to store surplus of produced energy and release it when needed. Reversible fuel cells, that generate hydrogen from available surplus of energy and then generate energy from that stored fuel when needed are cheaper and more ecologically friendly alternative to usually used batteries. This technology is still under development, including research at IEn OC CEREL. In the early development of reversible fuel cells, new types of nickel oxide and porosity forming carbon was evaluated for this task. This work compares the electrical and mechanical parameters of SOFC manufactured with JT Backer NiO and Carbon Polska carbon with cells made from other commercially available materials. Based on evaluated quality, purity, availability and cost, following materials were selected for comparison: Novamet NiO, 99,9 % pure, grain size 1-2 µm and Aldrich carbon with parameters similar to graphite used previously. Preliminary tests show clear changes in the microstructural, mechanical and electrical parameters.

  20. Application of dexterous space robotics technology to myoelectric prostheses

    Science.gov (United States)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.